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COMPUTATIONAL METHODS AND RESULTS FOR STRUCTURED
MULTISCALE MODELS OF TUMOR INVASION∗
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Abstract. We present multiscale models of cancer tumor invasion with components at the
molecular, cellular, and tissue levels. We provide biological justifications for the model components,
present computational results from the models, and discuss the scientific-computing methodology
used to solve the model equations. The models and methodology presented in this paper form the
basis for developing and treating increasingly complex, mechanistic models of tumor invasion that will
be more predictive and less phenomenological. Because many of the features of the cancer models,
such as taxis, aging, and growth, are seen in other biological systems, the models and methods
discussed here also provide a template for handling a broader range of biological problems.
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1. Introduction. In this paper we present multiscale models of cancer tumor
invasion and the scientific-computing methodology for solving the model equations.
The specific model treated here has components at the molecular level (incorporated
via diffusion and taxis processes), the cellular level (incorporated via a cell age vari-
able), and the tissue level (incorporated via spatial variables). The tumor consists
of populations of proliferating and quiescent cells. Proliferating cells are capable of
growing, dividing, entering quiescence, and becoming necrotic. We consider one mu-
tation class of proliferating and quiescent cells. The different physical scales cause
the model to have widely different time scales. The fully continuous model treated
in detail in this paper depends on variables representing time, age, and two spatial
dimensions. We present this system as a simplification of a more general system that
depends on time, age, size, and three spatial dimensions, and has an arbitrary number
of mutation classes for proliferating and quiescent cells, with increasingly aggressive
invasion characteristics. Mathematical modeling of all phases of cancer tumor devel-
opment, angiogenesis, and metastasis is a very broad and active area of mathematical
biology [1, 5, 10, 16, 35, 51].

This paper focuses on the invasion of nearby tissue by a vascular tumor, under the
assumption that the surrounding tissue is the source of the vasculature. Our fully con-
tinuous models have components that are based on hybrid discrete-continuous (HDC)
models [2, 3, 4, 6, 7] which use a discrete lattice to represent space. We use a physio-
logical variable, age, to model aging in the proliferating and quiescent tumor cell pop-
ulations [26, 34]. The models in this paper belong to the class of so-called structured
population models in which individuals in a population are tracked by properties such
as age, size, maturity, and other quantifiable variables. Diffusion and haptotaxis terms
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account for the spatial dynamics of the system in the models under study. Age, size,
and/or space structure have also been used in models of tumor cords [17, 18, 19, 27].

Computational and software considerations often limit scientists from incorpo-
rating physiological structure directly into a model. We discuss the combination of
effective computational methodologies for integration over the time, age, and space
variables; we use a moving-grid Galerkin method for the age variable, an adaptive
step-doubling method for the time variable, and an alternating direction implicit
(ADI) scheme for the space variables.

This paper is organized into three main sections. The first develops the models
and presents their biological justifications. The second section presents computed
solutions to the model equations and discusses their significance. The third section
discusses the computational methodology. We close with a section on conclusions and
further research.

2. Model equations. We extend the HDC tumor invasion model discussed in [4]
to fully deterministic models. In particular, as with [4], we focus on four key variables
implicated in the invasion process: tumor cells, surrounding tissue (extracellular ma-
trix), matrix degradative enzymes, and oxygen. Tumor cell motion in the HDC model
is driven by a mixture of both biased and unbiased migration, where the biased mi-
gration is assumed to be from haptotaxis (in response to gradients in the surrounding
tissue) and the unbiased migration is just random motility; we shall assume the same
here. We assume as in [4] that tumor cells produce matrix degrading enzymes which
in turn degrade the surrounding tissue creating gradients for the cells to respond to
haptotactically. Oxygen production is assumed to be proportional to the tissue den-
sity and to be consumed by the tumor (see [4] and the references therein for a more
detailed explanation of the HDC model derivation).

One of the important features of the model proposed in [4] was the implementation
of tumor heterogeneity; i.e., the tumor is made up of many different subpopulations
with different phenotypes. These phenotypes allow us to model subpopulations with
different invasive capacities. We use the same idea here by considering multiple pop-
ulations of tumor cells with potentially different parameter values.

Since the models we present here are continuous in all variables, individual pro-
cesses of the tumor cells (such as division) are also considered to be continuous. These
are modeled according to cell age in the simplified model used in the computations,
and cell age and size in the more general system. As with the HDC model, these
models are based on the populations of proliferating and quiescent tumor cells, the
density of surrounding tissue macromolecules, the concentration of matrix degradative
enzyme, and the concentration of oxygen.

The general class of partial differential equations for diffusion and age structure
considered in this paper has a long history. Among the first classic works are Skellam
(1951) [56] (who considered the effects of diffusion on populations), Sharpe and Lotka
(1911) [55], and McKendrick (1926) (who considered population models with linear
age structure) [49, 63]. More recently, Gurtin and MacCamy [32] considered models
with nonlinear age structure. Rotenberg [53] and Gurtin [31] posed models dependent
on both age and space. Gurtin and MacCamy [33] differentiated between two kinds
of diffusion in these models: diffusion due to random dispersal and diffusion toward
an area of less crowding. Existence and uniqueness results can be found for various
forms of these models in Busenberg and Iannelli [21], di Blasio [23], di Blasio and
Lamberti [24], Langlais [43], MacCamy [47], and Webb [62]. Further analysis has
been done by several authors [36, 41, 44, 48].



MULTISCALE MODELS OF TUMOR INVASION 3
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Fig. 1. Schematic of the phases G1 (first gap), S (synthesis), G2 (second gap), and M (mitosis)
of the cell cycle correlated to cell age. The graph over the mitotic phase corresponds to the probability
density function of cell ages at division (the response of the function θ to age).

