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Abstract
Background: Multiple myeloma is a hematologic malignancy associated with the development of a destructive 
osteolytic bone disease.

Results: Mathematical models are developed for normal bone remodeling and for the dysregulated bone remodeling 
that occurs in myeloma bone disease. The models examine the critical signaling between osteoclasts (bone resorption) 
and osteoblasts (bone formation). The interactions of osteoclasts and osteoblasts are modeled as a system of 
differential equations for these cell populations, which exhibit stable oscillations in the normal case and unstable 
oscillations in the myeloma case. In the case of untreated myeloma, osteoclasts increase and osteoblasts decrease, with 
net bone loss as the tumor grows. The therapeutic effects of targeting both myeloma cells and cells of the bone 
marrow microenvironment on these dynamics are examined.

Conclusions: The current model accurately reflects myeloma bone disease and illustrates how treatment approaches 
may be investigated using such computational approaches.

Reviewers: This article was reviewed by Ariosto Silva and Mark P. Little.

Background
Bone is continually renewed throughout the skeleton in a
process known as remodeling. The bone remodeling pro-
cess is spatially heterogeneous, with regular but asyn-
chronous cycles at multiple sites that can occupy 5-25%
of bone surface [1]. In this way every part of the skeleton
is remodeled periodically over time. Mathematical mod-
eling of bone remodeling has focused on various aspects
of this process. These approaches include models of how
Michaelis-Menten-like feedback mechanics affect bone
resorption (the process by which osteoclasts break down
bone, resulting in bone loss) [2] and how biomechanical
stress induces bone formation [3-6]. Other modeling
efforts have examined the signaling pathways between
osteoclasts and osteoblasts involved in bone remodeling
[7], or accounted for the activity of both osteoclasts and
osteoblasts in a microenvironment known as a basic mul-
ticellular unit (BMU) [8-12].

In this paper we develop mathematical models of
myeloma bone disease. Multiple myeloma is a hematolog-
ical malignancy associated with clonal expansion of
malignant plasma cells within the bone marrow. One of
the major clinical features of myeloma is the development
of a progressive and destructive osteolytic bone disease,
associated with severe bone pain, pathological fractures,
osteoporosis, hypercalcemia and spinal cord compres-
sion. Interactions between myeloma cells and cells of the
bone marrow microenvironment are critical for myeloma
growth and survival and for the development of the oste-
olytic bone disease [13,14]. The destructive nature of
myeloma bone disease is increased by the vicious cycle
that develops between myeloma cells and the bone mar-
row microenvironment. Although the precise molecular
mechanisms responsible for the bone destruction in mul-
tiple myeloma are not completely understood, it is known
that the bone destruction is primarily mediated by osteo-
clasts, and that this destruction is exacerbated by a reduc-
tion in osteoblastic bone formation. Patients with
multiple myeloma have abnormal bone remodeling,
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where resorption and formation become uncoupled, with
the end result being an increase in bone resorption and a
decrease in bone formation. Myeloma cells are found in
close association with sites of active bone resorption, and
their ability to stimulate osteoclast formation and activity
has been well characterized [14-17]. Histological studies
have demonstrated that in the early stages of myeloma,
bone formation is actually increased, and this is thought
to reflect the attempt to compensate for the increase in
osteoclastic resorption [15]. However, as the disease pro-
gresses, bone formation is rapidly decreased [15,18,19].
This has been confirmed in studies which demonstrate
that markers of bone formation are decreased in patients
with multiple myeloma [20,21]. Despite many significant
advances in the understanding of the biology of multiple
myeloma, it remains an incurable malignancy, and the
destructive osteolytic bone disease is a major cause of
morbidity in patients with multiple myeloma.

Results
We model the influence of tumor growth on bone remod-
eling, and in particular how the tumor influences auto-
crine and paracrine signaling in the osteoclast and
osteoblast cell populations (see Fig. 1). Autocrine signal-
ing represents the feedback from osteoclasts and osteo-
blasts to regulate their respective formation. Paracrine
signaling represents the factors produced by osteoclasts
that regulate osteoblast formation, and vice versa. We use
the underlying model of bone remodeling in the absence
of tumor presented in [22] and explored further in [23-
25]. This model is a dynamical system with zero explicit
space dimensions, but with a dependent variable that
records bone mass as a function of time. If we interpret
the bone mass equation as one for localized trabecular
mass (spongy bone found within the bone marrow)
underneath a point on the surface of the bone, we obtain
a representation of one spatial dimension. We then pres-
ent one-dimensional spatial models that suggest how we
may incorporate additional spatial dimensions.

