NUMERICAL SOLUTION OF
ORDINARY DIFFERENTIAL
EQUATIONS

Kendall Atkinson, Weimin Han, David Stewart
University of lowa
lowa City, lowa

@ WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright(©2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in el system, or transmitted in any form

or by any means, electronic, mechanical, photocopyingrdieg, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United Statgy@ht Act, without either the prior

written permission of the Publisher, or authorization tigh payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drieeers, MA 01923, (978) 750-8400,

fax (978) 646-8600, or on the web at www.copyright.com. Resisito the Publisher for permission should
be addressed to the Permissions Department, John Wiley & $um, 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the pubdiher and author have used their best efforts in
preparing this book, they make no representations or waeswith respect to the accuracy or
completeness of the contents of this book and specificalglaim any implied warranties of
merchantability or fitness for a particular purpose. No waty may be created ore extended by sales
representatives or written sales materials. The advicesarategies contained herin may not be

suitable for your situation. You should consult with a pssfienal where appropriate. Neither the
publisher nor author shall be liable for any loss of profit ny ather commercial damages, including

but not limited to special, incidental, consequential, theo damages.

For general information on our other products and serviteage contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.$1&572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electroniaiats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:
Numerical Solution of Ordinary Differential Equations / k@all E. Atkinson . . . [et al.].

“Wiley-Interscience."

Includes bibliographical references and index.

1. Numerical analysis. 2. Ordinary differential equations
. Atkinson, Kendall E. II. Series.

MATLAB® is a trademark of The MathWorks, Inc. and is used with peiotiss

The MathWorks does not warrant the accuracy of the text arceses in this book.
This book’s use or discussion of MATL®Bsoftware or related products does not
constitute endorsement or sponsorship by The MathWorkpaftecular pedagogical
approach or particular use of the MATLAB software.

QA31.?7??2?.7??? 2008

Printed in the United States of America.

10987654321

To Alice, Huidi, and Sue

Preface

This book is an expanded version of supplementary noteshased for a course on
ordinary differential equations for upper-division ungexduate students and begin-
ning graduate students in mathematics, engineering, dadcgs. The book intro-
duces the numerical analysis of differential equationscdking the mathematical
background for understanding numerical methods and giwifggmation on what
to expect when using them. As a reason for studying numemedhods as a part
of a more general course on differential equations, manhefliasic ideas of the
numerical analysis of differential equations are tied elpgo theoretical behavior
associated with the problem being solved. For example,riteria for the stability
of a numerical method is closely connected to the stabifith@differential equation
problem being solved.

This book can be used for a one-semester course on the nafrssiation of dif-
ferential equations, or it can be used as a supplementdrfiptexcourse on the theory
and application of differential equations. In the latteseawe present more about
numerical methods than would ordinarily be covered in asotesordinary differential
equations. This allows the instructor some latitude in aimgwhat to include, and
it allows the students to read further into topics that magrest them. For example,
the book discusses methods for solving differential algetequations (Chapter 10)
and \olterra integral equations (Chapter 12), topics nohrmmnly included in an
introductory text on the numerical solution of differethgéguations.

Vii

viii PREFACE

We also include MATLAB® programs to illustrate many of the ideas that are
introduced in the text. Much is to be learned by experimentiith the numerical
solution of differential equations. The programs in thelkoan be downloaded from
the following website.

http://www.math.uiowa.edu/NumericalAnalysisODE/

This site also contains graphical user interfaces for usgfrerimenting with Euler’'s
method and the backward Euler method. These are to be usedwithin the
framework of MATLAB.

Numerical methods vary in their behavior, and the many diifietypes of differ-
ential equation problems affect the performance of nuraénethods in a variety of
ways. An excellent book for “real world” examples of solvidifferential equations
is that of Shampine, Gladwell, and Thompson [74].

The authors would like to thank Olaf Hansen, California &taniversity at San
Marcos, for his comments on reading an early version of trekbdVe also express
our appreciation to John Wiley Publishers.

CONTENTS

Introduction

1 Theory of differential equations: An introduction

1.1 General solvability theory

1.2 Stability of the initial value problem
1.3 Direction fields

Problems

2 Euler’'s method

2.1 Definition of Euler’s method
2.2 Error analysis of Euler's method
2.3 Asymptotic error analysis

2.3.1 Richardson extrapolation
2.4 Numerical stability

2.4.1 Rounding error accumulation
Problems

11
13

15

16
21
26
28
29
30
32

CONTENTS

Systems of differential equations

3.1
3.2

Higher-order differential equations
Numerical methods for systems

Problems

The backward Euler method and the trapezoidal method

4.1
4.2

The backward Euler method
The trapezoidal method

Problems

Taylor and Runge—Kutta methods

51
5.2

5.3

5.4

5.5
5.6

Taylor methods
Runge—Kutta methods

37

39
42
46

49

51
56
62

67

68
70

5.2.1 A general framework for explicit Runge—Kutta methods 73

Convergence, stability, and asymptotic error

5.3.1 Error prediction and control
Runge—Kutta—Fehlberg methods
MATLAB codes

Implicit Runge—Kutta methods

5.6.1 Two-point collocation methods

Problems

Multistep methods

6.1
6.2
6.3

Adams—Bashforth methods
Adams—Moulton methods
Computer codes

6.3.1 MATLAB ODE codes

Problems

General error analysis for multistep methods

7.1
7.2
7.3

Truncation error

Convergence

A general error analysis

7.3.1 Stability theory

7.3.2 Convergence theory

7.3.3 Relative stability and weak stability

Problems

75
78
80
82
86
87
89

95

96

101
104
105
106

111

112
115
117
118
122
122
123

10

11

Stiff differential equations

8.1 The method of lines for a parabolic equation
8.1.1 MATLAB programs for the method of lines
Backward differentiation formulas

Stability regions for multistep methods
Additional sources of difficulty

8.4.1 A-stability and L-stability

8.4.2 Time-varying problems and stability

8.5 Solving the finite-difference method

8.6 Computer codes

Problems

8.2
8.3
8.4

Implicit RK methods for stiff differential equations

9.1 Families of implicit Runge—Kutta methods

9.2 Stability of Runge—Kutta methods

9.3 Order reduction

9.4 Runge—Kutta methods for stiff equations in practice
Problems

Differential algebraic equations

10.1 Initial conditions and drift
10.2 DAEs as stiff differential equations
10.3 Numerical issues: higher index problems
10.4 Backward differentiation methods for DAEs
10.4.1 Index 1 problems
10.4.2 Index 2 problems
10.5 Runge—Kutta methods for DAEs
10.5.1 Index 1 problems
10.5.2 Index 2 problems
10.6 Index three problems from mechanics

10.6.1 Runge—Kutta methods for mechanical index 3 systems

10.7 Higher index DAEs
Problems

Two-point boundary value problems

11.1 A finite-difference method
11.1.1 Convergence

CONTENTS Xi

127

131
135
140

141
143
143

145

145

146
147

149

149
154
156
160
161

163

165
168
169
173
173
174
175
176
179
181
83 1
184
185

187

188
190

Xii

12

CONTENTS

11.1.2 A numerical example

11.1.3 Boundary conditions involving the derivative

11.2 Nonlinear two-point boundary value problems
11.2.1 Finite difference methods
11.2.2 Shooting methods
11.2.3 Collocation methods
11.2.4 Other methods and problems
Problems

Volterra integral equations

12.1 Solvability theory
12.1.1 Special equations
12.2 Numerical methods
12.2.1 The trapezoidal method
12.2.2 Error for the trapezoidal method
12.2.3 General schema for numerical methods
12.3 Numerical methods: Theory
12.3.1 Numerical stability
12.3.2 Practical numerical stability
Problems

Appendix A. Taylor's Theorem

Appendix B. Polynomial interpolation

References

Index

190
194
195
197
201
204
206
206

211

212
214
215
216
217
219
223
225
227
231

235

241

245

250

Introduction

Differential equations are among the most important matteal tools used in pro-
ducing models in the physical sciences, biological scisnaed engineering. In this
text, we consider numerical methods for solving ordinaffedéntial equations, that
is, those differential equations that have only one inddpahvariable.

The differential equations we consider in most of the bo@kadrthe form

YI(t) = f(t,Y (1)),

whereY (t) is an unknown function that is being sought. The given fuorcfi(¢, y)
of two variables defines the differential equation, and eplasare given in Chapter
1. This equation is called first-order differential equatiobecause it contains a
first-order derivative of the unknown function, but no higloeder derivative. The
numerical methods for a first-order equation can be exteimkedtraightforward way
to a system of first-order equations. Moreover, a higheeodifferential equation
can be reformulated as a system of first-order equations.

A brief discussion of the solvability theory of the initiahe problem for ordi-
nary differential equations is given in Chapter 1, where ¢hacept of stability of
differential equations is also introduced. The simplesnatical methodEuler’s
methodis studied in Chapter 2. It is not an efficient numerical roefthout it is an
intuitive way to introduce many importantideas. Highederequations and systems
of first-order equations are considered in Chapter 3, andriSuhethod is extended

1

2 INTRODUCTION

to such equations. In Chapter 4, we discuss some numeridhbagwith better
numerical stability for practical computation. Chapteratl 6 cover more sophisti-
cated and rapidly convergent methods, namely Runge—Kwttiaods and the families
of Adams—Bashforth and Adams—Moulton methods, respdgtivie Chapter 7, we
give a general treatment of the theory of multistep numéniethods. The numerical
analysis of stiff differential equations is introduced &vsral early chapters, and it
is explored at greater length in Chapters 8 and 9. In Chafitew# introduce the
study and numerical solution of differential algebraic ations, applying some of the
earlier material on stiff differential equations. In Chapi 1, we consider numerical
methods for solving boundary value problems of second+avd#inary differential
equations. The final chapter, Chapter 12, gives an intrégiutd the numerical solu-
tion of Volterra integral equations of the second kind, adieg ideas introduced in
earlier chapters for solving initial value problems. Apda®es A and B contain brief
introductions to Taylor polynomial approximations andyy@mial interpolation.

CHAPTER 1

THEORY OF DIFFERENTIAL
EQUATIONS: AN INTRODUCTION

For simple differential equations, it is possible to findsgd form solutions. For
example, given a functiog, the general solution of the simplest equation

Y(t) = /g(s) ds+c

with ¢ an arbitrary integration constant. Herfeg(s) ds denotes any fixed antideriva-
tive of g. The constant, and thus a particular solution, can be obtained by spexjfyi
the value ofY (¢) at some given point:

Y (to) = Yo.
Example 1.1 The general solution of the equation

Y'(t) = sin(t)

Y (t) = —cos(t) + c.

4 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

If we specify the condition

(3)-2

then it is easy to find = 2.5. Thus the desired solution is
Y (t) = 2.5 — cos(t). |
The more general equation

YI(t) = f(t,Y (1)) (1.1)

is approached in a similar spirit, in the sense that usublye is a general solution
dependent on a constant. To further illustrate this poirg,censider some more
examples that can be solved analytically. First, and fortn®the first-order linear
equation

Y'(t) = a(®)Y (t) + g(t). (1.2)

The given functionsi(¢) andg(t) are assumed continuous. For this equation, we
obtain

f(t,2) = a(t)z + g(b),

and the general solution of the equation can be found by theaked method of
integrating factors
We illustrate the method of integrating factors through dipalarly useful case,

Y'(t) =AY (t) + g(t) (1.3)

with A a given constant. Multiplying the linear equation (1.3) by integrating factor
e~*, we can reformulate the equation as

% (e MY (1)) = e Mg(t).

Integrating both sides frorty to ¢, we obtain
t

e MY (t) = c+/ e *g(s)ds,
to

where
c=e MY (tg). (1.4)

So the general solution of (1.3) is

Y(t) = eM [c—l— /t e_’\sg(s) ds} = ceM + /t e’\(t_s)g(s) ds. (1.5)

to tO

This solution is valid on any interval on whigf{t) is continuous.
As we have seen from the discussions above, the generabsodiiithe first-order
equation (1.1) normally depends on an arbitrary integrationstant. To single out

a particular solution, we need to specify an additional diol Usually such a
condition is taken to be of the form

Y (to) = Y. (1.6)

In many applications of the ordinary differential equat{@rl), the independent vari-
ablet plays the role of time, an¢, can be interpreted as the initial time. So it is
customary to call (1.6) ammitial value condition The differential equation (1.1) and
the initial value condition (1.6) together form amtial value problem

Y'(t) = f(t,Y(t),
Y(to) = Yo. (2.7)

For the initial value problem of the linear equation (1.8 solution is given by
the formulas (1.5) and (1.4). We observe that the solutiést&rn any open interval
where the data function(¢) is continuous. This is a property for linear equations.
For the initial value problem of the general linear equaiibr2), its solution exists
on any open interval where the function@) andg(t) are continuous. As we will
see next through examples, when the ordinary differentjabéion (1.1) is nonlinear,
even if the right-side functiof(¢, z) has derivatives of any order, the solution of the
corresponding initial value problem may exist on only a derahterval.

Example 1.2 By a direct computation, it is easy to verify that the equatio
Y'(t) = —[Y(O)P +Y(t)
has a so-called trivial solutio¥i (¢) = 0 and a general solution

1

Y = 1+cet

(1.8)
with ¢ arbitrary. Alternatively, this equation is a so-called asgble equation, and its
solution can be found by a standard method such as that deddri Problem 4. To
find the solution of the equation satisfyii0) = 4, we use the solution formula at
t=0:

1
4:
14¢’
c= —0.75.

So the solution of the initial value problem is

L > 0.

Y(t) = ——— t
*) 1—0.75¢"t’ =

With a general initial valu&”(0) = Y, # 0, the constant in the solution formula
(1.8)is given bye = Y; ! — 1. If Y > 0, thenc > —1, and the solutiofY'(¢) exists
for 0 <t < co. However, forYy < 0, the solution exists only on the finite interval

6 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

[0,log(1 — Y5 1)); the valuet = log(1 — Y ') is the zero of the denominator in the
formula (1.8). Throughout this workog denotes the natural logarithm. |

Example 1.3 Consider the equation

It has a trivial solutiort’(¢) = 0 and a general solution

1
Y(t) =
() t+c

with c arbitrary. This can be verified by a direct calculation orlpy nethod described
in Problem 4. To find the solution of the equation satisfyimginitial value condition
Y (0) = Yp, we distinguish several cases according to the valugoflf Y, = 0,
then the solution of the initial value problem¥&t) = 0 for anyt > 0. If Y # 0,
then the solution of the initial value problem is

(1.9)

1

Y(t) = ——.
®) R

ForYp > 0, the solution exists for any> 0. ForY; < 0, the solution exists only on
the interval0, —Y; *). Asaside note, observe thatfbk Yy < 1withc = Y, ' 1,
the solution (1.8) increases for> 0, whereas fort;, > 0, the solution (1.9) with
¢ =Y, ! decreases far> 0. [|

Example 1.4 The solution of
Y'(t) =AY () +e7 !, Y(0)=1

is obtained from (1.5) and (1.4) as
t
Y (t) = e —i—/ MNE=9)es s,
0
If A\ # —1, then

1
Y(t)=eMil+ ——[1 —e MDY
(t)=e {+A+1[e]
If A= —1,then

Y(t)=e " (1+1). m

We remark that for a general right-side functigft, z), it is usually not possible
to solve the initial value problem (1.7) analytically. Ongck example is for the
equation

YI — e_tY4-

In such a case, numerical methods are the only plausible avegrhpute solutions.
Moreover, even when a differential equation can be solvedyénally, the solution

GENERAL SOLVABILITY THEORY 7

formula, such as (1.5), usually involves integrations afeyal functions. The inte-
grals mostly have to be evaluated numerically. As an exantpdeeasy to verify that
the solution of the problem

Y ' =2tY +1, t>0,
Y(0)=1

¢
Y(t) = et / e ds+ et
0

For such a situation, it is usually more efficient to use nuca¢methods from the
outset to solve the differential equation.

1.1 GENERAL SOLVABILITY THEORY

Before we consider numerical methods, it is useful to hameesdiscussions on prop-
erties of the initial value problem (1.7). The following Ww&hown result concerns
the existence and uniqueness of a solution to this problem.

Theorem 1.5 Let D be an open connected setiR?, let f(¢,y) be a continuous
function oft and y for all (¢,y) in D, and let(to, Yo) be an interior point ofD.
Assume thaf (¢, y) satisfies theé.ipschitz condition

If(ty1) — f(tye)l < Klyr —y2| all (¢, 1), (t,y2) in D (1.10)

for someK > 0. Then there is a unique functiori(¢) defined on an interval
[to — a,to + o] for somen > 0, satisfying

Y'(t)=f(t,Y(t), to—a<t<ty+a,
Y (to) = Yo.

The Lipschitz condition orf is assumed throughoutthe text. The condition (1.10)
is easily obtained i f (¢, y) /0y is a continuous function @t, y) over D, the closure
of D, with D also assumed to be convex. (A detis calledconvexif for any two
points in D the line segment joining them is entirely contained’in Examples of
convex sets include circles, ellipses, triangles, pdi@ams.) Then we can use

of (t,y)

K =
max ay

(t,y)eD

)

provided this is finite. If not, then simply use a smallgy say, one that is bounded
and containgto, Yp) in its interior. The numbew in the statement of the theorem
depends on the initial value problem (1.7). For some eqnatisuch as the linear
equation given in (1.3) with a continuous functigft), solutions exist for any, and

we can takex to beco. For many nonlinear equations, solutions can exist only in

8 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

bounded intervals. We have seen such instances in Examplasd 1.3. Let us look
at one more such example.

Example 1.6 Consider the initial value problem

Here

of(t,y)
dy

and both of these functions are continuous fofgly). Thus, by Theorem 1.5 there
is a unigue solution to this initial value problem foin a neighborhood of, = 0.
This solution is

fty) =2ty?, = 4ty,

1
Y(t)=—— -1<t<l.
) =17 <t<
This example illustrates that the continuity pft, v) anddf(t,y)/dy for all (¢,y)
does not imply the existence of a solutibigt) for all ¢. |

1.2 STABILITY OF THE INITIAL VALUE PROBLEM

When numerically solving the initial value problem (1.7) will generally assume
that the solutiort’(¢) is being sought on a given finite intervial < ¢ < b. In that
case, it is possible to obtain the following result on sigbiMake a small change in
the initial value for the initial value problem, changikigto Y, + €. Call the resulting
solutionY,(t),

Y/(t) = f(t,Ye(t), to<t<b, = Yc(to)=Yo+e (1.11)

Then, under hypotheses similar to those of Theorem 1.5nibeashown that for all
small values ot, Y (¢) andY,(t) exist on the interval, b], and moreover,

IYe =Y, = max [Yc(t) =Y ()] < ce (1.12)

to<t<b

for somec > 0 that is independent af Thus small changes in the initial valig
will lead to small changes in the solutidf(t) of the initial value problem. This is a
desirable property for a variety of very practical reasons.

Example 1.7 The problem
Y't)==-Y(#)+1, 0<t<b Y(0)=1 (1.13)
has the solutiory' (t) = 1. The perturbed problem

Y/)=-Y.(t)+1, 0<t<b, Y (0)=1+¢

€

STABILITY OF THE INITIAL VALUE PROBLEM 9

has the solutioY(t) = 1 + ee~*. Thus
Y(t) - Ye(t) = —ee ",
[Y(t) - Ye®) <le|, 0<t<b.
The problem (1.13) is said to be stable. |

Virtually all initial value problems (1.7) are stable in teense specified in (1.12);
but this is only a partial picture of the effect of small petations of the initial
valueY. If the maximum errorf]Y, — Y| in (1.12) is not much larger than
then we say that the initial value problem (1.7\sll-conditioned In contrast, when
|Ye — Y| ismuch largerthan[i.e., the minimal possible constanin the estimate
(1.12)is large], then the initial value problem (1.7) is swmered to bdl-conditioned
Attempting to numerically solve such a problem will usudégd to large errors in
the computed solution. In practice, there is a continuumroblgms ranging from
well-conditioned to ill-conditioned, and the extent of illeconditioning affects the
possible accuracy with which the solutidhcan be found numerically, regardless of
the numerical method being used.

Example 1.8 The problem
Y'(#)=X[Y(t)—1], 0<t<b, Y(0)=1 (1.14)

has the solution

The perturbed problem
Y/(t) = AYe(t)—1], 0<t<b, Y (0)=1+c¢

€

has the solution
Yo(t)=1+e, 0<t<b.

For the error, we obtain

Y (t) — Ye(t) = —ee™, (1.15)
lel , A <0,
02t Y®) - Y0l = le[e?, A >0.

If A < 0,theerrofY (t) — Y.(¢)| decreases adncreases. We see that (1.14) is well-
conditioned wherk < 0. In contrast, forA > 0, the error|Y (¢) — Y.(¢)| increases
ast increases. And foib moderately large, sayb > 10, the change it (¢) is
quite significant at = b. The problem (1.14) is increasingly ill-conditioned &s
increases. |

For the more general initial value problem (1.7) and theybed problem (1.11),
one can show that

Ym—nmz—wm(ﬁm@%) (1.16)

10 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

with
of(t,y)
0y ly—ve
for ¢ sufficiently close ta,. Note that this formula correctly predicts (1.15), since in
that case

g(t) =

fty)=A(y—1),

of(t,y)
dy

/Otg(s) ds = Mt.

Y (1) - Ye(t) & —ee,
which agrees with the earlier formula (1.15).

:A7

Then (1.16) yields

Example 1.9 The problem
Y'(t) = -y, Y(0)=1 (1.17)

has the solution

For the perturbed problem,
Y/(t) = ~[Ye(t)%, Ye(0)=1+e, (1.18)

€

we use (1.16) to estima®é(¢) — Y. (¢). First,

f(tvy) = _yQa
of(t.y) _
ay - 2y7
2
g(t) = -2Y(t) = e
t t ds)
/0 g(s)ds = —2/0 i —2log(1 +1t) =log(l+¢t)~7,
! log(t4+1)~2 1
e og e
exp [/0 9(s) ds] e ek

Fort > 0 sufficiently small, substituting into (1.16) gives

(1.19)

DIRECTION FIELDS 11

Figurel.1l The direction field of the equatiori’ = Y and solutiong” = +e?

This indicates that (1.17) is a well-conditioned problem. |
In general, if
oY) <o g <<, (1.20)
Y

then the initial value problem is generally considered tonsd-conditioned. Al-
though this test depends af(t) over the intervalty, b], one can often show (1.20)
without knowingY (¢) explicitly; see Problems 5, 6.

1.3 DIRECTION FIELDS

Direction fields serve as a useful tool in understanding thlealsior of solutions
of a differential equation. We notice that the graph of a 8ofuof the equation
Y’ = f(¢,Y) is such that at any poilit, y) on the solution curve, the slopefiét, y).
The slopes can be represented graphically in directiondielgrams. In MATLAB®,
direction fields can be generated by usingileehgrid andquiver commands.

Example 1.10 Consider the equatioli’ = Y. The slope of a solution curve at a
point (¢, y) on the curve ig, which is independent af We generate a direction field
diagram with the following MATLAB code:

First draw the direction field:

[t,y] = meshgrid(-2:0.5:2,-2:0.5:2);

12 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

4.5

251

05
-15 -1 -0.5 0 0.5 1 15

Figurel1.2 The direction field of the equatiori’ = 2¢Y* and the solutiory” = 1/ (1 — ¢°)

dt = ones(9); %Generates a matrix of 1’s.
dy = y;
quiver(t,y,dt,dy);
Then draw two solution curves:
hold on

t = -2:0.01:1;

y1 = exp(t); y2 = -exp(t);
plot(t,yl,t,y2)
text(1.1,2.8,’\itY=e“t’,’FontSize’,14)
text(l.l,—2.8,’\itY=—e”t’,’FontSize’,14)
hold off

The result is shown in Figure 1.1. |

Example 1.11 Continuing Example 1.6, we use the following MATLAB M-file to
generate a direction field diagram and the particular smiiti = 1/(1—#2) in Figure
1.2.

[t,y] = meshgrid(-1:0.2:1,1:0.5:4);

dt = ones(7,11);dy = 2*t.*xy."2;

quiver(t,y,dt,dy);

hold on

tt = -0.87:0.01:0.87;

DIRECTION FIELDS 13

yy = 1./(1-tt."2);

plot (tt,yy)

hold off
Note that for largey values, the arrows in the direction field diagram (Figure) 1.2
point almost vertically. This suggests that a solution ®elquation may exist only
in a bounded interval of theaxis, which, indeed, is the case. |

PROBLEMS

1. In each of the following cases, show that the given fumctid¢) satisfies the
associated differential equation. Then determine theevafu required by the
initial condition. Finally, with reference to the generatinat in (1.7), identify
f(t, z) for each differential equation.

(@) Y'(t) = =Y (t) +sin(t) + cos(t), Y(0) =1;
Y(t) = (t) + ce‘t
(b) Y'(t) = [(t) 2] /t, Y(1)=2; Y(t)=t/(t+c), t>0.

(t)
(©) Y'(t) = co (Y(t)) Y (0)—w/4 Y (t) = tan~1(t + o).
@ Y'(t) =Y()[Y(t) - 1], Y(0)=1/2; Y(t) =1/(1+ce").

2. Use MATLAB to draw direction fields for the differential egtions listed in
Problem 1.

3. Solve the following problem by using (1.5) and (1.4):

@ Y'(t) =AY (t) +1, Y(0)

1.
() Y'(t) = \Y(t) +¢, Y(0)=3.

4. Consider the differential equation

Y'(t) = fi(t) f2(Y(t))

for some given functiong, (¢) andf»(z). Thisis called separabldifferential
equation, and it can be solved by direct integration. Whtedquation as

Y'(t)
fa(Y(#))

and find the antiderivative of each side:

Y'(tydt
@) / ht)de

On the left side, change the integration variable by letting Y (¢). Then the

equation becomes
dz
_— = t)dt
<5 6w

= f1(1),

14

THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

After integrating, replace by Y (¢); then solve foY (¢), if possible. If these
integrals can be evaluated, then the differential equataambe solved. Do
so for the following problems, finding the general solutiordahe solution
satisfying the given initial condition.

@Y'@®t)=t/Y(t), Y(0) =2

(b) Y'(t) =te ¥®, Y(1)=0.

©Y@#t)=Y{)a—-Y(®)], Y(0)=a/2, a>0.

. Check the conditioning of the initial value problems ioBlem 1. Use the test

(1.20).

. Check the conditioning of the initial value problems ioBlem 4 (a), (b). Use

the test (1.20).

. Use (1.20) to discuss the conditioning of the problem

Y'(t) = Y (t)* — 5sin(t) — 25cos?(t), Y (0) = 6.

