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ABSTRACT
Firewall policies are notorious for having misconfiguration errors
which can defeat its intended purpose of protecting hosts in the net-
work from malicious users. We believe this is because today’s fire-
wall policies are mostly monolithic. Inspired by ideas from modu-
lar programming and code refactoring, in this work we introduce
three kinds of modules: primary, auxiliary, and template, which
facilitate the refactoring of a firewall policy into smaller, reusable,
comprehensible, and more manageable components. We present
algorithms for generating each of the three modules for a given
legacy firewall policy. We also develop ModFP, an automated tool
for converting legacy firewall policies represented in access control
list to their modularized format. With the help of ModFP, when ex-
amining several real-world policies with sizes ranging from dozens
to hundreds of rules, we were able to identify subtle errors.
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1 Introduction
A firewall is among the first lines of defenses for protecting a
network (or, a host) from malicious users. A firewall intercepts
network packets, and based on a specific firewall policy, decides
whether to allow or deny certain packets to pass through it. As fire-
walls are developed by many vendors (e.g., Cisco, Check Point),
the syntaxes and semantics of firewall policy languages vary. How-
ever, at its core, most of the packet filtering rules expressed in these
specification languages can be translated into an access control list
(ACL) representation. An ACL firewall policy is specified as an
ordered list of rules. Each rule has the form “target→action”, in
which target specifies a set of packets to which this rule is appli-
cable, and action states what should be done with the packet. In
an ACL, multiple rules can be applicable to a single packet and the
decision of the first rule that is applicable to the packet is imposed
on the packet. This is known as the “first match semantics”.
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Due to the dynamic nature of a network and its surrounding envi-
ronment (e.g., addition of new services, discovery of new attacks,
a host becoming compromised), the firewall policies must evolve
over time, in order to maintain a robust defense against malicious
users while allowing legitimate traffic. Hence, it is necessary for
firewall policies to be intellectually manageable, a term used in the
context of programming by Edsger W. Dijkstra in his 1972 ACM
Turing Lecture [16]. That is, administrators should be able to un-
derstand existing policies, possibly designed by other administra-
tors. They should be able to modify a policy to achieve some in-
tended objectives, mentally assess what the policy does, and “de-
bug” the policy when problems arise.

Regrettably, many firewall policies are not intellectually man-
ageable. For instance, it has been observed that most firewalls on
the Internet are poorly designed and have many configuration er-
rors in their rules [38, 39]. As firewalls can only be as effective as
their configuration, misconfigurations of firewalls undermine their
intended purpose of protecting the networks in question, causing
firewalls to offer only a false sense of security.

One characteristic of firewall ACL languages is that two ACL
rules may be in conflict with each other if they have different de-
cisions (e.g., one allows the packet to pass, and the other drops the
packet) but their applicable sets of packets overlap. This means
that the semantic of one rule may be changed by other rules that
are in conflict with it. Because of this, writing firewall policies has
been compared with writing programs with extensive use of goto
statements. (See, e.g., [18].) However, as policy rules often have
exceptions, more often than not using conflicts is the most succinct
way of expressing actual policies.

We argue that (1) the potential for conflicts is only one of three
factors causing the difficulty. The other two are (2) policies ex-
pressed in ACL-based languages are monolithic; and (3) complex
policies require a large number of rules. A monolithic policy can
only be understood as a whole. This becomes infeasible as the pol-
icy gets large, since most people are unable to put a large amount
of information in the working memory.

Since we cannot change the fact that many policies are inherently
complex and that conflicts are useful, the only factor we can affect
is the monolithic nature of current firewall policies. A notion of
modular firewall policy was introduced in [5], where a firewall pol-
icy is considered modular if the policy is partitioned into multiple
policy components M1, . . . ,Mr such that each packet is accepted
by at most one component. This approach is still inherently mono-
lithic, since one still potentially needs to examine all components
when trying to understand what is the decision for one packet.

The goal of our work is to elevate firewall policies from mono-
lithic to modular. The contributions of this paper are as follows.

First, we recognize five requirements for a successful modular-
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ization approach (i.e., logical partitioning, isolation among mod-
ules, flexible partitioning structure, human-computable policy slic-
ing, and readily deployability), and analyze existing approaches us-
ing these requirements to identify their shortcomings.

Second, we introduce our approach of modularizing firewall
policies. This includes the concept of a primary attribute, which is
either the source IP, the destination IP, or the service. The optimal
choice of the primary attribute is policy dependent, although for
the several dozens of policies we have observed, most of them ben-
efit more from choosing the destination IP as the primary attribute.
A policy is partitioned into three kinds of modules: primary, aux-
iliary, and template. Beyond making policies more modular and
easier to understand, our approach also supports policy refactoring,
either by distilling templates from recurring patterns, or by break-
ing up a large module into multiple smaller ones, each covering a
subset of the IP range.

Third, to support legacy firewall policies, we have defined a 5-
step process and introduced algorithms for converting them into
their modularized form. We have also implemented an automated
tool called ModFP for this purpose. By utilizing ModFP, we have
converted several real-world firewall policies into their modular-
ized form, and found that the process consistently improved the
understanding of a policy, and the benefit is much more significant
when the policy is large and/or when it has substantial usage of both
permit and deny rules. For majority of the real-world firewall poli-
cies, their modularized version—translated with ModFP—enjoys a
significant number of rule reduction (i.e., 25.3%-68.7%) compared
to the original ACL policy. Additionally, the translation from ACL
to the modularized version takes a matter of seconds (i.e., 0.26-
19.35 seconds). For every large policy we have examined, we have
found clear errors (such as redundant rules) as well as irregularities
that we conjecture to be errors. For one such policy deployed in
a corporate setting, we were able to contact the administrators and
confirm that most of our findings are indeed policy errors.

2 Background and Related Work
In this section, we review the ACL representation of firewall poli-
cies, and then discuss related work.

2.1 Background on Firewall
A firewall typically operates at the gateway of a network to protect
the network. The firewall determines whether to allow (resp., deny)
certain packets based on some configurable firewall policy. Such a
policy considers the following fields of a packet while matching it
against the rules’ target: source IP address (denoted by sIP), source
port (denoted by sPort), destination IP address (denoted by dIP),
destination port (denoted by dPort), and protocol/service (denoted
by protocol). A firewall policy consists of rules, where each rule
has the form “target→ action”, where the four actions in Table 1
are possible.

action Effect of action
allow allow the matched packet to pass
deny drop the matched packet

chainY for matched packet, go use chain “Y ”
return resume calling chain

Table 1: Four actions in firewall rules.

Most firewall languages use a simple list model where each rule’s
action (or, decision) is either allow or deny. Linux netfilter uses a
complex chain model, where a policy consists of multiple chains
and all four actions can be used. The chainY action directs the
evaluation to another chain Y , which should include rules using the

return action. Similar to a subroutine, the chain Y can be invoked
from multiple places.

In a policy, more than one rules may match a packet, and their
decisions may conflict. Firewall rule lists use the “first match se-
mantics”. Hence, the order in which the rules are organized is im-
portant in making the decision about whether a packet should be
accepted or denied. Most policies have a “catch-all" rule as the last
rule, which will match all packets and provide a default decision for
any packet that is not matched by any earlier rules. In most cases,
this “catch-all” rule has “deny” as the decision.

2.2 Related Work
Wool [38, 39] studied errors in real-world Firewall policies. They
define certain characteristics as configuration errors and found that
the number of errors in a policy is correlated with the number of
rules in a policy. 36 such characteristics are used in [39], includ-
ing “to any address allow any service” rules, outbound “any” ser-
vice rules, inbound or outbound instance messaging rules, and so
on. While our experience also shows that firewall policies con-
tain many errors, we point out that most of these “configuration
errors” as defined in [39] are really irregularities. They may indi-
cate an error, but could also be intended by administrators for some
specific reasons. This indicates a fundamental challenge in dealing
with firewall configuration errors. Without knowing the original in-
tention of the administrators, it is often impossible to tell whether
something in a policy is a feature or a bug.
Analysis and Testing Tools. One line of research aims to identify
anomalies in firewall policies [8–11, 13, 24, 40], either in a single
policy, or in multiple policies placed on a network. Algorithms
and tools were developed to detect anomalies and recommend how
they can be fixed. Such techniques resemble static analysis tools
for detecting bugs in software programs. They can detect errors
manifested as anomalies, but not logical bugs where the policy does
not implement what the administrators intend to enforce.