The organization of the paper is as follows: In Section 2
we first present the tumor-free zero-dimensional model
in [22] and illustrate its simulation of normal bone mod-
eling dynamics. In Section 3 we add the tumor cell popu-
lation to the model of normal bone in Section 2, and in
Section 4 we simulate treatment for the model in Section
3. In Section 5 we add an explicit spatial dimension to the
normal bone model. This additional dimension allows for
heterogeneity on the surface of the bone along one axis.
In Sections 6 and 7 we add tumor and treatment to the
spatial model. In Section 8 we conclude with a discussion
of the results. Computations were conducted using the
Mathematica function NDSolver. All models in this

paper use dimensionless variables and parameters,
including for the cell populations.

Zero-dimensional Bone Model without Tumor
A model of normal bone remodeling at a single discrete
site is developed in [22]. The model consists of a system
of ordinary differential equations describing the bone cell
populations in a BMU. These populations are the osteo-
clasts, which resorb bone, and osteoblasts, which form
bone. The variables of the model are the density of osteo-
clasts C(t) and the density of osteoblasts B(t) at time t.
The equations of the model in [22] are

d
dt

C t C t B tg g( ) ( ) ( )= a1
11 21

autocrine promotion paracrine 
��� ��

iinhibition

osteoclast proliferation

��� ��
� �������� ��������

− bb1C t( ) ,
osteoclast removal

���

(1)

Figure 1 Schematic of the effects of myeloma on the autocrine 
and paracrine signaling in the osteoclast and osteoblast cell pop-
ulations in the presence of tumor. The model of bone remodeling 
without tumor is taken from [22], including the meaning of the param-
eters g11 (osteoclast autocrine signaling), g12 (osteoclast stimulation of 
osteoblast production), g21 (osteoblast inhibition of osteoclast produc-
tion), and g22 (osteoblast autocrine signaling). The tumor cells alter 
these interactions through modifications of the parameters g11, g12, 
g21, g22.
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with initial conditions C(0) = C0, B(0) = B0. The power
law nonlinearities in (1a) and (1b) are approximations for
the interactions of the osteoclast and osteoblast popula-
tions in the proliferation terms of the equations. In (1a)
autocrine signaling has a positive feedback on osteoclast
production (g11 > 0), and paracrine signaling has a nega-
tive feedback on osteoclast production (g21 < 0). In (1b)
autocrine signaling has a positive feedback on osteoblast
production (g22 > 0), and paracrine signaling has a posi-
tive feedback on osteoblast production (g12 > 0).

The system (1) has a unique nontrivial steady state

where

The system (1) has periodic solutions when

The solutions exhibit limit cycles as Ψ passes through

0: Ψ < 0 yields damped oscillations converging to the

nontrivial steady state , , and Ψ > 0 yields unstable

oscillations diverging away from the nontrivial steady

state (where Ψ is sufficiently close to 0).
An additional variable z(t) for the bone mass is

obtained in [22] by assuming bone mass is determined by
the extent to which normalized values of C(t) and B(t)
exceed nontrivial steady state levels. We reinterpret the
variable z(t) as representing localized trabecular mass
beneath a point on the bone surface. Having found the
solutions of system (1), we define the following equation
for the bone mass z(t) at time t:

with the initial condition z(0) = z0. In the case that C(t)

and B(t) have periodic solutions, k1 and k2 are chosen so

that the normal bone mass oscillates with the same peri-

odicity as the osteoclast and osteoblast populations with

an experimentally determined amplitude of the oscilla-

tions. The assumption is that bone mass decreases or

increases cyclically according to the net effects of resorp-

tion (C(t) > ) and formation (B(t) > ). The constants k1

and k2 satisfy k1 = rR, and k2 = r, where

 is the period of the cycles of C(t) and B(t), and r is

determined by the amplitude of the oscillations in the

bone mass. The value R is well-defined as long as B(0) ≠

.

We reproduce here two examples of single-site normal

bone remodeling given in [22]. The parameters are as in

[22], with time unit in days. Fig. 2 simulates a targeted

event corresponding to an external stimulus, taken as a

perturbation of the nontrivial steady state ( , ) by a

momentary increase in the number of osteoclasts. The

result is a single remodeling cycle (Ψ < 0, but not suffi-

ciently close to 0 to yield damped oscillations). Fig. 3 cor-

responds to a series of internally initiated regular cycles

over an extended period of time, with osteoclast and

osteoblast populations exhibiting regular periodic cycles

about their nontrivial steady state values (Ψ = 0). The dis-

tinction of the two behaviors is the value of the osteoclast

autocrine parameter g11, which is greater in Fig. 3. In [22]

it is claimed that this parameter is the primary factor in

the regulation of bone remodeling dynamics.
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Zero-dimensional Bone Model with Tumor
We find that the regular cycles of the normal bone model
above are perturbed by the presence of myeloma. The
tumor parameters yield perturbations of the normal
cycles that result in limit cycles, which are either damped
oscillations that converge to the nontrivial steady state or
undamped oscillations that diverge away from the non-
trivial steady state. The variables for the model with
tumor are C(t), B(t) as before, and T(t) = density of tumor
cells at time t. Our equations are

d
dt

C t C t

T t
LT B t

T t
LT

C t
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Figure 2 A single event of normal bone remodeling initiated by a momentary perturbation of the osteoclast nontrivial steady state popu-