You do not need to know the true solution.

. Consider the solutiors(t) of

Y'(t) 4+ aY (t) = de™
with a, b, d constants and, b > 0. Calculate

lim Y (¢).

t—o0

Hint: Consider the cases# b anda = b separately.

CHAPTER 2

EULER'S METHOD

Although it is possible to derive solution formulas for somlinary differential
equations, asis shownin Chapter 1, many differential éguarising in applications
are so complicated that it is impractical to have solutiormiolas. Even when a
solution formula is available, it may involve integrals tiean be calculated only by
using a numerical quadrature formula. In either situatmmerical methods provide
a powerful alternative tool for solving the differentialuetion.

The simplest numerical method for solving the initial valu@blem is called
Euler's method We first define it and give some numerical illustrations, émeh
we analyze it mathematically. Euler's method is not an effithumerical method,
but many of the ideas involved in the numerical solution dfiedéential equations are
introduced most simply with it.

Before beginning, we establish some notation that will bedua the rest of this
book. As beforeY (¢) denotes the true solution of the initial value problem with t
initial valueYy:

Y'(t) = f(t,Y(t), to<t<b,

21
Y (to) = Yo. @4

15

16 EULER'S METHOD

Numerical methods for solving (2.1) will find an approxima@lutiony(t) at a
discrete set of nodes,
to <ty <ty <--- <ty <b. (22)

For simplicity, we will take these nodes to be evenly spaced:
t,=tg+nh, n=0,1,...,N.

The approximate solution will be denoted using@), with some variations. The
following notations are all used for the approximate solntat the node points:

y(tn) =yn(tn) =yYn, n=0,1,...,N.

To obtain an approximate solutigi{t) at points in[tg, b] other than those in (2.2),
some form of interpolation must be used. We will not consttiet problem here,
although there are standard techniques from the theorytefgalation that can be
easily applied. For an introduction to interpolation theaee, e.g., [11, Chap. 3],
[12, Chap. 4], [57, Chap. 8], [68, Chap. 8].

2.1 DEFINITION OF EULER’'S METHOD

To derive Euler's method, consider the standard derivatweroximation from be-
ginning calculus,

V() ~ %[Y(t SR =Y (). 2.3)

This is called dorward difference approximatioto the derivative. Applying this to
the initial value problem (2.1) at= ¢,

Y/(tn) = f(tm Y(tn))a
we obtain
Y (tnt1) = Y(ta)] = f(tn, Y (tn)),
Y(tn+l) ~ Y(tn) + hf(tna Y(tn)) (24)

Sl

Euler's method is defined by taking this to be exact:
Yn+1 = Yn + hf(tn,yn), 0<n <N -1 (2.5)

For the initial guess, usg, = Y, or some close approximation &f. Sometimes
Y; is obtained empirically and thus may be known only approxatya Formula
(2.5) gives a rule for computing,, yo, . . ., yv in succession. This is typical of most
numerical methods for solving ordinary differential ejaas.

Some geometric insight into Euler's method is given in Fgg@rl. The line
z = p(t) that is tangent to the graph of= Y (¢) att,, has slope

Y/(tn) = f(tm Y(tn))-

DEFINITION OF EULER'S METHOD 17

=

Y(t)+h f(t V()

Tangent line

Y(t
Y(t)

n+1)

7
g)lf
|
|
|
|
|
|
it

DI—F"_ o

n+1

Figure2.1 Anillustration of Euler's method derivation

Using this tangent line to approximate the curve near thetgoi, Y (¢,,)), the value
of the tangent line

p(t) =Y (tn) + f(tn, Y (tn))(t — tn)
att = t,, 1 is given by the right side of (2.4).

Example 2.1 The true solution of the problem

Y'(t)=-Y (), Y(0)=1 (2.6)
isY (t) = e~t. Euler's method is given by

Ynt1 =Yn —hyn, n >0 (2.7)

with yo = 1 andt,, = nh. The solutiory(t) for three values ok and selected values
of ¢ is given in Table 2.1. To illustrate the procedure, we corapytandy, when
h = 0.1. From (2.7), we obtain

y1 =yo—hyo=1-(0.1)(1) =09, ¢, =0.1,
Yo =y1 —hyy = 0.9 — (0.1)(0.9) = 0.81, ty =0.2.
For the error in these values, we have
Y (t1) —y1 = e %1 —yy = 0.004837,
Y (ty) — yo = €792 — y5 = 0.008731. [|

18 EULER'S METHOD

Table2.1 Euler's method for (2.6)

h t yn () Error Relative
Error

0.2 1.0 3.2768e —1 4.02e —2 0.109
2.0 1.0738e —1 2.80e —2 0.207
3.0 3.5184e — 2 1.46e —2 0.293
4.0 1.1529¢ —2 6.79e — 3 0.371
5.0 3.7779e — 3 2.96e — 3 0.439

0.1 1.0 3.4867e —1 1.92e —2 0.0522
2.0 1.2158¢ —1 1.38e —2 0.102
3.0 4.2391e — 2 7.40e —3 0.149
4.0 1.4781e —2 3.53e —3 0.193
5.0 5.1538e —3 1.58e —3 0.234

0.05 1.0 3.5849e —1 9.39e — 3 0.0255
2.0 1.2851e —1 6.82e — 3 0.0504
3.0 4.6070e —2 3.72e — 3 0.0747
4.0 1.6515e —2 1.80e — 3 0.0983
5.0 5.9205e —3 8.17e —4 0.121

Example 2.2 Solve

, Y(0)=2 (2.8)
whose true solution is

Y(t) =t +2t+2—2(t + 1) log(t + 1).
Euler's method for this differential equation is

h(yn + 12 —2
W+t =2

ynJrl:yn"' tn+1 5 =

with yo = 2 andt,, = nh. The solutiony(t) is given in Table 2.2 for three values
of h and selected values of A graph of the solutiony,, (¢t) for h = 0.2 is given in
Figure 2.2. The node valugg(t,,) have been connected by straight line segments in
the graph. Note that the horizontal and vertical scales iffereint. |

In both examples, observe the behavior of the errdrdscreases. For each fixed
value oft, note that the errors decrease by a factor of aBaubent is halved. As

DEFINITION OF EULER’'S METHOD 19

Figure2.2 Euler's method for problem (2.8} = 0.2

an illustration, take Example 2.1 with= 5.0. The errors forh = 0.2, 0.1, and0.05,
respectively, are

296 x 1073, 1.58x107%, 817x107*

and these decrease by successive factors9gfand1.87. The reader should do the
same calculation for other values#fin both Examples 2.1 and 2.2Iso, note that
the behavior of the error asincreases may be quite different from the behavior of
the relative error. In Example 2.2, the relative errors @age initially, and then they
decrease with increasirig

MATLAB ® program The following MATLAB program implements Euler's method.
The Euler method is also called tierward Euler method The backward Euler
methodis discussed in Chapter 4.

function [t,y] = euler_for(t0,y0,t_end,h,fcn)

b

% function [t,y]l=euler for(t0,y0,t_end,h,fcn)

b

% Solve the initial value problem

yA y’> = £(t,y), t0O <=t <=b, y(t0)=y0

% Use Euler’s method with a stepsize of h. The user must
% supply a program to define the right side function of the
% differential equation. Use some name, say deriv, and a

20 EULER’'S METHOD

Table2.2 Euler's method for (2.8)

h t yn(t) Error Relative
Error

0.2 1.0 2.1592 6.82e —2 0.0306
2.0 3.1697 2.39e —1 0.0701
3.0 5.4332 4.76e —1 0.0805
4.0 9.1411 7.65e —1 0.129
5.0 14.406 1.09 0.0703
6.0 21.303 1.45 0.0637

0.1 1.0 21912 3.63e —2 0.0163
2.0 3.2841 1.24e —1 0.0364
3.0 5.6636 2.46e —1 0.0416
4.0 9.5125 3.93e —1 0.0665
5.0 14.939 5.60e —1 0.0361
6.0 22.013 7.44e —1 0.0327

0.05 1.0 2.2087 1.87e —2 0.00840
2.0 3.3449 6.34e —2 0.0186
3.0 5.7845 1.25e —1 0.0212
4.0 9.7061 1.99e —1 0.0337
5.0 15.214 2.84e —1 0.0183
6.0 22.381 3.76e —1 0.0165

% first line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=euler for(t0,z0,b,delta, ’deriv’)

% Output:

% The routine eulercls will return two vectors, t and y.

% The vector t will contain the node points

% t()=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t_end-h, t(N)+h > t_end-h

% The vector y will contain the estimates of the solution Y
% at the node points in t.

= fix((t_end-t0)/h)+1;
linspace(t0,t0+(n-1)*h,n)’;
zeros(n,1);

< o B
nonu

ERROR ANALYSIS OF EULER’'S METHOD 21

y(1) = y0;
for i = 2:n

y(i) = y(i-1)+h*feval(fcn,t(i-1),y(i-1));
end

2.2 ERROR ANALYSIS OF EULER’'S METHOD

The purpose of analyzing Euler's method is to understandihowrks, be able to
predict the error when using it, and perhaps accelerateitgargence. Being able to
do this for Euler's method will also make it easier to ansver $ame questions for
other, more efficient numerical methods.

For the error analysis, we assume that the initial valuelerol{1.7) has a unique
solutionY'(¢t) onty < ¢ < b, and further, that this solution has a bounded sec-
ond derivativeY” (t) over this interval. We begin by applying Taylor’s theorem to

approximating¥ (¢,,+1),
Y (tng1) =Y (tn) + BY'(tn) + 2R°Y" (&)
for somet,, < ¢, < t,4+1. Using the fact that (¢) satisfies the differential equation,
Y'(t) = f(t, Y (1)),
our Taylor approximation becomes
Y (tns1) = Y (tn) + hf (b, Y (t) + 302V (). (2.9)

The term
Toi1 = 5h*Y" (&) (2.10)

is called tha@runcation errorfor Euler's method, and itis the errorinthe approximation
Y (tnt1) = Y(tn) + hf(tn, Y (tn)).

To analyze the error in Euler’'s method, subtract
Yn+1 = Yn + h.f(tnv yn) (211)
from (2.9), obtaining

Y(thrl) — Ynt+1 = Y(tn) —Yn + h[f(tm Y(tn)) - f(tmyn)]

) (2.12)
+§h2Y”(§n).

The error iny,,+1 consists of two parts: (1) the truncation erf@y, ;, newly intro-
duced at step,,;1; and (2) thepropagated error

Y(tn) —Yn + h[f(tna Y(tn)) - f(tna yn)]

22 EULER’'S METHOD

The propagated error can be simplified by applying the mekrevheorem tq (¢, z),
considering it as a function aof,

f(tna Y(tn)) - f(tna yn) = %&Cﬂ)[y(tn) - yn] (213)

for someg,, betweerl (¢,,) andy,,. Leter, = Y (tx) — yx, & > 0, and then use (2.13)
to rewrite (2.12) as

Ent1 = [1 + hiaf(gly’ C”)} en + 5h?Y" (&), (2.14)

These results can be used to give a general error analysiglef£€method for the
initial value problem.

Let us first consider a special case that will yield some tiveliunderstanding of
the error in Euler's method. Consider using Euler’'s methwsidlve the problem

Y'(t)=2t, Y(0)=0, (2.15)
whose true solution i¥ (t) = 2. Then, from the error formula (2.14), we have
entl = €n + h2, eg =0,
where we are assuming the initial value= Y (0). This leads, by induction, to
en = nh2, n > 0.

Sincenh = t,,
en = hty,. (2.16)

For each fixed,,, the error at,, is proportional toh. The truncation error i€ (h?),
but the cumulative effect of these errors is a total erropprtional toh.

We now turn to a convergence analysis of Euler's method fivirsg the general
initial value problem on a finite intervady, bl:

Yit)=ftY(t), to<t<b,

Y(to) = Yo, (2.17)

For the complete error analysis, we begin with the followfagima. It is quite
useful in the analysis of most numerical methods for soltirggnitial value problem.

Lemma 2.3 For any realt,
1+t < et,

and for anyt > —1, anym > 0,
0< (141" <e™. (2.18)
Proof. Using Taylor's theorem yields

etzl—i-t—i—%th£

ERROR ANALYSIS OF EULER’'S METHOD 23

with ¢ between0 andt. Since the remainder is never negative, the first result is
proved. Formula (2.18) follows easily. |

For this and several of the following chapters, we assumighileaderivative func-
tion f(t,y) satisfies the following stronger Lipschitz condition: thexistsK > 0
such that

If(ty1) — f(t,y2)] < K |y1 — 2l (2.19)

for —oo < y1,¥2 < oo andty < t < b. Although stronger than necessary, it
simplifies the proofs. In addition, given a functigift, y) satisfying the weaker
condition (1.10) and a solutio¥i(¢) to the initial value problem, the functiofican
be modified to satisfy (2.19) without changing the solutid(¥) or the essential
character of the initial value problem (2.17) and its nuredrsolution.

Theorem 2.4 Letf (¢, y) be acontinuous function fog < ¢ < band—oo < y < oo,
and further assume thdgt(¢, y) satisfies thé.ipschitz condition(2.19). Assume that
the solutionY (¢) of (2.17) has a continuous second derivativelipnd]. Then the
solution{yy, (t,) | to < t, < b} obtained by Euler's method satisfies

|:e(bto)K _ 1

o [¥(0) = (0] < e e+ | S o). @20

to<tn<b

where
r(h) = 30 "l = $h max V" (2) (2.21)
andeg = Yy — yn(to).
If, in addition, we have
[Yo —yn(to)] < erh ash —0 (2.22)

for somec; > 0 (e.q., ifYy = yo for all h, thenc; = 0), then there is a constant
B > 0 for which
max |Y(t,) — yn(tn)| < Bh. (2.23)

to<tn<b
Lete, =Y (tn) — y(tn), n > 0. Let N = N(h) be the integer for which
ty < b, tnN41 > b,

Define
o =3hY"(&), 0<n<N(h)-1,

based on the truncation error in (2.10). Easily, we obtain

max |1,| < 7(h)
0<n<N-—1

using (2.21).
Recalling (2.12), we have

ent1 =¢€n+h [f(t’n.a Yn) - f(tmyn)] + h7p. (2.24)

24 EULER'S METHOD

We are using the common notatidfy = Y (¢,,). Taking bounds using (2.19), we
obtain

lent1] < len| + hK Yy — yn| + 7],
lent1] < (14 hK)len| + hr(h), 0<n<N(h)-—1. (2.25)
Apply this recursively to obtain
len] < (1+hEK)"|eo| + [1+ (1 +hK) + -+ (1 + hK)" '] hr(h).

Using the formula for the sum of a finite geometric series,

Lr+r24oprn =l _11, r#1, (2.26)
-
we obtain 1+ hE) — 1
en] < (14 hK)"|eg| + AFRE"=1)y. (2.27)
K

Using Lemma 2.3, we obtain

(1 +hK)n S enhK — e(tnfto)K S e(b*iﬁo)]{7
and this with (2.27) implies the main result (2.20).
The remaining result (2.23) is a trivial corollary of (2.2€ith the constanB given
by

1 {e@—toﬂf —1

B =cjelt~t0K 4 B % } " -]

The result (2.23) is consistent with the behavior obsernetiables 2.1 and 2.2
earlier in this chapter, and it agrees with (2.16) for theciglecase (2.15). Wheh
is halved, the boundh is also halved, and that is the behavior in the error observed
earlier. Euler's method is said to converge with ortlebecause that is the power of
h that occurs in the error bound. In general, if we have

Y (tn) — yn(tn)| < ch?, to<t, <b (2.28)

for some constant > 0, then we say that the numerical methoad@vergent with
order p. Naturally, the higher the ordex, the faster the convergence we can expect.

We emphasize that for the error bound (2.20) to hold, the $nietion must be
assumed to have a continuous second derivatitg) over|ty, b]. This assumption
is not always valid. Whei”(¢) does not have such a continuous second derivative,
the error bound (2.20) no longer holds. (See Problem 11.)

The error bound (2.20) is valid for a large family of the ialtvalue problems.
However, it usually produces a very pessimistic numerioalid for the error, due to
the presence of the exponential terms. Under certain cistamces, we can improve
the result. Assume

ofty) (2.29)
dy

ERROR ANALYSIS OF EULER’'S METHOD 25

K= M‘ < 00. (2.30)

to<t<b ‘ dy
—oo<y<oo

Note the relation of (2.29) to the stability condition (1)20Chapter 1. Also assume
thath has been chosen so small that

1—-hK > —1, to <t<b —o00<z<o00.
Returning to (2.14), we have

enin = e+ WG 4 biy(e,) (2.31)

with ¢, betweerl (¢,,) andy,,. Using (2.29) and (2.30), we have

121+h%21—h1€2—1.

Y
When combined with (2.31), we have

lent1] < len| +ch?, to <ty <, (2.32)

where
1 " _ 1 "
c= 2 HY Hoo 2 tog%)g(b'Y (t)|

In addition, assumey, = 0. Applying (2.32) inductively, we obtain
len| < nch® = ¢ (t, —to) h. (2.33)

The error is bounded by a quantity proportionahkt@nd the coefficient of the term
increases linearly with respect to the pofpt in contrast to the exponential growth
given in the bound (2.20).

The error bound in Theorem 2.4 is rigorous, and is useful avigling an insight
to the convergence behavior of the numerical solution. Hewet is rarely advisable
to use (2.20) for an actual error bound, as the next examplesh

Example 2.5 The problem
Y'(t)=-Y(t), Y(0)=1 (2.34)

was solved earlier in this chapter, with the results givefahle 2.1. To apply (2.20),
we havedf(t,y)/0y = —1, K = 1. The true solution i¥" (¢t) = e~ *; thus

Y'(#)] = 1.
ax [V (1)l

With yo = Yy = 1, the bound (2.20) becomes

le=t —yn(ty)] < 3R (P —1), 0<t, <b (2.35)

26 EULER’'S METHOD

Ash — 0, this shows thayy, (¢) convergeste—*. However, this bound is excessively
conservative. Agincreases, the boundincreases exponentiallyb Fob, the bound
is

le™ —yn(tn)| < $h (" —1) = 73.7h, 0 <t, <5.

And this is far larger than the actual errors shown in Table By several orders of
magnitude. For the problem (2.34), the improved error bo(th@3) applies with
c = % (see Problem 7). A more general approach for accurate estonation is
discussed in the following section. |

2.3 ASYMPTOTIC ERROR ANALYSIS

To obtain more accurate predictions of the error, we comsidgmptotic error esti-
mates. Assume thaf is 3 times continuously differentiable and

of(t,y) *f(ty)
oy '’ Oy?

are both continuous for all values ¢f, y) near(t, Y (t)), to < ¢ < b. Then one can
prove that the error in Euler's method satisfies

Y(tn) = yn(tn) = hD(tn) + O(h®), to <tn <b. (2.36)

The termO(h?) denotes a quantity of maximal size proportionalt@ver the interval
[to, b]. More generally, the statement

F(h;ty) = O(R?), to<tn <b
for some constam means

max |F(h;t,)| < ch?
to<t,<b
for some constantand all sufficiently small values df.
Assumingy, = Yp, the usual case, the functidn(¢) satisfies an initial value
problem for a linear differential equation,

D'(t)=g(t)D(t) + 3Y"(t), D(to) =0, (2.37)
where 9f(t.v)
)= 25y .
g(t) % lyvin

WhenD(t) can be obtained explicitly, the leading error teei (¢,,) from the formula
(2.36) usually provides a quite good estimate of the trueréfi(t,,) — yx(¢,), and
the quality of the estimation improves with decreasing Sitegh.

ASYMPTOTIC ERROR ANALYSIS 27

Example 2.6 Consider again the problem (2.34). Thrt) satisfies

The solution is

Using (2.36), the error satisfies
Y (tn) = yn(tn) = 3htpe”"". (2.38)

We are neglecting thé(h?) term, since it should be substantially smaller than the
termhD(t) in (2.36), for all sufficiently small values @f. To check the accuracy of
(2.38), considet,, = 5.0 with h = 0.05. Then

Thtn,e ' = 0.000842.
From Table 2.1, the actual error@s000817, which is quite close to our estimate of

it. [|

How do we obtain the result given in (2.36)? We sketch the ntkas but do not
fill in all of the details. We begin by approximating the eremyuation (2.31) with

Cny1 = |1+ hw En + 3h2Y" (t,). (2.39)
Yy
We have used

Of (tn,Cn) _ Of (£, Y (tn))
oy oy
V(€)% Y (1),

This will cause an approximation error
en — €n = O(h?), (2.40)
although that may not be immediately evident. In additioa,may write
en=ho,, n=01,..., (2.41)

on the basis of (2.33); and for simplicity, assufige= 0.
Substituting (2.41) into (2.39) and then cancelingve obtain

DT O] 5,4 41,

of(t. Y (tn))
dy

§n+l = |:1+h

:6n—|—h[§n+%Y"(tn)]

28 EULER’'S METHOD

This is Euler's method applied to (2.37). Applying the earionvergence analysis
for Euler's method, we have

max |D(t,) — dn| < Bh
to<t,<b

for some constanB > 0. We then multiply byh to get

max |hD(t,) — €,| < Bh?.
togtngb

Combining this with (2.40) demonstrates (2.36), althougthave omitted a number
of details.

We comment that the functioP(¢) defined by (2.37) is continuously differen-
tiable. Then the error formula (2.36) allows us to use théddig difference

Yn(tnt1) — yn(tn)
h

as an approximation to the derivatiVé(t,,) (or Y’ (t,,+1)),

_ yh(tn+1) - yh(tn)
h

Y (tn) = O(h). (2.42)

The proof of this is left as Problem 16.

2.3.1 Richardson extrapolation

Itis not practical to try to find the functio®(¢) from the problem (2.37), principally
because it requires knowledge of the true soluti@n). The real power of the formula
(2.36) is that it describes precisely the error behavior. ke use (2.36) to estimate
the solution error and to improve the quality of the numdrgzdution, without an
explicit knowledge of the functio®(¢). For this purpose, we need two numerical
solutions, sayyy, (t) andysy, (t) over the intervaty < ¢ < b.

Assume that is a node point with the stepsi2é, and note that it is then also a
node point with the stepsiZze By the formula (2.36), we have

Y(t) = yn(t) = hD(t) + O(h?),
Y () — yon(t) = 2hD(t) + O(h?).

Multiply the first equation by 2, and then subtract the secequiation to eliminate
D(t), obtaining

Y(t) = [2yn(t) — yan(t)] = O(h?). (2.43)
This can also be written as
Y (t) = yn(t) = yn(t) — yan(t) + O(h?). (2.44)

We know from our earlier error analysis the(t) — y,(t) = O(h). By dropping the
higher-order term©O(h?) in (2.43), we obtairRichardson’s extrapolation formula

Y (t) = yn(t) = 2yn(t) — yan(t). (2.45)

NUMERICAL STABILITY 29

Table2.3 Euler's method with Richardson extrapolation

t YY) =yn(t) ya(t) —y2n(t) yn(t) Y(t) = yn(t)
1.0 9.3% —3 9.8le—3 3.6829346e —1 —4.14e —4
20 682 -3 6.94e —3 1.3544764e —1 —1.12e —4
30 372 -3 3.68¢—3 4.9748443e —2 3.86e — 5
40 1.80e—3 1.73¢ —3 1.8249877e —2 6.58¢ —5
50 817e—4 7.67e —4 6.6872853¢ —3 5.07e — 5

Dropping the higher-order term in (2.44), we obt&ithardson’s error estimate
Y(t) = yn(t) = yn(t) — yan (). (2.46)

With these formulas, we can estimate the error in Eulershmgtand can also obtain
a more rapidly convergent solutian (¢).

Example 2.7 Consider (2.34) with stepsizZe = 0.05, 2h = 0.1. Then Table 2.3
contains Richardson’s extrapolation results for selegtddes oft. Note that (2.46)
is a fairly accurate estimator of the error, and thgft) is much more accurate than

yn(t). [|

Using (2.43), we have
Y (tn) = gn(tn) = O(h?), (2.47)

an improvement on the convergence order of Euler’s methaawilVconsider again
this type of extrapolation for the methods introduced iefdahapters. However, the
actual formulas may be different from (2.45) and (2.46), ey will depend on the
order of the method.

2.4 NUMERICAL STABILITY

Recall the discussion of stability for the initial value ptem given in Section 1.2. In
particular, recall the result (1.12) bounding the changéénsolutiony (¢) when the
initial condition is perturbed by. To perform a similar analysis for Euler's method,
we define a numerical soluticfx,, } by

Znt1 = 2Zn + hf(tn,2zn), mn=0,1,...,N(h)—1 (2.48)

with zg = yo + €. This is analogous to looking at the solutiBift; ¢) to the perturbed
initial value problem, in (1.11). We compare the two numa&lreolutions{z,, } and
{yn} ash — 0.

30 EULER’'S METHOD

Lete, = 2z, — yn, n > 0. Theney = ¢, and subtracting,,+1 = yn + hf (tn, yn)
from (2.48), we obtain

én+t1 =€n+h [f(tm Zn) — f(tn,yn)] .

This has exactly the same form as (2.24), witlset to zero. Using the same procedure
as that following (2.24), we have

max |zp — yn| < e(b—to) K le] .
0<n<N(h)

Consequently, there is a constant 0, independent ok, such that

o =l < el (2.49)
This is the analog to the result (1.12) for the original mlitvalue problem. This
says that Euler's method is a stable numerical method fosdhgion of the initial
value problem (2.17). We insist that all numerical methansrfitial value problems
possess this form of stability, imitating the stability bétoriginal problem (2.17). In
addition, we require other forms of stability, based oniagilng additional properties
of the initial value problem; these are introduced later.

2.4.1 Rounding error accumulation

The finite precision of computer arithmetic affects the aacy in the numerical
solution of a differential equation. To investigate thifeef, consider Euler's method
(2.5). The simple arithmetic operations and the evaluafof{z,,, y,) will usually
contain errors due to rounding or chopping. For definitiohstmpped and rounded
floating-point arithmetic, see [12, p. 39]. Thus what is atifuevaluated is

Unt1 = Un + hf(xn,gn) + 6n, n >0, 7o = Yo. (2-50)

The quantity,, will be based on the precision of the arithmetic, and its szdfected
by that of,,. To simplify our work, we assume simply

|0n] <cu- max |Y(x), (2.51)

ro<x<Tp

whereu is themachine epsiloof the computer (see [12, p. 38]) ands a constant
of magnitudel or larger. Using double precision arithmetic with a procedsased
on the IEEE floating-point arithmetic standards= 2.2 x 10716.