Another approach to deal with firewall policy errors is to de-
velop debugging tools. Some tools generate and send testing
packets and check whether they can go through firewalls. Other
tools model firewalls using some formal modeling tools (often
decision diagrams) and allow administrators to query the policy
model [19–21,26,27,29,34,37]. For example, one can issue queries
such as “Which hosts can access the web server at 10.10.2.3?”.
With these techniques, administrators need to come up with ap-
propriate queries that provide sufficient coverage and expected an-
swers for these queries.

Several other interesting approaches have been proposed. One
is change-impact analysis [23], which takes as input a firewall
policy and a proposed change, and outputs the impact of apply-
ing the change, such as what packets will have their decisions re-
versed. Another is classifying the hosts of a network into equiv-
alence classes [28]. Two hosts are equivalent if after changing a
packet’s source (similarly for destination) IP address from one to
the other, the decision remains the same. Techniques to automati-
cally correct errors in firewall policies, when a number of test cases
(i.e., packets and the corresponding correct decisions) are given as
input, were developed in [15].

Like the case of software development, static analysis and de-
bugging tools are valuable; however, they cannot fully mitigate the
problem caused by a primitive programming language lacking sup-
port for abstractions and modularization. The work we present in
this paper aims at introducing such support.
Automatic policy generation. Instead of specifying firewall poli-
cies, in [17], a method is proposed to discover firewall policy rules
by first mining the network traffic log using association rule min-
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ing, then aggregating the resulting rules, and finally detecting and
removing anomalies in the policy using techniques in [11]. In [31],
an architecture is proposed for automatically generating conflict-
free firewall rules with alert information from network and system
logs in multiple-firewall scenarios.
Policy representation. A method to convert an ACL rule list to a
textual representation was proposed in [12]. The method first ag-
gregates rules that are similar (e.g., they differ only in one field)
together, and then translate them into text. For example, it may
produce a rule that reads: “accept all TCP traffic from address
140.192.37.∗ and {to port 80 or to port 21}”. A similar approach
was proposed by Tongaonkar et al. [33], in which given a firewall
policy, they first flatten the policy rules into non-overlapping ones
using Directed Acyclic Graph (DAG), so that the order of the rules
does not affect the policy semantic. Then they merge similar rules
to make compound rules such that a complexity metric is mini-
mized. This kind of methods are beneficial to represent legacy
policies in a more compact and understandable flavor.

Bartal et al. [14] develop a workflow for specifying firewall poli-
cies which proceeds in three stages: (i) abstract policy specifica-
tion, (ii) policy instantiation, and (iii) automatic rule generation.
They also develop a rule illustrator that visualizes which traffic be-
tween any two hosts are allowed. Their workflow is suitable for a
new organization which is setting up their network instead of im-
proving the manageability of legacy firewall policy.

Most commercial firewall policy languages or tools provide sim-
ilar textual or graphical-based interface, as well as the ability of
defining objects that can group multiple hosts into a group, and use
these groups in a policy. This provides the functionality of macros
at the level of individual fields in firewall policies.

Several efforts exist to specify firewall policies over packet flows
between two ranges of IP addresses (which can be implemented by
multiple firewalls that are in between the source and destination
networks). One example is a firewall specification language for
Linux netfilter introduced in [6].

In summary, the languages discussed above provide three kinds
of abstractions: (1) named objects that group related IP addresses or
port numbers together, similar to macros; (2) defining policies in a
global network view instead of the view of a single firewall; and (3)
syntactic sugars, e.g., making the rules more like a natural language
description. These are orthogonal to the kinds of abstractions we
introduce for modularization.

An alternate way of representing firewall policies is by firewall
decision diagram (FDD) [18, 25]. An FDD is a decision diagram
where nodes are divided into levels, with each level corresponding
to one field in a packet. This method is, of course, drastically dif-
ferent from using ACLs. It is unclear whether a policy specified in
this form is easier to understand or modify for an administrator.
Policy chains/subroutines. The concepts of policy chains and
subroutines exist in firewall products such as Linux netfilter [3]
and SRX series firewalls by Juniper [2]. A sequence of rules can
be organized into a subroutine and can be invoked from multiple
places. This can improve the understandability of policies, espe-
cially when the same requirements are repeatedly applied, e.g., the
same sequence of rules are applied to multiple hosts.

This, however, does not provide the full advantage of modular-
ization. There is no isolation among subroutines and the full policy,
or among different chains specifically in netfilter. Policy chains
and subroutines provide the mechanical support for modulariza-
tion, without the methodology on how to modularize a policy. If
one simply divides a long sequence of rules into multiple smaller

ones that are chained together, that does not make the policy easier
to understand.
Only-one-accept modules. In [5], a notion of modular firewall
policy was introduced, where a policy is considered modular if it
can be partitioned into multiple policy components M1, . . . ,Mr

such that each packet is accepted by at most one component. In
such an approach, a packet is accepted by the overall policy only if
it is accepted by one component, and is denied otherwise. This ap-
proach is still inherently monolithic because of interactions among
different components. As conflicts are still allowed, for example,
one module may reject a packet whereas another module may allow
it, when trying to understand the decision for a packet, one may still
need to examine all components of a policy. There is also no log-
ical basis for partitioning a policy into different modules. Finally,
determining the slice of a policy, with respect to a specific packet
or packet space, is not easier than in ACL.

3 Tri-Modularization Design Philosophy
In the context of software engineering, modularization signifies the
concept of breaking up large, monolithic software source code and
organizing them into smaller, reusable units based on the specific
tasks these units implement. Modularization hence reduces the size
of a program due to reusability, and makes a program easier to
understand and debug, making it less error-prone and more reliable.
Although the concept of modularization in firewall policies is very
appealing, it is not obvious how to most effectively achieve this.

3.1 Requirements
In the context of firewall policies, a modularization approach would
divide a policy into smaller pieces, which we call modules. To be
able to analyze the effectiveness of different approaches of intro-
ducing modularization into policies, we identify the following re-
quirements for a successful modularization approach.
Isolation among modules. The modules should be (at least par-
tially) isolated. By isolation, we mean that the interactions among
modules are limited and well defined. Only with adequate isola-
tion, would it be possible to understand what each module achieves,
without requiring to keep the details of other modules in one’s
mind. This also makes it possible to make local changes without
unintended global side effects.
Logical partitioning. The criteria of partitioning should be sim-
ple and logical. That is, it should be easy to identify modules that
are relevant to a particular situation. This and the isolation require-
ments together enable one to first have a global and high-level view
of a policy, without understanding each module in depth, and then
gradually refine the understanding by understanding the modules
one by one.
Flexible partitioning structure. The partitioning should be flexi-
ble enough so that when a module becomes too large, one can break
it up. This requirement is motivated by the dynamic nature of poli-
cies and aims at supporting policy refactoring. A policy often needs
to evolve over time resulting in large modules which should then be
broken up.
Human-computable policy slicing. To help understand policies,
it is necessary to support mental policy slicing. In computer pro-
gramming, program slicing [36] is the computation of the set of
program statements (i.e., the program slice) that may affect the val-
ues at some point of interest. In the context of a firewall policy,
slicing can be done not only for a single packet, but also for some
natural subspace of the whole space of possible packets. For intel-
lectual manageability of policies, it is desirable that administrators

39



can mentally calculate relevant slices of a policy with respect to a
given packet or packet space.
Deployability. If an approach can only be deployed with a new
firewall product that provides specialized support for it, then the
benefit of modularization can be exploited by that product’s cus-
tomers alone. On the contrary, if modularization can be adopted by
someone who understands the approach when writing a policy with
existing products, then it can be adopted widely.

3.2 Two Extremes of Expressing Policies
Our tri-modularization design is the result of our investigation of
many real-world firewall policies and the analysis of how to express
them in a succinct and intellectually manageable way. However, it
is natural to ask what is the philosophy behind tri-modularization
and why such a design is useful in practice.
Effectively expressing a function. Abstractly, a firewall policy is
a function that maps a tuple of several input attribute values (e.g., IP
address, port) to a binary decision (i.e., allow or deny). Our prob-
lem is similar to that of how to most effectively represent boolean
functions. Standard ways of expressing boolean functions include
truth tables, boolean formulas, and circuits. Firewall policies differ
in that the input attributes are not boolean. Some of these attributes
(such as IP addresses) can take a very broad range of values hence
using truth tables for our purpose is infeasible.

The typical approach of using a rule list (or, ACL representation)
is close in spirit to using a formula to express a function. The prob-
lem is that when the number of rules is large, the formula becomes
complicated and difficult to understand.

Another approach that has been proposed is the firewall decision
diagram (FDD) which partitions the whole packet space, attribute
by attribute [18,25]. This is similar to using a circuit. The problem
is that the circuits can become large, as it requires a large number of
redundancies. In the case of FDD, partitioning is performed using
all policy attributes.