lation by an increase of 10 cell units. System of equations (1): The osteoclast population first decreases with a consequent increase in osteoblast 
population and a resorption of bone mass, followed by a return to steady-state levels. The blue line represents the steady-state solution. The param-

eters are α1 = 3.0, α2 = 4.0, β1 = 0.2, β2 = .02, g11 = .5, g22 = 0.0, g12 = 1.0, and g21 = -0.5. The nontrivial steady state with these parameters is  = 1.06 

and  = 212.13. The initial conditions are C(0) = 11.06 and B(0) = 212.13. The bone mass parameters are k1 = .24, k2 = .0017, as in [22].
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with the initial conditions C(0) = C0, B(0) = B0, and T
(0) = T0. The equation for bone mass z(t) is (5), as before.
The tumor equation (7c) is of Gompertz form with
growth constant γT> 0 and maximum tumor size LT. We
have taken γT to be independent of bone loss. Future
work will include models, simulations, and biological
experiments to determine the dependence of γT on bone
loss. In (7) the tumor parameters r11, r12, r21, r22 are all
nonnegative.

The tumor presence alters (1a) as follows: autocrine

promotion of osteoclasts is increased

( , since g11 > 0); paracrine inhibi-

tion of osteoclasts is reduced ( ,

since g21 < 0); paracrine promotion of osteoblasts is

reduced ( , since g12 > 0); and

autocrine promotion of osteoblasts is reduced

( , since g22 > 0). The key difference

between our model and that of [22] in (1) is the addition

of the terms rijT (t)/LT that couple the tumor density and

maximum size to the power laws for the osteoclast/osteo-

blast interactions.
The system (7) has nontrivial steady states

and

Where

The system (7) has stable cycles when

If Φ < 0, then the system exhibits damped oscillations
converging to the nontrivial steady state, and if Φ > 0,
then the system exhibits unstable oscillations converging
away from the nontrivial steady state (where Φ is suffi-
ciently close to 0).

A simulation of the bone model with tumor is given in
Fig. 4 and Fig. 5 with Φ < 0. The osteoclast and osteoblast
populations exhibit damped oscillations converging to
the nontrivial steady state in Fig. 4, the tumor grows to
maximum capacity, and the bone mass converges with
oscillations to 0 (Fig. 5). We can see that as the tumor
burden increases, there is an initial increase in both
osteoclast and osteoblast number, reflecting the attempt
of the system to maintain the normal coupling of bone
resorption to bone formation even in the presence of
tumor. Although the amplitude of osteoclast oscillations
decreases over time, this reflects the decrease in bone
mass. Importantly, the amplitude of osteoclast oscilla-
tions in the presence of tumor is higher than when tumor
cells are not present (e.g., Fig. 3), reflecting the overall
increase in osteoclasts associated with myeloma bone
disease. In contrast, the amplitude of osteoblast oscilla-
tions is dramatically decreased when compared with the
non-tumor simulation (Fig. 3), indicating the decrease in
osteoblasts which is a characteristic feature of myeloma
bone disease.

Another simulation of the bone model with tumor is
given in Fig. 6 and Fig. 7 with the only change from Fig. 4
and Fig. 5 being that r11 = .02 instead of .005. In this case
the osteoclast and osteoblast populations exhibit unstable
oscillations (Φ > 0), whose amplitude grows with time,
with a concomitant decrease in bone mass and increased
growth of the tumor to its limiting size (Fig. 7).

As in [22] we can analyze the behavior of the model in

terms of selected parameters. Here we investigate the

dependence of the solution behavior on the parameters

r11 and r22 and fix all the other parameters. The model has

a unique nontrivial steady state as in (9a),(9b),(9c), which
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depends on r11 and r22. The behavior of the solutions of

the model as a function of r11 and r22 depends on the

eigenvalues of the Jacobian at the nontrivial steady states

( , ). If the maximum of the real parts of the eigenval-

ues is less than 0, then the solutions converge to the non-

trivial steady state with damped oscillations, and if the

maximum is greater than 0, then the solutions have

unstable oscillations. These cases are illustrated in Fig. 8

as a function of r11 and r22. The parameters r11 and r22 cor-

respond to the alteration of the normal osteoclast-osteo-

blast regulation due to tumor burden. The relative values

of r11 and r22 yield the two types of instability, that is,

either decreasing amplitude oscillations or increasing

amplitude oscillations, both departing from normal sta-

ble periodic oscillations.