2.1. The age-, space-, and size-structured model of tumor invasion. The
tumor is contained in a region of tissue Ω. The tumor is composed of proliferating
cells (cells that are transiting the cell cycle to mitosis) and quiescent cells (cells that
are arrested in the cycle but are capable of resuming progress). We assume that
proliferating cells are motile in space, but quiescent cells are not, and that both
proliferating and quiescent cells consume oxygen, with quiescent cells at a lower rate
(as in [4]). Cells, both proliferating and quiescent, are distinguished by their position
x ∈ Ω, their age a between 0 (newly divided) and aM (maximum possible age),
their size s between sm (minimum possible size) and sM (maximum possible size),
and their state in the mutation sequence. Cell age, for both proliferating cells and
quiescent cells, is the time since the cell was newly divided. For proliferating cells,
cell age correlates to phase of the cell cycle (first gap G1, synthesis S, second gap G2,
and mitosis). An illustration of a distribution of division ages is given in Figure 1.
Cells are also distinguished by cell size, which can be interpreted as mass, diameter,
volume, or some other measurable property. The inclusion of cell age and cell size
allows description of the growth of the tumor mass to be understood at the level of
individual cells, as they double their size and divide into two new daughter cells. For
example, the inclusion of age and size in the diffusivities represents a means by which
growing and dividing cells increase total tumor size.

In the HDC model in [4], the behavior of individual cells is tracked cell by cell
on a spatial lattice. This discrete formulation relates detailed information about
fundamental processes at the cellular level, such as cell-cell adhesion, entry to and
from quiescence, division, apoptosis, and phenotype mutation, to behavior of the
tumor mass. In the continuous age-size structured model of this paper, behavior at
the population level is also related to behavior at the individual cell level, with cell
age and size-dependent densities providing the connection to these processes. The use
of continuous densities constitutes a local averaging of individual traits.

The dependent variables of the model are the following:
• pi(x, a, s, t) = density of proliferating tumor cells of type i in the tumor

at position x, age a, and size s at time t, where i = 0 corresponds to a
mutated type p53 gene, and i = 1, 2, . . . , n corresponds to a linear sequence
of mutated phenotypes of increasing aggressiveness. The number of mutations
can be very large, with successive phenotypes possessing greater proliferative
characteristics and capacity for spatial movement.
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• qi(x, a, s, t) = density of quiescent tumor cells of type i in the tumor at
position x, age a, size s, and mutation phenotype i = 0, 1, 2, . . . , n at time t.

• f(x, t) = surrounding tissue macromolecule (MM) density at position x at
time t. It is assumed that these MM are distributed heterogeneously in Ω
but immobile in Ω.

• m(x, t) = matrix degradative enzyme (MDE) concentration at position x at
time t. MDE is produced by the tumor cells and diffuses in Ω.

• c(x, t) = oxygen concentration at position x at time t. Oxygen is produced
by the extracellular MM, diffuses in Ω, and is consumed by the tumor cells.

• P (x, t) =
∑n

i=0

∫ aM

0

∫ sM
sm

pi(x, a, s, t) ds da = the total population density in x

of proliferating cells of all types at time t.
• Q(x, t) =

∑n
i=0

∫ aM

0

∫ sM
sm

qi(x, a, s, t) ds da = the total population density in x

of quiescent cells of all types at time t.
• N(x, t) = P (x, t) + Q(x, t) = total tumor population density in x of all cell

types at time t.
We use a single maximum age and size for all cell types and mutation classes.

This is a notational convenience; models are often written with unbounded age or size
domains under the quite reasonable assumption that biological entities do not grow
or age indefinitely due to death. Thus, the domain can be truncated at the numerical
level. A mathematical treatment on truncating an infinite age domain is provided
in [12]. In this paper we choose to define these parameters beforehand and use the
largest values we need to cover all cases.

The equations governing the proliferating-cell densities of the tumor are

(2.1a)

∂

∂t
pi(x, a, s, t) = − ∂

∂a
pi(x, a, s, t)︸ ︷︷ ︸
cell aging

− ∂

∂s
(κi(a, s, c)pi(x, a, s, t))︸ ︷︷ ︸

cell growth

+ ∇ · (Dpi
(x, a, s,N)∇pi(x, a, s, t))︸ ︷︷ ︸

diffusion

− χi∇ · (pi(x, a, s, t)∇f(x, t))︸ ︷︷ ︸
haptotaxis

− ρi(x, a, s, c,N)pi(x, a, s, t)︸ ︷︷ ︸
cell death from insufficient oxygen

− θi(x, a, s, c,N)pi(x, a, s, t)︸ ︷︷ ︸
division with sufficient oxygen

− σi(x, a, s, c,N)pi(x, a, s, t)︸ ︷︷ ︸
exit to quiescence

+ τi(x, a, s, c,N)qi(x, a, s, t)︸ ︷︷ ︸
entry from quiescence

,

with age-boundary conditions

pi(x, 0, s, t)︸ ︷︷ ︸
newborn type i cells

= 4(1 − ψi)

∫ aM

0

θi(x, a, 2s, c,N(x, t))pi(x, a, 2s, t) da︸ ︷︷ ︸
type i cell division

(2.1b)

+ 4ψi−1

∫ aM

0

θi−1(x, a, 2s, c,N(x, t))pi−1(x, a, 2s, t) da︸ ︷︷ ︸
type i − 1 cell division

,

where ψi is the fraction of type i cells with type i + 1 mutation. The variable a in
(2.1b) is the variable of integration over all ages. For cells that have undergone only
one primary cancer forming mutation (such as a p53 mutation), we set i = 0 and
ψ−1 = 0. The coefficient of 4, rather than the more intuitive doubling value of 2,
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results from the assumption of size symmetric cell division; asymmetric cell division
would require a mitosis kernel and integration over a size variable u in (2.1b) [64].
That is, if k(s, u) is the probability density function for a daughter cell of size s to
result from the division of a mother cell of size u, then k(s, u) = k(u−s, u). Symmetric
division means that k(s, u) = δ(s− u

2 ), where δ is the Dirac delta function. Thus, for
symmetric division, the rate at which daughter cells of size s are born from mother
cells of size 2s satisfies

2

∫ sM

sm

∫ aM

0

k(s, u) θi(x, a, u, c,N(x, t)) pi(x, a, u, t) da du

= 2

(
2

∫ sM

sm

∫ aM

0

δ(s− û) θi(x, a, 2û, c,N(x, t)) pi(x, a, 2û, t) da dû

)

= 4

∫ aM

0

θi(x, a, 2s, c,N(x, t)) pi(x, a, 2s, t) da.