Table 2 gives a running example policy. It is an abridged version
of an actual policy used in a large-scale US-based IT organization.
The complete policy is given in Table 6 in Appendix B and has 209
rules. To fix a misconfiguration error in the policy that we have
found and the administrator has confirmed, two rules need to be
added, resulting in a 211-rule policy. The added rules are rules 15
and 51 in Table 2.

The FDDs to represent the 211-rule policy have sizes varying
from 2, 500 nodes to roughly 22, 000 nodes, depending on the or-
der of the attributes. With the optimal attribute order, the FDD for
the given policy has more than 2, 500 nodes. Even though an FDD
representation of a firewall policy can contain many more rules than
its ACL counterpart due to the partition of the packet space, it has
the innate advantage that the following query can easily be calcu-
lated by a human user: Is a particular packet allowed by the firewall
policy? However, neither ACL nor FDD enables a human user to
have a global understanding of what the policy achieves. This is
highly relevant to the incremental management of firewall policies.

3.3 Tri-Modularization Design
Our tri-modualization approach lies in the middle of the two ex-
tremes (i.e., ACL and FDD) discussed above. It combines the ad-
vantage of partitioning the packet space by FDD and the advantage
of succinctness enjoyed by ACL due to allowing conflicts in the
policy. We will use the policy in Table 3–which is equivalent to
that in Table 2—as an example when explaining our design. The
first column in the table contains the rule numbers, to allow us to
refer to them in our discussion whereas the last column contains
explanations of rules or modules. We ignore the columns contain-

ing sPort and protocol as all rules in the policy have a value of
“*” (i.e., wildcard character) in these two fields. In the rest of this
Section, when we say lines XX, we refer to Table 3.

Figure 1: Design Philosophy

Primary attribute and primary modules. One natural approach
to achieve isolation and logical partitioning is to require each mod-
ule to cover a disjoint subset of the possible packets. Each packet
is decided by one and only one such module. To ensure that a logi-
cal global structure exists and that it is straightforward to figure out
which module a packet belongs to, we introduce the concept of pri-
mary attribute. In our approach, one can choose either sIP or dIP
as the “primary attribute”, and a policy is divided into modules in
such a way that each module covers a disjoint range for the primary
attribute. We call such modules primary modules. This is similar
to partitioning in FDD but we restrict ourselves to partition along
the primary attribute only (see Figure 1).
Choice of primary attribute. Through analyzing real-world poli-
cies, we have found that firewall policies essentially have three logi-
cal attributes: sIP, dIP, and service. The service is typically defined
by the protocol information (e.g., TCP, UDP, or ICMP) along with
dPort. The sPort of most rules is essentially “don’t care” (contains
“*”). Using service as the primary attribute, however, does not sup-
port a flexible partitioning structure, because even if one limits to a
single service, there are often too many rules to make one primary
module difficult to understand. We have further observed that the
ideal primary attribute for most policies is dIP, but some policies
benefit more from using sIP as the primary attribute.
Representing primary modules. Once the policy is partitioned into
disjoint ranges of the primary attribute value, our design ex-
ploits the succinctness of ACL due to conflicts in the rules.
There are 4 primary modules in Table 3, each of which cov-
ers one of the disjoint ranges. PM1 (lines 11-13), PM2 (line
19) and PM3 (lines 20-22) cover single IPs “207.89.182.41”,
“207.89.182.248” and “207.89.182.57”, respectively. PM4 cov-
ers a range “71.121.90.128/26”, so it has rules relevant to
“71.121.90.128/26” and “71.121.90.154” in the primary attribute.
Moreover, a primary module may consist of one or more primary
rules (primary rules cannot have “*” in the primary attribute field)
or instantiation rules (instantiation rules are relevant to calling tem-
plate or auxiliary modules). For example, line 13 is an instantiation
rule for calling the template module TM1.
Auxiliary modules. One may desire a firewall policy to be fully
partitioned into primary modules. For example, a policy may be
divided into modules each of which covers a particular range for
dIP. While this provides modularization, it can be undesirable,
because there are often “global” rules that apply across all values
in the primary attribute. For example, one often wants to blacklist
certain hosts, or block specific ports, etc. When forcing all policies
into primary modules, we have to duplicate these global policies in
each module. When these rules need to change, one has to make
changes to every copy of them. We call these rules that do not
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No. sIP dIP dPort decision
1 71.100.64.0/19 * * deny
2 71.240.50.0/26 * * deny
3 71.206.182.0/24 * * deny
4 71.121.88.84 207.89.182.41 25 allow
5 71.121.92.96 207.89.182.41 25 allow
6 * * 25 deny
7 * * 137 deny
8 * * 445 deny
9 * * 135 deny
10 * * 138 deny
11 71.14.116.1 71.121.90.184 1953-1954 allow
12 71.14.116.1 71.121.90.191 1953-1954 allow
13 71.14.116.1 207.89.176.60 1953-1954 allow
14 71.14.116.1 207.89.182.41 1953-1954 allow
15 71.14.116.1 207.89.182.248 1953-1954 allow
16 71.14.116.1 207.89.182.57 1953-1954 allow
17 71.14.116.1 71.121.90.128/26 1953-1954 allow
18 71.87.147.117 71.121.90.184 1950-1951 allow
19 71.87.147.117 71.121.90.191 1950-1951 allow
20 71.87.147.117 207.89.182.41 1950-1951 allow
21 71.87.147.117 207.89.182.248 1950-1951 allow
22 71.87.147.117 207.89.182.57 1950-1951 allow
23 71.87.147.117 71.121.90.128/26 1950-1951 allow
24 71.87.147.117 71.121.90.184 1960 allow
25 71.87.147.117 71.121.90.191 1960 allow
26 71.87.147.117 207.89.182.41 1960 allow
27 71.87.147.117 207.89.182.248 1960 allow
28 71.87.147.117 207.89.182.57 1960 allow
29 71.87.147.117 71.121.90.128/26 1960 allow
30 71.67.95.202 71.121.90.184 1960 allow
31 71.67.95.202 71.121.90.191 1960 allow
32 71.67.95.202 207.89.182.41 1960 allow
33 71.67.95.202 207.89.182.248 1960 allow
34 71.67.95.202 207.89.182.57 1960 allow
35 71.67.95.202 71.121.90.128/26 1960 allow
36 * 71.121.90.184 1953-1954 deny
37 * 71.121.90.191 1953-1954 deny
38 * 207.89.182.41 1953-1954 deny
39 * 207.89.182.248 1953-1954 deny
40 * 207.89.182.57 1953-1954 deny
41 * 71.121.90.128/26 1953-1954 deny
42 * 71.121.90.184 1950 deny
43 * 71.121.90.191 1950 deny
44 * 207.89.182.41 1950 deny
45 * 207.89.182.248 1950 deny
46 * 207.89.182.57 1950 deny
47 * 71.121.90.128/26 1950 deny
48 * 71.121.90.184 1960 deny
49 * 71.121.90.191 1960 deny
50 * 207.89.182.41 1960 deny
51 * 207.89.182.248 1960 deny
52 * 207.89.182.57 1960 deny
53 * 71.121.90.128/26 1960 deny
54 71.0.0.0/8 71.121.90.154 22 allow
55 71.0.0.0/8 71.121.90.154 80 allow
56 71.0.0.0/8 71.121.90.154 443 allow
57 71.0.0.0/8 71.121.90.154 5800-5809 allow
58 71.0.0.0/8 71.121.90.154 5900-5909 allow
59 71.0.0.0/8 71.121.90.154 3690 allow
60 * 71.121.90.154 * deny
61 71.0.0.0/8 * * allow
62 71.67.94.12 207.89.182.27 55555 allow
63 71.121.92.53 207.89.182.179 52311 allow
64 207.89.182.142 207.89.182.57 179 allow
65 207.89.182.143 207.89.182.57 179 allow
66 71.0.0.0/8 * 80 allow
67 71.121.88.50 207.89.182.17 52311 allow
68 71.121.59.54 207.89.182.17 52311 allow
69 * * * deny

Table 2: The original policy in ACL

belong to any primary module “auxiliary rules”; they can be easily
identified because their primary attribute field contains “*”.