To compare g, } to the true solutiorY’ (x), we begin by writing

Y (zni1) =Y (20) + hf(zn,Y(zn)) + 2h7Y" (&), (2.52)
which was obtained earlier in (2.9). Subtracting (2.50fr(2.52), we get

(2.53)
+A02Y " (2y) — 6y m >0

NUMERICAL STABILITY 31

with Y'(x¢) — go = 0. This equation is analogous to the error equation givenezarl
in (2.12), with the role of the truncation erréthY”(gn) in that earlier equation
replaced by the term

" 1! 577.
IR?Y" (&) — 6, = h {%hY (&) — f]) (2.54)

If the argument in the proof of Theorem 2.4 is applied to (2r88her than to (2.12),
then the error result (2.20) generalizes to

Y (22) — G| < &1 {%h{ max |Y”(:1:)|] + % { max |Y(a:)|]} (2.55)

zo<z<b To<z<b

for ¢ < z,, < b, we obtain
e(b—mo)K -1
2K ’
and K is the supremum o f (z,y)/dy|, defined in (2.30). The term in braces on
the right side of (2.55) is obtained by bounding the term icets on the right side
of (2.54) and using the assumption (2.51).

In essence, (2.55) says that

Cc1 =

Qa2
h’

for appropriate choices af;,c2. Note thato, is generally small becauseis small.
Thus the error bound will initially decrease Aslecreases; but at a critical value of
h, call it h*, the error bound will increase, because of the tersih. The same
qualitative behavior turns out to apply also for the actuad®eY (z,,) — y,. Thus
there is a limit on the attainable accuracy, and it is less tha@ number of digits
available in the machine floating-point representation.is Bame analysis is valid
for other numerical methods, with a term of the form

Y (2n) = 9n| < cnh + v <xp <D

cu

| iy

to be included as part of the global error for the numericaihrod. With rounded
floating-pointarithmetic, this behavior can usually be rngd on. But with chopped
floating-point arithmetic, itis likely to be accurate in addjtative sense: dsis halved,
the contribution to the error due to the chopped arithmeticdeuble.

Example 2.8 Solve the problem
Y'(r) = =Y (x) +2cos(z), Y(0)=1

using Euler's method. The true solution¥gx) = sinx + cosz. Use a four digit
decimal machine with chopped floating-point arithmetiaj #men repeat the calcu-
lation with rounded floating-point arithmetic. The machapsilon in this arithmetic
isu = 0.001. Finally, give the results of Euler’s method with exactlamitetic. The

32 EULER’'S METHOD

Table2.4 Effects of rounding/chopping errors in Euler's method

h = Chopped arithmetic

Rounded arithmetic

Exact arithmetic

Y(z) = gn(z) Y(z) = gn(z) Y(x) = yn(z)
0.04 1 —1.00e — 2 —1.70e — 2 —1.70e — 2
2 —1.17e -2 —1.83e — 2 —1.83e — 2
3 —1.20e — 3 —2.80e — 3 —2.78 -3
4 1.00e — 2 1.60e — 2 1.53e — 2
5 1.13e — 2 1.96e — 2 1.94e — 2
0.02 1 7.00e — 3 —9.00e — 3 —8.46e — 3
2 4.00e — 3 —9.10e — 3 —-9.13e — 3
3 2.30e — 3 —1.40e -3 —1.40e — 3
4 —6.00e — 3 8.00e — 3 7.62e — 3
5 —6.00e — 3 8.50e — 3 9.63e — 3
0.01 1 2.80e — 2 —3.00e — 3 —4.22¢ — 3
2 2.28e — 2 —4.30e — 3 —4.56e — 3
3 7.40e — 3 —4.00e — 4 —7.03e — 4
4 —2.30e — 2 3.00e — 3 3.80e — 3
5 —241le—2 4.60e — 3 4.81e — 3

results with decreasing are given in Table 2.4. The errors for the answers that
are obtained by using floating—point chopped and/or rouidednal arithmetic are
based on the true answers rounded to four digits.
Note that the errors with the chopped case are affected-a0.02, with the error
atz = 3 larger than wher = 0.04 for that case. The increasing error is clear with
the h = 0.01 case, at all points. In contrast, the errors using roundétnaetic
continue to decrease, although the- 0.01 case is affected slightly, in comparison
to the true errors when no rounding is present. The columh thi¢ errors for the
case with exact arithmetic show that the use of the roundeii@de arithmetic has
less effect on the error than does the use of chopped ariihniait there is still an

effect.

PROBLEMS

1. Solve the following problems using Euler's method witepstizes ofh =
0.2,0.1,0.05. Compute the error and relative error using the true sotutio
Y (¢). For selected values of observe the ratio by which the error decreases

whenh is halved.

(@) Y'(t) = [cos(Y (t)))?,

0<t<10, Y(0)

NUMERICAL STABILITY 33

(b) Y'(t) = 1jt2 SOV 0<t<10, Y(0)=0;
t
O =175
L1 1
© Y'(H) =Y (®) {1 - %Y(t)}, 0<t<20, Y(0)=1;
20
YO = ge
dY'(t)=-[Y(®)?, 1<t<10, Y(1)=1;
V() = 2.

(@ Y'(t)=(3*+1)Y(t)? 0<t<10, Y(0)=-1;
Y(t)=— (B +t+1),

2. Compute the true solution to the problem

Y'(t) = —e7'Y (1), Y(0)=L

Using Euler's method, solve this equation numerically vatbpsizes ofi =
0.2,0.1,0.05. Compute the error and relative error using the true solti¢x).

. Consider the linear problem
Y'(t) =AY (t) + (1 — X) cos(t) — (1 + N)sin(t), Y(0)=1.

The true solution ig(¢) = sin(¢) + cos(t). Solve this problem using Euler’s
method with several values of andh, for 0 < ¢t < 10. Comment on the
results.

(@) A =—1; h = 0.5,0.25,0.125.

(b) A=1;h =0.5,0.25,0.125.

(€) A = —5; h = 0.5,0.25,0.125,0.0625.
(d) A =5; h = 0.125,0.0625.

34 EULER'S METHOD

4. As aspecial case in which the error of Euler's method caamiadyzed directly,
consider Euler’'s method applied to

The true solution ig?.
(a) Show that the solution of Euler's method can be written as
yn(tn) = (14 h)t"/h, n > 0.

(b) Using L'Hospital’s rule from calculus, show that
lim (14 h)Y/" =e.
h—0

This then proves that for fixed= ¢,
}ILLInoyh(t) = el

(c) Let us do a more delicate convergence analysis. Use tpedya® =

ebloga to write

Un (tn) — eln log(1+h)/h.

Then use the formula
log(1+h) =h—3h* + O(h?)
and Taylor expansion of the natural exponential functiositow that
Y (tn) — yn(tn) = $hine'™ + O(h?).

This shows that foh small, the error is almost proportional g a phe-
nomenon already observed from the numerical results givéalles 2.1
and 2.2.

5. Repeat the general procedures of Problem 4, but do so dointtial value

problem
Y'(t)=cY(t), Y(0)=1

with ¢ # 0 a given constant.

6. Check the accuracy of the error bound (2.35)oe 1,2,3,4,5 andh =
0.2,0.1,0.05. Compute the error bound and compare it with Table 2.1.

7. Consider again the problem (2.34) of Example 2.5. Let usvel@ more
accurate error bound than the one given in Theorem 2.4. F2ohd) we have

Cpt1 — (1 — h) e, + %thffn'

10.

11.

12.

13.
14.

NUMERICAL STABILITY 35

Using this formulawitt) < i < 1, and recallingy = 0, show the error bound
len| < Shtn.

Compare this error bound to the true errors in Table 2.1.
Hint: 1 — h < lande ¢ < 1.

. Compute the error bound (2.20), assumjpg-= Yy, for the problem (2.8) given

earlier in this chapter. Compare the bound with the actuategiven in Table
2.2,forb=1,2,3,4,5andh = 0.2,0.1,0.05.

. Repeat Problem 8 for the equation in Problem 1 (a).

For Problems 1 (b)—(d), the constdhtitin (2.19) will be infinite. To use the
error bound (2.20) in such cases, let

to<t<b

This can be shown to be adequate for all sufficiently smalleslofh. Then
repeat Problem 8 for Problem 1 (b)—(d).

Consider the initial value problem
Y'(t) = at*™ !, Y(0)=0,

wherea: > 0. The true solution i (t) = t*. Whena # integer, the true solu-
tion is not infinitely differentiable. In particular, to hay” twice continuously
differentiable, we need > 2. Use the Euler method to solve the initial value
problem fora = 2.5,1.5, 1.1 with stepsizeh = 0.2,0.1,0.05. Compute the
solution errors at the nodes, and determine numericallgdingergence orders
of the Euler method for these problems.

The solution of
Y'(t) = \Y (t) + cos(t) — Asin(t), Y (0)=0

is Y (t) = sin(¢). Find the asymptotic error formula (2.36) in this case. Also
compute the Euler solution far < ¢ < 6, h = 0.2,0.1,0.05, and\ = 1, —1.
Compare the true errors with those obtained from the asyticmstimate

Y () — yn =~ hD(L).

Repeat Problem 12 for Problem 1 (d). Comparéfer: < 6,h = 0.2,0.1,0.05.

For the example (2.8), with the numerical results in &2, use Richardson’s
extrapolation to estimate the errdt(¢,,) — yn(t,) whenh = 0.05. Also,
produce the Richardson extrapolgigt,) and compute its error. Do this for
th =1,2,3,4,5,6.

36

15.
16.

EULER'S METHOD
Repeat Problem 14 for Problems 1 (a)—(d).
Use Taylor's theorem to show the standard numericatfitiation method

Y (tpgt) = w +O(h).

Combine this with (2.36) to prove the error result (2.42).

CHAPTER 3

SYSTEMS OF DIFFERENTIAL
EQUATIONS

Although some applications of differential equations imweonly a single first-order
equation, most applications involve a system of severdl egoations or higher-order
equations. In this chapter, we consider systems of firstoedjuations, showing
how Euler's method applies to such systems. Numericalrtreat of higher-order
equations can be carried out by first converting them to edeint systems of first-
order equations.
To begin with a simple case, the general form of a system ofitatorder differ-
ential equations is
Yll(t) = fl(tvyl(t)vy2(t))a (3 1)
Y3(t) = f2(t, Ya(t), Ya(2)). '

The functionsf; (¢, z1,z2) and f»(¢, z1, z2) define the differential equations, and the
unknown functionsy; (¢) and Y>(t) are being sought. The initial value problem
consists of solving (3.1), subject to the initial condigon

Yi(to) = Y10, Ya(to) = Ya2p0. (3.2)

37

38 SYSTEMS OF DIFFERENTIAL EQUATIONS

Example 3.1
(@) The initial value problem
Y{(t) = Ya(t) — 2Ya(t) + 4 cos(t) — 2sin(t), Y1(0)
YJ(t) = 3Y1(t) — 4Ya(t) + 5cos(t) — 5sin(t), Ya(0)

)

' 3.3
) (3.3)

has the solution
Yi(t) = cos(t) +sin(t), Ya(t) = 2cos(t).

This example will be used later in a numerical example itating Euler’s
method for systems.

(b) Consider the system
Y] (t) = AY1(¢)[1 — BY,(t)], Y1(0) = Y10,

(3.4)
Y5(t) = CYa(t)[DY1(t) — 1], Y2(0) =Yap

with constantsd, B,C, D > 0. This is called the Lotka—\olterra predator—
prey model. The variabledenotes timeY; (¢) the number of prey (e.g., rabbits)
at timet, andY>(t) the number of predators (e.g., foxes). If there is only a
single type of predator and a single type of prey, then thislehds often a
reasonable approximation of reality. The behavior of tHetsansY; andY;

is illustrated in Problem 8. |

The initial value problem for a system of first-order differential equations has
the general form

Y{(t)= fi(t,Yi(t),.... Ym(t)), Yi(to) = Y10,
: (3.5)
V()= fm(t,Y1(t), ..., Vi (t)), Yin(to)= Yo

We seek the functions, (¢), . .., Y, (t) on some interval, <t < b. An example of
a three-equation system is given later in (3.21).

The general form (3.5) is clumsy to work with, and it is not aaeenient way to
specify the system when using a computer program for itsieoluTo simplify the
form of (3.5), represent the solution and the different@l&tions by using column
vectors. Denote

Yi(t) Yi0 [y, ym)
Yty =| @ | Yo=| 1 | fty) = : (3.6)
Ym(t) Ym,O fm(ta Y, 7ym)
withy = [y1,v2, - - -, ¥m]". Then (3.5) can be rewritten as

Y'(t)=f(t,Y(#), Y(to) = Yo. (3.7)

HIGHER-ORDER DIFFERENTIAL EQUATIONS 39

This resembles the earlier first-order single equationitwigeneral as to the number
of equations. Computer programs for solving systems witiadt always refer to the
system in this manner.

Example 3.2 System (3.3) can be rewritten as
Y'(t) = AY(t) + G(t), Y(0) =Y,

with

B 4 cos(t) — 2sin(t) 1
G(t) = l 5 cos(t) — 5sin(t)] I l] |

In the notation of (3.6), we obtain

f(t,y) = Ay + G(t), y=I[y1, 2] u

The general theory in Chapter 1 for a single differentialaen generalizes in
an easy way to systems of first-order differential equationse we have introduced
appropriate notation and tools for (3.6). For example, theof the partial differential
af /0y is replaced with the Jacobian matrix

afitaya"'aym "
Yj i,j=1

(3.8)

We replace the absolute valli¢ with a vector norm. A convenient choice is the
maximum norm

Iyl :@glyil, y € R™.

With this, we can generalize the Lipschitz condition (2.4®0)

Ift,y) —f(t,2)ll < Kly—zl,, y,zeR™ ty<t<b, (3.9)

afi(tvy) ’)

m

K = max max sup 3
Yj

to<t<b 1<i<m yegm =

1

3.1 HIGHER-ORDER DIFFERENTIAL EQUATIONS

In physics and engineering, the usé\&wton’s second law of motideads to systems
of second-order differential equations, modeling soméefhost important physical
phenomena of nature. In addition, other applications aad to higher-order equa-
tions. Higher-order equations can be studied either dyrextthrough equivalent

systems of first-order equations.

40 SYSTEMS OF DIFFERENTIAL EQUATIONS

6=0 mg

Figure3.1 The schematic of pendulum

As an example, consider the second-order equation
Y(t) = f(t, Y (1), Y'(1)), (3.10)

wheref (¢, y1,y2) is given. The initial value problem consists of solving (B.4ubject
to the initial conditions

Y(to) = Yo, Y'(to) = Y{- (3.11)
To reformulate this as a system of first-order equationsptéen
Yilt)=Y(0), Ya(t)=Y'(2).
ThenY; andY; satisfy
Y{(t) = Ya(t), Yi(to) = Yo, (3.12)
Yi(t) = f(t,Y1(1),Ya(t), Ya(to) =Yy.

Also, starting from this system, it is straightforward taghthat the solutiory; of
(3.12) will also have to satisfy (3.10) and (3.11), thus dest@ting the equivalence
of the two formulations.

Example 3.3 Consider the pendulum shown in Figure 3.1, of masand length.
The motion of this pendulum about its centerlthe- 0 is modeled by a second-order

HIGHER-ORDER DIFFERENTIAL EQUATIONS 41

differential equation derived from Newton’s second law aftran. Ifthe pendulumis
assumed to move back and forth with negligible friction swirtex, then the motion
is modeled fairly accurately by the equation
Zth9 in(6 3.13

ml—y = —mgsin(6(t)), (3.13)
wheret is time and(¢) is the angle between the vertical centerline and the penaulu
The description of the motion is completed by specifyingittigal positiond(0) and
initial angular velocityd’ (0). To convert this to a system of two first-order equations,
we may write

Yi(t) =6(t), Ya(t) =0(2).

Then (3.13) and the initial conditions can be rewritten as
Y{(t) = Ya(t), Y1(0) = 6(0)

3.14
vi(t) = ~Lsin(vi1), Y2(0) = 0/0) .

This system is equivalent to the initial value problem fog tiriginal second-order
equation (3.13). |

A general differential equation of order can be written as

dmy(t) dY (t) ALY (t)
S = (t,Y(t), S e) (3.15)
and the initial conditions needed to solve it are given by
Y(te) =Y, Y'(to) =Y, ..., Y () =y m Y, (3.16)

It is reformulated as a system of first-order equations by introducing
Yil) =Y (t), Ya(t) =Y'(t), ..., Yu(t)=Y V().

Then the equivalent initial value problem for a system otfosler equations is

Y{(t)=Ya(1), Y1 (to)=Yo,
' e 3.17
Y 1 (0=Ya (1) Yoolt)=yym ™, G40
Y (O)=f(6Ya(), .., Yim(t), Yi(to)=Y ™V,
A special case of (3.15) is the orderlinear differential equation
dmyY dY dm-ly

42 SYSTEMS OF DIFFERENTIAL EQUATIONS

This is reformulated as above, with

Y, =ao(t)Y1 +a1(t)Ya + -+ + am—1(t) Yy + b(t) (3.19)
replacing the last equation in (3.17).
Example 3.4 The initial value problem

Y (t) 4 3Y"(t) + 3Y'(t) + Y (t) = —4sin(t),

(3.20)
Y0)=Y'(0)=1, Y"(0)=-1
is reformulated as
Y{(t)=Y2(t), v1(0)=1,
Ys(t)=Y3(t), Ya(0)=1, (3.21)
Y3(t)==Y1(t) — 3Ya(t) — 3Y3(t) — 4sin(t), Y3(0)=—1.

The solution of (3.20) i¥7(t) = cos(t) + sin(t), and the solution of (3.21) can be
generated from it. This system will be solved numericaltgtan this chapter. B

3.2 NUMERICAL METHODS FOR SYSTEMS

Euler's method and the numerical methods discussed indhtgters can be applied
without change to the solution of systems of first-orderatéhtial equations. The
numerical method should be applied to each equation in thtesy or more simply,
in a straightforward way to the system written in the matvieetor format (3.7). The
derivation of numerical methods for the solution of systésressentially the same as
is done for a single equation. The convergence and stahitifyses are also done
in the same manner.

To be more specific, we consider Euler's method for the gérsgistem of two
first-order equations that is given in (3.1). By followingetlklerivation given for
Euler's method in obtaining (2.9), Taylor's theorem gives

2
Viltnn) = Yiltn) + bt Yitn), Va(ta) + oYY/ (€0),

2
Valtwer) = Yalt) + hfaltn, Viltn). Yo(ta) + 5 Y8'(G0)

for someg,,, ¢, in [t,, t,+1]. Dropping the error terms, we obtain Euler’s method for
a system of two equations far> 0:

Y1,n+1 = Y10+ Bf1(tn, Y10, Y2,n),
i (3.22)

Y2,n41 = Y20 + Mfo(tn, Y10, Y2,n)-

NUMERICAL METHODS FOR SYSTEMS 43

In matrix—vector format, this is

Yn+1 = Yn + hf(tnayn)a Yo = YO' (323)

The convergence and stability theory of Euler’'s method dndenother numerical
methods also generalizes. The key is to use the matrix—veotation introduced
earlierinthe chapter together with (3.8)—(3.9). Thiswaba straightforward imitation
of the proofs given in earlier chapters for a single equation

Letm = 2 as above, and consider Euler's method (3.22) together Wélekact
initial valuesy10 = Y10, y2.0 = Yo,0. If Yi(t), Ya(t) are twice continuously
differentiable, then it can be shown that

[Y1(tn) — y1,n| < ch, [Y2(tn) — ya.n| < ch

forall tg < t, < b, for some constant. In addition, the earlier asymptotic error
formula (2.36) will still be valid; forj = 1, 2, we obtain

Yi(tn) — yjm = Dj(tn)h + O(h?), to<t, <b.

Thus Richardson’s extrapolation and error estimation fdeswill still be valid. The
functionsD; (t), D2 (t) satisfy a particular linear system of differential equatipbut
we omitit here. Stability results for Euler's method gedigeawithout any significant
change. Thus in summary, the earlier work for Euler's metederalizes without
significant change to systems. The same is true of the othmerical methods
given earlier, thus justifying our limitation to a singleuwedion for introducing those
methods.

MATLAB ® program The following is a MATLAB codeesulersys implementing
the Euler method to solve the initial value problem (3.7).cdn be seen that the
codeeulersys is just a slight modification of the codauler for for solving a
single equation in Chapter 2. The program can automaticatgrmine the number
of equations in the system.

function [t,y] = eulersys(tO,y0,t_end,h,fcn)

b

% function [t,yl=eulersys(t0,y0,t_end,h,fcn)

b

% Solve the initial value problem of a system
% of first order equations

yA y’> = £(t,y), t0O <=t <=b, y(t0)=y0

% Use Euler’s method with a stepsize of h.

% The user must supply a program to compute the
% right hand side function with some name, say
% deriv, and a first line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=eulersys(t0,z0,b,delta, ’deriv’)

44

SYSTEMS OF DIFFERENTIAL EQUATIONS

Table3.1 Solution of (3.3) using Euler's method

gt Vi) Yi(t) —yien() Yi(t) —ysn(t) Ratio ysn(t) —y;2n(t)
1 2 049315 —5.65e — 2 —2.82e — 2 2.0 —2.83e — 2
4 —1.41045 —5.64e — 3 —2.72e - 3 2.1 —2.92e -3
6 0.68075 4.81e — 2 2.36e — 2 2.0 2.44e — 2
8 0.84386 —3.60e — 2 —1.79¢ — 2 2.0 —1.83e — 2
10 —1.38309 —1.8le —2 —8.87e — 3 2.0 —9.40e — 2
2 2 —0.83229 —3.36e — 2 —1.70e — 2 2.0 —1.66e — 2
4 —1.30729 5.94e — 3 3.19e — 3 1.9 2.75e — 3
6 1.92034 1.59e — 2 7.69e — 3 2.1 8.17e — 3
8 —0.29100 —2.08e — 2 —1.05e — 2 2.0 —1.03e — 2
10 —1.67814 1.26e — 3 9.44e — 4 1.3 3.1lle—4
A
% The program automatically determines the
% number of equations from the dimension of
% the initial value vector yO.
A
% Output:
% The routine eulersys will return a vector t
% and a matrix y. The vector t will contain the
% node points in [tO,t_end]:
% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N
% The matrix y is of size N by m, with m the
% number of equations. The i-th row y(i,:) will
% contain the estimates of the solution Y
% at the node points in t(i).
A
m = length(y0);
n = fix((t_end-t0)/h)+1;
t = linspace(t0,t0+(n-1)*h,n)’;
y = zeros(n,m);
y(1,:) = yO0;

for i = 2:n

y(i,:) = y(i-1,:) + hxfeval(fcn,t(i-1),y(i-1,:));

end

NUMERICAL METHODS FOR SYSTEMS 45

Example 3.5

(a) Solve (3.3) using Euler's method. The numerical resarktggiven in Table 3.1,
along with Richardson’s error estimate

Yj(tn) = yjn(tn) = yjn(tn) —yion(ts), J=1,2.

Inthe tablep = 0.05, 2h = 0.1. It can be seen that this error estimate is quite
accurate, except for the one cgse 2, t = 10. To get the numerical solution
values and their errors at the specified node pdints2, 4, 6, 8, 10, we used
the following MATLAB commands, which can be included at thelef the
programeulersys for this example.

nl = (n-1)/5;

for i = nil+l:nl:n

e(i,1) = cos(t(i))+sin(t(i))-y(i,1);
e(i,2) = 2*cos(t(i))-y(i,2);

end

diary euler_sysl

fprintf (> h = 6.5f\n’, h)

disp(’ t y(1) e(1) y(2) e(2)’)

for i = ni+l:nl:n
fprintf(’2.0£%10.2e%10.2e%10.2e%10.2e\n’, ...
t(1), yi,1),e(i,1),y(1,2),e(i,2))
end

diary off

The right-hand side function for this example is defined ky/ftillowing.

function z = eulersys_fcn(t,y);

z = zeros(1,2);

z(1) = y(1)-2*y(2)+4*cos(t)-2*sin(t);
z(2) = 3xy(1)-4*y(2)+5*cos(t)-5*sin(t);

(b) Solve the third-order equation in (3.20), using Euleristhod to solve the
reformulated problem (3.21). The results i) = Y1 (t) = sin(¢) + cos(t)
are given in Table 3.2, for stepsiz2s = 0.1 andh = 0.05. The Richardson
error estimate is again quite accurate. |

Other numerical methods apply to systems in the same stfaiglard manner.
Also, by using the matrix form (3.7) for a system, there is pparent change in the
numerical method. For example, the Runge—Kutta metho®)5d¢iven in Section
5.2 of Chapter 5, is

Yn+1 :yn+ 2

46 SYSTEMS OF DIFFERENTIAL EQUATIONS

Table3.2 Solution of (3.20) using Euler's method

t y(t) y(t) —y2n(t) y(t) —yn(t) Ratio yn(t) —y2n(t)
0.49315 —8.78e — 2 —4.25e — 2 2.1 —4.53e —2

—1.41045 1.39e — 1 6.86e — 2 2.0 7.05e — 2
0.68075 5.19e — 2 2.49e — 2 2.1 2.70e — 2
0.84386 —1.56e — 1 —7.56e — 2 21 —-7.99 —2

10 —1.38309 8.3%9¢ — 2 4.14e — 2 2.0 4.25e — 2

o O B~ N

Interpret this for a system of two equations with
Yin fl (tnayl,nayZn)
yn = 9 f(tna yn) = ?
y2,n f2(tn7 yl,na y2,n)

In component form, the method is

Yimt1 = Yin + 3h[Fi (s Y10, Y2,0)
+fi(tng1, Y10 + hfi(tns Y1ms Y2,n), (3.26)
Y2,n + hfZ(tnyyl.,nv 9271))]

for j = 1, 2. The matrix—vector format (3.25) can be programmed veryeaiently
on a computer. We leave its illustration to the problems.

PROBLEMS
1. Let
1 -2 Y,
A= , Y = ,
2 -1 Y,
—2¢7t 42 1
G(t) =) Y, =)
®) l—Qet—i—l 0 [1]

Write out the two equations that make up the system
Y'(t) = AY (t) + G(t), Y(to) = Yo.
The true solution i& (¢) = [e~*, 1]7.

