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ABSTRACT
Objective. Osteoarthritis (OA) is a disease characterized by degeneration of joint
cartilage. It is associated with pain and disability and is the result of either age and
activity related joint wear or an injury. Non-invasive treatment options are scarce
and prevention and early intervention methods are practically non-existent. The
modeling effort presented in this article is constructed based on an emerging biological
hypothesis—post-impact oxidative stress leads to cartilage cell apoptosis and hence the
degeneration observed with the disease. The objective is to quantitatively describe the
loss of cell viability and function in cartilage after an injurious impact and identify the
key parameters and variables that contribute to this phenomenon.
Methods. We constructed a system of differential equations that tracks cell viability,
mitochondrial function, and concentrations of reactive oxygen species (ROS), adeno-
sine triphosphate (ATP), and glycosaminoglycans (GAG). The system was solved using
MATLAB and the equations’ parameters were fit to existing data using a particle swarm
algorithm.
Results. The model fits well the available data for cell viability, ATP production, and
GAG content. Local sensitivity analysis shows that the initial amount of ROS is themost
important parameter.
Discussion. The model we constructed is a viable method for producing in silico
studies and with a few modifications, and data calibration and validation, may be a
powerful predictive tool in the search for a non-invasive treatment for post-traumatic
osteoarthritis.

Subjects Mathematical Biology, Orthopedics
Keywords Osteoarthritis, Modeling & simulation, Oxidative stress, Mitochondria, Articular
cartilage

INTRODUCTION
Osteoarthritis (OA) is a degenerative disease characterized by thinning of the joint
cartilage and is associated with disability and pain. Chronic elevated contact stresses
and strains between joints have been implicated in the pathogenesis of OA and are often

How to cite this article Kapitanov et al. (2017), Modeling the effect of blunt impact on mitochondrial function in cartilage: implications
for development of osteoarthritis. PeerJ 5:e3468; DOI 10.7717/peerj.3468

https://peerj.com
mailto:georgi-kapitanov@uiowa.edu
mailto:georgi-kapitanov@uiowa.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3468
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3468


age-related (wear and tear) or due to continuous injurious loading (e.g., running on hard
surfaces) (Buckwalter, Mankin & Grodzinsky, 2005). Osteoarthritis can also occur after a
single forceful impact injury, in which case it is referred to as post-traumatic osteoarthritis
(PTOA). We hypothesize that the biochemical processes associated with PTOA are the
same as those that lead to OA, only occurring on a different time scale: While age-related
OA can take decades to occur, PTOA can develop in a matter of months (Anderson et
al., 2011; Buckwalter & Felson, 2015). At the same time, cartilage biomechanics dictates
that some level of stress is important for normal development and stability of the
cartilage surface - inactivity can also lead to OA development (Martin & Buckwalter, 2012;
Tomiyama et al., 2007).

Current treatment options for OA are not ideal. When the cartilage is severely worn
out, usually in elderly patients, a whole joint replacement is advised. This strategy has
been quite successful, but cannot and should not be implemented in less severe cases.
For those, a surgical intervention requires a surgeon to manually adjust the joint as to
mitigate the contact stresses and direct them to areas of the cartilage that is less damaged.
Currently, this is largely an approach based on the surgeon’s experience and intuition as
has resulted in limited efficacy (Anderson et al., 2011). Another approach is painkillers or
anti-inflammatory compounds. While they may help the pain, they have shown to do little
in the way of preventing or even slowing down the disease (Kongtharvonskul et al., 2016).
Therefore, there is a need for non-invasive strategies for preventing or treating OA, and
a goal of this article is to provide a model that assists the processes of understanding and
quantifying the underlying biological mechanisms that lead to OA development.