We propose to group these auxiliary rules into what we call aux-
iliary modules based on the types of the rules. For example, all
adjacent rules that block all traffic from some subnet are consid-
ered to be in one auxiliary module. This enables one to abstract the
meaning of this module as “some source IPs are blacklisted here”,
when trying to form a global understanding of the policy, and dig

Subroutine
sIP dIP dPort decision Annotation

1 71.14.116.1 $ 1953-1954 allow TM1
2 71.87.147.117 $ 1950-1951 allow
3 71.87.147.117 $ 1960 allow
4 71.67.95.202 $ 1960 allow
5 * $ 1953-1954 deny
6 * $ 1950 deny
7 * $ 1960 deny
- * $ * return

Main policy
sIP dIP dPort decision Annotation

8 71.100.64.0/19 * * deny AM1
9 71.240.50.0/26 * * deny

10 71.206.182.0/24 * * deny
11 71.121.88.84 207.89.182.41 25 allow PM1 with IP
12 71.121.92.96 207.89.182.41 25 allow 207.89.182.41
13 * 207.89.182.41 * TM1
14 * * 25 deny AM2
15 * * 137 deny
16 * * 445 deny
17 * * 135 deny
18 * * 138 deny

19 * 207.89.182.248 * TM1 PM2 with IP
207.89.182.248

20 * 207.89.182.57 * TM1 PM3 with IP
21 207.89.182.142 207.89.182.57 179 allow 207.89.182.57
22 207.89.182.143 207.89.182.57 179 allow
23 * 71.121.90.128/26 * TM1 PM4 with range
24 71.0.0.0/8 71.121.90.154 22 allow 71.121.90.128/26
25 71.0.0.0/8 71.121.90.154 80 allow
26 71.0.0.0/8 71.121.90.154 443 allow
27 71.0.0.0/8 71.121.90.154 5800-5809 allow
28 71.0.0.0/8 71.121.90.154 5900-5909 allow
29 71.0.0.0/8 71.121.90.154 3690 allow
30 * 71.121.90.154 * deny
31 71.0.0.0/8 * * allow AM3
32 * * * deny AM4

Table 3: The modularized version of the example policy in Table 2

into exactly which subnets are blacklisted only when necessary. We
encourage policy authors to move auxiliary rules of the same type
to be adjacent as much as possible, to reduce the number of auxil-
iary modules as much as possible. Lines 8-10, 14-18, 31, and 32
are examples of auxiliary modules.
Template modules. In many large policies, a sequence of rules
may apply to many different IP addresses (e.g., applicable to all
webservers). To enable reuse, we allow a third kind of module
dubbed template modules. A template module consists of one
or more template rules that may be applied to many different IP
addresses. For example, lines 1-7 form a template module, with
“TM1” as its name. This template module is invoked in lines 13,
19, 20, and 23 for IP addresses 207.89.182.41, 207.89.182.248,
207.89.182.57, and 71.121.90.128/26, respectively. Template
rules have their primary attribute field being “$”, indicating that
this is a formal argument and can be instantiated when this tem-
plate module is invoked. We use “$” instead of “*” to differentiate
template rules from auxiliary rules.
Putting it all together. As our modularization approach uses three
kinds of modules, we call it a tri-modularization design. The high-
level idea of our approach is illustrated in Figure 1. The primary
attribute is partitioned into disjoint ranges each of which is covered
by one primary module. Each primary module is essentially an
ACL, and may call auxiliary modules and template modules. Both
auxiliary modules and template modules are reusable, and they can
be called by multiple primary modules.

In Table 3, there are 4 primary modules, 4 auxiliary modules, and
1 template module. There are no interactions among primary mod-
ules, while there are some limited interactions between primary
modules and auxiliary/template modules. To evaluate a packet,
one only needs to look at the primary module that matches the
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packet, template modules called by the primary module, and aux-
iliary modules, safely ignoring other primary modules. For exam-
ple, for a packet matching PM3, one may only check the following
modules in sequence: AM1, AM2, TM1, PM3, AM3, and AM4.
The evaluation will stop whenever the packet’s fate can be deter-
mined. Thus, a relevant slice of a policy can be easily computable
by a human in our design.

3.4 Deployability of Tri-Modularization
The next aspect of tri-modularization we investigate is its deploya-
bility. The relevant questions in this regards are: How deployable
the tri-modularization approach is? Can existing firewall prod-
ucts support it? We observe that some existing products supporting
chains/subroutines, such as Linux netfilter/iptables can be used to
implement the modules we proposed, especially the reusable aux-
iliary modules and template modules.

In netfilter, a rule’s target can be a user-defined chain. When
a packet matches a rule whose target is a user-defined chain, the
rules in the chain will be evaluated against the packet. If the chain
does not deny or allow the packet after the traversal of the chain is
done, the next rule in the current chain will be evaluated. Therefore,
users can define a new chain for either an auxiliary module or a
template module, and then write normal ACL rules whose target is
this chain and whose matching conditions are the input arguments
when calling the chain. In Table 3, we use similar syntax of chains
in netfilter. TM1 can be viewed as a new user-defined chain. There
are multiple places where this chain will be jumped to, such as in
PM1, PM2, PM3 and PM4. Take PM1 as an example, when the
matching condition in line 13 is satisfied, we will jump to TM1 and
the rules there will be evaluated.

4 Tri-Modularization of Legacy Policies
Although network administrators can easily use the concept of tri-
modularization when writing a new firewall policy, one of the main
challenges of tri-modularization’s adaptability is the legacy poli-
cies. To convert legacy policies to their tri-modularized form and
hence enable adaptability, we present an automatic translation pro-
cedure, which at a high level has the following steps.

1 Determining primary attribute: decide which field (e.g.,
sIP, dIP) is used as the primary attribute (PA).

2 Removing redundancies: identify and remove redundant
rules. Removing redundant rules in ACL is straightforward
and due to space limitations we do not describe it here.

3 Creating auxiliary modules: reorder the rules and assemble
auxiliary rules of the same type together.

4 Creating primary modules: generate a set of disjoint ranges
of PA, each of which will be covered by a primary module;
reorder the rules and try to sort primary rules based on the
PA values, and then create suitable primary modules.

5 Creating template modules: identify frequent rule patterns
in the policy and use them to create template modules.

We have developed a tool dubbed ModFP which can help admin-
istrators perform the above steps automatically. In the rest of the
section, we describe the above steps and the key algorithms.

4.1 Choosing the primary address
The main heuristic in choosing the primary attribute is that we want
fewer rules where the primary attribute value is a “*” so that there
are fewer auxiliary rules. As primary rules are partitioned into mod-
ules that are disjoint, they can be understood independently. As a
result, a policy that has many primary rules is not necessarily much
more difficult to understand. However, as auxiliary rules apply to

all following primary rules (resp., modules), trying to decrease the
number of auxiliary rules (resp., modules) can increase the intellec-
tual manageability of a policy significantly. Examining the policy
in Table 2, we can see 25 rules have “*” in the sIP field whereas
only 11 rules have “*” in the dIP field. We thus choose dIP as the
primary attribute. We have observed that—for a dozen or so real-
world policies we have converted to their modularized format—
dIP turns out to be a better choice as the primary attribute, likely
because most of the rules are controlling traffic from outside the
network to hosts inside the network, and thus are better grouped
by dIP. We also point out that one can always try to modularize
a policy first with dIP as primary attribute, then with sIP or some
other fields as primary attribute, and compare the results.

4.2 Creating Auxiliary Modules
Recall that in a policy there may be “global” rules that do not be-
long to any specific primary module and instead can apply across
primary modules following them. We want to assemble such auxil-
iary rules of the same type together to form auxiliary modules. This
will reduce the number of auxiliary modules, and also make auxil-
iary modules more manageable. For this purpose, we need to move
rules around without changing the policy semantics. We also want
to move primary rules that are about the same IP addresses (or the
same prefix) together as much as possible to create primary mod-
ules, as described in the next section. Therefore, we now introduce
how to reorder rules.

4.2.1 Rule reordering
We first introduce the notion of what it means for a rule to be
switchable with another rule.

Definition 1 (Switchable rules). For a given policy, we say that
rules ri and rj are switchable iff ri and rj are adjacent rules and
switching their order has no impact on the semantics of the policy.

Two rules ri and rj are switchable if and only if either they have
the same decision or their sets of applicable packets are disjoint.
When two rules have different decisions and their sets of applicable
packets overlap, if these two rules are the first two rules in a policy,
switching their order will change the decisions on packets that they
both are applicable to.