The equations governing the quiescent-cell densities are

(2.1c)

∂

∂t
qi(x, a, s, t) = − ∂

∂a
qi(x, a, s, t)︸ ︷︷ ︸
cell aging

− νi(x, a, s, c,N(x, t))qi(x, a, s, t)︸ ︷︷ ︸
cell death from insufficient oxygen

+ σi(x, a, s, c,N(x, t))pi(x, a, s, t)︸ ︷︷ ︸
entry from proliferation

− τi(x, a, s, c,N(x, t))qi(x, a, s, t)︸ ︷︷ ︸
exit to proliferation

.

The quiescent-cell populations lack a boundary condition in age since they are
“born” when proliferating cells of the same mutation class become quiescent. As
mentioned above, age in (2.1a)–(2.1c) is time since mitosis and does not change the
instant cells transit between proliferating or quiescent states.

The equations governing tissue MM, MDE, and oxygen densities are precisely
those used in [4]:

∂

∂t
f(x, t) = − δm(x, t)f(x, t)︸ ︷︷ ︸

degradation

,(2.1d)

∂

∂t
m(x, t) = Dm∇2m(x, t)︸ ︷︷ ︸

diffusion

+ μP (x, t) + ωQ(x, t)︸ ︷︷ ︸
production

− λm(x, t)︸ ︷︷ ︸
decay

,(2.1e)

∂

∂t
c(x, t) = Dc∇2c(x, t)︸ ︷︷ ︸

diffusion

+ βf(x, t)︸ ︷︷ ︸
production

− γP (x, t) − ηQ(x, t)︸ ︷︷ ︸
uptake

− αc(x, t)︸ ︷︷ ︸
decay

.(2.1f)

Equations (2.1a)–(2.1f) are combined with initial conditions and no-flux boundary
conditions on the boundary ∂Ω of Ω.

Equation (2.1a) balances the way cells age, grow, and move in time. The first
term on the right-hand side of (2.1a) accounts for the aging of cells, which is one-to-
one with advancing time. In the second term in (2.1a), κi(a, s, c) is the rate at which
proliferating cells increase size; i.e.,

∫ s2
s1

1
κi(a,s,c)

ds is the time required for a cell of

type i to grow from size s1 to size s2.
The diffusion term in (2.1a) accounts for cell movement due to random motility,
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interphase drag, the interaction between cells, volume displacement due to cell divi-
sion, and cell-cell adhesion [10]. The diffusion coefficient Dpi(x, a, s,N(x, t)) can be
allowed to depend on the independent and dependent variables to incorporate mech-
anistic features of these processes. For example, cells in higher mutation phenotype
classes may have smaller cell-cell adhesion properties, and thus have a larger coeffi-
cient. Dividing cells of larger size may exert greater force of volume displacement,
and thus have a larger coefficient.

In (2.1a), the haptotaxis term represents directed movement of cells toward con-
centrations of MM, which is the source of oxygen necessary for tumor cell growth,
and is degraded by tumor cell produced MDE. The parameter χi is the haptotaxis
coefficient.

The coefficient ρi(x, a, s, c,N(x, t)) of proliferating cell loss in (2.1a) is dependent
on the density of cells in competition for the supply of oxygen.

In (2.1b), θi(x, a, s, c,N(x, t)) is the rate at which cells of type i, age a, and size s
divide at x per unit time, where it is assumed that a mother cell divides into two
daughter cells of equal size (unequal division can also be modeled [64]). The division
rate θi(x, a, s, c,N(x, t)) depends on the age of cells, the supply of oxygen, and the
density of cells, with reduced capacity for division as the oxygen supply decreases
and the density increases. The negative sign in front of θi(x, a, s, c,N(x, t)) reflects
the loss of cells due to the division process. The mother cell of age a and size s is
replaced by two daughter cells, each having age 0 and half the size of the mother cell,
as described in the boundary condition (2.1b).

The coefficients σi(x, a, s, c,N(x, t)) and τi(x, a, s, c,N(x, t)) of transition to and
from quiescence in (2.1a) depend on the supply of oxygen and the density of tumor
cells. Lower oxygen and higher density results in increased entry to quiescence, and
higher oxygen and lower density results in increased recruitment from quiescence.

Equation (2.1c) governing the quiescent cells is interpreted similarly, where it is
assumed that quiescent cells are not motile. In this model, we represent the properties
of individual cell behavior as rates of transition dependent on cell spatial position,
age, and size. The inclusion of cell age and size structure allows incorporation of cell
level processes without tracking of each cell history, cell by cell (as is done in [4]). The
hybrid and continuum modeling approaches have complementarity in development,
analysis, and computability, in which advantages of each can be exploited.

2.2. A simplified two-dimensional model with no size structure. The
following model is a version of the model above with no size structure, two spatial
dimensions (denoted by (x, y) ∈ Ω), and one compartment each of proliferating- and
quiescent-cell types. The equations governing the two classes of cell densities of the
tumor are

∂

∂t
p(x, y, a, t) = − ∂

∂a
p(x, y, a, t)︸ ︷︷ ︸
cell aging

+ Dp∇2p(x, y, a, t)︸ ︷︷ ︸
diffusion

− χ∇ ·
(
p(x, y, a, t)∇f(x, y, t)

)
︸ ︷︷ ︸

haptotaxis

(2.2a)