There are generally two hypotheses as to the biochemical source of degeneration in OA.
One is the role of joint inflammation and particularly the disruption of the balance between
pro- and anti- inflammatory cytokines in the joint (Scanzello, 2017). Our group has been
leading the modeling efforts in this area with several publications (Graham et al., 2012;
Wang et al., 2014; Wang et al., 2015; Ayati et al., 2017; Kapitanov et al., 2016). In Graham
et al. (2012), the authors laid out the theoretical work for a temporal-spatial model for
the degeneration of a cartilage explant (a cartilage cylinder containing subchondral bone)
after a blunt impact. They were able to qualitatively capture the radial degeneration of
the cartilage cylinder after the impact. Better parametrization and data validation was
done in Wang et al. (2015), and adding an external map of the strains that result from
the impact and their relationship to cell death was added in Kapitanov et al. (2016).
The problem with cyclic loading onto an explant (imitating a continuous activity, like
running) was modeled inWang et al. (2014) and Ayati et al. (2017). The latter also gives an
overview on how combining modeling and simulation research related to the mechanical
properties of cartilage and the joint stress map after loading, and modeling and simulation
of the underlying cascade of biochemical reactions that can lead to OA, can eventually be
translated to patient outcomes and treatment strategies, using mathematics as a conduit in
this complicated process.

Recent research efforts by the University of Iowa Department of Orthopedics and
Rehabilitation have identified a different chondrocyte-centered hypothesis for the
development of OA: oxidative stress and particularly the disruption of mitochondrial
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function as a result of joint overload (Coleman, Buckwalter & Martin, 2015; Goetz et al.,
2017; Coleman et al., 2016). This hypothesis can explain the unsuccessful implementation
of anti-inflammatories in treating OA, and reveals other possibilities for non-invasive
interventions. The present work is the first attempt known to us to model this aspect
of the underlying biochemistry after blunt impact and can be useful as a stepping stone
to quantifying the treatment options that will result from the hypothesis. The article is
organized as follows: the ‘Materials&Methods’ section presents the laboratory experimental
set-up from already published work, the hypotheses, and the resultingmathematical model;
the ‘Results’ section presents our results; the ‘Discussion’ section is a discussion.

MATERIALS & METHODS
This section details the experimental set-up we are modeling, the biological hypotheses
involved, the resulting model, and the computational work involved in solving and fitting
the model to the experimental data.

Laboratory experiments
Our modeling efforts revolve around laboratory experiments outlined in Martin et al.
(2009) and Coleman, Buckwalter & Martin (2015). Briefly, osteochondral explants (pieces
of articular cartilage with subchondral bone underneath, harvested from cattle), are
secured at the bottom of a drop tower and subjected to high-energy blunt impacts (from
a 5 mm diameter brass rod dropped onto the explant from different heights) of different
magnitudes, comparable to those estimated to occur in serious joint injuries (7 J/cm2 and
14 J/cm2). The effects of impacts on cell viability within 72 h post-impact were recorded
by putting the explants into media containing calcein acetoxymethylester (which dyes live
cells green) and ethidium homodimer-2 (which dyes dead cells red), taking images with
confocal microscopy and analyzing the images from six areas of three explants (eighteen
images total per time point) (Martin et al., 2009). The viability was recorder as % live cells
(green) to total cells (green plus red).

Cartilage is a tissue that comprises of mainly extracellular matrix with a dispersion
of chondrocytes throughout. The extracellular matrix is composed of water, collagen,
and proteoglycans, in different proportions depending on the cartilage depth (more
proteoglycans toward the bottom and less toward the top, which makes it heterogeneous in
stiffness—stiffer as one transitions from top to bottom). The effects of 7 J/cm2 impacts on
proteoglycans was measured by glycosaminoglycan (GAG) assay with dimethyl methylene
blue. Proteoglycans contains GAG molecules, so GAG content is an indicator of cartilage
stiffness and stability (Coleman, Buckwalter & Martin, 2015). The relative GAG content
(GAG at impact versus GAG at nearby undamaged site) was measured at 7 and 14 days
post-impact and averaged over six explants. Metabolic activity and energy metabolism,
as revealed by adenosine triphosphate (ATP) content, was assessed at three different sites
(impact, near impact, remote) at 24 h and 48 h post 7 J/cm2 impact. No ATP or GAG data
was collected for the 14 J/cm2 impact. In this model we only consider the results at the
impact site because that is consistent with the viability and GAG data available.
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Biological hypothesis
Cartilage is a hypoxic tissue—while most human cells’ mitochondria use an oxidant-rich
process of phosphorylation to produce ATP, chondrocytes’ mitochondria produce ATP
through glycolisis, which requires small amounts of oxygen. Therefore, in articular cartilage
there is a fine balance between the oxidants needed for normal cellular metabolism and
an excess that can cause metabolic damage. High energy impacts to cartilage cause local
oxidative chondrocyte death (Martin et al., 2009), as well as a decline in ATP production
(Figure 17.1 inColeman, Buckwalter & Martin, 2015). These effects were found to be related
to excessive production of reactive oxygen species (ROS) by the mitochondrial electron
transport chain, which causes damage to chondrocyte mitochondria and oxidative stress
that inhibits glycolytic activity. The resulting loss of ATP affects many cellular activities,
but most notably it diminishes the production of GAGs, which undermines the stability
of the cartilage matrix. The subject of the present work is describing these processes
mathematically and creating a mechanistic model that qualitatively and quantitatively
describes their effects on the progression of PTOA.