2. Express the system (3.21) to the general form of Problegivihg the matrix
A.

3. Convert the following higher-order equations to systerhfirst-order equa-
tions.

NUMERICAL METHODS FOR SYSTEMS 47
(@) Y"(t) +4Y"(t) + 5Y'(t) + 2Y (t) = 2t* + 10t + 8,
Y(0)=1,Y'(0) = —1,Y"(0) = 3.
The true solution i&" (t) = e~ + t2.
(b) Y"(t) +4Y'(t) + 13Y (t) = 40 cos(t),
Y(0)=3,Y'(0) =4.
The true solution i§(t) = 3 cos(t) + sin(t) + e~ sin(3t).
4. Convert the following system of second-order equati@ana targer system

of first-order equations. This system arises from studyhme gravitational
attraction of one mass by another:

" —cz(l 7 —cylt "
s =" =T =

Herec is a positive constant andt) = [z(t)? + y(t)? + z(¢)%]"/2, with ¢
denoting time.

5. Using Euler's method, solve the system in Problem 1. Uspsites of =
0.1,0.05,0.025, and solve fob < t < 10. Use Richardson’s error formula to
estimate the error fok = 0.025.

6. Repeat Problem 5 for the systems in Problem 3.

7. Consider solving the pendulum equation (3.13) With 1 andg = 32.2 ft/s2.
For the initial values, choose< 6(0) < 7/2, 6'(0) = 0. Use Euler's method
to solve (3.14), and experiment with various valuek sb as to obtain a suitably
small error in the computed solution. Grapts.d(¢), t vs. &’ (t), andd(t) vs.
#'(t). Does the motion appear to be periodic in time?

8. Solve the Lotka—Volterra predator—prey model of (3.4)hwthe parameters
A=4,B =3 C=3,D = 3, and usesulersys to solve approximately
this model for0 < ¢ < 5. Use stepsizes = 0.001,0.0005, 0.00025. Use the
initial valuesz(0) = 3, y(0) = 5. Plotz andy as functions of, and plotx
versugy. Comment on your results. We return to this problem in lakeqters
when we have more efficient methods for its solution.

CHAPTER 4

THE BACKWARD EULER METHOD AND
THE TRAPEZOIDAL METHOD

In Section 1.2 of Chapter 1, we discussed the stability ptgp# the initial value
problem (1.7). Roughly speakingtability means that a small perturbation in the
initial value of the problem leads to a small change in thetsah. In Section 2.4 of
Chapter 2, we showed that an analogous stability resultnwasdr Euler's method. In
general, we want to work with numerical methods for solvimgihitial value problem
that are numerically stable. This means that for any suffibfesmall stepsizé, a
small change in the initial value will lead to a small changthie numerical solution.
Indeed, such a stability property is closely related to thevergence of the numerical
method, a topic we discuss at length in Chapter 7. For aneteanple of the relation
between convergence and stability, we refer to Problem L& faumerical method
that is neither convergent nor stable.

A stable numerical method is one for which the numericaltsofus well behaved
when considering small perturbations, provided that tepstzeh is sufficiently
small. In actual computations, however, the stepsizannot be too small since avery
small stepsize decreases the efficiency of the numericdladetAs can be shown,
the accuracy of the forward difference approximationsh&Y (¢t + h) — Y'(¢)]/h
to the derivativey” (¢), deteriorates when, roughly speakirgis of the order of the
square root of thenachine epsilon Hence, for actual computations, what matters

49

50 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

is the performance of the numerical method wiheis not assumegery small We
need to further analyze the stability of numerical methotlem is not assumed to
be small.

Examining the stability question for the general problem

Y(t) = f(t,Y (1), Y(t)=Yo (4.1)

is too complicated. Instead, we examine the stability of etical methods for the
model problem
YI(t) =AY () + (), Y(0)=Yo (4.2)

whose exact solution can be found from (1.5). Questionsrdégag stability and
convergence are more easily answered for this problem, leadnswers to these
questions can be shown to usually be the answers to thoseastons for the
more general problem (4.1).

Let Y (¢) be the solution of (4.2), and & (¢) be the solution with the perturbed
initial dataYy + e:

Y/(t) = AYe(t) +g(t), Ye(0) = Yo +e.
Let Z.(t) denote the change in the solution
Z.(t) = Ye(t) — Y (0).
Then, subtracting (4.2) from the equation 14(¢), we obtain
ZI(t) = NZ(t), Z.(0)=¢e.

The solution is
Z(t) = ee.

Typically in applications, we are interested in the casedfiber) is real and negative
or A is complex with a negative real part. In such a cagdy) will go to zero as
t — oo and, thus, the effect of theperturbation dies out for large valuestof(See a
related discussion in Section 1.2 of Chapter 1.) We woulel fiie same behavior to
hold for the numerical method that is being applied to (4.2).

By considering the functioZ.(t)/e instead ofZ.(t), we obtain the following
model problem that is generally used to test the performanearious numerical
methods:

Y'=)Y, t>0,

Y(0) = 1. (4.3)

In the following, when we refer to the model problem (4.3), al&ays assume that
the constanh < 0 or X is complex and witfReal(A) < 0. The true solution of the
problem (4.3) is

Y (t) = e, (4.4)

which decays exponentially insince the parameterhas a negative real part.

THE BACKWARD EULER METHOD 51

The kind of stability property we would like for a numericakthod is that when
it is applied to (4.3), the numerical solution satisfies

Yn(tn) — 0 as t, — o0 (4.5)

for any choice of the stepsize The set of valuea), considered as a subset of the
complex plane, for whicl,, — 0 asn — oo, is called theegion of absolute stability
of the numerical method. The use/of arises naturally from the numerical method,
as we will see.
Let us examine the performance of the Euler method on the hpodielem (4.3).
We have
Yn+1 = Yn + hAYn = (1 + AN yn, n2>0, yo=1

By an inductive argument, it is not difficult to find
yn = (L+ RN, n>0. (4.6)

Note that for a fixed node point, = n h = %, asn — oo, we obtain

AN :
Yn = (1—|——> — e,
n

The limiting behavior is obtained using L'Hospital’s rutein calculus. This confirms
the convergence of the Euler method. We emphasize thas #nisdisymptotic property
in the sense that it is valid in the limit &s— 0.

From formula (4.6), we see thg}, — 0 asn — oo if and only if

|1+ hA < 1.
For A real and negative, the condition becomes
-2 < hA <. 4.7)

This sets a restriction on the range/othat we can take to apply Euler's method,
namely,0 < h < —2/A.

Example4.1 Consider the model problem with= —100. Then the Euler method
will performwell only when < 2x 10071 = 0.02. The true solutiofy () = =100
att = 0.2is2.061 x 10~°. Table 4.1 lists the Euler solution at= 0.2 for several
values ofh. |

4.1 THE BACKWARD EULER METHOD

Now we consider a numerical method that has the property {drsny stepsizé,
when applied to the model problem (4.3). Such a method istealx absolutely
stable

52 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

Table4.1 Euler's solution atr = 0.2 for Example 4.1

h yh(0.2)
0.1 81
0.05 256
0.02 1
0.01 0

0.001 7.06e — 10

In the derivation of the Euler method, we used the forwarfbdénce approxima-
tion

V(1) % 3 V(4 B) V(D)

Let us use, instead, thmckward difference approximation

Y'(t)~ —[Y(t) = Y(t —h)]. (4.8)

SRS

Then the differential equatiori’(¢) = f(¢, Y (¢)) att = ¢, is discretized as

Yn = Yn—1 + hf(tna yn)

Shifting the index by 1, we then obtain tbackward Euler method

= <n< -
{ Z;H-Zl Y0:7Jn+hf(tn+17yn+1), 0<n<N-1, (49)

Like the Euler method, the backward Euler method is of firsteo accuracy, and a
convergenceresult similar to Theorem 2.4 holds. Also, gmasotic error expansion
of the form (2.36) is valid. The method of proof is a variatmmthat used for Euler’s
method in Section 2.3 of Chapter 2.

Let us show that the backward Euler method has the desirgubyo(4.5) on the
model problem (4.3). We have

Yn+1 = Yn + h)\yn+la
Yni1 = (1 —hN) 'y, n>0.

Using this together withy, = 1, we obtain
yn = (L —hX)™". (4.10)

For any stepsizé > 0, we havell — h\| > 1 and soy,, — 0 asn — oo.

Continuing with Example 4.1, in Table 4.2 we give numeriealuits for the back-
ward Euler method. A comparison between Tables 4.1 and ¥ealethat the back-
ward Euler method is substantially better than the Eulehagon the model problem
(4.3).

THE BACKWARD EULER METHOD 53

Table4.2 Backward Euler solution at = 0.2 for Example 4.1

h yh(0.2)

0.1 826e—-3
0.05 7.72¢e —4
0.02 1.69% —5
0.01 9.54e -7
0.001 5.27e —9

The major difference between the two methods is that for thekivard Euler
method, at each timestep, we need to solve a nonlinear aligedayuation

Yn+1 = Yn + h f(tn+1a yn+1) (411)

for y,+1. Methods in whichy,, 11 must be found by solving a rootfinding problem
are calledmplicit methodssincey,,+1 is defined implicitly. In contrast, methods that
givey,+1 directly are calleaexplicit methodsEuler's method is an explicit method,
whereas the backward Euler method is an implicit method. ddrtde Lipschitz
continuity assumption (2.19) on the functif(y, z), it can be shown that fi is small
enough, the equation (4.11) has a unique solution.

Traditional rootfinding methods (e.g., Newton’s methoas #ecant method, the
bisection method) can be applied to (4.11) to find its rgot;; but often that is a
very time-consuming process. Instead, (4.11) is usuallyesidoy a simple iteration

technique. Given an initial guegé{ﬂzl A Ynal defineyglll, yfﬁl etc., by
i =+ h () G =0,1,2, (4.12)

It can be shown that i is sufficiently small, then the iterat@é’;)rl will converge to
Ynt1 @Sj — oo. Subtracting (4.12) from (4.11) gives us

Ynt+1 — 97(5:11) =h[f(tnr1,Ynt1) = f(tny1, y'fzj-&)-l)]’

j a.f tn y Yn j
Yn+1 — yr(ffll) ~h- %[?J?ﬂrl - y7(1]+)1]-

The last formula is obtained by applying the mean value #m®oto f(t,,+1, 2),
considered as a function af This formula gives a relation between the error in
successive iterates. Therefore, if

of(t
p. g | (4.13)
dy
then the errors will converge to zero, as long as the inini@gyflo_zl is a sufficiently
accurate approximation t9, 1.

54 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

The preceding iteration method (4.12) and its analysisfieaial case of the theory
of fixed-point iterationfor solving a nonlinear equation = g(z). The iteration
scheme s

Zj4+1 zg(zj), j = 0,172,... (414)

with 2o an initial estimate of the solution being sought. Denotenbihe solution
we are seeking for the equatian= g¢(z). Assuming thaty(z) is continuously
differentiable in a neighborhood of, we have that the iteration (4.14) will converge
if
lg' ()] < 1 (4.15)

and if the initial estimate is chosen sufficiently close tg see [11§2.5], [12,53.4],
[68, §6.3]. Applying this notation to our iteration (4.12),= y,+1 is the fixed point,
and

9(2) = yn + h f(tnt1, 2).
The convergence condition (4.13) is simply the conditiod %

In practice, one uses a good initial gug,égl, and one chooses anthat is so
small that the quantity in (4.13) is much less thanThen the errow,, 1 — yﬁgjl
decreases rapidly to a small quantityjascreases, and often only one iterate needs
to be computed. The usual choice of the initial gugaf&él for (4.12) is based on the
Euler method .

U = o 1 (b n)- (4.16)

This is called gredictor formula as it predicts the root of the implicit method.

For many equations, it is usually sufficient to do the itemat{4.12) once. Thus,
a practical way to implement the backward Euler method isotthe following one-
point iteration for solving (4.11) approximately:

yn-ﬁ-l =Yn + h f(tTH-la yn)7
Yn+1 = Yn + hf(thrlaynJrl)'

The resulting numerical method is then given by the formula

Yn+1 = Yn + h f(tn+la Yn + hf(tn+17 yn)) (417)

It can be shown that this method is still of first-order accyraHowever, it is no
longer absolutely stable (see Problem 1).

MATLAB ® program We now turn to an implementation of the backward Euler
method. At each step, with, available from the previous step, we use the Euler
method to compute an estimatelf, :

yr(11421 =Yn + h.f(tnvyn)

Then we carry out the iteration

k+1 k
yflfl =y + hf(tn+17y§1+)1)

THE BACKWARD EULER METHOD 55

until the difference between successive values of thetésrs sufficiently small,
indicating a sufficiently accurate approximation of theusioin ,,+;. To prevent an
infinite loop of iteration, we require the iteration to stéd 0 iteration steps are taken
without reaching a satisfactory solution; in this latteseaan error message will be
displayed.

function [t,y] = euler_back(t0,y0,t-end,h,fcn,tol)

)

% function [t,y] = euler_back(t0,y0,t_end,h,fcn,tol)
)

% Solve the initial value problem

yA y’> = £(t,y), t0 <=t <=b, y(t0)=y0

% Use the backward Euler method with a stepsize of h.
% The user must supply an m-file to define the

% derivative f, with some name, say ’deriv.m’, and a
% first line of the form

% function ans=deriv(t,y)

% tol is the user supplied bound on the difference

% between successive values of the backward Euler

% iteration. A sample call would be

% [t,z]=euler back(t0,z0,b,delta,’deriv’,1.0e-3)

)

% Output:

% The routine euler_back will return two vectors,

% t and y. The vector t will contain the node points
% t(1=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t_end, t(N)+h > t_end

% The vector y will contain the estimates of the

% solution Y at the node points in t.

)

% Initialize.
n = fix((t_end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;
y = zeros(n,1);

y(1) = y0;

i=2;

% advancing
while i <=n
%
% forward Euler estimate
%
ytl = y(i-1)+h*feval(fcn,t(i-1),y(i-1));
% one-point iteration

56 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

count = 0;

diff = 1;

while diff > tol & count < 10
yt2 = y(i-1) + hxfeval(fcn,t(i),ytl);
diff = abs(yt2-ytl);

ytl = yt2;
count = count +1;
end
if count >= 10
disp(’Not converging after 10 steps at t = ?)
fprintf (*%5.2f\n’, t(i))
end
y(i) = yt2;
i=1i+1;

end

4.2 THE TRAPEZOIDAL METHOD

One main drawback of both the Euler method and the backwadiet Enethod is the
low convergence order. Next we present a method that hahattignvergence order
and in which, at the same time, the stability property (4s5)dlid for any stepsizé
in solving the model problem (4.3).

We begin by introducing thirapezoidal rulefor numerical integration:

b
/ o(s)ds ~ 1 (b— a) [g(a) + g(b)] (4.18)

This rule is illustrated in Figure 4.1. The graphyf ¢(t) is approximated ofu, b
by the linear functiory = p;(¢) that interpolateg(¢) at the endpoints diz, b]. The
integral ofg(t) over[a, b] is then approximated by the integral of(¢) over [a, b].
By using various approaches, we can obtain the more comaetit

b
[o ds=1b-a)ls) +90) - 5 0-0)"g"©) (@19

for somea < ¢ < b.
We integrate the differential equation

Y'(t) = f(t,Y (1)
from¢t,, tOt,41:

Y (tni1) = Y(t) + / " (s, (5)) ds. (4.20)

n

THE TRAPEZOIDAL METHOD 57

y=9(t)

a b

Figure4.1 lllustration of trapezoidal rule

Use the trapezoidal rule (4.18) to approximate the integhgiplying (4.19) to this
integral, we obtain

Y (tns1) =Y (tn) + %h [f(tn, Y (tn)) + f(tng1, Y (Eng1))]

L) (4.21)
— Y (6n)

for somet,, < &, < t,4+1. By dropping the final error term and then equating both
sides, we obtain thigapezoidal methodor solving the initial value problem (1.7):

Yn+1 = Yn + %h [f(tnvyn) + f(thrlvynJrl)] , n>0, (422)

The truncation error for the trapezoidal method is

T = —5hY (&), (4.23)

It can be shown that the trapezoidal method is of secondram®iracy. Assuming
Yo = Yo, we can show

_ < 2
Jmax 1Y (tn) = yn(ta)] < ch

for all sufficiently smallh, with cindependent of. The method of proof is a variation
of that used for Euler’'s method in Chapter 2. In addition,ttla@ezoidal method is

58 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

absolutely stable. This higher order and its absolute lifiabas made the trapezoidal
method an importanttool when solving partial differenéiguations of parabolic type;
see Section 8.1 in Chapter 8.

Notice that the trapezoidal method is iamplicit method.In a general stepy,,+1
is found from the equation

h

Ynt+1 = Yn + §[f(tm Yn) + [(tnt1, Yns1))s (4.24)
although this equation can be solved explicitly in only atigkely small number of
cases. The discussion for the solution of the backward Eugjeation (4.11) applies
to the solution of the equation (4.24), with a slight vapati The iteration formula

(4.12) is now replaced by

yf(i]:ll) = Yo+ §[f(tn,yn) + .f(thrlvyr(zJJ)rl)]? j=0,1,2,.... (4.25)

If 3/7(10421 is a sufficiently good estimate gf, 1 and if 4 is sufficiently small, then the
iterateszyff}rl will converge toy,,+1 asj — oco. The convergence condition (4.13) is
replaced by

ﬁ . af(tn+layn+l)

2 Jy

Note that the condition (4.26) is somewhat easier to satfsliy (4.13), indicating
that the trapezoidal method is slightly easier to use tham#ttkward Euler method.

The usual choice of the initial gueg%ojl for (4.25) is based on the Euler method

<1 (4.26)

ygﬁl = Yn + hf (tn, Yn), (4.27)

or an Adams—Bashforth method of order 2 (see Chapter 6)
h
Uhdn = Yn 5 35 (b) = (b1, yr)]. (4.28)

These are callegredictor formulas In either of these two cases for generatyﬁ(ﬁl,
computegffll from (4.25) and accept it as the ragt, ;. In the first stepif = 0), we

use the Euler predictor formula rather than the predict@&% With both methods of
choosingyfgzl, it can be shown that the global error in the resulting sohuiyy, (¢,,) }

is still O(h?). If the Euler predictor (4.27) is used to defigﬁzl, and if we accept

yfllll as the value of,, 1, then the resulting new scheme is

B Ftyn) + Fltnsts g + B fEmm))], (429)

Ynt1 = Yn + 2

known asHeun’s method The Heun method is still of second-order accuracy.
However, it is no longer absolutely stable.

THE TRAPEZOIDAL METHOD 59

MATLAB program. In our implementation of the trapezoidal method, at eaep,st
with y,, available from the previous step, we use the Euler methoahoptite an
estimate ofy,,11:

0
yr(szl = Yn + hf(tn, yn)-
Then we use the trapezoidal formula to do the iteration

k h k
y1(1++11) = UYn + 5 f(tnvyn) + f(tn+17y7(1421):|

until the difference between successive values of thetders sufficiently small,
indicating a sufficiently accurate approximation of theusioin ,,+;. To prevent an
infinite loop of iteration, we require the iteration to stéd 0 iteration steps are taken
without reaching a satisfactory solution; and in this latiese, an error message will
be displayed.

function [t,y] = trapezoidal(t0O,yO,t_end,h,fcn,tol)
)

% function [t,y] = trapezoidal(t0,y0,t-end,h,fcn,tol)
)

% Solve the initial value problem

yA y’> = £(t,y), t0 <=t <=b, y(t0)=y0

% Use trapezoidal method with a stepsize of h. The
% user must supply an m-file to define the derivative
% £, with some name, say ’deriv.m’, and a first line
% of the form

% function ans=deriv(t,y)

% tol is the user supplied bound on the difference

% between successive values of the trapezoidal

% iteration. A sample call would be

% [t,z]=trapezoidal(t0,z0,b,delta, ’deriv’,1le-3)

)

% Output:

% The routine trapezoidal will return two vectors,

% t and y. The vector t will contain the node points
% t(1) = t0, t(j) = t0+(j-1)*h, j=1,2,...,N

% with

% t() <= tend, t(N)+h > t_end

% The vector y will contain the estimates of the

% solution Y at the node points in t.

A

% Initialize.

n = fix((t_end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;
y = zeros(n,1);

y(1) = y0;

60 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

i=2;
% advancing
while 1 <=n
fyt = feval(fen,t(i-1),y(i-1));
%
% Euler estimate
%
yt1l = y(i-1)+h*fyt;
% trapezoidal iteration
count = 0;
diff = 1;
while diff > tol & count < 10
yt2 = y(i-1) + h*x(fyt+feval(fcn,t(i),ytl1))/2;
diff = abs(yt2-yti);

ytl = yt2;
count = count +1;
end
if count >= 10
disp(’Not converging after 10 steps at t = ?)
fprintf (’%5.2f\n’, t(i))
end
y(i) = yt2;
i = 1i+1;

end
Example 4.2 Consider the problem
Y'(t) =AY (t) + (1 — X) cos(t) — (1 + N)sin(t), Y (0) =1, (4.30)

whose true solution i¥°(t) = sin(t) + cos(t). Euler's method is used for the
numerical solution, and the results for several values ahdh are given in Table
4.3. Note that according to the formula (2.10) for the truitzaerror, we obtain

T = 3hY" ().

The solutiont (¢) does not depend on But the actual global error depends strongly
on A, as illustrated in the table; and the behavior of the globralrés directly linked

to the size of\h and, thus, to the size of the stability region for Euler’s hoet. The
error is small, provided that\| & is sufficiently small. The cases of an unstable and
rapid growth in the error are exactly the cases in whidh is outside the range (4.7).
We then apply the backward Euler method and the trapezoidgiad to the solution
of the problem (4.30). The results are shown in Tables 4.4ahdwith the stepsize

h = 0.5. The error varies with\, but there are no stability problems, in contrast to
the Euler method. The solutions of the backward Euler metratithe trapezoidal
method fory,, 1 were done exactly. This is possible because the diffedegization

is linear inY". The fixed-pointiterations (4.12) and (4.25) do not coneevfen|\| h

is large. |

THE TRAPEZOIDAL METHOD 61

Table4.3 Euler's method for (4.30)

A t Error Error Error
h=0.5 h=0.1 h =0.01

-1 1 —246e—1 —4.32e —2 —4.22¢e—-3
2 —255e—1 —4.64e —2 —4.55e —3
3 —2.66e—-2 —6.78 —3 —7.22e—4
4 227e—1 39le—2 3.78e—3
5 2.72e —1 49le—2 4.8le—3
—-10 1 3.98¢e —1 —6.99e —3 —6.99e — 4
2 6.90e +0 —2.90e —3 —3.08e —4
3 1.1le+2 3.86e —3 3.64e —4
4 1.77¢e +3 7.07e =3 7.04e —4
5 283 +4 3.78e—-3 397e—-4
—50 3.26e +0 1.06e +3 —1.39%e —4

1

2 1.88e +3 1.1le+9 -—5.16e—5
3 1.08e +6 1.17e+15 8.25e —5
4 6.24e +8 1.23e+21 14le—4
5 359 +11 1.28e+427 7.00e —5

Table4.4 Backward Euler solution for (4.30}; = 0.5

t Error Error Error
A=-1 A=-10 A=-50

208e -1 197e -2 3.60e —3
—1.63e —1 —3.35e —2 —6.94e —3
—7.04e —2 819e—-3 2.18e—3

222e—1 267¢e—2 513e—3
10 —1.14e —1 —3.0de —2 —6.45e —3

o O B~ N

Equations with\ negative but large in magnitude are examplestiff differential
equations Their truncation error may be satisfactorily small withtnoo small a
value ofh, but the large size df\| may forceh to be much smaller in order that
is in the stability region. The backward Euler method andtthpezoidal method
are therefore very desirable because their stability regmontain all\h where) is
negative or\ is complex with negative real part. For stiff differentigjueations, one
must use a numerical method with a large region of absolatsliy, or elseh must
be chosen very small. The backward Euler method is preféaede trapezoidal
method when solving very stiff differential equations (8eeblems 14, 15), although

62

THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

Table4.5 Trapezoidal solution for (4.30); = 0.5

t Error Error Error
A=-—1 A=-10 A= —50

2 —113e—2 —2.78e -3 —79le—4
4 —143e—2 —89le—5 —89le—5
6 202e—-2 277e—3 4.72¢e—-4
8 —2.86e —3 —2.22¢e —3 —5.1le—4
10 —1.79e —2 —9.23e —4 —1.56e — 4

itis of lower-order. There are other methods, of higherewyébr approximating stiff
differential equations (see [44], [72, Chap. 8]); this isamtive area of research.
More extensive discussions on numerically solving stiffiedential equations can be
found later in Chapters 8 and 9.

PROBLEMS

. Show that the method defined by formula (4.17) is not altslylstable.
. Show that the trapezoidal method (4.22) is absolutelylstdut the scheme

(4.29) is not.

. Use backward Euler's method to solve Problem 3 of Chapter 2
. Use the trapezoidal method to solve Problem 3 of Chapter 2.

. Apply the backward Euler method to solve the initial vgdueblem in Problem

11 of Chapter 2 forx = 2.5,1.5,1.1, with h = 0.2,0.1,0.05. Compute the
errorin the solution at the nodes, determine the convergertders numerically,
and compare the results with those obtained by Euler’s ndetho

. Apply the trapezoidal method to solve the initial valueldem in Problem 11

of Chapter 2 forx = 2.5,1.5,1.1, with h = 0.2,0.1, 0.05. Compute the error
in the solution at the nodes, determine numerically the eayence orders,
and compare the results with that of the Euler method anddbkveard Euler
method.

. Solve the equation

1

Y'(t) = \Y (t) + e

— Atan"'(t), Y(0)=0;

Y (t) = tan~'(¢) is the true solution. Use Euler's method, the backward
Euler method, and the trapezoidal method. Ret= —1,—-10,—-50, and

h = 0.5,0.1,0.001. Discuss the results. In implementing the backward Euler

10.

11.

12.

13.

THE TRAPEZOIDAL METHOD 63

method and the trapezoidal method, note that the implieia&qgn fory,, 1
can be solved explicitly without iteration.

. Apply the backward Euler method to the numerical soludityy (t) = AY (¢)+

g(t)with A < 0and large in magnitude. Investigate how smatiust be chosen
for the iteration

yfgjll) :yn'i‘hf(tn-ﬁ-layfg-q)-l)) .7 :071127"'

to converge tay, 1. Is this iteration practical for very large values|af?

. Repeat Problem 5 of Chapter 3 using the backward Euleradeth

Determine whether the midpoint method

Ynt1 = Yn + 1 f(tng1/2, % (Yn + Ynt1)) 5
wheret,, 1,2 = (t, +t,11)/2, is absolutely stable.

Letd € [0, 1] be a constant, and dendtgy = (1 — 0) ¢, + 0 ¢,+1. Consider
the generalized midpoint method

Yn+1 = Yn + hf(tn+97 (1 - 9) Yn + eyn-f-l)

and its trapezoidal analog

Yn+1 = Yn +h [(1 - 9) f(tna yn) + ef(tn+17yn+l)] .