− ρ(x, y, a, c)p(x, y, a, t)︸ ︷︷ ︸
cell death from insufficient oxygen

− θ(x, y, a, c)p(x, y, a, t)︸ ︷︷ ︸
division with sufficient oxygen

− σ(x, y, a, c,N(x, t))p(x, a, s, t)︸ ︷︷ ︸
exit to quiescence

+ τ(x, y, a, c)q(x, y, a, t)︸ ︷︷ ︸
entry from quiescence

,
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∂

∂t
q(x, y, a, t) = − ∂

∂a
q(x, y, a, t)︸ ︷︷ ︸
cell aging

− ν(x, y, a, c)q(x, y, a, t)︸ ︷︷ ︸
cell death from insufficient oxygen

(2.2b)

+ σ(x, y, a, c,N(x, t))p(x, y, a, t)︸ ︷︷ ︸
entry from proliferation

− τ(x, y, a, c)q(x, y, a, t)︸ ︷︷ ︸
exit to proliferation

,

with age-boundary conditions

p(x, y, 0, t)︸ ︷︷ ︸
newborn cells

= 2

∫ aM

0

θ(x, y, a, c)p(x, y, a, t) da︸ ︷︷ ︸
division rate

.(2.2c)

The equations governing tissue MM (f), MDE (m), and oxygen (c) densities
remain as defined in (2.1d)–(2.1f). All equations are combined with initial conditions
and zero flux boundary conditions on an (x, y)-rectangle Ω.

In this simplification, the use of age as a proxy for size has been chosen to illustrate
the capabilities of the modeling framework and computational methodology and to
form a foundation for further research. Our simplification is mathematical: we remove
only the size dimension and size derivative in (2.1a) to obtain a system soluble by our
current methodology and software. The modeling implication of this simplification
is that proliferating and quiescent cells differ from one another only in the ability of
the former to diffuse and haptotaxi. In (2.1a)–(2.1c), proliferating and quiescent cells
also differ in the ability of the former to grow in size.

There are many paths from very simple tumor models—models where the cell pop-
ulation is completely homogeneous and evolves according to an ordinary differential
equation—and the model presented in (2.1a)–(2.1f) where we differentiate between
cells based on age, size, spatial position, proliferating or quiescent state (including
which differences between them to retain), and mutation class. Another path would
be to dispense with age representing time since mitosis in (2.1a)–(2.1c) and replace
the size variable by an age variable which represents time spent in the proliferation
class. This would reduce (2.1c) to an ordinary differential equation with q parame-
terized by space (x, y) and age a. An intermediary model between (2.1a)–(2.1c) and
(2.2a)–(2.2b) would be to keep the age variable as it is and replace the size variable
by a second age variable representing time spent in the proliferation class.

3. Computations of cancer tumor invasion. We can demonstrate some as-
pects of the behavior of the reduced system defined by (2.2a)–(2.2c) and (2.1d)–(2.1f)
through computations using parameters and functional forms chosen for illustrative
purpose rather than biological foundation, including choices such as the relative death
rates of proliferating and quiescent cells. Models in later work will be nondimensional
versions of dimensional models whose parametric input will be experimentally vali-
dated in the future. The magnitude of some dimensional parameters is provided on
p. 168 of [4].

We take the spatial domain to be Ω = [−5, 5] × [−5, 5], bound the age domain
by aM = 6, and run the computations to time t = 20. We now replace the vector x
denoting space with an ordered pair of real numbers (x, y). The meaning of x should
be clear from context.

We take

Dp = 0.0005, χ = 0.01, Dm = 0.01, Dc = 0.05,(3.1a)

ρ(x, y, c) = 0.1 max{1.0 − c, 0}, ν(x, y, c) = 2.0 max{1.0 − c, 0},(3.1b)
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δ(x, y) = 50.0, μ(x, y) = 1.0, ω(x, y) = 0.0, λ(x, y) = 0.0,(3.1c)

β(x, y) = 0.5, γ(x, y) = 0.57, η(x, y) = 0.0, α(x, y) = 0.025,(3.1d)

σ(x, y, c) = 10.0 max{1.0 − c, 0}, τ(x, y, c) = 2.0 c.(3.1e)

The distribution of division ages is assumed to have the form of an offset integrand
of the Gamma function (see Figure 1),

θ(x, y, a, c) =

{
10.0 c exp(−10(a− 1)) (2a− 1)5, a > 0.5,

0, a < 0.5,
(3.1f)

where 0.5 is the minimum age at which a cell can divide. The initial conditions are

p(x, y, a, 0) = 5.0G(
√
x2 + y2, 0, 0.5),(3.1g)

q(x, y, a, 0) = 0.5 p(x, y, 0)(3.1h)

for 0 ≤ a ≤ 2, p(x, y, a, 0) = q(x, y, a, 0) = 0 otherwise,

f(x, y, 0) = 0.2 cos(0.4 (x− 5)2) sin(0.2 (y − 5)2) + 0.2,(3.1i)

m(x, y, 0) = 2.5G(
√
x2 + y2, 0, 0.5),(3.1j)

c(x, y, 0) = 10.0 f(x, y, 0),(3.1k)

where

G(z, zμ, zσ) =
exp(− (z−zμ)2

2 z2
σ

)
√

2π zσ
.

Numerical computations of the proliferating-cell density and MM density for the
simplified model are illustrated in Figures 3–5 as snapshots in time.1 The simulation
in Figures 2–5 demonstrates the temporal development of spatial heterogeneity in the
tumor mass from a radially symmetric initial condition of tumor cells and heteroge-
neous initial condition of surrounding MM. The MM tissue is displaced by the tumor
tissue as a consequence of haptotactic movement of the tumor cells, driven by the
MDE they produce. The interior core of the tumor mass becomes necrotic, because
of its increasing distance from the oxygen supply provided by the MM source. One
aspect of this computation is that the tumor edge consists of an outer layer of pro-
liferating cells and an inner layer of quiescent cells. This phenomenon was obtained
despite differentiating proliferating cells from quiescent cells only by their ability to
diffuse and haptotaxi.