Mathematical model
Based on the biological hypothesis and the available data, we constructed a system of
differential equations that describes the interactions between the mechanical impact from
the drop tower, the mitochondrial function of the chondrocytes in the impact area, and
the resulting concentrations of ROS, ATP, and GAG. The model is unitless to reflect the
available data (% of cell viability for example).

We include the following variables:
1. M (t ): proportion of live cells with functional (normal, undamaged) mitochondria in

the cartilage explant impact area.
2. D(t ): proportion of live cells with dysfunctional (damaged, abnormal) mitochondria

in the cartilage explant impact area. These cells are characterized by their release of
double the amount of ROS as cells with functional mitochondria.

3. R(t ): relative concentration of reactive oxygen species (ROS) in the cartilage explant
impact area.

4. E(t ): relative concentration of ATP (produced through glycolisis) in the cartilage
explant impact area.

5. U (t ): relative concentration of GAG (measure of cartilage stability) in the cartilage
explant impact area.
‘‘Relative’’ in the descriptions above refers to comparison with normal, undamaged

cartilage explant (control in the experiments). A brief description of the models dynamical
system of equations below: the blunt impact causes a burst of ROS, which creates an
environment of oxidative stress. The stress causes themitochondria of normal chondrocytes
to become dysfunctional, which makes them release additional ROS, and can cause cellular
apoptosis. The amount of ROS that is available controls the ATP formation in the cell
if the concentration of available oxidants is too little or too high, the ATP production is
decreased (Coleman, Buckwalter & Martin, 2015). Decreased ATP production negatively
affects GAG production and hence concentration in the impact area. A diagram of the
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interactions is presented in Fig. 1. We assume no cell proliferation—none was observed
during the experiments, and the experiment’s time frame would suggest no significant
number of new cells has been added. We consider 1 to be a level of the relevant variable
that is considered optimal for cartilage function. This idea translates to assuming that when
100% (or a fraction of 1 of the total number of cells) of the viable cells have functional
mitochondria, the released amount of ROS is 1, which translates to an optimal ATP
production (assumed to be 1), and overall cartilage integrity (relative GAG concentration
of 1). In other words the control case is assumed to be the case where M (t )= 1, D(t )= 0,
R(t )= 1, E(t )= 1, and U (t )= 1. The control case is trivial, hence not pictured in the
figures that accompany the model.
dM
dt
= −kSMS(R)︸ ︷︷ ︸

mito damage due to ox. stress
dD
dt
= kSMS(R)︸ ︷︷ ︸

mito damage due to ox. stress

− δDDS(R)︸ ︷︷ ︸
apoptosis due to ox. stress

dR
dt
= αM (M+kDD)︸ ︷︷ ︸

mito ROS release

− δRR︸︷︷︸
ROS clearance

dE
dt
= fE

(
R

M+D+ε

)
︸ ︷︷ ︸

ATP production

− δEE︸︷︷︸
utilization

dU
dt
= kUU (1−

1+λU
1+λUE

U )︸ ︷︷ ︸
GAG through ATP

.

(1)

The function S(R) represents the effect of oxidative stress on the system. It only triggers
when an excessive amount of ROS is present.

S(R)=

{
0 if R≤ 1
sC(R−1)α if R> 1.