Zero-dimensional Bone Model with Tumor and Drug 
Treatment
Many therapeutic approaches for the treatment of
myeloma have the potential to affect directly both
myeloma cells and cells of the bone marrow microenvi-
ronment, including osteoclasts and osteoblasts. There-
fore, it is difficult to predict from in vivo studies the
overall response to drug treatment in myeloma. We pres-
ent a framework which provides us with the opportunity
to model, for the first time, the effects of drug treatment
on oscillatory bone remodeling. We have chosen to
model the effects of proteasome inhibition in myeloma
bone disease. Proteasome inhibitors are known to have
direct anti-myeloma effects, and to have direct effects on
osteoblasts to stimulate osteoblast differentiation and
bone formation [26-30]. The equations are as before
except that the treatment promotes osteoblast produc-
tion and inhibits tumor growth:

C B

d
dt
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T t
LT B t

T t
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C t
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Figure 4 The osteoclast and osteoblast populations in the presence of tumor stimulated by an initial osteoclast population elevated above 

the nontrivial steady state by 10 cell units. System of equations (7): The osteoclast population first increases as the osteoblast population decreases. 

The solutions converge to the nontrivial steady state  = 5.0 and  = 316.0 with damped oscillations. The parameters are α1 = 3.0, α2 = 4.0, β1 = 0.2, 

β2 = .02, g11 = 1.1, g22 = 0.0, g12 = 1.0, g21 = -0.5, γT = .005, LT = 100, r11 = .005, r21 = 0.0, r12 = 0.0, r22 = 0.2. The initial conditions are C(0) = 15.0, B(0) = 316.0, 

T(0) = 1.
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Figure 5 Bone mass and tumor response to the oscillations in Fig. 
4. System of equations (7): The bone mass converges with oscillations 
to 0.0 and the tumor converges to maximum capacity LT. The parame-
ters are as in Fig. 4. The bone mass parameters are k1 = .0748, k2 = 
.0006395 as in Fig. 3.
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The time-dependent treatment functions V1(t) and
V2(t) in (12b) and (12c) are

where tstart is the starting time of treatment and v1 and
v2 are the intensity parameters of treatment. A simulation
of the effect of a proteasome inhibitor is given in Fig. 9

d
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Figure 6 The osteoclast and osteoblast populations in the presence of tumor exhibit unstable oscillations. System of equations (7): The pa-

rameters are as in Fig. 4 except r11 = .02. The nontrivial steady state is  = 5.46 and  = 340.52. The initial conditions are C(0) = 8.46, B(0) = 340.52, 

T(0) = 1.
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Figure 7 The effect of the unstable oscillations in Fig. 6 on bone 
mass. System of equations (7): The bone mass decreases with oscilla-
tions to 0.0. The tumor converges to maximum capacity LT as in Fig. 5. 
The parameters are as in Fig. 4, except that r11 = .02. The bone mass pa-
rameters are k1 = .0748, k2 = 0006395 as in Fig. 3.
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have increasing amplitude and unstable oscillations. The values r11 = 

.005 and r22 = 0.2 in Fig. 4 and Fig. 5 correspond to -.00145 on the red 

surface, and the solutions converge slowly to the nontrivial steady 

state  = 5.0,  = 316.0. The values r11 = .02 and r22 = 0.2 in Fig. 6 and 

Fig. 7 correspond to .0002 on the red surface, and the solutions are un-
stable. The other parameters are r12 = 0, r21 = 0, α1 = 3.0, α2 = 4.0, β1 = 
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and Fig. 10, and corresponds to the untreated tumor sim-
ulations illustrated in Fig. 4 and Fig. 5. The tumor is
extinguished, the osteoclast and osteoblast populations
recover regular cycles, and the bone mass recovers to
normal.

Remark 1 A similar analysis can be made of other
model parameters, as well as other treatment functions.

The tumor is introduced at time 0, whereas treatment
with a proteasome inhibitor is started at tstart = 600. At
this time, there is an increase in tumor mass and osteo-
clast number, and a decrease in osteoblast number, indi-
cating the development of myeloma bone disease.
Treatment with a proteasome inhibitor decreases tumor
burden from the time of treatment, whereas there is a
delay in the recovery of the bone mass. Analysis of the
individual cell types (osteoclasts and osteoblasts) indi-
cates a decrease in osteoclasts from time of treatment,
but a delay in the expected increase in osteoblasts. This
suggests that the reduction in osteoclast number is

dependent on tumor burden, but is not sufficient to
increase bone mass. The increase in bone mass appears
to parallel the increase in osteoblast number. Taken
together, this model suggests that proteasome inhibition
has a dramatic effect to reduce tumor burden, and to pre-
vent bone loss as well as increase bone formation to
steady-state levels in multiple myeloma. These results are
consistent with observations from both clinical studies
and preclinical murine models, where tumor burden is
decreased and bone volume or markers of bone forma-
tion are increased in response to bortezomib treatment
[26,30-32]. Furthermore, by enabling analysis of tumor
burden, bone volume and cell number over time, the
results from this modeling provide important insights
into the biology behind the clinical response to borte-
zomib which cannot be obtained from current in vivo
studies.