4. Computational methodology. Computational robustness and efficiency is
vital for the methods used to solve the high-dimension, multiscale models developed
in this paper. The primary issue is the age discretization and how to decouple it
from the time discretization without ignoring the fact that age and time advance
together. This approach foreshadows how one may wish to handle size structure.
The decoupling of the age and time discretizations allows for adaptivity in the time
variable; we discuss a particularly effective method for the time integration called
step-doubling. The third computational consideration is in how we solve the system

1Animations can be found online at http://faculty.smu.edu/ayati/cancer.html.
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Fig. 2. Tumor-cell density (N) for the system defined by (2.2a)–(2.2c) and (2.1d)–(2.1f). The
parameters used in this computation are defined in (3.1a)–(3.1k).

x

y

Time=0

−5 0 5
−5

0

5

x

y

Time=4

−5 0 5
−5

0

5

x

y

Time=8

−5 0 5
−5

0

5

x

y

Time=12

−5 0 5
−5

0

5

x

y

Time=16

−5 0 5
−5

0

5

x

y

Time=20

−5 0 5
−5

0

5

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 3. Proliferating-cell density (P ) for the system defined by (2.2a)–(2.2c) and (2.1d)–(2.1f).
The parameters used in this computation are defined in (3.1a)–(3.1k).

in the space variables. We use an alternating direction implicit method, which is, to
our knowledge, a novel approach when incorporated into the step-doubling method
for time.

There is a plethora of numerical methods for solving models with just age or size
structure [8, 9, 22, 29, 37, 42, 46, 58]. These methods use uniform age and time steps
which are equal to one another in the case of age structure, or they do the equivalent
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Fig. 4. Quiescent-cell density (Q) for the system defined by (2.2a)–(2.2c) and (2.1d)–(2.1f).
The parameters used in this computation are defined in (3.1a)–(3.1k).
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Fig. 5. MM density (f) for the system defined by (2.2a)–(2.2c) and (2.1d)–(2.1f). The param-
eters used in this computation are defined in (3.1a)–(3.1k).

in the context of size structure of introducing a new size node at every time step.
This approach does not work well for problems with multiple time scales because the
fastest time scale tends to be in the spatial variables.

To understand the nature of this problem, consider a fixed, uniform age discretiza-
tion. Solving the system along characteristics would require the age interval width
to be equal to the time step. This would result in many more age nodes than are
needed to accurately solve the problem in the age variable because of the small time
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step. For size structure, the analogous situation is to introduce many more size nodes
at the birth boundary than are needed. An additional concern with size structure
is that characteristic curves in the size-time plane can converge, resulting in unnec-
essarily narrow size intervals. Regridding was used in [58] and [9] to adjust for the
effects of narrowing gaps between characteristics, but they do not address the issue
of small size nodes at the birth boundary. For example, the method proposed in [9]
has an advantage of simplicity—the idea is to merge the narrowest size interval with
one of its neighbors after each time step—but is not a satisfactory solution because
small size intervals can arise continuously at the birth boundary while elsewhere size
intervals continue to narrow due to the nature of the characteristic curves. Moreover,
regridding comes at a computational cost. A natural solution to this problem lies in
using a finite element space with a moving reference frame in age or size, which is the
approach we use in this paper.

Previous numerical methods designed explicitly for models with dependence on
age, time, and space were developed outside the context of an application and required
uniform age and time discretizations with the age step chosen to equal the time
step [39, 40, 45]. In contrast, the methods used to obtain the computational results
presented in this paper [12, 14] were motivated by models of Proteus mirabilis swarm-
colony development where the need to decouple age and time discretizations was
clear from the problem [13, 28, 52]. In the process of applying these methods to the
system defined in [28], it became clear that the numerical methods and software used
previously were not merely inefficient but also gave qualitatively incorrect answers
(although these methods did decouple the age and time discretizations, they did so
by not moving the age discretization along characteristics; see the appendix in [13]
for a discussion). This is a critical pitfall to avoid and highlights the importance of
using methods with known convergence properties for a particular system.

We use Galerkin finite element methods that use a moving grid to allow for
independent, nonuniform age and time discretizations and whose development has
focused on robustness as well as computational efficiency. The important property of
these methods is that the age step need not equal the time step. Instead, the positions
of the age nodes are adjusted by the time step. The methods preserve the important
fact that age and time advance together. The methods in [39, 40, 45] also discretized
along characteristics, but they did so simultaneously in age and time and thus imposed
the often crippling constraint that the time and age steps be both constant and equal.
The difficulty with this approach is twofold. First, the use of constant age and time
steps prevents adaptivity of the discretization in age or, especially, time. Second, and
more importantly, the coupling of the age and time meshes can cause great losses
of efficiency since only rarely will the dynamics in time be on the same scale as the
dynamics in age. This is particularly the case when space is involved since sharp
moving fronts can require small time steps, whereas the behavior in the age variable
can remain relatively smooth. The age discretization presented in [39, 40, 45] can be
viewed as special cases of the methods presented in [12, 14] by setting the time and
age meshes to be constant and equal and using a backward Euler discretization in
time and a piecewise constant finite element space in age.

Step-doubling [15, 30, 54] is a conceptually simple, yet quite effective method
for the adaptive time integration of differential equations. Over a time step, we
compute one solution over the entire time step and then a second solution over two
successive half steps. These two different solutions give us two things. First, we can
compare solutions to determine the accuracy of our approximation for the purposes of
adaptivity of the time step. Second, we can combine solutions to get a likely second-
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t t+Δt
t+Δt/2

x+0L Ly Lx+0 Ly

Lx+0 Ly

Fig. 6. Schematic of the combination of the step-doubling and ADI methods to advance the
solution of a time- and space-dependent system from time t to time t + Δt. The operators Lx+0

and Ly represent the x derivatives plus zero-order terms and the y derivatives, respectively.

order accurate approximation, even when each step in the step-doubling process is
first-order accurate.

To solve the model equations in the spatial variables, we use an ADI method (also
called operator splitting) where we first solve the equations in just the x derivatives
and zero-order terms and then in just the y derivatives [25, 38, 50, 57, 59].