(2)

The constant sC represents the direct effect of oxidative stress, represented by ROS being
above the optimal level of 1, on the mitochondrial function and viability. We choose the
constant α to be greater than 1. This ensures that S(R) is smooth at R=1 and simplifies
the equilibrium analysis.

The function fE(x) describes the energy (ATP) production. In our model x is the ratio
between available ROS and viable cells R/(M +D+ ε). The parameter ε > 0 is there to
avoid division by 0.

fE(x)=

0 if x ≤ 0 or x ≥ 2R0
kE

(x−R0)2+λE
−

kE
R2
0+λE

if x ∈ (0,2R0).
(3)

What the function fE describes is that if the relative amount of ROS is below some optimal
level R0 or above it, then the energy production is lower than optimal. Furthermore, no
available ROS (R= 0) or too much ROS (R> 2R0) shuts down ATP production. This idea
is presented in Coleman, Buckwalter & Martin (2015). A plot of the function can be seen in
Fig. 2.
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Figure 1 A diagram of the dynamics expressed in Eq. (1). External strain from the blunt impact causes
cells with functional mitochondria to transition into cells with dysfunctional mitochondria and cells with
dysfunctional mitochondria to go into apoptosis. Cells with dysfunctional mitochondria release twice the
amount of reactive oxygen species (ROS) as normal cells, which further affects the oxidative stress. ROS is
used in production of ATP, which in turn is utilized for the release of glycosaminoglycans (GAG), which
strengthen the ECM.

Parameter relationships
We assume that under homeostasis (undamaged cartilage), the values of cell with functional
mitochondria, ROS, ATP, and GAG (M ,R,E , and U respectively) remains 1, while the
value for cells with dysfunctional mitochondria, D, remains 0. The only reason for changes
is disruption of this equilibrium due to an impact. To ensure this equilibrium, the following
relationships between parameters were assumed
1. We assumed that in the function fE that R0= 1/(1+ε) so as to produce the maximum

amount of ATP when R= 1 andM+D = 1.
2. We considered a level of 100%M to be optimal/normal for cartilage. This assumption

requires that αM = δR, since we seek an equilibrium R∗= 1 when M∗= 1.
3. With the assumptions above, in order to produce an equilibrium E∗= 1 when R∗= 1,

we assume that δE = kE
λE (1+λE )

.

Numerical solutions and data fitting
System Eq. (1) was solved using the MATLAB function ode15s. The parameter values used
for generating the results can be seen in Table 1. The data used for parametrization of our
model can be seen in Table 2. We note that the data is modified. In the experimental results
in Martin et al. (2009), all explants had mean initial viability of 89%, including control.
If 89% viability is normal for cartilage, we divided all the data by 89% to get the normal
viability to be 100% (or 1 in the simulation calculations). In other words, the viability
data was scaled. We assumed that undamaged cartilage only contains cells with functional

Kapitanov et al. (2017), PeerJ, DOI 10.7717/peerj.3468 6/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.3468


0 0.5 1 1.5 2
ROS per cell

0

0.5

1

1.5

2

2.5

A
T

P

Figure 2 The form of the function fE . The peak (optimal) ATP production occurs when the amount of
ROS per cell (R/(M+D)) is equal to R0. In the picture above R0= 1/(1.0001).

mitochondria, that ATP, and GAG content are optimal, and the impact increased the initial
amount of ROS above 1, depending on the impact’s energy. We fit all parameters, besides
R(0) for the 14 J/cm2 impact, using the 7 J/cm2 data in Table 2 (cell viability, ATP, GAG).
Then, using the parameters we found, we fit the initial amount of ROS after the 14 J/cm2

impact to the cell viability data in that case. We used the MATLAB particle swarm function
for fitting the parameters.

Local sensitivity analysis
Let us denote by Spar,var the effect of the parameter par on the variable var. Standard
methods of local sensitivity analysis boil down to solving a set of differential equations with
respect to Spar,var, namely

dESpar
dt
= J · ESpar+F ,

where ESpar is the vector of Spar,var with respect to each variable, J is the Jacobian matrix,
and F is a vector of partial derivatives of the corresponding variable with respect to the
parameter of interest. The parameters we want to analyse are kS,δD,δR,sC ,kE ,λE ,kU , and
λU , as well as the initial conditions for each variable, M (0),D(0),R(0),E(0),U (0). The
method is outlined in Atherton, Schainker & Ducot (1975). The relative local effect was
measured by Spar,var(t )/var(t ).
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Table 1 Table of parameters.