Show that the methods are absolutely stable wher{1/2, 1]. Determine the
regions of absolute stability of the methods wites § < %

As a special case in which the error of the backward Eukthod can be ana-
lyzed directly, we consider the model problem (4.3) agaiith W an arbitrary
real constant. The backward Euler solution of the problemiven by the
formula (4.10). Following the procedure for solving Prahld (c) in Chapter
2, show that

/\Qtne)\ tn

2
S h+ O,

Y(tn) - yh(tn) =

LetY (¢) be the solution, if it exists, to the initial value problem{L By
integrating, show that” satisfies

Y(#) =Y, —|—/t f(s,Y(s)) ds.

Conversely, show that if this equation has a continuougisolon the interval
to <t < b, then the initial value problem (1.7) has the same solution.

64

14.

15.

16.

THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

As in the previous problems, consider the model problér8)(with a real
constant\ < 0. Show that the solution of the trapezoidal method is

1+ ixn\"
tn) = 2 , > 0.
yh() (1_%/\]1) n =

Rewrite the solution formula as

un(tn) = eXp([log(l + 3Ah) ; log(1 — $Ah))] tn) |

and use Taylor polynomial expansiondef (1 + «) aboutu = 0 to show that

Y (tn) = yn(tn) = —5h*NtpeM + O(Y).
So forh small, the error is almost proportional k3.

Use the formula (4.10) for the backward Euler method &eddrmula from
Problem 14 for the trapezoidal method to show that the baak®&aler method
performs better than the trapezoidal method problem (4i8) wnegatively
very large.

In this exercise, we consider a method with third-ordart¢ation errors, which
is not convergent or stable.

(a) GivenY (t) 3 times continuously differentiable, show that
Y (tng1) = 3Y (tn) — 2Y (tn—1) + S h[Y'(tn) — 3Y" (tn-1)]
+ SRY" (t,) + O(hY). (4.31)
Thus a numerical method for solving the differential eqoati
Y'(t) = f(t,Y (1))
is
Ynt1 = 3Yn — 2Un—1 + 5h[f (tns Yn) = 3f(tn-1,yn1)], n>1.

This is a numerical method whose truncation erro©ig:?). It is an
example of a multistep method (see Chapter 6). To use theothetre
need a value fog;, called an artificial initial value, in addition to the
initial valueyy = Yj.

Hint: To prove (4.31), use a quadratic Taylor expansion about dfir p
t, for Y'(¢), including an error ternRs(¢). Use this to evaluat® (¢,,—1)
andY (t,,+1), along withY”(¢,,—1). Substitute into

Y (tng1) — {3Y (tn) — 2Y (tn—1) + 2h[Y"(tn) — 3Y"(tn-1)]}

THE TRAPEZOIDAL METHOD 65

to obtain the final term in (4.31).
(b) Now apply the method to solve the very simple initial varoblem

Y'(t)=0, Y(0)=1,

whose solution i¥”(¢) = 1. Show that if the initial values are chosen to
beyo, = 1,y1 = 1+ h, then the numerical solutionis, =1 —h+ h 2™,
Note that|y; — Y (k)] = h — 0ash — 0. Lett, = 1. Show that
|Y'(1) — yn| — oo ash — 0. Thus, the method is not convergent.

(c) Aslightvariant of the arguments of (b) can be used to sth@instability
of the method. Show that with the initial valugs = y; = 1, the
numerical solution igy,, = 1 for all n, while if the initial values are
perturbed taye o = 1, y.,1 = 1 + ¢, then the numerical solution becomes
Yem = 1 — e+ €2™. Show that at any fixed node poityf = ¢ > 0,
|Ye.n — yn| — 0o @sh — 0. Hence, the method is unstable.

CHAPTER 5

TAYLOR AND RUNGE-KUTTA
METHODS

To improve on the speed of convergence of Euler's methodpade for approxima-
tions toY (¢,+1) that are more accurate than the approximation

Y (tng1) = Y (tn) + hY'(tn),

which led to Euler’'s method. Since this is a linear Taylorypamial approximation,
it is natural to consider higher-order Taylor approximasoDoing this will lead to a
family of methods, called the Taylor methods, dependinghenarder of the Taylor
approximation being used.

In deriving a Taylor method, we need higher-order derivegiof the true solution,
and we obtain them using the solution itself by differeimigithe differential equation.
Such expressions for higher-order derivatives are ustiallg-consuming. The idea
of Runge—Kutta methods is to use combinations of compaositaf the right-side
function of the equation to approximate the derivative t®tma required order. The
resulting Runge—Kutta methods are among the most poputaoaein solving initial
value problems.

67

68 TAYLOR AND RUNGE-KUTTA METHODS

5.1 TAYLOR METHODS

To keep the initial explanations as intuitive as possible,will develop a Taylor
method for the problem

Y'(t) = —Y(t) + 2cos(t), Y(0)=1, (5.1)

whose true solution i%(¢) = sin(¢) + cos(t). To approximat&” (¢,+1) by using
information aboul” at¢,,, use the quadratic Taylor approximation

Y(tni1) = Y(tn) + RY'(t,) + 2R2Y" (t,). (5.2)
Its truncation error is
T (V) = 10%Y"(€,), somet, <&, < tny1. (5.3)

To evaluate the right side of (5.2), we can obt&if(¢,,) directly from (5.1). For
Y"(t), differentiate (5.1) to get

Y'(t) = =Y'(t) — 2sin(t) = Y (t) — 2 cos(t) — 2sin(t).
Then (5.2) becomes
Y (tnt1) = Y (tn) + h[=Y (t,) + 2 cos(tn,)]
+ $h2[Y (tn) — 2 cos(t,) — 2sin(t,)).
By forcing equality, we are led to the numerical method

Ynt1 = Yn + h[—yn + 2 cos(ty)]
+ 2h2[y, — 2cos(t,) — 2sin(t,)], n>0 (5.4)

with yo = 1. This should approximate the solution of the problem (5BBcause the
truncation error (5.3) contains a higher powerhathan was true for Euler's method
[see (2.10)], it is hoped that the method (5.4) will convergme rapidly.

Table 5.1 contains numerical results for (5.4) and for Esileethod, and it is clear
that (5.4) is superior. In addition, if the results for stepsh = 0.1 and0.05 are
compared, it can be seen that the errors decrease by a féefgpmximatelyl when
h is halved. This can be justified theoretically, as is diseddater.

In general, to solve the initial value problem

Y'(t) = f(t,Y(t), to<t<b, Y(to)=Yo (5.5)

by the Taylor method, select a Taylor approximation of derteider and proceed as
described above. For ordgrwrite

p
Y (tny1) = Y(tn) + hY (tn) 4+ - - + %Y(”) (tn), (5.6)

TAYLOR METHODS 69

Table5.1 Example of second-order Taylor method (5.4)

h t yn(t) Error Euler Error

0.1 2.0 0.492225829 9.25e —4 —4.64e —2
4.0 —1.411659477 1.2le—3 3.9le—2

6.0 0.682420081 —1.67e —3 1.39e —2

8.0 0.843648978 2.09e —4 —5.07e — 2

10.0 —1.384588757 1.50e —3 2.83e — 2

0.05 2.0 0.492919943 2.3le —4 —2.30e —2
4.0 —1.410737402 29le—4 1.92e —2

6.0 0.681162413 —4.08e —4 6.97e — 3

8.0 0.843801368 5.68e —5 —2.50e — 2

10.0 —1.383454154 3.62e —4 1.39e — 2

where the truncation error is
hP+1

(p+ 1)

FindY"(t),...,Y®)(t) by differentiating the differential equation in (5.5) sese

sively, obtaining formulas thatimplicitly involve onty, andY'(¢,,). Asanillustration,
we have the following formulas

Tpa (V) = YO (E,), by <€ <tpir. (5.7)

Y'(t) = fo+ fofs (5.8)

YO @) = fu+2 fiyf + Fyuf2+ Fo(fe + o f) (5.9)
where of of 62f
ft:Ea fyza_ya fty:at—aya

and so on are partial derivatives, and together vfitthey are evaluated &t, Y (¢)).
The formulas for the higher derivatives rapidly become vanplicated as the dif-
ferentiation order is increased.

Substitute these formulas into (5.6) and then obtain a nisgalenethod of the

form
P

h? h
Yni1 = Yo +hyp + Syt Fyﬁf’) (5.10)

by forcing (5.6) to be an equality. In the formula,

y;z:f(tnayn)a y;;: (ft+fyf) (tnayn)7

and so on, using the pattern of (5.8)—(5.9).
If the solutionY (¢) and the derivative functiorf(¢, z) are sufficiently differen-
tiable, then it can be shown that the method (5.10) will atis

_ < chP - <wn\. .
max (Y (t) = y(ta)| < ch ﬁgyf (t) (5.11)

70 TAYLOR AND RUNGE-KUTTA METHODS

The constant is similar to that appearing in the error formula (2.20) farl&’s
method. A proof can be constructed along the same lines asghd for Theorem
2.4 in Chapter 2. In addition, there is an asymptotic erramiala

Y (tn) — yn(tn) = hPD(t,) + O(hPT1) (5.12)

with D(t) satisfying a certain linear differential equation. Theule$5.11) shows
that for any integep > 1, a numerical method based on the Taylor approximation
of orderp leads to a convergent numerical method with order of corergrgp. The
asymptotic result (5.12) justifies the use of Richardsoxtepolation to estimate the
error and to accelerate the convergence (see Problems 3, 4).

Example 5.1 With p = 2, formula (5.12) leads to

Y (tn) = yn(tn) = 5lyn(tn) — yon(tn)]. (5.13)

Its derivation is left as Problem 3 for the reader. To illagtrthe usefulness of the
formula, use the entries from Table 5.1 with= 10:

Y0.1(10) = —1.384588757,
Y0.05(10) = —1.383454154.
From (5.13),
Y (10) — 90.05(10) = £[0.001134603] = 3.78 x 10~*.

This is a good estimate of the true erfo62 x 10~4, given in Table 5.1. |

5.2 RUNGE-KUTTA METHODS

The Taylor method is conceptually easy to work with, but abiaxe seen, itis tedious
and time-consuming to have to calculate the higher-ordevatée/es. To avoid the
need for the higher-order derivatives, the Runge—Kuttehows evaluatef (¢, y) at
more points, while attempting to retain the accuracy of tiaddr approximation. The
methods obtained are fairly easy to program, and they arengrtice most popular
methods for solving the initial value problem.

We begin with Runge—Kutta methods of orderand later we consider some
higher-order methods. The Runge—Kutta methods have trergidorm

Ynt+1 = Yn + AF (tn, yn; h), n >0, Yo = Yo. (5.14)

The quantityF'(¢,,, y,; h) can be regarded as some kind of “average slope” of the
solution on the intervdk,,, t,,+1]. Butits construction is based on making (5.14) act
like a Taylor method. For methods of ordzrwe generally choose

F(t,y;h) = b1 f(t,y) + baf (t + ah, y+ Bhf(t,y)) (5.15)

RUNGE-KUTTA METHODS 71

and determine the constanfs, 3, b1,b2} so that when the true solutio¥i(t) is
substituted into (5.14), the truncation error

Toi1 (V) = Y (tusr) — [V () + BE (b0, Y (£0); 1) (5.16)

will satisfy
T (Y) = O(h?), (5.17)

just as with the Taylor method of order

To find the equations for the constants, we use Taylor expaasd compute the
truncation errotT, 1 (Y). For the termf(¢t 4+ ah,y + Shf(t,y)), we first expand
with respect to the second argument aroyntilote that we need a remaind@(h?):

ft+ah,y+ Bhf(t,y)) = f(t+ ah,y) + fy(t + ah,y)Bhf(t,y) + O(h?).

We then expand the terms with respect tothariable to obtain

ft+ah,y+phf(t,y)) = f+ frah+ f,Bhf + O(h?),

where the functions are all evaluatedaty). Also, recall from following (5.10) that

Y" = fi+ fyu f.
Hence
Y (t+h) :Y+hY’+h;Y”+O(h3)
=Y+hf+%2(ft+fyf)+(9(h3).
Then

Topr(Y) =Y (t+h) = [Y(t) +hF(t,Y(t);h)]
=Y +hf+5h%(fe+ £, f)
— [Y + hbyf + boh (f + ahf, + Bhfy f)] + O(h?)
=h(1—by —by) f+ 3h*[(1 —2ba) f:
+ (1= 2bafB) f, f] + O(h?). (5.18)

The requirement (5.17) implies that the coefficients mussfyathe system
1—0b; —by =0,
1-2 bQO[= O,
1—-2b8=0.

Therefore)
bQ;’éO, blzl—bg, O[:ﬁ:—. (519)
2bs

72 TAYLOR AND RUNGE-KUTTA METHODS

z=Y(1)

Y (©)+h F(t,Y(t);h)

t t+h

Figure5.1 Anillustration of Runge—Kutta method (5.20); the slopd.efis f (¢, Y (¢)), that
of Lyis f(t + h, Y (t) + hf(t, Y (t))), and those oLs and L, are the averag€'(t, Y (¢); h)

Thus there is a family of Runge—Kutta methods of or2letepending on the choice

of by. The three favorite choices abe = 1, 3, and1.

With by = % we obtain the numerical method

P Forn) + Fln By + 1 f (o)), = 0. (5.20)

Yn+1 = yn+ D)

Thisis also Heun’s method (4.29) discussed in Chapter 4ntiheery,,+h f (¢, yn)
is the Euler solution at,, ;. Using it, we obtain an approximation to the derivative
att,+1, namely,

g1, Yn + hf(tnsyn))-

This and the slopé(¢,,,y,) are then averaged to give an “average” slope of the
solution on the intervdk,,, t,,+1], giving

F(tn,ynih) = $[f(tn,yn) + f(tn + By + hf (tn yn))]-

This is then used to predigt,;1 from y,,, in (5.20). This definition is illustrated in
Figure 5.1 forF'(¢,Y (¢); h) as an average slope Bf on[t,t + h].
Another choice is to usk, = 1, resulting in the numerical method

Yn+1 = Yn + hf(tn + %h, Yn + %hf(tﬂa yn)) : (521)

RUNGE-KUTTA METHODS 73

Table5.2 Example of second-order Runge—Kutta method

h t yn(t) Error

0.1 2.0 0491215673 1.93e —3
4.0 —1.407898629 —2.55e — 3

6.0 0.680696723 5.8le —5

8.0 0.841376339 2.48e — 3

10.0 —1.380966579 —2.13e — 3

0.05 2.0 0.492682499 4.68e — 4
4.0 —1.409821234 —6.25e —4

6.0 0.680734664 2.0le —5

8.0 0.843254396 6.04e — 4

10.0 —1.382569379 —5.23e —4

Example 5.2 Reconsider the problem (5.1):
Y'(t) = =Y (t) + 2cos(t), Y(0)=1.

Here
f(t,y) = —y +2cos(t).

The numerical results from using (5.20) are given in Tab% They show that the
errors in this Runge—Kutta solution are comparable in amuto the results obtained
with the Taylor method (5.4). In addition, the errors in T@bl2 decrease by a factor
of approximatelyd whenh is halved, confirming the second-order convergence of
the method. |

5.2.1 A general framework for explicit Runge—Kutta methods

Runge—Kutta methods of higher-order can also be developedexplicit Runge—
Kutta formula withs stages has the following form:

21 = UYn,

Zo = Yn+hazyf(tn,21),

z3 = yYn+hla tn,z1) +a tn + coh, 22)],

3 . Y laz,1 f(tn, z1) + az2 f(2h, 22)] (5.22)
Zs = Yn + h [as,lf(tna Zl) + as,Qf(tn + Cth 22)

4+ 4 a573—1f(tn + cs—1h, Zs—l)])

Yn+1 = Yn —+ h [blf(tn, Zl) “+ bgf(tn + CQh, ZQ)
+ooot b1 f(tn +cs—1h, zs—1) + bs f (tn + csh, 25)] - (5.23)

74 TAYLOR AND RUNGE-KUTTA METHODS

Hereh = t,11 — t,. The coefficientc;,a; ;,b;} are given and they define the
numerical method. The functiofi of (5.14), defining a one-step method, is defined
implicitly through the formulas (5.22)-(5.23).

More succinctly, we can write the formulas as

i1
zizyn—i—hZai,jf(tn—i—cjh,zj), i=1,...,s, (5.24)

J=1

YUni1=Un+h Y bif(tn +cih,z)). (5.25)

J=1

The coefficients are often displayed in a table calld8ugcher tableayafter J. C.
Butcher):

O =C1
C2 a1
C3 as,1 as,2
(5.26)
Cs as,1 as,2 e as,s—1
| bl b2 T bsfl bs

The coefficientdc; } and{a; ; } are usually assumed to satisfy the conditions

i—1
Zaiyj = Cq, i:2,...,5. (527)
Jj=1

Example 5.3 We give two examples of well-known Runge—Kutta methods.

e The method (5.20) has the Butcher tableau
0
1] 1
| 1/2 1/2

e A popular classical method is the following fourth-ordeopedure.

21 = Yn,

22 = Yn + %hf(tmzl)a

z3 = Yn + %hf(tn—i— %h,zz),
z2g=Yn+hf(tn+3h, 23),

Ynt1 = Yn + %h [f (tn,21) +2f (tn + %}%22)

+2f (tn + %h,z;;) + f(tn + h,24)]) (5.28)

CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR 75

The Butcher tableau is

0
1/2 | 1/2
1/2 | 0 1/2 (5.29)

1 0 0 1

| 1/6 1/3 1/3 1/6
Following an extended calculation modeled on that in (5.%8 can show
Thi1 = O(RS).

When the differential equation is simpl/ (t) = f(t) with no dependence of
f onY, this method reduces to Simpson'’s rule for numerical irgégn on
[tn, tnt1]. The method (5.28) can be easily implemented using a compiuge
programmable hand calculator, and it is generally quiteiesde. A numerical
example is given at the end of the next section. |

5.3 CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR

We want to examine the convergence of the one-step method
Ynt1 = Yn + hE(tn, yn; h), n >0, Yo = Yo (5.30)
to the solutiory (¢) of the initial value problem

Yi(t) = f(t,Y(t), to<t<b,
Y (k) = Yo. (5.31)
Using the truncation error of (5.16) for the true solutibnwe introduce

lY) = 3T (V)

In order to show convergence of (5.30), we need to hay®) — 0 ash — 0. Since

Y (tns1) = Y(tn)

T(Y) = -

— F(tn,Y(tn), h; f), (5.32)
we require that

F(t,Y(t),h; f) = Y'(t) = f(t,Y(t)) ash—0.
Accordingly, define

d(h) = sup [f(t,y)— F(ty,h; f)l, (5.33)
to<t<b
—oo<y<oo

and assume
d(h) - 0 ash—0. (5.34)

76 TAYLOR AND RUNGE-KUTTA METHODS

This is occasionally called theonsistency conditiofor the one-step method (5.30).
We can rewrite (5.32) in the form

Y (tny1) =Y (tn) + hF (tn, Y (tn), b f) + hra(Y). (5.35)
We then introduce
7(h) = max |7,(Y)]|.
togtngb

The condition (5.34) can be used to sho@i) — 0 ash — 0; or we may show this
result by other means (e.g. see (5.17)).
We also need a Lipschitz condition @f) namely

[F(t,y,hi f) = F(t,z,h; f)| < Ly — 2| (5.36)

foralltg <t < b, —o0 < y,z < o0, and all smallh > 0. This is in analogy with
the Lipschitz condition (1.10) fof (¢, z) of Chapter 1 which was used to guarantee
the existence of a unique solution to the initial value peobforY’ = f(¢,Y). The
condition (5.36) is usually proved by using the Lipschitadition (1.10) onf (¢, y).

For example, with method (5.21), we obtain

[F(t,y,hi f) = F(t, 2z, b f)|
=|f(t+ sh,y+ ihf(t,y)) — f(t+ Sh,z+ $hf(t,2))]
S K|y =2+ 5h([f(ty) - f(t.2)]
<K (1+3hK) |y —z|.

The last two inequalities use the Lipschitz condition (}.8dr f. Choosel =
K1+ 3K)forh <1.

Theorem 5.4 Assume that the Runge—Kutta method (5.30) satisfies thehitipson-
dition (5.36). Then, for the initial value problem (5.31etsolution{y,, } satisfies

e(b—to)L _
A, 1Y () — yn| < eC~OL Yy — yol + [T} 7(h), (5.37)
where
7(h) = max |7(Y)]. (5.38)

If the consistency condition (5.34) is also satisfied, themtumerical solutiody,, }
converges td” ().

Proof. Subtract (5.30) from (5.35) to obtain
en+1 = €n + A [F(tn, Yo, b f) = F(tn, yn, b;)] + hrn(Y) (5.39)

in whiche,, = Y(¢,) — y». Apply the Lipschitz condition (5.36) and use (5.38) to
obtain
lent1] < (L+hL)|en| + hro(h), to <ty <b. (5.40)

CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR 77

As with the convergence proof in Theorem 2.4 for the Eulertradt given in Section
2.2 of Chapter 2, this leads easily to the result (5.37).

In most cases, it is known by direct computation thdt) — 0 ash — 0, and in
that case, convergence ff,, } to Y (¢) is immediately proved. But all that we need
to know is that (5.34) is satisfied. To see this, write

hro(Y) =Y (tny1) = Y(tn) — hE(tn, Y (tn), h; f)
=hY'(t,) + %QY”(gn) — hE(tn,Y (tn), h;),
h2
Rlra(YV)] < ha(h) + - 1V

r(h) < 6(h) + Sh V"]

Thust(h) — 0 ash — 0, completing the proof. The preceding examples are
illustrations of the theorem. |

The following result is an immediate consequence of (5.37).

Corallary 5.5 If the Runge—Kutta method (5.30) has a truncation effp(Y") =
O(h™*1), then the error in the convergenceff,,} to Y (¢) on[to, b] is O(h™).

It is not too difficult to derive an asymptotic error formularfthe Runge—Kutta
method (5.30), provided one is known for the truncation erAssume

To(Y) = @(t,)h™ ! + O(h™+?) (5.41)

with (t) determined by (¢) andf (¢, Y (¢)). As an example, see the result (5.18) to
obtain this expansion for second-order Runge—Kutta meth&trengthened forms
of (5.34) and (5.36) are also necessary. Assume

OF(t,y, h;
Pt)~ Ptz f) = 2R Gy oy -2 642
and also
sy = sup | OFEMu NN aey o (543
to<t<b dy dy
—oo<Ly<oo

In practice, both of these results are straightforward taficm. With these assump-
tions, we can derive the formula

Y(tn) = yn(tn) = D(ta)h™ + O(h™), (5.44)
with D(t) satisfying the linear initial value problem

D'(t) = f,(t,Y(t))D(t) + ¢(t), D(to) = 0. (5.45)

78 TAYLOR AND RUNGE-KUTTA METHODS

Stability results can be obtained for Runge—Kutta methodsalogy with those
for Euler's method as presented in Section 2.4 of Chapter@okhit any discussion
here.

As with Taylor methods, Richardson’s extrapolation canustified for Runge—
Kutta methods using (5.44), and the error can be estimatedthEe second-order
method (5.20), we obtain the error estimate

Y (tn) — yn(tn) = 5yn(tn) — yan(tn)],
just as we obtained it earlier for the second-order Taylothoé; see Problem 3.
Example 5.6 Estimate the error foh = 0.05 and¢ = 10 in Table 5.2. Then
Y(10) — y0.05(10) = 1[~1.3825669379 — (—1.380966579)] = —5.34 x 107%.

This compares closely with the actual error-65.23 x 10~4. |

Example 5.7 Consider the problem

1
Y = I 2Y%, Y(0)=0 (5.46)

with the solutionY” = z/(1 +2?2). The method (5.28) was used with a fixed stepsize,
and the results are shown in Table 5.3. The stepsizes are).25 and2h = 0.5.
The asymptotic error formula (5.44) becomes

Y (z) — yn(x) = D(z)h* + O(h®), (5.47)
in this case, and this leads to the asymptotic error estimate
Y (@) = yn(z) = 35 [yn(x) — yan(x)] + O(h°). (5.48)

In the table the column labeled “Ratio” gives the ratio oféneors for corresponding
node points aa is halved. The last columnis an example of formula (5.48caBse
T,.(Y) = O(h®) for method (5.28), Theorem 5.4 implies that the rate of cogsece
of y,(z) to Y (2) is O(h*). The theoretical value of “Ratio” is6, and ash decreases
further, this value will be realized more closely. |

5.3.1 Error prediction and control

The easiest way to predict the erfd(t) — y,(¢) in a numerical solutiony, (¢) is to
use Richardson’s extrapolation. Solve the initial valuebpem twice on the given
interval [y, b], with stepsize2h andh. Then use Richardson’s extrapolation to
estimatey (t) — yx (t) in terms ofyy, (t) — y2r(t), as was done in (5.13) for a second-
order method. The cost of estimating the error in this waynisgproximatelys0%
increase in the amount of computation, as compared withdkeaf computing just

CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR 79

Table5.3 Example of Runge-Kutta method (5.28)

x yn(x) Y(z) —yn(z) Y(x)—yn(z) Ratio 5 [yn(x) - yon ()]
2.0 0.39995699 4.3e —5 1.0e — 3 24 6.7 — 5
40 0.23529159 2.5e —6 7.0e — 5 28 4.5¢ — 6
6.0 016216179 3.7e -7 1.2 — 5 32 77— 7
8.0 0.12307683 9.2e—8 3.4e—6 36 2.2e — 7
10.0 0.09900987 3.le—8 1.3 — 6 41 8.2e — 8

yr(t). This may seem a large cost, but it is generally worth payikuept for the
most time-consuming of problems.

It would be desirable to have computer programs that woulesa differential
equation on a given intervél,, b] with an error less than a given error tolerance
e > 0. Unfortunately, this is not possible with most types of nuiced methods for
the initial value problem. If at some poitive discover thaY” (t) — yy,(¢) is too large,
then the error cannot be reduced by merely decredsifigm that point onward in
the computation. The errdr (t) — y,(t) depends on the cumulative effect of all
preceding errors at points < t. Thus, to decrease the errortait is necessary to
repeat the solution of the equation frag) but with a smaller stepsize. For this
reason, most package programs for solving the initial vahodlem will not attempt
to directly control the error, although they may try to memior bound it. Instead,
they use indirect methods to affect the size of the error.