One-dimensional Bone Model without Tumor
The normal bone model in [22] is a discrete site model for
single event remodeling and internally regulated cycles of
remodeling. We reinterpreted bone mass as implicitly
providing one spatial dimension, such as trabecular mass
beneath a point on the bone surface. To incorporate addi-
tional dimensions of spatial variability, we develop a dif-
fusion model in a second spatial domain Ω. For
convenience here we take a one-dimensional region Ω =
[0, 1]. We assume that both osteoclasts and osteoblasts
are diffusing in Ω. The variables of the model are C(t, x) =
density of osteoclasts and B(t, x) = density of osteoblasts
at time t with respect to x � Ω. The equations are

∂
∂

= ∂

∂
+

−
t

C t x
x

C t x C t x B t x

C t x
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(25)

Figure 9 Treatment of the tumor model in Fig. 4 starts at tstart = 600 with intensity values v1 = .001 and v2 = .008. System of equations (7): 
Treatment reverses the disruption of the osteoclasts' and osteoblasts' interaction induced by the tumor (compare to Fig. 4). The parameter values are 
as in Fig. 4 and the initial conditions are C(0) = 13.0 and B(0) = 300.0.

Figure 10 The tumor is extinguished and the bone mass begins 
to recover (compare to Fig. 5). System of equations (7): The parame-
ters are as in Fig. 9 and the bone mass parameters are k1 = .0748, k2 = 
0006395 as in Fig. 3.
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with boundary conditions

and initial conditions C(0, x) = C0(x) and B(0, x) = B0(x)
(see Fig. 11).

The nontrivial steady states  and  in the zero-

dimensional case in Section are also steady states of the

system (1) and viewed as constant functions 

and  on Ω. Further, the change in bone mass z(t,

x) as a function of x as well as t about a normalized value

of 100 is given by the following equation: The value of 100

is arbitrary. Any other value, such as 1, could have also

been used.

with initial condition z(0, x) = z0(x), and boundary con-
dition

where σ3 is the diffusion coefficient for the bone mass,
and k1(x) and k2(x) depend on C(0, x) and B(0, x). We
remark that σ3 is typically small and represents stochas-
ticity in the bone dynamics, not actual migration of bone
stromal cells.

We give examples of the normal bone model for two

cases of initial spatial inhomogeneity in the osteoclast

population C(0, x). In both examples the nonspatial

parameters are α 1 = 3.0, α 2 = 4.0, β 1 = 0.2, β 2 = .02, g11 =

1.1, g22 = 0.0, g12 = 1.0, g21 = -0.5 (as in Fig. 3, Part I), the

spatial parameters are σ1 = .000001, σ2 = .000001, and the

bone mass parameters are σ 3 = .000001, k1(x) ? 0.45, k2(x)

? .0048, with z(0, x) ? 100.0. For these parameters the con-

stant functions (x) ? 1.16, (x) ? 231.72 are steady-

state solutions (see Fig. 3, Part I).

We first simulate the normal bone model with the ini-

tial distribution of osteoclasts C(0, x) elevated above  =

1.16 near one site in Ω, as graphed in Fig. 12. The initial

distribution of osteoblasts B(0, x) is taken as constant at

 = 231.72. The density plots of the osteoclasts and

osteoblasts, and the change in bone mass, are graphed in

Fig. 13, where it is seen that the solutions sustain spatial

and temporal cycles about these steady states.
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Figure 12 Graphs of the solutions C(t, x) and B(t, x) of the bone 

model with an additional spatial dimension. System of equations 

(14): We take C(0, x) as in Fig. 11 and B(0, x) = (x) ? 231.72. The solu-
tions sustain regular spatial and temporal cycles characteristic of nor-
mal bone remodeling.

B

Figure 11 The graph of the initial distribution C(0, x) for the bone 

model with an additional spatial dimension. System of equations 
(14): Osteoclast numbers are initially elevated above the normal non-

trivial steady state (x) ? 1.16 at multiple sites. The initial distribution 

B(0, x) = (x) ? 231.72 is taken as the normal constant nontrivial steady 
state.
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One-dimensional Bone Model with Tumor
For the spatial model with tumor we assume the tumor
cells are also diffusing in Ω. The variables of the model
are C(t, x) and B(t, x) as before, and T(t, x) = density of
tumor cells at time t with respect to x � Ω.

The equations are

with boundary conditions

and initial conditions C(0, x) = C0(x), B(0, x) = B0(x), T
(0, x) = T0(x). The bone mass equations for z(t, x) are as in
(14e) and (14f ). The diffusion coefficient for the tumor is
σ4, which allows for spatial growth.

We illustrate the tumor model with an additional space

dimension by adding the tumor population to the simula-

tion in Fig. 12 and Fig. 13. Tumor parameters are γT =

.004, LT = 100, r11 = .005, r21 = 0.0, r12 = 0.0, r22 = 0.2 (as in

Fig. 3), the additional spatial parameters are σ1 = .000001,

σ 2 = .000001, σ4 = .000001, and the bone mass parameters

are σ3 = .000001, k1(x) ? 0.45, k2(x) ? .0048, with z(0, x) ?