To determine whether certain rules can be moved to be adjacent,
we need to know to what extent these rules can be moved around
without changing the policy semantics. Given a policy expressed
as a list of rules R where each rule has an index, we use pre(rj)
to denote the set of rules that should come before the rule rj , the
rule with index j, when we move the rules around. This set can
be computed as follows. Going up from rj , ignore any rule that
is switchable with rj . When we reach the first rule ri that is not
switchable with rj , if we want to further move rj up, we need to
move ri together with rj , we thus add ri to our set and now check
whether they can be moved up together. We can similarly define

Algorithm 1: Creating auxiliary modules inR
Input: A rule setR

1 foreach ri ∈ R do
2 if ri is an auxiliary rule then
3 Create an auxiliary module am with ri only
4 foreach rj after ri do
5 if rj is an auxiliary rule ∧ri.type = rj .type then
6 if post(am) ∩ pre(rj) = ∅ then
7 Merge rj into am

post(rj), which is the set of rules that appear after rj such that

42



rj cannot be moved past them without changing the policy seman-
tics. pre(rj) and post(rj) can be calculated using Algorithms 3
and 4, respectively (see Appendix A). For instance, according to
the policy in Table 2, pre(r3) = ∅ (r3 refers to the rule in line 3),
pre(r6) = {r4, r5}, and post(r66) = {r69}. The definitions of
pre(·) and post(·) for a rule can be generalized to a sequence to
rules. Given a sequence of rulesR, pre(R) denotes the set of rules
that should come before all the rules in R, and post(R) denotes
the set of rules that should come after all the rules inR.
Lemma 1. Given two sequences of rules R1 and R2, where R1

appears earlier thanR2, they can be merged together if there is no
rule that belongs both to post(ri) for some ri ∈ S1 and to pre(rj)
for some rj ∈ S2, i.e., post(R1) ∩ pre(R2) = ∅.

4.2.2 Merging Auxiliary Rules
According to the primary attribute chosen by users, primary rules
and auxiliary rules can be distinguished. Recall that rules with the
value of “*" in the primary attribute are auxiliary rules. Further,
auxiliary rules can be categorized into different types after the pri-
mary attribute is set, see Table 4. “*” means that an auxiliary rule
can take any values in the field, while “Specific” means that an
auxiliary rule has a specific value in that field, such as a specific IP
address, subnet, or service. Algorithm 1 can be applied to generate
auxiliary modules based on their types. For each auxiliary rule, we
try to merge it with other auxiliary rules with the same type.

4.3 Creating Primary Modules
The objective of creating primary modules is to partition the pol-
icy into disjoint sections such that each of the sections can be un-
derstood and managed independently with little to no interaction
with other portions of the policy. Each primary module contains
rules that cover a specific range of primary attribute values. The
main challenge is to determine what these disjoint ranges of pri-
mary attribute values are. Once such ranges are generated, the next
challenge is to group rules that falls into a specific interval together.

4.3.1 Range Generation

Threshold of primary module size. The size of each primary
module should not become too large. For example, an administra-
tor may want to have primary modules each of which includes no
more than δ rules (e.g., 20). Therefore, users are required to set a
threshold δ for how many rules can be in a primary module. If a
primary module covering a range has rules more than δ, it means
that the range should be further divided. However, in case a range
covers a single IP address and cannot be further divided, the above
approach is not applicable. In this case, the value of δ should be
increased to solve the problem. Therefore, the value of δ needs to
be adjusted to the maximal size of primary modules covering single
IP addresses, if needed.

Figure 2: The binary tree structure used for generating ranges

Generating ranges. Algorithm 2 is used to generated a set of dis-
joint ranges for a rule set with auxiliary modules generated already.

The initial input is a rule set and an empty string meaning “*” (i.e.,
the whole range in the primary attribute). This algorithm uses a
tree structure, as show in Figure 2. The left child of a node is ob-
tained by appending one more bit “0” to the node, and the right
child by appending “1” to the node. A node in the tree represents
either a single value or a range in the primary attribute. In Figure 2,
since the primary attribute is dIP, nodeA represents a single IP (32
one’s, i.e., 255.255.255.255). Node B is “0” meaning that the first
bit of the total 32 bits is 0 and the other 31 bits can be anything.
This node hence represents a range [0, 2147483647]. Algorithm 2
uses the following cost function as a utility function.

Given a rule set R and a range I , the cost function
cost_func(R, I) outputs the number of primary modules that are
needed to cover the range I . cost_func(R, I) returns ∞ if one
of the primary modules is required to have more than δ num-
ber of rules while creating primary modules to cover the range I .
cost_func(R, I) returns n ∈ N, otherwise.

Algorithm 2: getRanges(R, root)
Input: A rule setR with auxiliary modules generated already,

and a root range root
Output: A set of disjoint ranges ranges

1 list = ∅
2 if root.length > num_of_bits_in_primary_attr then
3 Return list
4 cost = cost_func(R, root)
5 if cost <∞ then
6 if cost > 0 then
7 if left child’s cost equals to root’s cost then
8 list = list+ getRanges(R, root+ “0”)
9 else if right child’s cost equals to root’s cost then

10 list = list+ getRanges(R, root+ “1”)
11 else
12 Add root to list
13 Return list
14 else
15 list = list+ getRanges(R, root+ “0”)
16 list = list+ getRanges(R, root+ “1”)

17 Return list

4.3.2 Merging Primary Rules
After a set of disjoint ranges are obtained, we can create primary
modules by merging together primary rules overlapping with the
same range. For each of the ranges, when the first primary rule that
is overlapping with the range is found, a primary module is cre-
ated having only this rule in it. After that, any primary rules that
overlap with the range will be appended to this primary module.
When trying to move a primary rule into the primary module, there
may be primary rules, primary modules, and auxiliary modules ly-
ing between them. We can safely ignore those primary rules and
primary modules because of the benefit of having disjoint ranges.
For auxiliary modules that are switchable with the primary rule to
be inserted, we can safely ignore them as well. For other auxiliary
modules, however, we need to create instantiation rules for calling
those auxiliary modules, put the instantiation rules before the pri-
mary rule, and then append them together to the primary module.

A primary rule is overlapping with a range, if the primary rule
(1) equals to the range, (2) is a subset of the range, (3) is a super set
of the range, or (4) intersects with the range. For the first 2 cases,
we just simply append the primary rule to the appropriate primary
module. For the last 2 cases, we only add the intersecting parts of
the primary rule to the appropriate primary module. In addition to
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that, we need to duplicate the rule for the non-intersecting parts of
the rule, and keep the duplicate rule(s) in the original rule’s place.

4.4 Creating Template Modules
In a policy, some rules may appear multiple times in a primary
module or different primary modules with distinct primary attribute
values. We want to create templates for those rules and form tem-
plate modules so that they can be reused. The problem of creat-
ing template modules has similarities with the role mining prob-
lem [22, 30, 32, 35].

4.4.1 Frequent Rule Pattern Mining Problem
A list of similar primary rules may appear in multiple primary mod-
ules in a firewall policy, or even appear in a primary module multi-
ple times. We call such a list of rules a rule pattern or just pattern.
Note that primary rules that differ only in the primary attribute are
regarded as similar rules w.r.t. a pattern. Template modules can be
instantiated by invoking it with different values/ranges in the pri-
mary attribute field. The notion of template module is similar to
the concept of subroutines in programming. Instantiation of a tem-
plate module is similar to subroutine invocation. We now state the
frequent rule pattern mining problem.
Definition 2 (Frequent rule pattern mining problem). Given a list
of primary modules and an argument Ψmin that specifies the min-
imum number of occurrences of a rule pattern, the frequent rule
pattern mining problem is to find all rule patterns whose support
(i.e., the number of occurrences) is at least Ψmin from those pri-
mary modules. Such patterns are called frequent rule patterns.

Frequent itemset mining algorithms like Apriori [7] can be ap-
plied for mining rule patterns from primary modules. Each primary
module is translated to a transaction, and each rule in a primary
module is an item. Again, primary rules that differ only in the pri-
mary attribute field are regarded as the same rule. In this way, we
obtain the input for our modified Apriori algorithm.

We modify the Apriori algorithm from the following two aspects.
Firstly, items in an itemset are order-insensitive in the original Apri-
ori algorithm. However, rules in a pattern are order-sensitive, and
there may be other rules in between those rules in the pattern. In our
modified Apriori algorithm, whenever a potential frequent itemset
(i.e., a pattern) is found, we need to go back to the primary mod-
ules where the pattern appears and check if the pattern can actually
occur in those primary modules. For example, when a candidate
itemset {a, b, c} is found, we need to go back to a primary mod-
ule where it appears to check if its support should be increased.
Assume that the primary module includes rules {A,B,X, Y,C}
(a−A, b−B, and c−C are similar rules). The pattern {a, b, c} ap-
pearing in the primary module as rules {A,B,C}. If rules {X,Y }
in between the pattern can be moved away, the support for the pat-
tern will be increased; otherwise, the support will not be increased.