TheerrorY (t,,) — yn(t,) is called theglobal error or total error at,,. Rather than
controlling this global error, we control another error. \kiéroduce the following
initial value problem:

The solutionu,, (t) is called thdocal solution to the differential equation at the point
(tn,yn). Using it we introduce théocal error

LE,11 = un(tns1) — Ynt1- (5.50)

This is the error introduced into the solution at the paint; when assuming the
solutiony,, att, is the exact solution. Most computer programs that contair e
control are based on estimating the local error and therralling it by varying i
suitably. By so doing, they hope to keep the global errorsieffitly small. If an error
parametet > 0 is given, the better programs choose the stepsizeensure that the
local errorL E,, 1 is much smaller, usually satisfying something like

|LEn+1| S E(tn+1 — tn) (551)

This is called controlling therror per unit stepsizewith which the global error is
generally also kept small. For many differential equatjghs global error will then
be less tham(t,,+1 — to).

80 TAYLOR AND RUNGE-KUTTA METHODS

Table5.4 Fehlberg coefficienta;, 3;;

i o« Pio Bi1 Biz Biz Bia

1 1
L3 1
3 3 9
2 5 m 3
3 12 1932 7200 7296
13 2197 2197 2197
439 3680 845
4 1 216 -8 513 T 2104
5 1 _ 8 2 _ 3544 1859 1
2 27 2565 4104 10

For more detailed discussions of one-step methods, edlgdRimge—Kutta meth-
ods, see Shampine [72], Iserles [48, Chap. 3], and Deuflhaddarnemann [33,
Chaps. 4-6].

5.4 RUNGE-KUTTA-FEHLBERG METHODS

To estimate the local error (5.50), various techniques eamded, including Richard-
son’s extrapolation. A novel technique was devised in tH&0$9and it has led to the
currently most popular Runge—Kutta methods. Rather theapeting with a method
of fixed order, one simultaneously computes by using two ouglof different orders.
The two methods share most of the function evaluationsatfeach step from, to
tn+1. Then the higher-order formula is used to estimate the émrtire lower-order
formula. These methods are often calkethlberg methodsve give one such pair of
methods, of orders and5.

Define six intermediate slopes|ify,, t,,+1] by

Vo = f(tnayn)a

i-1 (5.52)
U; = f tn+azhayn+hZﬁwv7) 1= 172137415'

Jj=0

Then the fourth- and fifth-order formulas are given by

4

Yni1=Yn+h Y Vivi, (5.53)
1=0
5

Unt1=Yn +h Z 0;ivi. (5.54)
=0

The coefficientsy;, 8;;, v:, ; are given in Tables 5.4 and 5.5.
The local error in the fourth-order formula (5.53) is esttethby

LEn+1 ~ gn+1 — Yn+1- (555)

RUNGE-KUTTA-FEHLBERG METHODS 81

Table5.5 Fehlberg coefficients;, d;

7 0 1 2 3 4 5
o250 1408 2197 1

Vi 216 2565 1104 5

5 16 () 6656 28561 _ 9 2
i 133 12825 56430 50 55

Table5.6 Example of fourth-order Fehlberg formula (5.53)

h t yn(t) Y(t) =yn(t) 9n(t) = yn(t)

0.25 2.0 0.493156301 —5.7le—6 —9.49e —7
4.0 —1.410449823 3.7le — 6 1.62e — 6

6.0 0.680752304 248e—6 —397e -7

8.0 0.843864007 —5.79% -6 —1.29e—6

10.0 —1.383094975 2.34e — 6 1.47¢ — 6

0.125 2.0 0.493150889 —2.99e -7 —2.35e -8
4.0 —1.410446334 2.17e — 7 4.94e — 8

6.0 0.680754675 1.14e —7 —1.76e —8

8.0 0.843858525 —312e -7 —347e—-8

10.0 —1.383092786 1.46e — 7 4.65e — 8

It can be shown that this is a correct asymptotic resulb as> 0. By using this
estimate, ifLF,, .1 is too small or too large, the stepsize can be varied so av¢o gi
a value forLE,, 1, of acceptable size. Note the two formulas (5.53) and (5.58) u
the common intermediate slopeg . . ., v4. At each step, we need to evaluate only
six intermediate slopes. In a number of programs, the fifttensolutiong,, 1 is
actually the numerical solution used, even though the ésrbeing controlled only
for the fourth-order solutiony,, ;1.

Example 5.8 Solve
Y'(t) = =Y (t) + 2cos(t), Y(0)=1 (5.56)

whose true solution i¥"(¢) = sin(t) 4 cos(t). Table 5.6 contains numerical results
for h = 0.25 and0.125. Compare the global errors with those in Tables 5.1 and 5.2,
where second-order methods are used. Also, it can be seethéhgiobal errors in

yn, decrease by factors af to 21, which are fairly close to the theoretical valuelof

for a fourth-order method. The truncation errors, estirddtem (5.55), are included

to show that they are quite different from the global erroneTpreceding examples
are illustrations of the theorem. |

The method (5.52) to (5.55) usgs.1 only for estimating the truncation error in
the fourth-order method. In practicg, ;; is kept as the numerical solution rather than
yna1; thusg,, should replacey,, on the right sides of (5.52) to (5.54). The quantity

82 TAYLOR AND RUNGE-KUTTA METHODS

Table5.7 Example of fifth-order method (5.54)

h t In(t) Y (t) = Gn(t)

0.25 2.0 0.493151148 —5.58e -7
4.0 —1.410446359 2.43e -7

6.0 0.680754463 3.26e — 7

8.0 0.843858731 —5.18¢e —7

10.0 —1.383092745 1.05e — 7

0.125 2.0 0.493150606 —1.61e —8
4.0 —1.410446124 8.03e — 9

6.0 0.680754780 8.65¢ — 9

8.0 0.843858228 1.53e — 8

10.0 —1.383092644 4.09e — 9

in (5.55) will still be the truncation error in the fourth-@er method. Programs based
on this will be fifth-order, but they will vary their stepsizeto control the local error
in the fourth-order method. This tends to make these progneary accurate with
regard to global error.

Example 5.9 Repeatthe last example, but use the fifth-order methoditbesian the
preceding paragraph. The results are given in Table 5.7e that the errors decrease
by approximatel\32 whenh is halved, consistent with a fifth-order method. W

5.5 MATLAB CODES

MATLAB ® contains an excellent suite of programs for solving theidahitalue
problem for systems of ordinary differential equations aelhted problems. The
programs use a variety of methods, and in this text we intedund illustrate a few
of these programs. For a complete description of these pregrand the various
options that are available when using them, go to the doctatien for MATLAB
or to the excellent text by Shampine et al. [74]. Each such M#B program solves
a given differential equation in such a manner that the eggohlocal error in each
component of the solution satisfies a given error test. Fangles equation the
estimated local error in passing fromit,,) to y(¢,+1), call ite(¢,), is to satisfy

le(tn)| < max {AbsTol, RelTol |y(t,)|}

The error tolerance#bsTol and RelTol can be specified by having the user run
the MATLAB programodeset; when left unspecified, the default tolerances are
AbsTol = 10~°, RelTol = 10~3. For a discussion of the construction of this MAT-
LAB suite for solving ordinary differential equations, s&leampine and Reichelt [73]
or Shampine, Gladwell, and Thompson [74].

MATLAB CODES 83

Figure5.2 The solution values to (5.56) obtained &ye45 are indicated by the symbel
The curve line is obtained by interpolating these solutialugs fromode45 usingdeval

The codeode45 is an implementation of a method similar to the Runge—Kutta—
Fehlberg method presented earlier. The progesteds uses a pair of formulas
of orders 4 and 5 by Dormand and Prince [34, cf. Table 2], agatimating the
local error as in (5.55). We illustrate the use®fe45 with the following program
test_ode4b.

Example5.10 We illustrate the use obde45 by solving the earlier test equation
(5.56). When callingest_ode45, we use\ = —1 andthe error tolerance®sTol =
1075, RelTol = 10~%. Inthe prograntest_ode45, odeset is used to set parameter
values that are used be45. For a complete description of these parameter values
and for more a complete discussion of the varied optionssorgode45, consult the
MATLAB documentation. We note that in the call to prograte45, we specify the
derivative function by giving as an input the function ha@tleriv. The outpusoln
from ode45 is a MATLAB structure, and it contains all of the informatioreded to
obtain the solution and to interpolate the solution to otredues of the independent
variable. In our test program, we use the MATLAB prograaval to carry out the
interpolation on an evenly spaced grid. This could have limre directly when
callingode45, but we have chosen a more general approach to usiags. Figures
5.2 and 5.3 contain, respectively, the interpolated nuraksolution and the error in
it. |

84

TAYLOR AND RUNGE-KUTTA METHODS

x 10

1.5

0.5¢]

0®

-1.5 : ‘ :
0

Figure5.3 The errors in the solution to (5.56) obtained usiag45

The code described in Example 5.10 proceeds as follows.

function test_ode45(lambda,relerr,abserr)

function test_ode45(lambda,relerr,abserr)

This is a test program for the ode solver ’ode4b’.

The test is carried out for the single equation

y’ = lambda*y + (1-lambda)*cos(t) - (1+lambda)*sin(t)

The initial value at t=0 is y(0)=1. The true solution is
y = cos(t) + sin(t)

The user can input the relative and absolute error

tolerances to be used by ode45. These are incorporated

using the initialization program ’odeset’.

The program can be adapted easily to other equations and

other parameter values.

Initialize and solve

options = odeset(’RelTol’,relerr,’AbsTol’,abserr);

t_begin = 0; t_end = 20;

y-initial = true_soln(t_begin);

num_fcn_eval = 0; % initialize count of derivative evaluations
soln = ode45(@deriv, [t begin,t_end],y_initial,options);

MATLAB CODES 85

% See below for function deriv.

% Produce the solution on a uniform grid using interpolation
% of the solution obtained by ode45. The points plotted with
% 0’ are for the node points returned by ode45.

h_plot = (t_end-t_begin)/200; t_plot = t_begin:h plot:t_end;
y-plot = deval(soln,t_plot);
figure

plot(soln.x,soln.y,’0’,tplot,y_plot)
title([’Interpolated solution:’,...
> points noted by ‘‘o’’ are at ode45 solution nodes’])

xlabel([’\lambda = ’,num2str(lambda)])
disp(’press on any key to continue’)
pause

% Produce the error in the solution on the uniform grid.
% The points plotted with ’0’ are for the solution values
% at the points returned by ode45.

y_true = true_soln(t_plot);

error = y_true - y_plot;

y-truenodes = true_soln(soln.x);

errornodes = y_truemnodes - soln.y;

figure

plot(soln.x,errornodes,’o’,t_plot,error)

title(’Error in interpolated solution’)
xlabel([’\lambda = ’,num2str(lambda)])

norm_error = norm(error,inf);

disp([’maximum of error = ’,num2str(normerror)])

disp([’number of derivative evaluations = ’,...
num2str (num_fcn_eval)])

function dy = deriv(t,y)

% Define the derivative in the differential equation.
dy = lambda*y + (l1-lambda)*cos(t) - (1+lambda)*sin(t);
num_fcn_eval = num_fcn_eval + 1;

end % deriv

function true = true_soln(t)

% Define the true solution of the initial value problem.
true = sin(t) + cos(t);

end % true_soln

end) test_ode4b

86 TAYLOR AND RUNGE-KUTTA METHODS

5.6 IMPLICIT RUNGE-KUTTA METHODS

Return to (5.24)—(5.25) for the definition of arstage Runge—Kutta (RK) method.
An s-stageimplicit Runge—Kutta methokas the form

zi:yn—i-hZai_jf(tn—i-cjh,zj), 1=1,...,s, (5.57)
j=1

YUni1 =Yn +h Y bif(tn +cjh,2) . (5.58)
j=1

It has the Butcher tableau

c1 | a1 v Als

C2 | G21 az,s
: (5.59)

Cs as,1 As,s

| b bs

We give here a very brief introduction to implicit RK methedsferring to Chapter
9 for a more extensive discussion of the topic.

The equations (5.57) form a simultaneous systemradnlinear equations for the
s unknownszy, . . ., zs; and if the equation’ = f(¢,y) is a system ofn differential
equations, then (5.57) is a simultaneous systersnefnonlinear scalar equations.
Why does one want to consider such a complicated numericlod@ The answer
is that a number of such methods (5.57)-(5.58) have desinalnerical stability
properties that are important in solving a variety of impaitclasses of differential
equations.

We introduce one approach to deriving many such methods.agfm by convert-
ing the differential equation

YI(t) = f(t,Y (1))

into an integral equation. Integrating the equation overithervallt,,, t], we obtain
t t
/ Y'(r)dr = / f(r,Y(r))dr,
tn tn

Y(t) =Y (tn) —|—/t f(r,Y(r))dr. (5.60)

Approximate the equation, first by replaciidt,,) with y,,, and then by replacing the
integrand with a polynomial interpolant of it. In particulahoose a set of parameters

0<m < <1 <1

Let p(r) be the unique polynomial of degree s that interpolated (r, Y (r)) at the
node points{t, ; =t, + h:i=1,...,s} ON [ty,t,+1]; See Appendix B. Then

IMPLICIT RUNGE-KUTTA METHODS 87

(5.60) is approximated by

t
Y() = yn + /t p(r)dr. (5.61)

n

Using the Lagrange form of the interpolation polynomiag$B.6) from Appendix
B], we write

p(r) = Z f(tnj: Y (tn,5))l5(r).

The Lagrange basis functiof$;(r)} can be obtained from (B.4). Then (5.61) be-
comes

S t
Y(t)myn+ Y fltns, Y(tw))/ 1;(r) dr-. (5.62)
j=1 tn
We now determine approximate values{of(¢,, ;) : s = 1, ..., s} by forcingequal-

ity in the expression (5.62) at the poidts, ; }. Let{y, ; } denote these approximate
values. They are to be determined by solving the nonlinestesy

s b
Yni :yn—i—Zf(tn,j,yn,j)/ Li(rydr, i=1,...,s. (5.63)
j=1

n

If 7, = 1, then we defing,,+1 = vy, s. Otherwise, we define

s tni1
Uit =+ 3 Flngs) / L,(r) dr. (5.64)

=1 b

The integrals in (5.63) and (5.64) are easily evaluated vemaill give a particular
case below withs = 2.

The general method of forcing an approximating equationetdrbe at a given
set of node points is callecbllocation and the pointg¢,,;} at which equality is
forced are called theollocation node pointsWe should note that some Runge—Kutta
methods are not collocation methods. An example is thevatlg implicit method
given by Iserles [48, p. 44]:

0| 0 0
2/311/3 1/3 (5.65)
| 1/4 3/4

5.6.1 Two-point collocation methods

Let0 <7 <7 <1,andrecall that, ; = t, + hm andt, o = t, + h7e. Thenthe
interpolation polynomial is

) = ey et = 1) Sl Y (0) + 0= 1) S 12V (102).
(5.66)

88 TAYLOR AND RUNGE-KUTTA METHODS

Following calculation of the integrals, the system (5.643 the Butcher tableau

| (13 = [=]}/ 2 — 7)) —7i/(2[r2 — 7))

T2 7/ (2[r2 — 7)) (e —m]* = 72)/ (2[r2 — 7)) (5.67)
| (B -1-7")/Qr-n]) ((1-n]*-1)/Q2r-mn)

As a special case, note that whan= 0 andr, = 1, the system (5.64) becomes

yn,l = Yn,
Yn,2 = Yn + %h [f(tna yn,l) + f(tn+17yn,2)] .

Substituting from the first equation into the second equediod usingy,,+1 = yn, 2,
we have

Ynt+1 = Yn + %h [f (tnsyn) + f(tnt1, Ynt1)]

which is simply the trapezoidal method.
Another choice that has very good convergence and stapilitgerties is to use

7-1:%—%\/5, Tg = é"’%\/g (568)
The Butcher tableau is

(3-+3)/6 ‘ 1/4 (3-2v3) /12
(3+v3)/6 | (3+2V3) /12 1/4 (5.69)

| 1/2 1/2

The associated nonlinear system is

2
Uni =Yn+ Y aijf(tn +Tihoyn;), =12, (5.70)

j=1

where we have used the implicit definition of; ; } that uses (5.59) to reference the
elementsin (5.69). Then

h
Yn+1 = Yn + = [f(tn+17 yn,l) + f(tn+layn,2)] . (571)

2
This method, called thisvo stage Gauss methpid exact for all polynomial solutions
Y (¢) of degree< 4. Showing that it has degree of precision 2 is straightfodyar
because the linear interpolation formula (5.66) is exacmi’(t) = f(¢, Y (t)) is
linear. Proving that the degree of precision is 4 is a morestutiial argument, and
we refer the reader to [48, p. 46]. It can be shown that thecatian error for this
method has siz&(h®), and thus the convergencedyh*). It also has desirable
stability properties, some of which are taken up in Probl&anid some of which are
deferredto Chapter 9. A disadvantage of the method is thetteesolve the nonlinear
system in (5.70).

IMPLICIT RUNGE-KUTTA METHODS 89

A number of other families of implicit Runge—Kutta methods aiscussed in
Chapter 9. These methods have stability properties thaertiredm especially useful
for solving stiff differential equations.

PROBLEMS

1. A Taylor method of orde3 for problem (5.1) can be obtained using the same

procedure that led to (5.4). On the basis of third-order @agpproximation

h? h3
Y(tni1) = Y (tn) +hY'(t,) + 7Y”(ztn) + FY”’(ztn),
derive the numerical method
h2
Yn+1 = Yn + h[—yn + 2 cos(tn)] + E[yn — 2cos(ty) — 2sin(ty,)]
h3
+ —[~yn + 2sin(t,)], n>0. (5.72)

6

Implement the numerical method (5.72) for solving the peoid(5.1). Compute
with stepsizes of = 0.1,0.05 for 0 < ¢ < 10. Compare to the values in Table
5.1, and also check the ratio by which the error decreases wiehalved.

Hint: To simplify the programming, just modify the Euler programen in
Chapter 2.

. Compute solutions to the following problems with a seconder Taylor method.
Use stepsizes = 0.2,0.1,0.05.

(@ Y'(t) = [cos(Y(t))]?, 0<t<10, Y(0)=0;
Y (t) = tan=1(¢).
O Y't)=1/1+3) -2[Y()]?, 0<t<10, Y(0)=0;

Y(t) =t/(1+t2).
© Y'(t)=3Y(®)[1—5Y(®)], 0<t<20, Y(0)=1;
Y () =20/(1 + 19e7/4).

@ Y'(t)=—-[Y(®)]? 1<t<10, Y(1)=1;
Y(t) =1/t

e Y'(t)=—etY(t), 0<t<10, Y(0)=1;
Y(t) =exp(et—1).

These were solved previously in Problems 1 and 2 of Chapt@pgipare your
results with those earlier ones.

90

TAYLOR AND RUNGE-KUTTA METHODS

. Recall the asymptotic error for Taylor methods, given5SrilR). For second-

order methods, this yields
Y (tn) — yn(tn) = B2D(t,) + O(R?).

From this, derive the Richardson extrapolation formula

Y (tn) = 2[4yn(tn) — yon(tn)] + O(h®)

~ 5[4yn(tn) — yon(tn)] = Un(tn)
and the asymptotic error estimate
Y (tn) = yn(tn) = 5lyn(ta) — y2u(ta)] + O(h?)
~ 3[yn(tn) — yan(tn)).

Hint: Consider the formula

Y (tn) — yon(tn) = 4h%D(t,) + O(h?)

and combine it suitably with the earlier formula fBi(¢,,) — y5,(t5).

. Repeat Problem 3 for methods of a general opder1. Derive the formulas

with an error proportional taé?*1, and

1
2r —1

Y (tn) — yn(tn) = [Yn(tn) — yon(tn)]-

. Use Problem 3 to estimate the errors in the results of Tadle forh =

0.05. Also produce the Richardson extrapolatét,,) and calculate its error.
Compare its accuracy to that 9f (¢,,).

. Derive the second-order Runge—Kutta methods (5.14¢spanding té, = 3

andb, = 1in (5.15). Forb, = 1, draw an illustrative graph analogous to that
of Figure 5.1 forb, = % Give the Butcher tableau for this method.

. Give the Butcher tableau for each of the following methods

(a) The second-order method (5.21)
(b) The Fehlberg formulas (5.53) and (5.54).

. Solve the problem (5.1) with one of the formulas from Peobl6. Compare

your results to those in Table 5.2 for formula (5.20) with= %

. Using (5.20), solve the equations in Problem 2. Estimageetrror by using

Problem 3, and compare it to the true error.

10.

11.
12.

13.

14.

15.

16.

IMPLICIT RUNGE-KUTTA METHODS 91

Implement the classical procedure (5.28), and apply ihé equation (5.1).
Solve it with stepsizes of = 0.25 and0.125. Compare with the results in
Table 5.6, the fourth-order Fehlberg example.

Hint: Modify the Euler program of Chapter 2.
Use the program of Problem 10 to solve the equations ibl&m2.

Modify the Euler program of Chapter 3 to implement the ewKutta method
given in (3.26). With this program, repeat Problems 5 and Gludipter 3.

Consider the predator-prey model of (3.4), with theipalar constants! = 4,
B=0.5,C=3,andD = % Also, recall Problem 8 in Chapter 3.

(a) Show that there is a solutidn (t) = C4, Ya(t) = Cq, with C; andCy
nonzero constants. What would be the physical interpmtaif such a
solutionY (¢)?

Hint: What areY; (¢) andY, () in this case?

(b) Solve this system (3.4) witk; (0) = 3, Y2(0) = 5, for0 < ¢t < 4, and
use the Runge—Kutta method of Problem 12 with stepsizés-6f0.01
and0.005. Examine and plot the values of the output in stepsadfo.1.
In addition to these plots @fvs.Y; (¢) andt vs. Y3 (t), also plotY; vs.Ys.

(c) Repeat (b) for the initial valugs (0) = 3, Y5(0) = 1,1.5, 1.9 in succes-
sion. Comment on the relation of these solutions to one @&naihd to
the solution of part (a).

Show that the implicit Runge—Kutta method (5.65) hagradation error of size
O(h?). This canthen be used to prove that the method has ordere¢mgsmce
2.

Apply the implicit Runge—Kutta method (5.69) to the miquteblem

Y'=)Y, t>0,
Y(0) = 1.

(@) Show that the solution can be writtenas= [R(A\h)]" with

1+ 32+ 5522

R)=T—T 715

(b) For any reak < 0 show thatR (z)| < 1. In fact, this bound is true for
any complexz with Real (z) < 0, and this implies that the method is
absolutely stable.

Solve the equations of Problem 2 with the builtde45 function. Experiment
with several choices of error tolerances, including an hlise@rror tolerance
of AbsTol = 10~* ande = 1075, along with a relative error tolerance of
RelTol = 1078,

92

17.

18.
19.

20.

21.

22.
23.

24,

TAYLOR AND RUNGE-KUTTA METHODS

Solve the equations of Problem 2 with the builtdz23 function. Experiment
with several choices of error tolerances, including an hliscerror tolerance
of AbsTol = 10~* ande = 1075, along with a relative error tolerance of
RelTol =108,

Repeat Problem 13 usinge45.

Consider the motion of a particle of masdalling vertically under the earth’s
gravitational field, and suppose that the downward motioapgosed by a
frictional forcep(v) dependent on the velocity(t) of the particle. Then the
velocity satisfies the equation

mv'(t) = —mg +p(v), t>0, v(0)given.

Letm = 1kg,g = 9.8 m/s, andv(0) = 0. Solve the differential equation for
0 <t < 20 and for the following choices gf(v):

(@) p(v) = —0.1v, which is positive for a falling body.
(b) p(v) = 0.10%

Find answers to at least three digits of accuracy. Graphuhetionsu(t).
Compare the solutions.

Consider solving the initial value problem
Y'(t)=t-Y(t)? Y(0)=0

ontheinterval < ¢ < 20. Create a Taylor series method of order 2. Implement
it in MATLAB and use stepsizes at = 0.4, 0.2, and0.1 to solve for an
approximationtd”. Estimate the error by using Problem 3. Graph the solution
that you obtain.

Repeat Problem 20 with various initial vallé&). In particular, usé&”(0) =
—0.2, —0.4, —0.6, —0.8. Comment on your results.

Repeat Problems 20 and 21, but use a second-order Runiga-rkethod.

Repeat Problems 20 and 21, but use the MATLAB cald&5. Do not attempt
to estimate the error since that is embeddeckdal13.

Consider the problem

1

Y= ——+c-tan {(Y(t)) - =, Y(0)=0

N | =

with c a given constant. Sincé’(0) = 3, the solutiort’ (¢) is initially increas-
ing ast increases, regardless of the value ofs best you can, show that there
is a value ofe, call it ¢*, for which (1) if ¢ > ¢*, the solutionY (¢) increases
indefinitely, and (2) ifc < ¢*, thenY (¢) increases initially, but then peaks and

IMPLICIT RUNGE-KUTTA METHODS 93

decreases. Usingde45, determinec* to within 0.00005, and then calculate
the associated solutidri(¢) for 0 < ¢ < 50.

25. (a) Using the Runge—Kutta method (5.20), solve
Y'(t) = =Y (t) + (1.1 +¢), Y(0)=0,

whose solution isY'(t) = t!'!. Solve the equation of0, 5], print-
ing the solution and the errors at= 1,2,3,4,5. Use stepsizead =
0.1,0.05,0.025,0.0125, 0.00625. Calculate the ratios by which the errors
decrease wheh is halved. How does this compare with the theoretical
rate of convergence @ (h?). Explain your results as best you can.

(b) What difficulty arises in attempting to use a Taylor metlod order> 2
to solve the equation of part (a)? What does it tell us abausttution?

26. Consider the three-stage Runge—Kutta formula

21 = Yn,
2y = Yn + hag1 f(tn, 21),
23 =Yn + hlag1f(tn, z1) + asaf(tn + c2h, 22)],
Ynt1 = Yn + R [b1f(tn, 21) + b2 f (tn + c2h, 22) + b3 f(tn + c3h, 23)] .

Generalize the argument used in (5.14)—(5.19) for detangithe two-stage
Runge—Kutta formulas of order 2. Determine the set of equatthat the
coefficients{b;, ¢;, a;; } must satisfy if the formula given above is to be of
order3. Find a particular solution to these equations.

CHAPTER 6

MULTISTEP METHODS

Taylor methods and Runge—Kutta (RK) methods are knovsimage-ster one-step
methodssince at a typical step,; is determined solely frony,,. In this chapter,
we consider multistep methods in which the computation efrthmerical solution
Ynt1 USeS the solution values at several previous nodes. Weedszie two families
of the most widely used multistep methods.