100.0. The zero-dimensional nontrivial steady state is 

= 1.16,  = 231.72. In Fig. 14, 15, and the left side of Fig.

16 we simulate the model. The tumor is initially small and

located on the right side of Ω = [0, 1]. Over time, as the

tumor grows from the right side of Ω = [0, 1], the regular

spatial and temporal cycles of the osteoclast and osteo-

blast populations are disrupted with these solutions ulti-

mately approaching the zero-dimensional tumor model

nontrivial steady state  = 5.0,  = 316.0, as in Fig. 4

(Fig. 14), the bone mass is depleted throughout Ω (Fig.

15), and the tumor grows to carrying capacity (Fig. 16, left

side).
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Figure 14 Graphs of the solutions C(t, x) and B(t, x) of the spatially 

dependent bone model with tumor and with C(0, x) and B(0, x) as 
in Fig. 11. System of equations (15): The solutions lose regular spatial 

and temporal cycles and converge to the nontrivial steady states  = 

5.0,  = 316.0 (compare to Fig. 4 and Fig. 12).

C

B

Figure 13 Left side: Graph of the bone mass z(t, x) for the spatially 

dependent normal bone model with C(0, x) and B(0, x) as in Fig. 

11 and B(0, x) = (x) ? 231.72. Right side: Density plot of the 
bone mass. System of equations (14): The bone mass sustains regular 
spatial and temporal cycles uctuating about a normalized value of 100 
dimensionless cell units.
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One-dimensional Bone Model with Tumor and Treatment
The one-dimensional model with tumor and treatment is
obtained by adding the time-dependent treatment func-
tions V1(t) and V2(t) as in (13). The equations are

with boundary conditions

and initial conditions C(0, x) = C0(x), B(0, x) = B0(x), T
(0, x) = T0(x). The bone mass equations for z(t, x) are
again as in (14e) and (14f).

We illustrate the model in this section by adding treat-
ment to the simulation in Fig. 14 and Fig. 15. All parame-
ters and initial conditions are as in Fig. 11, 14, and 15. The
treatment parameters are v1 = .0001 in (13b) and v2 = .006
in (13d) and tstart = 600. This form of the treatment corre-
sponds to drugs such as proteasome inhibitors, which
promote osteoblast production and inhibit tumor
growth. The graphs of osteoclast and osteoblast popula-
tions are given in Fig. 17, where both populations recover
to regular cycles after the start of treatment at tstart = 600.
The bone mass is graphed in Fig. 18 and the tumor popu-
lation is graphed on the right side of Fig. 16. The osteo-
clast and osteoblast populations recover normal cycling
(Fig. 17), the bone mass recovers partially on the left side,
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Figure 17 Graphs of the solutions C(t, x) and B(t, x) for the spatial-
ly dependent bone model with tumor and treatment. System of 
equations (16): The solutions recover regular spatial and temporal cy-
cles after treatment begins at tstart = 600 (compare to Fig. 12 and Fig. 
14).

Figure 15 The graph (left side) and density plot (right side) of the 
bone mass z(t, x) for the spatially dependent bone model with tu-
mor. System of equations (15): C(0, x) and B(0, x) are as in Fig. 11 (com-
pare to Fig. 13).

Figure 16 Left side: Graph of the untreated tumor population T(t, 
x) for the spatially dependent bone model with tumor and with 
C(0, x) and B(0, x) as in Fig. 11. System of equations (15): The tumor 
is initially small and located on the right side of Ω = [0, 1]. The tumor 
density T(t, x) converges to capacity LT for all x � Ω as time increases. 
Right side: Graph of the treated tumor population T(t, x). The tumor is 
extinguished as time increases.
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but not on the right of Ω (Fig. 18), and the tumor is extin-
guished by the treatment (Fig. 16, right side).

Discussion
We have presented a dynamic model of spatially hetero-
geneous bone remodeling that incorporates the interac-
tion of osteoclasts (bone resorption) and osteoblasts
(bone formation) subject to myeloma bone disease and its
treatment. Our model is a system of nonlinear partial dif-
ferential equations for osteoclast-osteoblast interactions
driven by autocrine-paracrine signaling, which allows for
interpretation of the corresponding spatial changes in
bone mass and tumor growth. In the case of normal bone
the model views remodeling as stable regular oscillations
in a spatially heterogeneous microenvironment. In the
case of myeloma, these regular cycles are destabilized
with an increase in osteoclasts typical of this disease, and
with corresponding destruction of bone mass and pro-
gressive tumor growth. Furthermore, additional features
of myeloma bone disease are reproduced by this model,
including the initial increase in osteoblast number, which
is thought to reflect the attempt to maintain normal cou-
pling of bone resorption to bone formation [15]. This is
followed by a decrease in osteoblast oscillation below that
of the non-tumor simulation, reflecting the decrease in
osteoblasts which leads to reduced bone formation and
subsequent bone loss in multiple myeloma. Of interest is
the observation that osteoclast oscillations remain ele-
vated above the non-tumor simulation at all times,
despite an overall decrease reflecting the gradual bone
loss. Again, this is highly representative of myeloma bone
disease, which is associated with an increase in both
osteoclast number and activity. We incorporated treat-
ment into the model with a drug, such as a proteasome
inhibitor, which promotes osteoblast production and
inhibits tumor growth.