This approach reduces our two-dimensional problem in space to a set of more
easily solved one-dimensional spatial problems; we need to solve a series of block
tridiagonal linear systems instead of a more computationally expensive wide-banded
linear system. Because ADI methods are time ordered, the ADI method needs to be
embedded into the step-doubling algorithm.

The combination of these methods results in the following breakdown of the model
equations. First, the moving-grid Galerkin methods in age reduce the age-, time-, and
space-dependent equations to systems of differential equations that depend on time
and two spatial variables. We then solve each of these equations by a combination
of step-doubling and ADI methods; we take a step in the x-direction and zero-order
terms, followed by a step in the y-direction, within each substep of step-doubling.
This integrated stepping is illustrated in Figure 6.

The software used to generate the computed solutions in this paper has a similar
structure to BuGS [11]. BuGS is a C++ toolkit for solving single space dimensional,
nonlinear systems of partial differential equations which are at most order one in time
and order two in space. The user defines the spatial discretization of the equations by
writing a residual function based on first-order backward differences in time. BuGS
then uses the step-doubling method described in [15] to get a second-order accurate
in time implicit finite difference scheme. BuGS also features step control for the
convergence of Newton’s method and automatic approximation of the Jacobi matrix.

The age methods presented in [12, 14] use discontinuous piecewise polynomials as
the basis functions for the age space, which results in a distinct system of parabolic
partial differential equations for each age interval if we keep time and space contin-
uous. This, in turn, results in a distinct linear system for each age interval when
we fully discretize the equations. In the tumor invasion software, we use piecewise
constant functions in age with postprocessing to continuous piecewise linear func-
tions. As mentioned above, the tumor invasion software works by updating the age
discretization at the beginning of a time step and then applying the step-doubling
method to the subsystems corresponding to each age interval, splitting the spatial
operator into two separate operators over each dimension.

As in BuGS, the tumor invasion software requires the user to define the spatial
discretization of the equations by writing a residual function based on first-order
backward differences in time. The software then uses the implementation of the step-
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doubling method described in [15] to get a second-order accurate in time implicit
finite difference scheme. The software also features step control for the convergence
of Newton’s method and automatic approximation of the Jacobi matrix.

In the remainder of this section we provide mathematical formulations of the
moving-grid Galerkin methods used to reduce the age- and space-structured partial
differential equations to systems of parabolic equations in time and space. We then
discuss the step-doubling ADI combination used to solve the parabolic equations
corresponding to each age cohort. We summarize the existing convergence results
and present a heuristic “symbol” analysis for the synthesis of step-doubling and ADI.
The notation in this section will not necessarily correspond to that in the rest of the
paper.

The Galerkin formulation for the moving-grid age method is that given in [14].
We consider the age-dependent population model with nonlinear diffusion,

∂tu + ∂au = ∇ ·
(
k(x, p)∇u

)
− μ(x, a, p)u, x ∈ Ω, a > 0, t > 0,(4.1a)

where ∇ and ∇ · denote the gradient and the divergence, respectively, in x. The
function u(x, a, t) represents the distribution of individuals, Ω ⊂ R

n represents the
spatial domain, a represents age, and t represents time. The function μ > 0 is the
death rate. The total population density, p, is given by

p(x, t) =

∫ ∞

0

u(x, a, t) da, x ∈ Ω, t > 0.(4.1b)

We have a birth condition

u(x, 0, t) = b(x, u(x, ·, t)), x ∈ Ω, t > 0,(4.1c)

that is dependent on the entire population distribution. We note that b is an op-
erator whose second argument is a function defined on R

+, where R
+ denotes the

nonnegative real numbers. The diffusion arises from the symmetric random motion
of each individual (Fickian diffusion). We have a Neumann boundary condition, with
ν denoting the outward normal to ∂Ω,

k(x, p)∇u · ν = 0, x ∈ ∂Ω, a > 0, t > 0,(4.1d)

that represents an isolated environment. The initial condition is

u(x, a, 0) = u0(x, a), x ∈ Ω, a > 0.(4.1e)

We make several assumptions.
Condition 4.1. There exist constants C0 and C1 such that for (x, p) ∈ Ω × R,

k satisfies 0 < C0 ≤ k(x, p) ≤ C1 and μ satisfies 0 < C0 ≤ μ(x, a, p) ≤ C1 for all a.
Condition 4.2. The functions k(x, p) and μ(x, a, p) are uniformly Lipschitz

continuous with respect to p with Lipschitz constants Kk and Kμ, respectively. The
derivative ∂pk(x, p) exists. The derivative ∂aμ(x, a, p) exists and is uniformly bounded
by C1 as a function of all its arguments, and ‖∂aμ(x, ·, p)‖L2(R+) ≤ C1 uniformly as
a function of x and p.

Condition 4.3. The birth condition, b : Ω× (L1(R+)∩L2(R+)) → R
+, satisfies

the Lipschitz condition

|b(x, ϕ(x, ·, t)) − b(x, ψ(x, ·, t))|

≤ Kb

((
1 + ‖ϕ‖L1(R+)

) ∣∣∣∣
∫ ∞

0

(ϕ− ψ) da

∣∣∣∣ + ‖ϕ− ψ‖H−1(R+)

)

and is uniformly bounded. Here H−1(R+) is the dual to H1(R+).
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Condition 4.4. The initial condition, u0(x, a), is bounded and nonnegative, and
there exists ãmax such that u0(x, a) = 0 for a > ãmax.

An example of the birth condition is

b(x, ϕ(x, ·, t)) =

∫ ∞

0

β(x, a,Φ)ϕ(x, a, t) da,(4.2)

where β ≥ 0 is the birth rate and Φ is the integral of ϕ with respect to age. Con-
dition 4.3 is satisfied if β is uniformly Lipschitz continuous as a function of Φ; if
β(x, a,Φ), considered as a function of a, is in H1(R+), with H1-norm bounded inde-
pendently of x and Φ; and if ϕ ∈ L1(R+) ∩ L2(R+) as a function of age.