Reformulate the differential equation

Yi(t) = f(t,Y(t))
by integrating it over the interval,, , t,,11], obtaining

[mHWUﬁ—lmUmY@Mu

n n

Y(tir) =Y(t)+ [Y @) e (6.1)

n

We will develop numerical methods to compute the solulitin) by approximating
theintegralin (6.1). There are many such methods, and weavisider only the most

95

96 MULTISTEP METHODS

popular of them, the Adams—Bashforth (AB) and Adams—Mau(tdM) methods.
These methods are the basis of some of the most widely usedutencodes for
solving the initial value problem. They are generally moficeent than the RK
methods, especially if one wishes to find the solution witlighldegree of accuracy
or if the derivative functiory (¢, y) is expensive to evaluate.

To evaluate the integral

l””mww7 g(t) = Y'(t) = F(LY(2)), (6.2)

n

we approximate(t¢) by using polynomial interpolation and then integrate therin
polating polynomial. For a given nonnegative integethe AB methods use interpo-
lation polynomial of degree at the points{t,,, t,,—1,...,tn—q}, and AM methods
use interpolation polynomial of degreet the points{t,,+1, tn, tn—1,- - - tn—q+1}-

6.1 ADAMS-BASHFORTH METHODS

We begin with the AB method based on linear interpolatign=(1). The linear
polynomial interpolatingy(t) at{t,,t,—1} is

pi(t) = 2[(tn = t)g(tn—1) + (t — tn-1)g(tn)]- (6.3)
From the theory of polynomial interpolation (Theorem B.3Aippendix B),
g(t) =pi(t) = 5 (t —tn) (t = tn—1) ¢"(Cn) (6.4)
for somet,, 1 < (, < t,4+1. Integrating oveft,, t,+1], we obtain

/t"“g(t) dm/t"“ p1(t)dt = Lh[3g(tn) — glta_1)]-

n n

In fact, we can obtain the more complete result

tnt1
[' ot) dt = Lh3g(t) — gltn_s)] + Shg" (€n) (6.5)

n

forsomet,,_; <&, < t,1; see Problem 4 for a derivation of a related but somewhat
weaker result on the truncation error. Applying this to teition (6.1) gives us

Y(tny1) =Y (tn) + %h[?’f(tna Y(tn)) = f(tn—1,Y (tn-1))]

6.6
+ 50" (€). ©9

Dropping the final term, the truncation error, we obtain thenerical method

Yn+1 = Yn + %h[&f(tna yn) - f(tnflvynfl)]- (67)

ADAMS-BASHFORTH METHODS 97

Table6.1 An example of the second order Adams-Bashforth method

t yn(t) Y(t) = yan(t) Y(t) —yn(t) Ratio g[ya(t) — yan(t)]
2 049259722 2.13e -3 553 —4 3.9 5.26e—4
4 —1.41116963 2.98¢ — 3 724e—4 41 752 —4
6 0.68174279 —39le—3 —988e—4 40 —9.73e—4
8 0.84373678 3.68¢ — 4 12le—4 30 82le—5
10 —1.38398254 3.6le —3 8.90e —4 41 9.08¢ —4

With this method, note that it is necessary to have> 1. Bothy, andy; are
needed in finding;, andy; cannot be found from (6.7). The value @f must be
obtained by another method. The method (6.7) is an exam@ewd step method,
since values at,_; andt, are needed in finding the valuefat, ;. If we assume
Yo = Yo, and if we can determing ~ Y (¢;) with an accuracy)(h?), then the AB
method (6.7) is of ordez, that is, its global error is of siz&(h?),

2
wnax Y (tn) — yn(tn)| < . (6.8)

We must note that this result assumyés, y) andY (¢) are sufficiently differen-
tiable, just as with all other similar convergence error sl and asymptotic error
results stated in this book. In this particular case (6.8 would assume that(¢)
is 3 times continuously differentiable dty, b] and thatf (¢, y) satisfies the Lipschitz
condition of (2.19) in Chapter 2. We usually omit the explgtiatement as to the
order of differentiability ony’(¢) being assumed, although it is usually apparent from
the given error results.

Example 6.1 Use (6.7) to solve
Y'(t) = =Y (t) +2cos(t), Y(0)=1 (6.9)

with the solutionY (¢) = sin(t) + cos(t). For illustrative purposes only, we take
y1 = Y (t1). The numerical results are given in Table 6.1, using 0.05. Note that
the errors decrease by a factor of approximatetshenk is halved, which is consistent
with the numerical method being of ord2r The Richardson error estimate is also
included in the table, using the formula (5.13) for secondeomethods. Where the
error is decreasing lik&(h?), the error estimate is quite accurate. |

Adams methods are often considered to be “less expensiae’RK methods, and
the main reason can be seen by comparing (6.7) with the semmied RK method in
(5.20). The main task of both methods is to evaluate the aférevfunctionf (¢, y).
With second-order RK methods, there are two evaluatiorfsfof each step from,,
tot,+1. Incontrast, the AB formula (6.7) uses only one evaluatiergpep, provided
that past values gf are reused. Other factors affect the choice of a numerictdode
but the AB and AM methods are generally more efficient in thebar of evaluations
of f that are needed for a given amount of accuracy.

98 MULTISTEP METHODS

A problem with multistep methods is the need to generate sdthe initial values
of the solution by using another method. For the secondr@kBemethod in (6.7),
we must obtainy;; and since the global error iy, (t,) is to beO(h?), we must
ensure that’'(t;) — yn(t1) is alsoO(h?). There are two immediate possibilities,
using methods from preceding chapters.

Case (1) Use Euler's method:
Y1 = yo + hf(to,yo)- (6.10)

Assumingy, = Yy, this has an error of
Y(t) =y = $h°Y" (&)

based on (2.10) witm = 0. Thus (6.10) meets our error criteria fgg.
Globally, Euler's method has onl§ (%) accuracy, but the error of a single step
is O(h?).

Case (2) Use a second-order RK method, such as (5.20). Sig®me step irt is
being usedY (t;) — y; will be O(h?), which is more than adequate.

Example 6.2 Combine (6.10) with (6.7) to solve the problem (6.9) from thst
example. Foh = 0.05 andt = 10, the error in the numerical solution turns out to be

Y (10) — yn(10) =8.90 x 1074,

the same as before for the results in Table 6.1. [|

Higher-order Adams—Bashforth methods are obtained byyusgher degree poly-
nomial interpolation in the approximation of the integram@6.2). (For an introduc-
tion to polynomial interpolation, see Appendix B.) The nbidher-order example
following the linear interpolation of (6.3) uses quadrdtiterpolation. Letps(t)
denote the quadratic polynomial that interpolatés at¢,,, t,—1, t»—2, and then use

tnt1 tnt1
/ o(t) dt ~ / pa(t) dt.
t t

n n

To be more explicit, we may write

p2(t) = g(tn)lo(t) + g(tn—1)1(t) + g(tn—2)l2(t) (6.11)
with
tofty = Lt tz)
b == t”)g“;‘ tn-2) (6.12)

(t —tn)(t —tn-1)
2h?

ly(t) =

ADAMS-BASHFORTH METHODS 99

For the error, we have

g(t) - p2(t) = % (t - tn) (t - tnfl) (t - tn72) gm(CH) (613)

forsomet,_o < G < tpy.
It can be shown that

tn+t1
/ g(t) dt = $5h[23g(tn) = 16g(tn—1) + 5g(tn—2)] + h"g" ()
t’Vl

for somet,,_» < &, < t,41. Applying this to (6.1), the integral formulation of the
differential equation, we obtain

Y (tug1) = Y(t) + A23F (ta, Y (£0)) — 16f (ta-1,Y (t0-1))
+5f(tn—2,Y (tn—2))] + 2h* YD (&,).
By dropping the last term, the truncation error, we obtamtthird-order AB method
Ynt1 = Yn + 15h[23y;, — 16y, 1 + 5y, o], N >2 (6.14)

wherey, = f(tx,yx), k > 0. This is a three step method, requiring> 2. Thus
Y1, y2 Must be obtained separately by other methods. We leave thlermentation
and illustration of (6.14) as Problem 2 for the reader.

In general, it can be shown that the AB method based on infipo of degreg
will be a (g + 1)-step method, and its truncation error will be of the form

Thy1=c¢q pat2y (a+2) (&)

for somet,,_, < &, < t,41. Theinitial valuegy, ..., y, will have to be generated
by other methods. If the errors in these initial values $atis

Y(tn) —yn(ta) = O(hTTY), n=1,2,....4q, (6.15)

then the global error in thé; + 1)-step AB method will also b&(h9*1), provided
that the true solutiof” is sufficiently differentiable. In addition, the global ermill
satisfy an asymptotic error formula

Y (tn) = yn(tn) = D(tn) A7 + O(hTF?),

much as was true earlier for the Taylor and RK methods desttiitbChapter 5. Thus
Richardson'’s extrapolation can be used to accelerate tineeagence of the method
and to estimate the error.

To generate the initial values, . . ., y, for the (¢ + 1)-step AB method, and to
have their errors satisfy the requirement (6.15), it is sidfit to use a RK method
of orderq. However, in many instances, people prefer to use a RK maihodder
q + 1, the same order as that of the+ 1)-step AB method. Other procedures are
used in the automatic computer programs for AB methods, andiscuss them later
in this chapter.

100 MULTISTEP METHODS

Table 6.2 Adams-Bashforth methods

q Order Method T. Error
0 1 Yn+1 = Yn + hy';z %h2y”(§")

1 2 Yn+1 = Yn + %[3y:1 - y%a] %hsym(&n)
2 3 Y1 =yn+ 5[23y, — 16,1 + 5y o] ERtY @ (&n)
3 4 yor1=yn+ &[55yn — 591 + 3Tyn_o — 3] BEhY (&)

Table6.3 Example of fourth order Adams-Bashforth method

t yn(t) Y(t) —yan(t) Y(t) —yn(t) Ratio [yn(t) —yan(t)]
2 049318680 —3.96e—4 —3.62 -5 109 —2.25e—5
4 —1.41037698 —125e—3 —6.9le—5 181 —7.37e—5
6 0.68067962 1.05¢ — 3 752 —5 14.0 6.12¢ — 5
8 0.84385416 3.26e — 4 4.06e —6 80.0 2.0le —5
10 —1.38301376 —1.33¢e—3 —7.89e—5 169 —7.82% -5

The AB methods of ordersthrough4 are given in Table 6.2; the column heading
“T. Error” denotes “Truncation Error”. The ordéiformulais simply Euler’'s method.
In the tabley;, = f(tx, yx)-

Example 6.3 Solve the problem (6.9) by using the fourth-order AB meth8thce
we are illustrating the AB method, we simply generate theahvaluesy;, v, y3 by
using the true solution,

Yi :Y(tl), = 1,2,3.

The results folh = 0.125 and2h = 0.25 are given in Table 6.3. Richardson'’s error
estimate for a fourth-order method is given in the last calurfror a fourth-order
method, the error should decrease by a factor of approxignagevhenh is halved.

In those cases where this is true, the Richardson’s errinat is accurate. In no
case is the error badly underestimated. |

Comparing these results with those in Table 5.6 for the feorder Fehlberg
method, we see that the present errors appear to be very I&genote that the
Fehlberg formula uses five evaluationsfdt, y) for each step of,, to¢,,.1; whereas
the fourth-order AB method uses only one evaluatiory gfer step, assuming that
previous evaluations are reused. If this AB method is used anh that is onIy%
as large (for a comparable number of evaluationg)pthen the present errors will
decrease by a factor of approximatéfy= 625. The AB errors will be mostly smaller
than those of the Fehlberg method in Table 5.6, and the woltkb@icomparable
(measured by the number of evaluationg pf

ADAMS-MOULTON METHODS 101

Table6.4 Example of Adams-Moulton method of order 2

~+

Y(t) —yam(t) Y(t)—ya(t) Ratio 3[ya(t) —yan(t)]

2 —4.59e — 4 —1.15e — 4 4.0 —1.15e — 4
4 —5.6le — 4 —1.40e — 4 4.0 —1.40e — 4
6 7.98e — 4 2.00e — 4 4.0 2.00e — 4
8 —1.2le—4 —3.0de — 5 4.0 —3.03e — 4
10 —7.00e — 4 —1.75e — 4 4.0 —1.28e —4

6.2 ADAMS-MOULTON METHODS

As with the AB methods, we begin our presentation of AM methbd considering
the method based on linear interpolation. Ipett) be the linear polynomial that
interpolateg(t) att,, andt,, 1,

pr(t) = 7 (tars = 0g(ta) + (¢ = ta)gltnsa)]

Using this equation to approximate the integrand in (6.2) obtain the trapezoidal
rule discussed in Chapter 4,

Y(tns1) =Y (tn)+ %h[f(tna Y (tn)+ f(tne1, Y (tns1))] = 11_2h3ym(€n)- (6.16)
Dropping the last term, the truncation error, we obtain ti iethod

Ynt+1 = Yn + %h[f(tmyn) + f(tn+1, Ynt1)]s n = 0. (6.17)

This is the trapezoidal method discussed in Section 4.2.dtsecond-order method
and has a global error of size(h?). Moreover, it is absolutely stable.

Example 6.4 Solve the earlier problem (6.9) by using the AM method (6.1fg
trapezoidal method). The results are given in Table 6.4fer 0.05, 2h = 0.1, and

the Richardson error estimate for second-order methodsésngn the last column.

In this case, th&(h?) error behavior is very apparent, and the error estimation is
very accurate. |

Example 6.5 Repeat Example 6.4, but using the procedure describedwiolp
(4.28) in Chapter 4, with only one iterate being computeddachn. Then, the
errors do not change significantly from those given in Tabfe &or example, with
t = 10 andh = 0.05, the error is

Y (10) — y5(10) = —2.02 x 1074

This is not very different from the value 6f1.75 x 10~* given in Table 6.4. The
use of the iterat@gﬂzl as the rooty,, 11 will not affect significantly the accuracy of

102 MULTISTEP METHODS

Table 6.5 Adams-Moulton methods

q Order Method T. Error
01 Yn+1 = Yn —+ hy;l+1 _%h2yl/(£n)
L2 Ynt1 = Yn + Slyni1 +unl —LR3Y" (&)
23 Ynt1 = Yn + 15 [5Yn11 + 8yn — yn_1] — LY@ (g,)
34 Yni1 = Yn + 250 i1 + 19y, — 5y 1 +Yh_a] —axhZYP)(g,)

the solution for most differential equations. Stiff diféettial equations are a major
exception. |

By integrating the polynomial of degreethat interpolates on the set of the nodes
{tn+1,tn,...,tn—qg+1} to the functiong(t) of (6.2), we obtain the AM method of
orderg + 1. Itwill be an implicit method, but in other respects the theig the same
as for the AB methods described previously. The AM methodsadérsl throughd
are given in Table 6.5, wheng, = f(tx,yx). As in Table 6.2, the column heading
“T. Error” denotes “Truncation Error”. Note that the AM meith of order 1 is the
backward Euler method, and the AM method of order 2 is thesizajalal method.

The effective cost of an AM method is two evaluations of thewdgive f (¢, y)
per step in most cases and assuming that previous functlaasvaf f are reused.
This includes one evaluation gfto calculate an initial guesgffﬁl, and then one
evaluation off in the iteration formula for the AM method. For example, witte
trapezoidal method this means using the calculation

yr(zOle =Yn + %h [3f(tn7 Yn) — f(tnfhynfl)] ,

(6.18)
yr(llll =Yn + Shlf(tn, yn) + f(tnia, yr@ﬁ]:
or using some othepredictor formula fory,(fﬁ1 with an equivalent accuracy. With
this calculation, there is no significant gain in accuracgrahe AB method of the
same order when comparing methods of equivalent cost.

Nonetheless, AM methods possess other properties that thekedesirable for
use in many types of differential equations. The desiragdduires relate to stability
characteristics of numerical methods. Recall from Chaptdollowing (4.3), that
we study the behavior of a numerical method when appliedgarthdel problem

Y'(t) =AY (), t>0,

YO) = 1. (6.19)

We always assume the constark 0 or A is complex withReal(A) < 0. The true
solution of the problem (6.19) i (t) = e**, which decays exponentially insince
the parametek has a negative real part. The kind of stability property thatvould

ADAMS-MOULTON METHODS 103

like for a numerical method is that when it is applied to (§,18e numerical solution
satisfies

Yn(tn) =0 as t, — o0 (6.20)

for any choice of stepsizie. With most numerical methods, this is not satisfied. The
set of valuesi\, considered as a subset of the complex plane, for which- 0 as
n — oo, is called theegion of absolute stabilitgf the numerical method.

As seen in Chapter 4, the AM methods of orders 1 and 2 are ab$§oktable,
satisfying (6.20) for all values @f. Such methods are particularly suitable for solving
stiff differential equations. In general, we prefer nurscafimethods with a larger
region of absolute stability; the larger is the region, thsslrestrictive the condition
on h in order to ensure satisfaction of (6.20) for the model peab(6.19). Thus a
method with a large region of absolute stability is gengraikferred over a method
with a smaller region, provided that the accuracy of the tvadhods is similar. It can
be shown that for AB and AM methods of equal order, the AM mdtivdl have the
larger region of absolute stability; see Figures 8.1 andBChapter 8. Consequently,
Adams—Moulton methods are generally preferred over Ad@ashforth methods.

Example 6.6 Applying the AB method of orde? to equation (6.19) leads to the
finite difference equation

Ynal :yn—l—%h)\ BYyn — Yn—1), n=12... (6.21)

with y9 andy; determined beforehand. Jumping ahead to (7.45) in Chaptbe7
solution to this finite difference equation is given by

Yn(tn) =70 [ro(AN)]" + 71 [ri(AN)]", n >0 (6.22)
with r9(hA) andr; (hA) the roots of the quadratic polynomial
> =714 2hA(3r — 1). (6.23)

When\ = 0, one of the roots equals 1, and we denote arbitrarily thathge,(h\)
in general:ro(0) = 1. The constants, and~; are determined frongy andy;. In
order to satisfy (6.22) for a given choice A and for any choice of, and~, itis
necessary to have

|7’0(h)\)| <1, |T1(hA)| < 1. (624)

Solving this pair of inequalities for the case thas real, and looking only at the case
that\ < 0, we obtain

—1<hA<O (6.25)
as the region of absolute stability on the real axis. In @sitrthe AM method of

order2 has—oco < hA < 0 on the real axis of its region of stability. There is no
stability restriction om with this AM method. |

104 MULTISTEP METHODS

6.3 COMPUTER CODES

Some of the most popular computer codes for solving theainilue problem are
based on using AM and AB methods in combination, as suggéestbe discussion
preceding (6.18). These codes control the truncation byrearying both the stepsize
h and the order of the method. They are self-starting in terfihgeperating the initial
valuesy,, ..., y, needed with higher-order methods of orger 1. To generate these
values, they begin with first-order methods and a small &epsand then increase
the order to generate the starting values needed with higitlr methods. The
possible order is allowed to be as largel@sor more; this results in a very efficient
numerical method when the solutidf(t) has several continuous derivatives and is
slowly varying. A comprehensive discussion of Adams’ methand an example of
one such computer code is given in Shampine [72].

MATLAB ® program To facilitate the illustrative programming of the methaafs

this chapter, we present a modification of the Euler progrér@lmapter 2. The

program implements the Adams—Bashforth formula of ofjegiven in (6.7); and

it uses Euler's method to generate the first vajyeas in (6.10). We defer to the
Problems section the experimental use of this program.

function [t,y] = AB2(t0,y0,t_end,h,fcn)
% function [t,y]=AB2(t0,y0,t_end,h,fcn)

% Solve the initial value problem

% y?> = f(t,y), t0 <=t <=Db, y(t0)=y0

% Use Adams-Bashforth formula of order 2 with

% a stepsize of h. Euler’s method is used for

% the value yl. The user must supply a program for
% the right side function defining the differential
% equation. For some name, say deriv, use a first
% line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=AB2(t0,z0,b,delta, ’deriv’)

% Output:

% The routine AB2 will return two vectors, t and y.
% The vector t will contain the node points

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t_end-h, t(N)+h > t_end-h

% The vector y will contain the estimates of the

% solution Y at the node points in t.

n = fix((t_end-t0)/h)+1;

COMPUTER CODES 105

Figure6.1 The solution values to (6.26) obtained é&e113 are indicated by the symbel
The curve line is obtained by interpolating these solutialugs fromode113 usingdeval.

t linspace(t0,t0+(n-1)*h,n)’;
y = zeros(n,1);

y(1) = y0;

ft1 = feval(fcn,t(1),y(1));
y(2) = y(1)+h*ftl;

for i = 3:n

ft2 = feval(fcn,t(i-1),y(i-1));
y(1) = y(E-1)+h*x(3*xft2-ft1)/2;
ftl = £t2;

end

6.3.1 MATLAB ODE codes

Built-in MATLAB programs based on multistep methods afg®113 andode15s.

These programs implement explicit and implicit linear riatétp methods of various
orders, respectively. The prograrie113 is used to solve nonstiff ordinary differen-
tial equations, using the Adams—Bashforth and Adams—Mautiethods presented
in this chapter. The codede15s is for stiff ordinary differential equations, and it
is based on yet another variable order family of multistepthuds, one that is dis-
cussed in Chapter 8. The programs are used in precisely the ssanner as the
programode45 discussed in Section 5.5 of Chapter 5; and the entire suitdAdf

106 MULTISTEP METHODS

0 5 10 15 20

Figure6.2 The errors in the solution to (6.26) obtained ustay113. The errors at the
node points are indicated by the symbol

LAB ode programs is discussed at length by Shampine and Ble{@18]. Also, see
Shampine [72] for a thorough study of one-step and multistethods and of their
implementation in computer software.

Example 6.7 We modify the programest_ode45 by replacingpde45 with ode113
throughout the code. The prograsde113 is recommended for medium- to high-
accuracy solutions, but we will illustrate its use with tlaere example as in Section
5.5 of Chapter 5 for the progranie45. As before, we solve the test equation

Y'(t) = —Y(t) + 2cos(t), Y(0)=1 (6.26)

and we uselbsTol = 10~°, RelTol = 10~%. Figures 6.1 and 6.2 illustrate, respec-
tively, the interpolated numerical solution and the errontained therein. Compare
these resultsto those in Figures 5.2 and 5.3 of Chapter 5e’Bine 229 derivative eval-
uations when usingde45 for this problem, whereasde113 uses 132 evaluations.
This is a typical example for comparison of the number of\give evaluationsll

PROBLEMS

1. Use the MATLAB program for the AB method of order two to sethe equa-
tions in Problem 2 of Chapter 5. Include the Richardson eestimate for
yr(t) whenh = 0.1 and0.05.

COMPUTER CODES 107

2. Modify the MATLAB program of this chapter to use the thiodder AB method.
To calculatey; andy,, use one of the second-order RK methods from Chapter
5. Then repeat Problem 1.

3. Use the program from Problem 2 to solve the continuing gtarproblem
(6.9).

4. To make the error term in (6.5) a bit more believable, prove

h
Av@ﬂwéﬂww%wFMFﬁ%%%m+mﬁ)

with + (s) a 3 times continuously differentiable function fel, < s < h.

Hint: Expand~(s) as a quadratic Taylor polynomial about the origin, with
an error termRs(t). Substitute that Taylor expansion into the left side of the
equation above, and obtain the right side. For simplicigyhave changed the
interval in (6.5) from[t,,, t,+1] to [0, h]. The result extends to (6.5) by means
of a simple change of variable in (6.5), nameély ¢, + 5,0 < s < h. Also
note that if—h < ¢ < h, then

7€) =) +&y"(¢), some(betweerh and¢

(0
7"(0) + O(h),
h3

B = B0+ 00

since|¢| < h. This argument assumesqs) is 3 times continuously differen-
tiable.

5. Repeat the type of argument given in Problem 4, extendittgthe Adams—
Bashforth method of order 3, given in Table 6.2.

6. Repeat the type of argument given in Problem 4, extendittgthe Adams—
Moulton method of order 2, given in Table 6.5.

7. Repeat the type of argument given in Problem 4, extendittgthe Adams—
Moulton method of order 3, given in Table 6.5.

8. Modify the MATLAB program of this chapter to use the AM methof order
2. For the predictor, use the AB method of or@efor the first stepy;, use the
Euler predictor. Iterate the formula (4.25) only once. Apiblis to the solution
of the equations considered in Problem 1, and produce thieaRison error
estimate.

9. Usethe MATLAB codede113to solve the equations in Problem 2 of Chapter
5. For error tolerances, use absolute error bousblsl'ol = 10~* ande =
109, along with a relative error tolerand@elTol = 10~3. Keep track of
the number of evaluations gf(t, y) that are used by the routine, and compare
it to the number used in your own programs for the Adams—Baginfand
Adams—Moulton methods.

108 MULTISTEP METHODS

10. (a) Using the program of Problem 1 for the AB method of ofjesolve
Y'(t) = —=50Y (t) + 51 cos(t) + 49sin(t), Y (0)=1

for 0 <t < 10. The solution i (¢) = sin(t) 4 cos(t). Use stepsizes of
h =0.1,0.02,0.01. In each case, print the errors as well as the answers.

(b) Using the program of Problem 8 for the AM method of oréerepeat
part (a). Check the condition of (4.26).

(c) Whenthe AM method of ordéris applied to the equationin (a), the value
of y,+1 can be found directly. While doing so, repeat part @)mpare
your results.

11. The Adams—Bashforth and Adams—Moulton methods aredbas€6.1) to-
gether with the integration ovét,,, ¢,,11] of a polynomial interpolating the
integrandY’(¢t) = f(¢t,Y(¢)). As an alternative, consider integration over
[tn—1,tn+1], Obtaining

V(b)) =Y(ta) + [£V)t (6.27)

tn—1

We can replace the integrarfdt, Y (¢)) with an approximation based on inter-
polation. The simplest example is to use a constant intarpipin particular,

/"“ f(t,Y(t))dm/"“f(tn,Y(tn))dt:2hf(tn,Y(tn)).

trn—1 tn—1

This leads to the numerical method

Ynt+1 = Yn—1 + 20f (tn, yn) , n > 1. (6.28)

This is called themidpoint method As with the Adams—Bashforth method
(6.7) of order 2, the value af; must be obtained by other means. Using the
type of argument given in Problem 4, show that

Y (bu1) = [V (bnmr) + 28 (b0, Y (8))] = =33V (8) + O(h).

Hint: ExpandY (¢) as a quadratic Taylor polynomial abaut with an error
term R5(t). Substitute that Taylor expansion into the left side of thaation
above to obtain the right side.

12. Using the same arguments as in Problem 11, considepai&tingY”’(t) =
f(t, Y (t)) with aquadratic polynomial. Have itinterpoldté(t) = f (¢, Y (¢))
at the nodest,,—1, tn, tnt1}. Use this to obtain the numerical method

Yn+1 = Yn—1 + %[hf (tn—la yn—l)

6.29
+4f (tna yn) + f (tn+la yn+1)]- ()

13.