Proteasome inhibitors were initially identified by their
dramatic effects to reduce myeloma tumor burden [28-
30,32]. Subsequent studies suggested that this class of
drugs may have additional effects in myeloma, due to
their direct effects to promote osteoblast differentiation
and subsequent bone formation [26-30]. In addition, it
has been suggested that proteasome inhibitors may have
effects on osteoclastic bone resorption [31,33,34]. In the
current simulation, treatment with a proteasome inhibi-
tor which had direct effects on myeloma cells and osteo-
blast formation was found to significantly reduce tumor
burden and prevent myeloma bone disease, in agreement
with reported in vivo preclinical studies. Of interest,
effects on osteoclast number were also observed, suggest-
ing that proteasome inhibitors may have indirect effects
on osteoclasts. Osteoclasts and tumor burden were
reduced from time of treatment, whereas there was a
delay in the increase in osteoblasts and bone mass. This
suggests firstly that the reduction in osteoclast number is
dependent upon the tumor burden, and secondly that the
increase in bone mass is a result of the increase in osteo-
blasts. Such insights into potential cellular mechanisms
cannot easily be gained from in vivo experiments where
cellular effects can typically only be assessed at endpoint,
thus highlighting the value of this mathematical model.
Furthermore, although the simulated proteasome inhibi-
tor treatment was not able to completely restore bone
mass, this is most likely a reflection of the rates chosen
for the model and it is expected that bone mass would
recover over a longer time period. This may suggest that
the effects of proteasome inhibition to replace bone
already lost in myeloma may take longer than the effects
to reduce tumor burden, and have implications for dura-
tion of treatment.

The model we have developed is one-dimensional in
space, and is thus idealized with respect to the geometry
of the bone microenvironment. In future work we will
develop a more realistic higher dimensional description
of the bone microenvironment, and the dynamics of bone
myeloma and its treatment in this spatial microenviron-
ment. The major problem in the identification of thera-
peutic approaches for the treatment of multiple myeloma
is the complex relationship between the multiple types of
cells distributed throughout the bone marrow microenvi-
ronment, which is almost impossible to recreate in vitro.
Therefore, in order to determine the effect of a drug, the
optimal dose, treatment regimen or combination, and rel-
ative timing of the delivery of drug combinations, in vivo
studies are required. Although the 5T murine model of
myeloma is very effective and reliable for such preclinical
studies, it is impossible to evaluate all drugs or combina-
tions in vivo. Those that are selected for in vivo evaluation
are often chosen based upon in vitro assays, which do not

Figure 18 The graph (left side) and density plot (right side) of the 
bone mass z(t, x) for the spatially dependent bone model with tu-
mor and treatment (compare to Fig. 15). System of equations (16): 
Treatment stops the loss of bone mass from the advance of the tumor 
from the right side to the left side of the spatial region Ω = [0, 1] after 
initiation at tstart = 600. Bone mass already lost is not recovered on the 
right side of Ω as treatment continues.
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reflect the interactions within the bone marrow microen-
vironment.

Conclusions
The frequencies of the osteoblast/osteoclast oscillations
in the mouse are not yet known. Experimental determi-
nation of local trabecular density and osteoclast and
osteoblast distributions in the 5T murine model requires
histological examination of fixed sections of bone, pre-
cluding serial studies of the progression of multiple
myeloma in an individual animal. The mathematical
model should prove extremely useful in both minimizing
the number of animals that have to be sacrificed to obtain
statistically significant data regarding the time course of
the disease, and in rationalizing inter-animal differences.
Furthermore, the coupling between osteoblasts and
osteoclasts, and bone remodeling cycle has yet to be rec-
reated in vitro, either for normal bone or for diseased
bone in the presence of myeloma cells. The current
model accurately reflects myeloma bone disease and
illustrates how treatment approaches may be investigated
using such computational systems. Our ultimate goal is to
quantify, with experimental support, the dynamics of
bone remodeling in health and disease, and gain insight
into the design and optimization of new therapeutic
approaches for the treatment of myeloma bone disease.

Methods
The mathematical analyses in this paper use accepted
methodology from the theories of partial differential
equations and dynamical systems. The computations use
standard algorithms as incorporated into the software
Mathematica.

Authors Contributions
All authors contributed to the development and interpre-
tation of the mathematical model and the design of the
figures. BPA and GFW developed the mathematical parts
of the manuscript and conducted the simulations. All
authors contributed to writing the manuscript, which was
approved by all authors.