Condition 4.4 is technically convenient and seems mild in light of the exponential
decay of u in age [12].

The formulation of the age- and space-discrete method is as follows. We assume
that lima→∞ u = 0 [12]. Let D = ∂t + ∂a. We reuse the symbol k to denote the form

k(Φ;ϕ, v) =

∫
Ω

k(x,Φ)∇ϕ · ∇v dx;

the distinction between the form and k(x,Φ) should be clear from context. In varia-
tional form, for every v ∈ H1(Ω) ⊗ (L2(R+) ∩ C(R+)), we have

∫ ∞

0

(Du, v) + k(p;u, v) + (μu, v) da = (b(x, u(x, ·, t)) − u(x, 0, t), v(x, 0)).(4.3)

The form (·, ·) denotes the L2 inner product over Ω.
Let M denote a finite dimensional subspace of H1(Ω). Let {ai}−∞

i=0 be a sequence
such that a0 = ãmax, 0 < ai+1 − ai < Δa, and ai → −∞ as i → −∞. Let J be the
set of ai’s. For a fixed nonnegative integer q, let C denote the space of all piecewise
continuous functions over the partition of (−∞, ãmax] defined by J such that ϕ ∈ C
has the property that ϕ restricted to (ai, ai+1) is a polynomial of degree at most q. We
think of the functions in C as being zero on (ãmax,∞). We define a finite dimensional
space in age that moves along the characteristic curves, da/dt = 1:

A(t) =
{
ϕ ∈ L2(R+) : ϕ(·) = ψ(· − t)

∣∣
R+ , ψ ∈ C

}
.(4.4)

This discretization will allow the numerical method to be free of numerical dispersion
in age. We take U(t) ∈ M⊗A(t). For t /∈ J ,

(4.5)

∫ ∞

0

(DU, v) + k(P ;U, v) + (μ(x, a, P )U, v) da

= (b(x, U(x, ·, t)) − U(x, 0, t), v(x, 0))

for every v(t) ∈ M⊗A(t). So that U is defined across points in J , we require U to
be a continuous mapping of time into L2(Ω)⊗L2(R+). The total population density
is approximated by

P (x, t) =

∫ ∞

0

U(x, a, t) da.

In practice we can take the age domain to be [0, amax] for some amax. This is
reasonable due to the exponential decay in age of u [12].
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For the computations in this paper, we used discontinuous piecewise polynomials
as the approximation space in age. This corresponds to the method developed earlier
in [12]. Convergence theorems in [12] and [14] give one order of superconvergence.
This means that by using discontinuous piecewise polynomials and postprocessing the
result to continuous piecewise linear functions we can obtain second-order convergence
in age. Similarly, we can postprocess a discontinuous piecewise linear approximation
to continuous piecewise cubic functions. The theorem gives third-order convergence.
Results in practice show the expected fourth-order convergence [14]. An energy anal-
ysis [20, 60, 61, 65] was used to obtain the convergence results in [12] and [14].

To our knowledge, the embedding of an ADI method within step-doubling is a new
technique. An analysis similar to the one conducted in [15] is needed for a rigorous
convergence proof of the step-doubling ADI method and remains an area of future
research. In this paper we present instead a heuristic formulation and analysis based
on the “symbol” of the method; we represent the method as a rational approximation
to the negative exponential and compare its closeness to the negative exponential to
that of a backward Euler method.

We consider the problem

w′ = Lw,(4.6)

where L is a diagonalizable matrix. In the case of a nonsplit operator, if −λ is an
eigenvalue of L, we solve w′ = −λw over a time step Δt by our method to obtain a
discrete scheme of the form

Wn = Σ(λΔt)Wn−1,

where Σ is a rational function of aΔt. In our ADI method, we split L into Lx+0 +Ly

per Figure 6. We denote the eigenvalues by −λx+0 and −λy, respectively. We gener-
alize our symbol notation to Σ(λx+0Δt, λyΔt). Equation (4.6) becomes

w′ = Lx+0w + Lyw,(4.7)

and we solve

w′ = −λx+0w − λyw(4.8)

over a time step Δt to obtain the symbol of the method.
Step-doubling applied to (4.8) has the form

Dn−1/2,x −Wn−1

Δt/2
= −λx+0Wn−1,(4.9a)

Dn−1/2 −Dn−1/2,x

Δt/2
= −λyDn−1/2,x,(4.9b)

Dn,x −Dn−1/2

Δt/2
= −λx+0Dn−1/2,(4.9c)

Dn −Dn,x

Δt/2
= −λyDn,x,(4.9d)

Sn,x −Wn−1

Δt
= −λx+0Wn−1,(4.9e)

Sn − Sn,x

Δt
= −λySn,x.(4.9f)
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Fig. 7. Comparison of the closeness of the symbols Σs(λx+0Δt, λyΔt) of step-doubling ADI (a)

and Σe(λx+0Δt, λyΔt) of backward Euler ADI (b) to the negative exponential e−(λx+0Δt+λyΔt).
These figures show that the step-doubling ADI symbol is a second-order accurate approximation to
the negative exponential and is superior in error and convergence rate to backward Euler ADI.

The computed solution at time tn is extrapolated to Wn = 2Dn − Sn. This ex-
trapolation removes the first-order error term and gives us a second-order method
in time. In practice we compute each of the subsolutions to obtain Dn and Sn and
then extrapolate to obtain Wn. We also compare Dn and Sn for adaptive control of
the time step. Time-step control is done in the same manner as the step-doubling
method without ADI. A discussion on how we conduct the time-step control is given
in section 3 of [15]. The matrices Lx+0 and Ly come from a discretization of the
spatial and zero-order terms using center finite differences.

To obtain the step-doubling ADI symbol we collapse (4.9a)–(4.9f) and apply the
extrapolation. The symbol is then given by

(4.10) Σs(λx+0Δt, λyΔt)

= 2

⎛
⎝ 1(

1 + λx+0Δt
2

)(
1 +

λyΔt
2

)
⎞
⎠

2

− 1

(1 + λx+0Δt) (1 + λyΔt)
.