Parameter Value

κS 2.7938
δD 9.9626
δR 0.0727
κE 0.0961
λE 0.0418
kU 5.0
λU 0.3387
sC 9.517
R0 1/(1+ε)
ε 10−4

α 1+ε

Table 2 Data used in parameter estimation. Standard deviation is given after the mean as±.

Cell viability, % GAG, % non-impact ATP, % Control average

Time, h 7 J/cm2 14 J/cm2 Time, d 7 J/cm2 Time, h 7 J/cm2

0 100± 8 100± 8 7 81± 4 24 18± 18
1 80± 9 73± 4 14 87± 10 48 30± 19
2 74± 7 71± 8
4 60± 13 60± 2
6 65± 6 43± 2
12 51± 7 42± 7
24 52± 7 39± 4
48 47± 7 39± 7
72 52± 7 44± 7

RESULTS
This section includes mathematical analysis of the system equilibria and the computational
results of the model.

Mathematical analysis
In deterministic mathematical models, like the present one, the equivalent of statistical
analysis done for experimental data or for stochastic models is equilibrium analysis. We
also analyze the local effect of parameter perturbations on the different variables through
local sensitivity analysis.

The details of the equilibrium analysis are given in Appendix. Briefly, the non-trivial
equilibrium is stable and will be determined by the effect of the oxidative stress on the cell
viability. In other words, we expect to reach a new homeostasis with lower levels of cell
viability and appropriate levels of ROS, ATP, and GAG. No chaos is present in the system.
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Figure 3 Relative proportion of live cells after an impact of 7 J/cm2 and its fit to available cell viability
data fromMartin et al. (2009) (open circles).

Numerical results and data fitting
The initial conditions (cell viability and chemical concentrations at time = 0 h), in order
(M (0),D(0),R(0),E(0),U (0)) for the 7 J/cm2 impact were (1, 0, 1.0202, 1, 1), and (1, 0,
1.036, 1, 1) for the 14 J/cm2 impact simulation. The root mean square error for the fit to
the 7 J/cm2 data is 0.074, and to the 14 J/cm2 data is 0.123. The results are presented in
Figs. 3–7. The total cell viability (functional plus dysfunctional mitochondria) fits well with
the cellular viability presented in Martin et al. (2009), as evident from Figs. 3 and 4. The
ATP simulation also fits well with the available data from Coleman, Buckwalter & Martin
(2015) as seen in Fig. 6. The GAG simulation also fit well with the given data (Fig. 7).
Overall, the model seems to capture the biochemical dynamics of the impact site of the
cartilage explant.

Sensitivity analysis results
None of the parameters affect any of the variables locally. The initial conditions had some
effect, although none of them had a local effect on U . The values of E(0) and U (0) did not
affect any of the variables. The effect of changes in M (0) on M (t ) is constantly 1, which
implies that the relative value ofM (t ) is aways dependent onM (0). The effect ofM (0) on
D is 0, and on R and E can be seen in Figs. 8 and 9. D(0) does not affect M and D and its
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Figure 4 Relative proportion of live cells after an impact of 14 J/cm2 and its fit to available cell viability
data fromMartin et al. (2009) (open circles).

effect on R and E can be seen in Figs. 8 and 9. Changes in R(0) affects R and E , as seen in
Figs. 8 and 9, respectively.

DISCUSSION
We constructed a model of the effects of oxidative stress on the energy production and
proteoglycan release of a cartilage explant after a blunt impact. The model considered the
effect of the impact on the mitochondrial ROS release and the resulting disruption in ATP
production, which in turn negatively affects GAG release and cartilage structure.

The model’s results fit well with the results of the laboratory experiments both
qualitatively and quantitatively. The simulations seem to capture well the cell viability
dynamics (Figs. 3 and 4), the amount of ATP available at the impact site post injury
(Fig. 6), as well as the GAG content (Fig. 7). Particularly, they capture the recovery in ATP
production after the initial cell death and disruption. They capture, to an extent, the GAG
production recovery as well.