Reviewers Comments
Comments from Ariosto Silva
• I would suggest the authors to consider in their future
additions to the model the effect of hypoxia in the bone
formation equilibrium, mainly in the myelomatous bone
marrow. Works have described the influence of hypoxia
in the activity of osteoclasts [35] and pH in the activity of
osteoblasts [36]. Considering that the bone marrow vas-
cularization is not evenly distributed as in other tissues,
gradients of oxygen concentration (and supposedly also
of pHe) could induce niches where bone degradation is
more favorable. This effect could also be exacerbated by

the proliferation of MM cells which are known to have
increased glucose consumption, as seen in PET scans.

Response: We agree that hypoxia is an important aspect
of the bone marrow microenvironment that will affect
both bone cell activity and myeloma growth and survival,
and as such, fully intend to incorporate hypoxia into
future models.

• In the conclusions, could you elaborate more on the
reason of the increase in osteoblast activity in the early
stages of MM?

Response: During normal bone remodeling, osteoclastic
and osteoblastic activity is tightly coupled, with an
increase in osteoclast activity followed by an increase in
osteoblast activity. In the early stages of myeloma,
myeloma cells within the bone marrow stimulate an
increase in osteoclast activity. Osteoblast activity is also
increased in an attempt to maintain the normal coupling
of bone remodeling. As the disease progresses, osteoblast
formation and activity are inhibited, leading to dramatic
bone loss.

• Does the delay after the reduction of tumor burden
and recovery of bone mass depend on the parameters of
the model? Is it found in vivo and in clinical treatment as
well? Could the delay in recovery of bone mass in patients
be mapped into parameters from the model? Could this
possibly be used as a prognosis for relapse or patient
recovery?

Response: The delay is dependent on model parameters.
There is evidence to suggest that proteasome inhibition
can increase bone formation in vivo, in addition to
decrease tumor burden, however the time course of these
events is unknown. This is an advantage of the mathemat-
ical model, that allows us to look in detail at all time
points, whereas in vivo studies are limited to select time
points which may not provide all information.

• "Those that are selected for in vivo evaluation are often
chosen based upon in vitro assays, which do not reflect the
interactions within the bone marrow microenvironment".
Some in vitro models have been used to assess the effect
of fibronectin and contact with stroma cells in chemore-
sistance in leukemia [37] and Multiple Myeloma [38]. It
would be interesting indeed if data could be obtained
from these in vitro models and ported into computational
models like the one described in this work. Response:
There is substantial evidence to demonstrate that interac-
tions between bone marrow stromal cells and myeloma
cells are important for promoting tumor growth and sur-
vival, both alone and in response to chemotherapeutic
agents. Future studies will incorporate bone marrow
stromal cells into the mathematical models.

• "The mathematical model should prove extremely use-
ful in both minimizing the number of animals that have to
be sacrificed to obtain statistically significant data regard-
ing the time course of the disease, and in rationalizing
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inter-animal differences". Depending on how you param-
eterize the model and which inputs you require from
experiments, you may also created personalized models
for each patient and even help on the prognosis of the
disease or suggest more promising treatments for every
patient.

Response: The long-term goal of this modeling is to cre-
ate a mathematical model which closely resembles human
myeloma, and with which we can explore multiple treat-
ment protocols and select the one that has the optimal
outcome. This would represent a major step forward in
individualized cancer therapy - quantitative optimization
of a combination of drugs with a possibly complicated
delivery schedule, all based upon a validated mathemati-
cal model.

• Even though this work is an extension of a previous
one already published [22] it would be useful to describe
the values used for the parameters, if they were estimated
or obtained from literature and if the authors have plans
on how to obtain these form experiments for the future
versions of the model.

Response: The parameters for normal bone were taken
from [1,22]. The parameters for myeloma bone with and
without treatment were estimated. In future work the
parameters will be identified using experimental data.

Comments from Mark P. Little
This is a generally well-written paper, describing a sche-
matic model of bone remodelling in the presence or
absence of myeloma. It was not immediately obvious
what the relevance of this article is to the Biology Direct
special issue, but perhaps this doesn't matter too much.
Arguably more important are the specific modelling
assumptions, in particular the power law ODEs and PDEs
relating osteoclasts and osteoblasts. While these appear
plausible, a little more biological justification of these
functional forms could be usefully provided here (e.g., as
is given in ref. [22]).

Response: The theme of this Biology Direct special issue
is Mathematics and the Evolution of Cancer. The manu-
script outlines the development of a mathematical model
of myeloma bone disease. Due to the interactions between
myeloma cells and cells of the bone marrow microenviron-
ment, the osteolytic bone disease associated with myeloma
is inextricably linked with tumor progression, and there-
fore is relevant to this Biology Direct special issue. Power
law nonlinearities have been used extensively in modelling
biochemical kinetics in interacting systems. The parame-
ters in the power law terms correspond to feedback and
other regulatory mechanisms. In future work the power
law parameters will be estimated using experimental
data.
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