The symbol for backward Euler ADI is

Σe(λx+0Δt, λyΔt) =
1

(1 + λx+0Δt) (1 + λyΔt)
.(4.11)

For a heuristic understanding of the relative performance of step-doubling ADI
to an ADI method based on backward Euler, we compare the symbols Σs and Σe to
the negative exponential e−(λx+0Δt+λyΔt). The results are shown in Figure 7. These
results indicate the potential second-order convergence of step-doubling ADI and its
superiority to backward Euler ADI.

The combined methodology of a moving-grid Galerkin method, using piecewise-
continuous functions as the approximation space in age, and our step-doubling ADI
method for time and space integration is second-order accurate in each of the inde-
pendent variables: age, time, and space.



MULTISCALE MODELS OF TUMOR INVASION 17

5. Conclusions and further research. In this paper we presented physio-
logically and spatially structured continuous deterministic models of cancer tumor
invasion. We presented a general model whose equations depend on variables rep-
resenting size, age, space, and time. We then treated a simplified model without
size structure and with only two spatial dimensions. The simplified model contained
one mutation class of proliferating and quiescent cells. The aim of this approach is
to move tumor invasion modeling away from phenomenological models toward more
mechanistic, biologically informed, and reliably predictive models. These more com-
plex models required a more sophisticated computational methodology to investigate
numerically the computationally intensive model equations.

The most immediate extension of this work is to determine the models’ parameters
and functional forms from biological data and experiments. The current methodology
and software is sufficient to handle multiple mutation classes of proliferating and
quiescent cells, but a deeper understanding of the biology is needed to benefit from
this extension. Computational results from more biologically detailed models are
expected, in turn, to contribute to a deeper understanding of the underlying biology.

The most important mathematical extension of the methodology is to develop
size-time finite elements to handle size-structured equations. Rather than being de-
veloped for general forms of transport, extensions of the existing methods for age
structure to size structure will use the specific nature of physiological change in tu-
mor cells to allow the incorporation of size structure into a model at a low cost in
terms of computational resources. Anticipated complications in handling size struc-
ture include birth in a size-structured context with respect to both the numerical
methods and their analyses. Since the characteristic curves in the size-time plane
are no longer lines with slope one, as was the case for age structure, some important
questions are, What types of characteristic curves should we consider and how do we
handle situations where these curves become asymptotically close within the moving
grid framework? What happens if they meet and shocks form?

Two immediate concerns must be addressed for the problem of size dependence
in tumor invasion models. The first issue is the introduction of new size nodes at the
birth boundary, and the second is the handling of size intervals that contract due to
the convergence of size-time characteristic curves. We expect the major complication
in the size nodes to occur when growth slows as cells reach a certain size. However,
because of the nonlinearities in the problem, it is insufficient to merely assume that a
size interval will strictly decrease length. Addressing these two concerns will lay the
foundation for methods that handle more complicated characteristics, including the
formation of shocks that can form in situations where growth has complex dependen-
cies on the physiological traits of an individual as well as the external environment.

As in the methods for age-structured systems, the moving-grid formulation is ex-
pected to account for the growth of individuals, taking the place of direct differencing
of the size variable. And as in the case of age structure, the use of a space of discon-
tinuous piecewise polynomials as the basis functions in size is expected to allow each
size interval to be treated with a separate linear system. If the system has dependence
on both age and size, we would have a two-dimensional array of independent linear
systems at each time step.

An important benefit of using size-time Galerkin finite elements is having one
mathematical framework define many methods with higher-order accuracy. Because
of the need to keep computational costs down in each dimension of the high-dimension
systems under study, without sacrificing robustness, the ability to choose the order of
convergence of the method is quite useful.
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A major extension of the software and methodology is to add a third space di-
mension through an additional suboperator in the ADI method. This methodology
for handling three space dimensions is expected to be sufficient for generating initial
results that aim to extend our understanding of tumor invasion beyond the two-
dimensional space models. Other ADI methods that may work within this framework
are Douglas–Gunn [59] and Strang splitting [57].

Although we have provided a specific mathematical treatment of the spatial dy-
namics of tumor invasion, we remark that modeling spatial dynamics can be more
complicated in biological systems than in physical systems. A broad examination of
different modeling approaches is required, including the continuous approach in this
paper, and how it relates to other approaches, such as the HDC formulation discussed
in [4]. Multiscale models of the type considered in this paper have different time
scales for the dynamics at the different physical scales. For example, in the system
defined in (2.1a)–(2.1f), the cellular scale gives rise to time scales in the age and size
variables, whereas the tumor scale gives rise to a different time scale in the spatial
variables. Independent of the specific type of spatial representation used, decoupling
time from age or size is critical for effective solution of the model equations.

Many of the features of the cancer models, such as taxis, aging, and growth, are
seen in other biological systems; prior work on Proteus mirabilis swarm-colony de-
velopment is but one example [13]. Biological systems abound where either spatial
dynamics induce the behavior of interest or where the spatial dynamics is the behav-
ior of interest. In the same manner, the behavior of interest in a biological system
can depend on the distribution of physiological traits such as age or size, or those
distributions are the topic of interest. We hope that the methodology presented in
this paper will provide a template for handling a broader range of biological problems.
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[4] A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: The importance
of cell adhesion, Math. Med. Biol. IMA Journal, 22 (2005), pp. 163–186.

[5] A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models
of tumour-induced angiogenesis, Bull. Math. Biol., 60 (1998), pp. 857–899.

[6] A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele, and A. M.

Thompson, Mathematical modelling of tumour invasion and metastasis, J. Theoret. Med.,
2 (2000), pp. 129–154.

[7] A. R. A. Anderson and A. W. Pitcairn, Application of the hybrid discrete-continuum tech-
nique, in Polymer and Cell Dynamics, Part III, W. Alt, M. Chaplain, M. Griebel, and
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