The fact that the model’s outcomes are not sensitive to the local perturbations of the
variables implies that our system is stable, as suggested by the equilibrium analysis. Our
system is sensitive to the initial conditions, which is understandable. The amount of
ROS gradually becomes independent of the initial burst of ROS due to the impact, and
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Figure 5 Projected relative concentration of available ROS after 7 J/cm2 impact, and 14 J/cm2 impact,
after 72 h.

dependent on the current viability of both cell types. This effect is seen in Fig. 8. At the
same time, the amount of initial ROS has a significant effect on the amount of cells with
dysfunctional mitochondria,D, which is not surprising given that we assume that oxidative
stress leads to apoptosis. Significantly less of an effect was observed in the sensitivity of
cells with functional mitochondria to the initial amount of ROS, so it was assumed to
be 0. Overall, from the local sensitivity analysis, R(0) seems to have the largest effect on
the system, which is understandable both from mathematical standpoint (we construct
the model so that the energy of the impact is related to the amount of initial ROS) and
biologically. There is evidence that mechanical strain increases ROS output in chondrocytes
and that the relationship is almost linear (Brouillette et al., 2013). Therefore, measuring the
impact strain can be predictive of the ROS release, which in turn can predict the loss of
viability, metabolism (ATP) and structure (GAG).

Several limitations of our modeling efforts should be addressed. Scarcity of longitudinal
data for ATP production and GAG availability means the model results support the
underlying hypothesis about the effect of the post-impact oxidative stress on the
biochemical functions in articular cartilage, but they do not allow us to conclude that
the dynamics we describe are entirely accurate. Furthermore, the whole model is non-
dimensional and the estimated parameters non-mechanistic, which makes the model only
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Figure 6 Projected relative concentration of available ATP after 7 J/cm2 impact and 14 J/cm2 impact,
compared to 7 J/cm2 ATP data.

appropriate for estimating relative levels of the biochemical compounds as compared to
control conditions. More data and measurements would be needed for addressing these
issues. The parameters themselves were estimated and the error found may be a local
minimum, rather than a global one, so other parameter sets might give us a similar fit.
However, the idea that the impact changes the initial amount of ROS released in the tissue
seems to work to validate the viability of cells after the 14 J/cm2 impact with a set of
parameters estimated from the 7 J/cm2 impact. More data at that stronger impact level
would be needed to validate our ATP andGAGpredictions. Our predictions for the amount
of ROS present (Fig. 5), both in the explant impact area, and per cell in the impact area,
seem to qualitatively capture expectations, namely high amounts of initial ROS, which
level off eventually, as seen in Goodwin et al. (2010). All variables within the model are
measurable. Viability, ATP, and GAG are already measured and the ratio between cells
with functional and dysfunctional mitochondria and ROS levels can be estimated using
dihydroethidium, which stains for elevated ROS production, and confocal imaging and cell
counting (Brouillette et al., 2013). Furthermore, the lack of local sensitivity of the model
to its parameters suggests that once a measurable set of parameters is found, the variance
in those parameters would not have a significant effect on the outcomes. The biological
implications are that if we know a measurable set for the control outcome, then we could
make predictions about the pathological outcome by looking at the impact’s mechanics
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Figure 7 Projected relative concentration of GAG after 7 and 14 J/cm2 impact, compared to 7 J/cm2

data.

(measured as energy or strain) and the resulting ROS levels. However, at this stage, this is
future work.

A major result presented in Martin et al. (2009) suggests the positive effect of
antioxidants, N-acetylcysteine (NAC) particularly, on the post-impact cellular viability
and overall cartilage stability, as measured by GAG content. The fact that treating the
cartilage explant with NAC results in mitigating the effects of the blunt impact, leads to the
conclusion that reducing oxidative stress and mitochondrial dysfunction post-impact is a
viable option for preventing the development of OA. Modeling the effect of NAC and the
timing of its application will be the subject of further work. The current effort is focused
on successfully establishing a set of equations that are capable of describing the control and
the pathological outcomes.