Secondly, in the original Apriori algorithm, an itemset in a trans-
action will be counted only once even if it appears more than once
in the transaction. Since a pattern may appear in a primary module
multiple times, and if a template module is created using this pat-
tern, the primary module should call the template module using an
instantiation rule whenever the pattern appears. For this purpose,
in our modified Apriori algorithm, all occurrences of an itemset in
a transaction will contribute to its support. For example, assume
that a candidate itemset is {a, b, c}, and a primary module where
it appears consists of rules {A,B,C,A

′
, B

′
, C

′
}. This candidate

appears twice, so its support should be increased by 2 instead of 1.
The value of Ψmin can be specified by users. For example, if

the value is set to 3, it means that a frequent itemset should appear
at least 3 times (in different transactions and/or within the same

transaction). The value of Ψmin should not be too small or too large.
If it is too small, too many frequent itemset will be generated; if it
is too large, perhaps no frequent itemsets will be found. We modify
the Apriori implementation in SPFM [4] for our purpose.

4.4.2 Template Module Assignment Problem
Given the result of our modified Apriori algorithm which is a list
of patterns with lengths from 1 to k, where k is the length of the
longest pattern(s) found, we want to find a subset of these patterns
optimizing the number of rules reduced by creating template mod-
ules for them. We first define the assignment problem.

Definition 3 (Template module assignment problem). Variables xji
is created for each pair of a pattern Pi and a primary module PMj

where the pattern appears. The assignment problem is to assign
either 0 or 1 to each of these variables, with 1 meaning that the
pattern should be used in the primary module and 0 meaning that
it should not, so that the total number of rules reduced by using the
patterns assigned with 1’s will be maximal.

The number of rules reduced by using a given pattern Pi can be
calculated using the following formula: |Pi| ∗ supi − |Pi| − supi,
where |Pi| is length of the pattern, and supi is the number of occur-
rences of Pi. The intuition behind the formula is that |Pi| ∗ supi
rules can be saved, but some penalties also need to be deducted
since an extra template module with |Pi| rules and supi instantia-
tion rules are created.

Using the longest pattern(s) will not always yield the optimal
result. For example, suppose that the longest pattern is P1 =
{a, b, c, d, e, f} with sup1 = 3. However, there are 2 shorter pat-
terns P2 = {a, b, c, d} with sup2 = 5 and P3 = {e, f} with
sup3 = 4. Using patterns P2 and P3 together is better than using
P1 only, since the number of rules reduced is (4∗5−4−5) + (2∗
4−2−4) = 13 in the former case instead of only 6∗3−6−3 = 9
in the latter case. Finding an optimal solution among the patterns
found by our modified Apriori algorithm is not trivial. We model
the assignment problem as an integer programming problem, and
use IBM CPLEX optimizer [1] to solve the problem.

Suppose that m patterns (i.e., potential template modules to be
created) are found. In Figure 4 in Appendix A, we show an opti-
mizer model with 4 patterns and 3 primary modules. Each pattern
is used by one or more primary modules. This information is ob-
tained by the modified Apriori algorithm mentioned above. Note
that the support of a pattern may be different from the number of
primary modules where it occurs, since it may appear more than
once within a primary module. Each edge between a pattern and
a primary module where it appears is represented by a variable
xji ∈ {0, 1}. xji = 1 when pattern Pi will be eventually used
by primary module PMj , and xji = 0 otherwise. The goal of the
optimizer is to find the assignments of those binary variables to
optimize our objective function described in Figure 3.

There are several constraints during the optimization. (1) ni is
the actual number of occurrences of the pattern Pi, and it should
satisfy 0 ≤ ni ≤ supi, where supi is the support (i.e., the total
number of occurrence) of Pi. If all values of xji (j = 1 . . . k,
where k is the number of primary modules where Pi appears) is
assigned to be 1, then ni = supi. If all xji is assigned to be 0,
then ni = 0. (2) h(ni) is a function to decide whether a template
module should be created for pattern Pi. When ni = 0, it means
that pattern Pi will not be used by any primary modules where
it appears, h(ni) = 0 so no template module will be created for
this pattern; otherwise h(ni) = 1 so one template module will be
created. (3) A primary module can not simultaneously use patterns
that are overlapping. Therefore, for each primary module PMj , the
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maximize
m∑
i=1

ni × |Pi| − h(ni)× |Pi| − ni

subject to ni =

k∑
j=1

supji × x
j
i , where xji ∈ {0, 1}

0 ≤ ni ≤ supi

h(ni) =

{
0 if ni = 0

1 otherwise

0 ≤ xjs + xjt ≤ 1 for any pair of patterns that are
overlapping and co-exist in the same PMj

Figure 3: Formulation of template module assignment problem

constraint 0 ≤ xjs + xjt ≤ 1 should be satisfied, which means that
at most one of the overlapping patterns Ps and Pt can be eventually
used by PMj .

4.4.3 Generating Template Modules
A template module is created for each pattern Pi that is used by
at least one primary module (i.e., at least one variable xji for some
j is assigned to be 1) such that the pattern inside every primary
module where it appears and for which the corresponding x value
is 1 will be replaced by an instantiation rule. Moreover, a pattern
may appear in a primary module multiple times, so each occurrence
of the pattern will be replaced by an instantiation rule accordingly.

5 Evaluation
Using the tri-modualization approach, we implemented ModFP in
Java, and used it to examine a dozen or so real-world policies with
sizes from dozens to hundreds. We show the results of the 4 largest
policies in Table 5, among which Policy 3 is the complete and cor-
rected version of the policy we presented in Table 2. Three of these
policies belong to an academic institution and have been used in
prior work on firewall policies. The remaining policy (i.e., Policy
3) belongs to a large-scale US-based IT company.

5.1 Effect on Number of Rules
By utilizing ModFP to convert Policy 1, Policy 3, and Policy 4 to
their modularized format, the number of rules is reduced by 64.3%,
68.7%, and 25.3%, respectively. For Policy 2, the number of rules
is increased by 1. For all policies, ModFP only take seconds to
convert them into the modularized form. For Policy 2, the number
of rules increases from 87 to 88 after the conversion because of
the following reasons. First, there is only 1 redundant rule in the
policy, so removing redundancies does not decrease the number of
rules much. Second, by creating a template module for a pattern
with a length of 2 and a support of 3, only 1 (= 2× 3− 2− 3) rule
is reduced. Third, 3 instantiation rules are created when some rules
are merged into the primary module they belong, since there are
3 auxiliary modules that are not switchable. Therefore, eventually
the number of rules is increased by 1.

For Policy 4, the number of rules does not decrease dramatically
like in the cases of Policy 1 and Policy 3. After removing redun-
dancies, the number of rules decreases from 661 to 572. After
creating primary modules 24 rules are added, since a destination
subnet overlaps with multiple disjoint ranges, and the set of rules
related to this subnet needs to be duplicated. And then the number
of rules decreases by 102 by using template modules. Therefore,
the number of rules decreases by 167 (i.e., 25.3%) in total.

Our tri-modualization approach enjoys additional advantages on
top of reducing the number of ACL rules.

5.2 Additional Advantages
Enabling a global understanding of a policy. Several design fea-
tures of our tri-modualization approach aims at enabling a global
understanding of a policy. Primary modules force one to group re-
lated rules together. Auxiliary modules group rules of the same
type together. With a policy in its modularized form, one can men-
tally partition a potentially very large number of rules into mean-
ingful modules, to have a global mental picture of the overall pol-
icy. One can hence provide a verbal summary of what the policy
means and attempts to reason about it.

For example, for the policy in Table 2, we came up with the sum-
mary below based on its modularized form in Table 3. First, a list
of source IPs are blacklisted. Then for the host 107.89.182.41, be-
yond “TM1”, it also has port 25 open to two other hosts. “TM1”
allows traffics to ports 1950-1951, 1953-1954, and 1960 from
some specific IPs, and otherwise blocks traffic to ports 1950, 1953-
1954, and 1960. Next “AM2" blocks ports 25, 135, 137, 138,
and 445. Then the template “TM1” is applied to 3 other IP ad-
dresses and subnets. For the host 207.89.182.248, only “TM1”
is applied. For the host 207.89.182.57, it has port 179 open to
two hosts beyond “TM1”. Primary Module “PM4” covers the
range “71.121.90.128/26” , so subnet 71.121.90.128/26 and host
71.121.90.154 are covered by this range. “TM1” applies to subnet
71.121.90.128/26. Host 71.121.90.154 is most special: traffics
from 71.0.0.0/8 to ports 22, 80, 443, 3690, 5800-5809, and 5900-
5909 are allowed, and everything else is blocked. Finally, every-
thing from 71.0.0.0/8 is allowed, and everything else is blocked.

We do not think it is feasible to come up with a similar descrip-
tion from the policy in its original form.
Making policy errors easier to identify. The modular nature of
policies make policy configuration errors manifest themselves.

We have converted a dozen or so real-world firewall policies into
their modularized form using ModFP. For every large policy we
have examined, we have found clear errors as well as strange fea-
tures that we conjecture to be errors. For the issues we have found
with the complete version of the policy in Table 2 (see Table 6 in
Appendix B for the complete policy), we have checked with the
system administrator, and include the responses here as well.

There are a number of redundancies. For example, lines 202-203
and 206-208 are shadowed by line 201. Line 41 can be removed,
as any packet it accepts will reach line 201 and is accepted. Fur-
ther, since IP addresses 71.121.90.184 and 71.121.90.191 are in
the subnet of 71.121.90.128/26, lines 27 and 28 can be removed
because of line 50, and 12 other rules are in the same situation. The
system administrator’s comment on this is that “The overshadow-
ing is likely due to the number of different people who have access
to the firewall policies.”

Less obvious issues can be found as well. Lines 27-193 in Ta-
ble 6 correspond to a template module. We found that we could not
apply the template module to host 207.89.182.248 because two
rules (line 1 and line 7 in Table 3) are missing. That is, while
lines 1-7 apply to 20+ other IP addresses, only lines 2-6 apply to
207.89.182.248. We found this rather strange, since there is a rule
blocking ports 1953-1954 for all traffic, but no rule allowing the
ports for certain specific source hosts. And there is a rule allowing
port 1960 for certain specific source hosts, but no rule blocking it
for all traffic. The system administrator confirms that this IP does
not seem to be an active device in the DMZ anymore, and this is
likely the result of incomplete cleanup processes.

Another issue is with the template module itself. Overall the
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Source IP Service Decision
* Specific allow
* Specific deny

Specific * allow
Specific * deny
Specific Specific allow
Specific Specific deny

* * allow
* * deny

Table 4: Types of auxiliary rules
(when dIP is the primary attribute)

Policy ACL
Rules

Modularized
Policy Translation time in seconds

PMs AMs TMs Rules Removing
Redundancy

Creating
AMs

Creating
PMs

Creating
TMs Total

1 42 4 3 1 15 0.046 0.005 0.084 0.121 0.256
2 87 8 6 1 88 0.183 0.017 0.120 0.138 0.458
3 211 17 4 1 66 0.294 0.048 0.226 1.356 1.924
4 661 20 3 10 494 0.551 0.089 0.251 18.460 19.351

Table 5: Experimental Results

intention seems to be that for ports 1950, 1951, 1953, 1954, and
1960, only traffic from a specific host is allowed, and traffic from
all other hosts is denied. However, Line 2 in Table 3 allows port
1950-1951 traffic from one specific host, but line 6 blocks only
port 1950, and not 1951. A further piece of evidence is that if this
is indeed intended, then rule 2 needs to mention only 1950, since as
it is, port 1951 will be opened to all hosts in the 71.0.0.0/8 subnet
according to Line 31. Missing 1951 in line 6 was also confirmed
to be an oversight. Some of the other comments we have received
from the system administrator are:

We don’t expend any effort to make the firewall rules easy to read
or understand, and in fact we don’t generally look at the en-
tire set at all.

If we had software that made it easier to view the rule sets, and
make changes to them efficiently, then we would probably
have a cleaner set of firewall rules.

Enabling piece-by-piece understanding of a policy. As primary
modules cover disjoint ranges, at most one primary module is ap-
plicable to each packet. Thus for each packet, one can consider
only the auxiliary and template modules (if any), and at most one
primary module. To understand the behavior of certain packets,
one can quickly decide which primary modules would be applica-
ble and ignore the rest of the primary modules.
Enabling policy refactoring. Our approach enables policy refac-
toring in two ways. First, template modules enable the definition
of reusable templates that can be applied multiple times, similar
to reusable subroutines in programming. Second, when a primary
module becomes too large and complicated, one can divide it into
multiple primary modules, each covering a smaller range.

6 Conclusion
Utilizing the idea of modular programming and code refactoring,
we have introduced the tri-modularization design of firewall poli-
cies, which consist of three types of modules (i.e., primary, aux-
iliary, and template). Our approach provides helpful abstraction
and makes the policy more understandable and manageable. It also
naturally supports policy refactoring in the authoring process. It
can significantly reduce the number of rules in a policy and can
also make configuration errors stand out and easier to identify. We
present algorithms for converting legacy firewall policies in ACL
to their tri-modular form, and also present a tool ModFP that auto-
mates the conversion. We have shown that using our approach one
can understand complex real-world policies as well as identifying
subtle errors, which are confirmed by the system administrator.
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APPENDIX
A Algorithms of ModFP

Algorithms 3 and 4 show how to calculate pre(rj) and post(rj),
respectively.

Algorithm 3: Calculate pre(rj)

Input: A rule rj
1 s = {rj}
2 for i← j − 1 to 0 do
3 if ri is not switchable with some rule in s then
4 Add ri to s

5 pre(rj) = s \ {rj}

Algorithm 4: Calculate post(rulej)

Input: A rule rj
1 s = {rj}
2 for i← j + 1 to |R| − 1 do
3 if ri is not switchable with some rule in s then
4 Add ri to s

5 post(rj) = s \ {rj}

Figure 4 shows an optimizer model with 4 patterns and 3 primary
modules.

B Complete Version of The Example Policy
In Table 6, we show the complete version of the policy in Table 2.

Figure 4: An optimizer model when m = 4

No. sIP dIP dPort decision
1 71.100.64.0/19 * * deny
2 71.240.50.0/26 * * deny
3 71.206.182.0/24 * * deny
4 71.206.190.0/23 * * deny
5 71.206.188.0/24 * * deny
6 71.206.91.0/24 * * deny
7 71.206.88.0/23 * * deny
8 71.196.181.0/24 * * deny
9 71.196.56.0/22 * * deny