Work on creating and implementing in silico models like the one presented here may
have a significant role in predicting the harmful effect of impact on cartilage explants
and eventually translate to predicting post-impact patient outcomes. A viable options is
going from imaging the joint injury, which can predict the severity (mechanical stress)
of the impact (Anderson et al., 2011). The physical strain is a predictor of the ROS release
(Brouillette et al., 2013), which in turn, corroborated by the current model, is a predictor of
metabolic function and cartilage stability and cell viability (Coleman et al., 2016;Goetz et al.,
2017; Goodwin et al., 2010; Martin et al., 2009). This translation of models to patients will
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Figure 8 Relative sensitivity of ROS to initial conditions ( X =M(0),D(0),R(0)).

require merging of biomechanics and biochemistry: quantifying the relationship between
cell death and chemical signaling due to external mechanical stress (Bartell et al., 2015),
mapping the stress field for individual patients injury (Ateshian, Henak & Weiss, 2015),
and creating a mathematical model that combines the two (Ayati et al., 2017; Kapitanov et
al., 2016). Using mathematical models to describe and quantify the biochemical reactions
that lead to cartilage damage after an impact, may eventually, once validation has been
established, remove the need to run a large portion of repetitive laboratory experiments. An
ODE system such as Eq. (1) is easily encapsulated in code (e.g., MATLAB) that can be used
directly in the lab to predict experimental outcomes. The computations of the solutions to
the system take on the order of seconds on contemporary desktop equipment, which can
save significant experimental time and resources relative to conducting expensive, time-
consuming, and error-prone experiments. However, in the near termmore experiments are
needed to inform models and for creating an accurate map of the important biochemical
interactions.
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APPENDIX: EQUILIBRIUM ANALYSIS
The E0 equilibrium exists. A general equilibrium solution is: any M∗ > 0, any D∗ > 0
(subject to the restrictions S(R∗)= 0 and the parameter relationships outlined in ‘Parameter
Relationships’) and

R∗=
αM (M∗+kDD∗)

δR
,

E∗=
fE( R∗

M∗+D∗+ε )

δE
,

U ∗= 0 or U ∗=
1+λUE∗

1+λU
.

TheU ∗= 0 equilibrium is unstable, so if we assume thatU (0)> 0, it will not be reached.
Therefore, we only need to focus on the positive U ∗. As we have established, since R∗≤ 1,
S(R∗)= S′(R∗)= 0. Therefore, the eigenvalues around the equilibrium are: e1 = e2 = 0,
e3=−δR,e4=−δE , and

e5= kU
1+λUE∗−2(1+λU )U ∗

1+λUE∗
.
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The U ∗= 0 equilibrium makes e5 positive, as expected from the logistic nature of the
dU
dt equation in Eq. (1). Since we do not consider this equilibrium biologically viable in our
case, let us consider the other equilibrium, U ∗= 1+λU E∗

1+λU
. The eigenvalue e5=−kU in this

case, so is also negative. Therefore, the equilibrium is non-hyperbolic with e1= e2= 0 and
e3,e4, and e5 negative.

A simple linearization is sufficient to establish that the variables M and D form the
center subspace of the system, while E,U , and R form the stable subspace of the system.
Because of the form of S(R), the equilibrium of the system is not approached in the usual
manner when considering analyses of systems of equations. If R= 1, then dM

dt and dD
dt are

0, which establishesM∗ and D∗. Then R∗ is determined byM∗ and D∗. Therefore, in order
to determine the flow of the central subspace, we need to examine its behavior as R→ 1+.
For any R> 1, the system determined by the central subspace and the assumption on R is:

dM
dt
=−kSMsC(R−1)α

dD
dt
= kSMsC(R−1)α−δDDsC(R−1)α

A simple change of variablesM =M−M∗,D=D−D∗ results in

dM
dt
=−kS(M+M∗)sC(R−1)α (4)

dD
dt
= kS(M+M∗)sC(R−1)α−δD(D+D∗)sC(R−1)α (5)

for which E0 is the equilibrium (keep in mind R→ 1+ is fixed). The eigenvalues of this
system are −kSsC(R−1)α and −δDsC(R−1)α , both negative. Therefore, the equilibrium
(M∗, D∗) is asymptotically stable, which implies that the equilibrium of the original system
is also asymptotically stable.
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