10 71.128.0.0/13 * * deny
11 71.59.128.0/17 * * deny
12 71.59.32.0/19 * * deny
13 71.59.11.0/24 * * deny
14 71.59.8.0/23 * * deny
15 71.59.12.0/22 * * deny
16 71.59.16.0/20 * * deny
17 71.59.64.0/18 * * deny
18 71.121.88.84 207.89.182.61 25 allow
19 71.121.88.84 207.89.182.41 25 allow
20 71.121.92.96 207.89.182.61 25 allow
21 71.121.92.96 207.89.182.41 25 allow
22 * * 25 deny
23 * * 137 deny
24 * * 445 deny
25 * * 135 deny
26 * * 138 deny
27 71.14.116.1 71.121.90.184 1953-1954 allow
28 71.14.116.1 71.121.90.191 1953-1954 allow
29 71.14.116.1 207.89.182.37 1953-1954 allow
30 71.14.116.1 207.89.176.14 1953-1954 allow
31 71.14.116.1 207.89.182.57 1953-1954 allow
32 71.14.116.1 207.89.182.61 1953-1954 allow
33 71.14.116.1 207.89.182.41 1953-1954 allow
34 71.14.116.1 207.89.182.27 1953-1954 allow
35 71.14.116.1 207.89.182.26 1953-1954 allow
36 71.14.116.1 207.89.171.57 1953-1954 allow
37 71.14.116.1 207.89.182.251 1953-1954 allow
38 71.14.116.1 207.89.182.250 1953-1954 allow
39 71.14.116.1 207.89.170.190 1953-1954 allow
40 71.14.116.1 207.89.174.60 1953-1954 allow
41 71.14.116.1 207.89.176.60 1953-1954 allow
42 71.14.116.1 207.89.179.185 1953-1954 allow
43 71.14.116.1 207.89.182.107 1953-1954 allow
44 71.14.116.1 207.89.182.179 1953-1954 allow
45 71.14.116.1 207.89.182.198 1953-1954 allow
46 71.14.116.1 207.89.182.50 1953-1954 allow
47 71.14.116.1 207.89.182.143 1953-1954 allow
48 71.14.116.1 207.89.182.142 1953-1954 allow
49 71.14.116.1 207.89.182.17 1953-1954 allow
50 71.14.116.1 71.121.90.128/26 1953-1954 allow
51 71.87.147.117 71.121.90.184 1950-1951 allow
52 71.87.147.117 71.121.90.191 1950-1951 allow
53 71.87.147.117 207.89.182.37 1950-1951 allow
54 71.87.147.117 207.89.176.14 1950-1951 allow
55 71.87.147.117 207.89.182.57 1950-1951 allow
56 71.87.147.117 207.89.182.61 1950-1951 allow
57 71.87.147.117 207.89.182.41 1950-1951 allow
58 71.87.147.117 207.89.182.27 1950-1951 allow
59 71.87.147.117 207.89.182.26 1950-1951 allow
60 71.87.147.117 207.89.171.57 1950-1951 allow
61 71.87.147.117 207.89.182.251 1950-1951 allow
62 71.87.147.117 207.89.182.250 1950-1951 allow
63 71.87.147.117 207.89.170.190 1950-1951 allow
64 71.87.147.117 207.89.174.60 1950-1951 allow
65 71.87.147.117 207.89.179.185 1950-1951 allow
66 71.87.147.117 207.89.182.248 1950-1951 allow
67 71.87.147.117 207.89.182.107 1950-1951 allow
68 71.87.147.117 207.89.182.179 1950-1951 allow
69 71.87.147.117 207.89.182.198 1950-1951 allow
70 71.87.147.117 207.89.182.50 1950-1951 allow
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No. sIP dIP dPort decision
71 71.87.147.117 207.89.182.143 1950-1951 allow
72 71.87.147.117 207.89.182.142 1950-1951 allow
73 71.87.147.117 207.89.182.17 1950-1951 allow
74 71.87.147.117 71.121.90.128/26 1950-1951 allow
75 71.87.147.117 71.121.90.184 1960 allow
76 71.87.147.117 71.121.90.191 1960 allow
77 71.87.147.117 207.89.182.37 1960 allow
78 71.87.147.117 207.89.176.14 1960 allow
79 71.87.147.117 207.89.182.57 1960 allow
80 71.87.147.117 207.89.182.61 1960 allow
81 71.87.147.117 207.89.182.41 1960 allow
82 71.87.147.117 207.89.182.27 1960 allow
83 71.87.147.117 207.89.182.26 1960 allow
84 71.87.147.117 207.89.171.57 1960 allow
85 71.87.147.117 207.89.182.251 1960 allow
86 71.87.147.117 207.89.182.250 1960 allow
87 71.87.147.117 207.89.170.190 1960 allow
88 71.87.147.117 207.89.174.60 1960 allow
89 71.87.147.117 207.89.179.185 1960 allow
90 71.87.147.117 207.89.182.248 1960 allow
91 71.87.147.117 207.89.182.107 1960 allow
92 71.87.147.117 207.89.182.179 1960 allow
93 71.87.147.117 207.89.182.198 1960 allow
94 71.87.147.117 207.89.182.50 1960 allow
95 71.87.147.117 207.89.182.143 1960 allow
96 71.87.147.117 207.89.182.142 1960 allow
97 71.87.147.117 207.89.182.17 1960 allow
98 71.87.147.117 71.121.90.128/26 1960 allow
99 71.67.95.202 71.121.90.184 1960 allow
100 71.67.95.202 71.121.90.191 1960 allow
101 71.67.95.202 207.89.182.37 1960 allow
102 71.67.95.202 207.89.176.14 1960 allow
103 71.67.95.202 207.89.182.57 1960 allow
104 71.67.95.202 207.89.182.61 1960 allow
105 71.67.95.202 207.89.182.41 1960 allow
106 71.67.95.202 207.89.182.27 1960 allow
107 71.67.95.202 207.89.182.26 1960 allow
108 71.67.95.202 207.89.171.57 1960 allow
109 71.67.95.202 207.89.182.251 1960 allow
110 71.67.95.202 207.89.182.250 1960 allow
111 71.67.95.202 207.89.170.190 1960 allow
112 71.67.95.202 207.89.174.60 1960 allow
113 71.67.95.202 207.89.179.185 1960 allow
114 71.67.95.202 207.89.182.248 1960 allow
115 71.67.95.202 207.89.182.107 1960 allow
116 71.67.95.202 207.89.182.179 1960 allow
117 71.67.95.202 207.89.182.198 1960 allow
118 71.67.95.202 207.89.182.50 1960 allow
119 71.67.95.202 207.89.182.143 1960 allow
120 71.67.95.202 207.89.182.142 1960 allow
121 71.67.95.202 207.89.182.17 1960 allow
122 71.67.95.202 71.121.90.128/26 1960 allow
123 * 71.121.90.184 1953-1954 deny
124 * 71.121.90.191 1953-1954 deny
125 * 207.89.182.37 1953-1954 deny
126 * 207.89.176.14 1953-1954 deny
127 * 207.89.182.57 1953-1954 deny
128 * 207.89.182.61 1953-1954 deny
129 * 207.89.182.41 1953-1954 deny
130 * 207.89.182.27 1953-1954 deny
131 * 207.89.182.26 1953-1954 deny
132 * 207.89.171.57 1953-1954 deny
133 * 207.89.182.251 1953-1954 deny
134 * 207.89.182.250 1953-1954 deny
135 * 207.89.170.190 1953-1954 deny
136 * 207.89.174.60 1953-1954 deny
137 * 207.89.179.185 1953-1954 deny
138 * 207.89.182.248 1953-1954 deny
139 * 207.89.182.107 1953-1954 deny
140 * 207.89.182.179 1953-1954 deny

No. sIP dIP dPort decision
141 * 207.89.182.198 1953-1954 deny
142 * 207.89.182.50 1953-1954 deny
143 * 207.89.182.143 1953-1954 deny
144 * 207.89.182.142 1953-1954 deny
145 * 207.89.182.17 1953-1954 deny
146 * 71.121.90.128/26 1953-1954 deny
147 * 71.121.90.184 1950 deny
148 * 71.121.90.191 1950 deny
149 * 207.89.182.37 1950 deny
150 * 207.89.176.14 1950 deny
151 * 207.89.182.57 1950 deny
152 * 207.89.182.61 1950 deny
153 * 207.89.182.41 1950 deny
154 * 207.89.182.27 1950 deny
155 * 207.89.182.26 1950 deny
156 * 207.89.171.57 1950 deny
157 * 207.89.182.251 1950 deny
158 * 207.89.182.250 1950 deny
159 * 207.89.170.190 1950 deny
160 * 207.89.174.60 1950 deny
161 * 207.89.179.185 1950 deny
162 * 207.89.182.248 1950 deny
163 * 207.89.182.107 1950 deny
164 * 207.89.182.179 1950 deny
165 * 207.89.182.198 1950 deny
166 * 207.89.182.50 1950 deny
167 * 207.89.182.143 1950 deny
168 * 207.89.182.142 1950 deny
169 * 207.89.182.17 1950 deny
170 * 71.121.90.128/26 1950 deny
171 * 71.121.90.184 1960 deny
172 * 71.121.90.191 1960 deny
173 * 207.89.182.37 1960 deny
174 * 207.89.176.14 1960 deny
175 * 207.89.182.57 1960 deny
176 * 207.89.182.61 1960 deny
177 * 207.89.182.41 1960 deny
178 * 207.89.182.27 1960 deny
179 * 207.89.182.26 1960 deny
180 * 207.89.171.57 1960 deny
181 * 207.89.182.251 1960 deny
182 * 207.89.182.250 1960 deny
183 * 207.89.170.190 1960 deny
184 * 207.89.174.60 1960 deny
185 * 207.89.179.185 1960 deny
186 * 207.89.182.107 1960 deny
187 * 207.89.182.179 1960 deny
188 * 207.89.182.198 1960 deny
189 * 207.89.182.50 1960 deny
190 * 207.89.182.143 1960 deny
191 * 207.89.182.142 1960 deny
192 * 207.89.182.17 1960 deny
193 * 71.121.90.128/26 1960 deny
194 71.0.0.0/8 71.121.90.154 22 allow
195 71.0.0.0/8 71.121.90.154 80 allow
196 71.0.0.0/8 71.121.90.154 443 allow
197 71.0.0.0/8 71.121.90.154 5800-5809 allow
198 71.0.0.0/8 71.121.90.154 5900-5909 allow
199 71.0.0.0/8 71.121.90.154 3690 allow
200 * 71.121.90.154 * deny
201 71.0.0.0/8 * * allow
202 71.67.94.12 207.89.182.27 55555 allow
203 71.121.92.53 207.89.182.179 52311 allow
204 207.89.182.142 207.89.182.57 179 allow
205 207.89.182.143 207.89.182.57 179 allow
206 71.0.0.0/8 * 80 allow
207 71.121.88.50 207.89.182.17 52311 allow
208 71.121.59.54 207.89.182.17 52311 allow
209 * * * deny

Table 6: The complete version of the policy in Table 2
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