14.

15.

COMPUTER CODES 109

As with the Adams—Moulton methods, this is an implicit metlamd the value
of y,+1 must be calculated by a rootfinding method. Also, the valug ofiust
be obtained by other means.

This isSimpson’s parabolic ruléor numerical integration, and when applied,
as here, to solving differential equations, itis one paiahe’s methogwhich

is mainly of historical interest, as the family of Adams nmdk have replaced
it in modern codes. We return to Simpson'’s rule, however,mwiheveloping
numerical methods for solving Volterra integral equation€hapter 12.

As an alternative to (6.27), consider

Y(tnr1) = Y(tn_s) + / Uy) dt.

tn—3

Using the same arguments as in Problem 12, consider intipglt” () =
f(t,Y(¢)) with a quadratic polynomial, but have it interpoldté(t) at the
nodes{t,_2,t,—1,t,}. Use this to obtain the numerical method

Yn+1 = Yn—3 + %h[2f (tn—Qayn—Q)
_f (t’nfla ynfl) + 2f (tnv yn)]

This is an explicit method, and historically it has been ugeéstimate an
initial valuey,(gz1 for the iterative solution of equation (6.29) in Problem 12,
thus forming the other half dflilne’s method The values of;, y2, y3 must
be obtained by other means.

(6.30)

Repeat Problems 20 and 21 of Chapter 5 using the MATLAR: cdd 113.
Do not attempt to estimate the error since that is embeddeddn13.

Repeat Problem 24 of Chapter 5 using the MATLAB code113.

CHAPTER 7

GENERAL ERROR ANALYSIS FOR
MULTISTEP METHODS

We now present a general error analysis for multistep metlmdolving the initial
value problem of a single first-order equation. In additmaxplaining the underlying
behavior of the numerical methods, such a general erroysisadllows us to design
better numerical procedures for various classes of prokléffe begin by considering
the truncation error for multistep methods. Next, in Setiid?, we look at arelatively
simple error analysis that is similar to that given for Eid@enethod in Chapter 2; it is
an error analysis that works for many popular multistep rod#h In Section 7.3 we
give a complete error analysis for all multistep methodsl, we follow it with some
examples.

As before, leth > 0 and define the nodes by = ¢y, + nh, n > 0. The general
form of the multistep methods to be considered is

p p
Uni1 =3 QYn—j+ 0 > bif(tajiyn—j), n>Dp. (7.1)
Jj=0 Jj=-1
The coefficientsio, . .., ap, b_1, bo,...,b, are constants angd > 0. Assuming
that|a,| + |bp| # 0, we consider this method(a + 1)-step method, becaugpet 1
previous solution values are being used to compyig. The valueg, . . ., y, must

111

112 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

be obtained by other means, as was illustrated in Chapteth@lné Adams methods.
Euler's method is an example of a one-step method with0 and

CLQZL b():l, b,lz().

If b_1 = 0, theny,, 1 occurs on only the left side of equation (7.1). Such formulas
are calledexplicit methodslIf b_; # 0, theny,,11 is present on both sides of (7.1),
and the formula is called amplicit method As was discussed following (4.12) in
Chapter 4 for the backward Euler method, the solutjpn; can be computed by
fixed point iteration,

p p
it = Zajy"*j+hZbjf(tn*jvyn*j)'i_hb*lf(thrlayy(zlJ)rl)v i=0,1,...,
=0 =0

providedh is chosen sufficiently small.
Example 7.1
1. The midpoint method is defined by

Yn+1 = Yn—1 + 2hf(tn7yn)a n > 1 (72)

and it is an explicit two-step method. We discuss this methadore detalil
later in the chapter.

2. The Adams—Bashforth and Adams—Moulton methods are atliapcases of
(7.1), with
ap =1, aj:0 fijZl,...,p.

Also, refer to the formulas for these methods in Tables 62@B of Chapter
6. |

7.1 TRUNCATION ERROR

For any differentiable functiol (¢), define the truncation error for integrating (¢)
by
p p
To(Y) =Y (tns1) = [DY (tnj) +h D bV (tn) (7.3)
J=0 j=—1

for n > p. Define the functiorr,, (Y") by
—To(Y). (7.4)

In order to prove the convergence of the approximate saidtiq : to < ¢, < b} of
(7.1) to the solutiorY (¢) of the initial value problem

YI(t) = f(t,Y (1), t=to,
Y (to) = Yo,

TRUNCATION ERROR 113

it is necessary to have

7(h) = max |7, (Y)—0 ash— 0. (7.5)

tp<tn<b

This is often called theonsistency conditiofor the method (7.1). The speed of
convergence of the solutiofy,, } to the true solutiorY (¢) is related to the speed of
convergence in (7.5), and thus we need to know the conditindsr which

7(h) = O(h™) (7.6)
for some desired choice ofi > 1. We now examine the implications of (7.5) and
(7.6) for the coefficients in (7.1).

Theorem 7.2 Letm > 1be agiveninteger. For (7.5) to hold for all continuously-dif
ferentiable function¥(¢), thatis, for the method (7.1) to be consistent, itis neagssa
and sufficient that

Zaj = 17 (77)
—Z]aj + Z b; = 1. (7.8)

j=—1
Further, for (7.6) to be valid for all function¥ (¢) that arem + 1 times continuously
differentiable, it is necessary and sufficient that (7.7)8) hold and that

P

Z aj—i—ZZ(—j)i_lbj:l, i=2,...,m. (7.9)

=0 Jj=—1

Proof. Note that
To(aY + W) = aT,(Y) + BT, (W) (7.10)

for all constantsy, 8 and all differentiable function¥’, 1. To examine the conse-
guences of (7.5) and (7.6), expa¥idt) aboutt,, using Taylor’s theorem to obtain

i% t— 1) YD (t,) + Ry (1), (7.11)
=0
R () = [(= YO () ds
m: tn
m+1
_ (t(;nti)l)' Y(m-ﬁ-l)(gn) (712)

with &, betweent andt,, (see (A.4)—(A.6) in Appendix A). We are assuming that
Y (t) ism + 1 times continuously differentiable on the interval bounbgd andt,,.
Substituting into (7.3) and using (7.10), we obtain

m

Tn(Y) Z|Y(l)()Tn((t - tn)l) + Tn(Rm+1)~
=0

114 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

It is necessary to calculat®, ((t — t,,)?) fori > 0.

e Fori =0,

D
Tn(l) =Cy = 1-— Zaj.
j=0
e Fori>1,
Tn((t - tn)l) = (tn-ﬁ-l - tn)i

p p
- Z aj(tn_j - tn)i +h Z bji(tn_j — tn)i71
Jj=0

j=—1

:Cihi
ci=1—|> (=j)aj+i»_ (=§)"'b i>1. (7.13)
j=0 j=—1
This gives
_ N Gy)
T,(Y) —; 1Y O () + T (Runa). (7.14)

From (7.12) it is straightforward th&f, (R, 1) = O(h™). If Y is m + 2 times
continuously differentiable, we may write the remaind&y 1 (¢) as

1 m m
Rm“(t):m(f—fn) YD ()
and then Cm+1 m+1y,-(m+1) m+2
Tn(Rig1) = 7(m+1)!h Y (tn) + O(R™T2). (7.15)

To obtain the consistency condition (7.5), assumingthiatan arbitrary twice con-
tinuously differentiable function, we needh) = O(h) and this required’,,(Y) =
O(h?). Using (7.14) withm = 1, we must have, = ¢; = 0, which gives the set of
equations (7.7)—(7.8). In some texts, these equationsfaeed to as theonsistency
conditions It can be further shown that (7.7)—(7.8) are the necessahsafficient
conditions for the consistency (7.5), even whérs only assumed to be continuously
differentiable. To obtain (7.6) for some > 1, we must havé,,(Y) = O(h™*1).
From (7.14) and (7.13), this will be true if and onlydf = 0,7 = 0,1, ..., m. This
proves the conditions (7.9) and completes the proof. |

The largest value of: for which (7.6) holds is called therder or order of con-
vergenceof the method (7.1).

CONVERGENCE 115

Example 7.3 Find all second-order two-step methods. Formula (7.1) is

Ynt1l = A0Yn + A1Yn-1 + h [b—lf(tn+la yn+1) + bOf(tna yn) (716)
+01f(tn-1,Yn-1)], n>1

The coefficients must satisfy (7.7)—(7.9) with= 2:

ap+ay =1, —a;+b_1+bp+b; =1, ay +2b_1 —2by = 1.
Solving, we obtain

a1 =1—ao, bo1=1- %ao — %bo, by =1- %ao — %bo (7.17)

with ag, by indeterminate. The midpoint method is a special case intdjc= 0,
bo = 2. For the truncation error, we have

To(R3) = 2esh®Y O (t,) + O(hY), (7.18)
C3 = —4 + 2&0 + 3b0. (719)

The coefficientsi, by can be chosen to improve the stability, give a small truocati
error, give an explicit formula, or some combination of taeEhe conditions to ensure
stability and convergence cannot be identified until theegaintheory for (7.1) has

been given in the remainder of this chapter. |

7.2 CONVERGENCE

We now give a convergence result for the numerical methot)) (7Although the

theorem will not cover all the multistep methods that areveogent, it does include
many methods of current interest, including those of Chae4, and 6. Moreover,
the proof is much easier than that of the more general The@rérgiven in Section
7.3.

Theorem 7.4 Consider solving the initial value problem

Y/(t) = f(,Y(t), t=to

' ' ’ 7.20
using the multistep method (7.1). Assume that the deriviivctionf (¢, y) is con-
tinuous and satisfies the Lipschitz condition

|f(ty1) — f(t,y2)] < K |y1 — 2l (7.21)

forall —oo < y1,y2 < 00, tg < t < b, and for some constad > 0. Let the initial
errors satisfy

n(h) = max |Y(¢;) —yn(ti)] = 0 ash — 0. (7.22)
0<i<p

116 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

Assume that the solutidri(¢) is continuously differentiable and the method is con-
sistent, that is, that it satisfies (7.5). Finally, assumeg the coefficients; are all
nonnegative,

a; >0, j=0,1,...,p. (7.23)

Then the method (7.1) is convergent and

max [¥(ta) — ya(ta)] < cin(h) + cor(h) (7.24)

to<tn<b

for suitable constants,, c,. If the solutionY'(¢) is m + 1 times continously differen-
tiable, the method (7.1) is of order, and the initial errors satisfy)(h) = O(h™),
then the order of convergence of the methodjghat is, the error is of siz&(h™).

Proof. Rewrite (7.3), and us¥’(¢t) = f(¢,Y (t)) to get

Y(tni1) = a;Y (tn; +hzbf n—j» Y (tn—j)) + h7n(Y).
j=0

j=—1

Subtracting (7.1) from this equality and using the notatipa: Y (¢;) — y;, we obtain

€nt+1 = Za en—j + h Z b T 71) f(tn—ja yn—j)] + th(Y)

j=—1
Apply the Lipschitz condition (7.21) and the assumptior28j to obtain
p p
lens1l <Y ajlensl +hE Y |bl lenj| + hr(h).
j=0 j=—1
Introduce the following error bounding function

fn= max |e;], n=0,1,...,N(h).

0<i<n
Using this function, we have
lent1] < Zajfn +hK Z |bj| frs1 + hT(h),
j=—1
and applying (7.7), we obtain
P
leni1l < fo+hefapr +h7(h), =K Y b
j=-1

The right side is trivially a bound fof,, and thus

fot1 < fo + hefppr + hr(h).

A GENERAL ERROR ANALYSIS 117

Forhe < % which is true ag — 0, we obtain

fn h
ntr1 < h
f+1_1—hc+1—th()

IN

(1+ 2he) f + 2h7(h).

Noting thatf, = n(h), proceed as in the proof of Theorem 2.4 in Chapter 2, from
(2.25) onward. Then

e2c(b—to) -1

C

o < 2=ty 4 {] T(h), to <t <b. (7.25)

This completes the proof. |

To obtain a rate of convergence®@fh™) for the method (7.1), it is necessary that
each step have an error
T,(Y) = O(h™t).

Butthe initial values, . . . , y, need to be computed with an accuracy of afly:™),
sincen(h) = O(h™) is sufficient in (7.24).

The result (7.25) can be improved somewhat for particulaesabut the order
of convergence will remain the same. As with Euler's methdpmplete stability
analysis can be given, yielding a result of the form (2.4@lapter 2. The analysisis
a straightforward modification of that described in Secichof Chapter 2. Similarly,
an asymptotic error analysis can also be given.

7.3 A GENERAL ERROR ANALYSIS

We begin with a few definitions. The conceptdbilitywas introduced with Euler's
method, and we now generalize it. LgJ, : 0 <n < N(h)} denote the solution
of (7.1) with initial valuesyy,y1,...,y, for some differential equatiol”(¢t) =
f(t,Y(t)) and for all sufficiently small values df, sayh < hq. Recall thatV(h)
denotes the largest subscript for which ¢y < b. For eachh < hg, perturb the

initial valuesyq, . . ., y, to new valuesy, . . ., z, with
max —znl < €. 7.26
0<n<p |yn n| - ()

Note that these initial values are allowed to depend oliVe say that the family of
discrete numerical solutiongy,, : 0 < n < N(h)}, obtained from (7.1), istableif
there is a constant independent ok < hy and valid for all sufficiently smak, for
which

Ognmgaﬁ(h) lyn — zn| < ce, 0 < h < hyg. (7.27)

Consider all differential equation problems

YI(t) = f(t,Y (1), t=to,

Y(to) = Yo (7.28)

118 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

with the derivative functiorf (¢, z) continuous and satisfying the Lipschitz condition
(7.21). Suppose further that the approximating solutipps} are all stable. Then
we say that (7.1) is atable numerical method

To defineconvergencéor a given problem (7.28), suppose that the initial values

Yo, - - -, Yp Satisfy

n(h) = max |Y(t,) —yn| — 0 ash — 0. (7.29)

0<n<p
Then the solutio{ y,, } is said to converge t&' (¢) if

toxggcgb |Y(tn) —yn| = 0 ash — 0. (7.30)
If (7.1) is convergentfor all problems (7.28) with the projpes specified immediately
following (7.28), then it is called aonvergent numerical metho€onvergence can
be shown to imply consistency; consequently, we considigr methods satisfying
(7.7)—(7.8). The necessity of the condition (7.7) followsnfi the assumption of
convergence of (7.1) for the problem

Y'(t)=0, Y(0)=1.

Just takeyo = --- = y, = 1, and observe the consequences of the convergence of
yp+1 10 Y (t) = 1. We leave the proof of the necessity of (7.8) as Problem 8.
The convergence and stability of (7.1) are linked to thegsadthe polynomial

P
p('r') = ’]"p+1 — Z ajrp_j. (731)
=0

Note thatp(1) = 0 from the consistency condition (7.7). L, ..., r, denote the
roots of p(r), repeated according to their multiplicity, and lgt = 1. The method
(7.1) satisfies theoot conditionif

(R1) Irj| <1, j=0,1,...,p, (7.32)
(R2) Iri|=1= p'(rj) #0. (7.33)

The first condition requires all roots ofr) to lie on the unit circle{z: |z| < 1} in
the complex plane. Condition (7.33) states that all roottherboundary of the circle
are to be simple roots gf(r).

7.3.1 Stability theory

All of the numerical methods presented in the preceding rafhave been stable,
but we now give an example of a consistent unstable multistefhod. This is to
motivate the need to develop a general theory of stability.

A GENERAL ERROR ANALYSIS 119

Example 7.5 Consider the two step method
Ynt1 = 3Yn — 2Yn—1+ sh[f(tn,yn) — 3f(tn—1,yn-1)], n>1. (7.34)
It can be shown to have the truncation error
To(Y) = 5h°Y P (&), tar <& Stan

and therefore, it is a consistent method. Consider solviegproblemY™(¢) = 0,
Y (0) = 0, which has the solutio () = 0. Usingyo = y1 = 0, the numerical
solution is clearlyy,, = 0, n > 0. Perturb the initial data te; = €/2, z; = ¢, for
somee # 0. Then the corresponding numerical solution can be showeto b

Zp=€-2""1 n>0. (7.35)

The reader should check this assertion. To see the effebeqgierturbation on the
original solution, let us assume that

| = n—1 _ N(h)-1
to?ﬁ’;b|y" Zn ng}gbkﬂ le| 2 :

SinceN(h) — oo ash — 0, the deviation of z,,} from {y,,} increases a& — 0.
The method (7.34) is unstable, and it should never be usezb, Abte that the root
condition is violated, sincg(r) = r> — 3r + 2 has the roots, = 1, r; = 2. |

To investigate the stability of (7.1), we consider only tpeaal equation

Y'(t) =AY (t), t>0,
Y(0) =1 (7.36)
with the solutionY (¢) = e*t; \ is allowed to be complex. This is the model problem
of (4.3), and its use was discussed in Chapter 4. The resutttsned will transfer to
the study of stability for a general differential equatianiplem. An intuitive reason
for this is easily derived. Exparid’(t) = f(¢, Y (¢)) about(to, Y;) to obtain

Y'(t) & f(to, Yo) + fi(to, Yo)(t = to) + fy(to, Yo) (Y () — Y0)
=AY (t) — Yo) + g(t) (7.37)

with A = f,(to,Yo) andg(t) = f(to,Yo) + fi(to,Yo)(t — to). This is a valid
approximation ifit — to| is sufficiently small. Introducind’ (¢) = Y (¢) — Yo,

V() ~ AV () + g(t). (7.38)

The inhomogeneous terpit) will drop out of all derivations concerning numerical
stability, because we are concerned with differences aftgwis of the equation.
Droppingg(t) in (7.38), we obtain the model equation (7.36).

120 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

In the case thaY’ = f(¢,Y) represents a system oi differential equations,
which is discussed in Chapter 3, the partial derivafiy@, y) becomes a Jacobian
matrix,

ofi .
£, y)].. = 1< < m.
Y, =55 1Sijsm
Thus the model equation becomes
y' = Ay +g(t), (7.39)

a system ofn linear differential equations with = £, (o, Yy). It can be shown that
in many cases, this system reduces to an equivalent system

d= Nz Awll), 1<i<m (7.40)

with A, ..., A, the eigenvalues ok (see Problem 6). With (7.40), we are back to
the simple model equation (7.36), provided we alldvto be complex in order to
include all possible eigenvalues &f

Applying (7.1) to the model equation (7.36), we obtain

Yny1 = Zajyn i+ hA Z biYn_j, (7.41)
j=—1
p
(1= BAb_1)yni1 — 3 _(aj +hAbj)yn—; =0, n>p. (7.42)
7=0

This is ahomogeneous linear difference equatafrorderp + 1, and the theory for
its solvability is completely analogous to that(@f+ 1)-order homogeneous linear
differential equations. As a general reference, see Heftt; pp. 210-215] or
Isaacson and Keller [47, pp. 405-417].

We attempt to find a general solution by first looking for simns of the special
form

n

Yn =T, n > 0.

Ifwe canfindp+1 linearly independent solutions, then an arbitrary lineanbination
will give the general solution of (7.42).
Substitutingy,, = ™ into (7.42) and canceling*~?, we obtain

p
(1= hAb_1)rPH = "(a; + hAb;)rP™7 = 0. (7.43)
j=0
This is called thecharacteristic equation and the left-side is theharacteristic
polynomial The roots are calledharacteristic roots Define

p
o(r) =b_yr?T 4 Z bjrP~,

J=0

A GENERAL ERROR ANALYSIS 121

and recall the definition (7.31) @f(»). Then (7.43) becomes

p(r) —hAo(r) = 0. (7.44)

Denote the characteristic roots by

ro(hA), ..., rp(hA),
which can be shown to depend continuously on the valuk)of WhenhA = 0,
equation (7.44) becomes simplyr) = 0, and we have;(0) = r;,j =0,1,...,p
for the earlier roots:; of p(r) = 0. Sincerg = 1 is a root ofp(r), we letrg(hA) be
the root of (7.44) for whichr((0) = 1. The rootry(h\) is called theprincipal root

for reasons that will become apparent later. If the rog{&\) are all distinct, then
the general solution of (7.42) is

p
yn = v [ri(BN]", n>0. (7.45)
7=0
But if
ri(hA) = rjq1(hA) = - =711 (hA)

is aroot of multiplicity» > 1, then the following are linearly independent solutions

of (7.42):
{[r (hO]"}, An s (hO]"}, oy {n" 7 [y (RA)]™
Moreover, in the formula (7.45), the part
Vi [y (RN + -+ Yot [P -1 (RA)]"
needs to be replaced by
[rj (AA]™ (35 + yjean + -+ ™) (7.46)

These can be used with the solution arising from the othdsttocgenerate a general
solution for (7.42), comparable to (7.45).
In particular, for consistent methods it can be shown that

[ro(hA)]" = e*n + O(h) (7.47)

ash — 0. The remaining roots; (h), ..., r,(h\) are calledparasitic rootsof the
numerical method. The term

> i ()" (7.48)

is called aparasitic solution It is a creation of the numerical method and does not
correspond to any solution of the original differential atjan being solved.

Theorem 7.6 Assume the consistency conditions (7.7)—(7.8). Then thistap
method (7.1) is stable if and only if the root condition ()-32.33) is satisfied.

The proof makes essential use of the general solution (Tdthle case of distinct
roots{r;(hA)}, or the variant of (7.45) modified according to (7.46) whentiple
roots are present. The reader is referred to [11, p. 398] fartal proof and to [47,
pp. 405-417] for a more complete development.

122 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

7.3.2 Convergence theory

The following result generalizes Theorem 7.4 from earlieithis chapter, giving
necessary and sufficient conditions for the convergenceuttistep methods.

Theorem 7.7 Assume the consistency conditions (7.7)—(7.8). Then thestep
method (7.1) is convergent if and only if the root conditidr8@)—(7.33) is satisfied.

Again, we refer the reader to [11, p. 401] for a partial prood 4o [47, pp. 405-417]
for a more complete development.

The following is a well-known result, and it is a trivial catuence of Theorems
7.6and7.7.

Corollary 7.8 Let (7.1) be a consistent multistep method. Then it is cgevdrif
and only if it is stable.

Example 7.9 Return to the two-step methods of order 2, developed in Exaif.
The polynomial(r) is given by
p(r) =r% —agr —a1, ap+ay =1.
Then
pry=(r—-1)(r+1-ag),

and the roots are
7’0:1, leao—l.

The root condition requires
—1<ay—1<1,
0 <ag < 2,

to ensure convergence and stability of the associated ®porsethod in (7.16). B

7.3.3 Relative stability and weak stability

Consider again the model equation (7.36) and its numeraatisn (7.45). For a
convergent numerical method, it can be shown that in thergéselution (7.45), we
obtain

Yo — 1,

v —0, 7=1,...,p

ash — 0. The parasitic solution (7.48) converges to zerdvas: 0, and the term
70 [ro(hA)]" convergestd’ (t) = e with t,, = t fixed. However, for a fixed with
increasing,,, we also would like the parasitic solution to remain smdHtige to the
principal part of the solutiong[ro(kA)]™. This will be true if the characteristic roots
satisfy

[ri(RA)| < ro(RA), j§=1,2,...,p (7.49)

A GENERAL ERROR ANALYSIS 123

for all sufficiently small values of. This leads us to the definition of relative stability.

We say that the method (7.1)nslatively stableif the characteristic roots; (h\)
satisfy (7.49) for all sufficiently small nonzero valuegbh|. Further, the method is
said to satisfy thetrong root conditionif

lr;(0)] <1, j5=1,2,...,p. (7.50)

This condition is easy to check, and it implies relative Bityb Just use the continuity
of the rootsr; (h\) with respect tahA to verify that (7.50) implies (7.49). Relative
stability does not imply the strong root condition, althbufey are equivalent for
most methods. If a multistep method is stable but not redtistable, then it will be

calledweakly stable

Example 7.10
(1) Forthe midpoint method, we obtain
ro(hA) = 1+ hX+ O(R?), 71(hA) = =1 +hX+ O(R?). (7.51)

For A < 0, we have
|T‘1 (h/\)| > To(h/\)

for all small values ofr > 0, and thus (7.49) is not satisfied. The midpoint
method is not relatively stable; itis only weakly stable. M#ve it as an exercise
to show experimentally that the midpoint method has undbkrstability when

A < 0 for the model equation (7.28).

(2) The Adams—Bashforth and Adams—Moulton methods of Ghiaphave the
same characteristic polynomial whén= 0,

p(r) =Pt — P, (7.52)
Therootsarey =1,r; = 0,5 =1,2,...,p; thus the strong root condition is
satisfied and the Adams methods are relatively stable. |
PROBLEMS

1. Consider the two-step method

1 h
Yn+1 = §(yn +Yn-1) + 1 [4y;1+1 - y;z + 3-7/;1—1}) n=>1

with y!, = f(t,,y.). Show that it has order 2, and find the leading term in the
truncation error, written as in (7.15).

2. Recall the midpoint method

Yn+1 = Yn—1 + 2h’f(tn7yn) 5 n Z 1

124 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

from Problem 11 in Chapter 6.

(a) Show that the midpoint method has order 2, as noted eé&ollewing
(7.2).

(b) Show that the midpoint method is not relatively stable.

3. Write a program to solv&”’(t) = f(t,Y(t)), Y (to) = Yy using the midpoint
rule of Problem 2. Use a fixed stepsizeFor the initial valuey;, use the Euler
method withyy = Yj,

y1 = yo + hf(to,yo)-
Using the program, solve the problem

Y'(t) = —Y(t) + 2cos(t), Y(0)=1.

The true solution i¥"(¢) = cos(t) + sin(t). Solve this problem on the interval
[0,10], and use stepsizes &f = 0.2, 0.1, 0.05. Comment on your results.
Produce a graph of the error.

4. Show that the two-step method
Ynt1 = —Yn +2Un1 + R [Byh + 3yh4], n>1

is of order2 and unstable. Also, show directly that it need not converigerw
solvingY”(t) = f(t,Y(t)) by considering the special problem

Y'(t)=0, Y(0)=0.
For the numerical method, consider using the initial values
Yo = h,, Yy = —2h

Hint: Use the general formula (7.45), and examine the numeratatisn for
t, =nh=1.

5. Consider the general formula for all explicit two-stepthusls,
Yn+1 = A0Yn + aA1Yn—1 + h [bOf(tna yn) + blf(tnfla ynfl)]) n Z 1.

(a) Consider finding all such two-step methods that are afii2d Show that
the coefficients must satisfy the equations

a0—|—a1:1, —a1+b0+b1:1, a1—2b1:1.

Solve for{ay, by, b1 } in terms ofay.

(b) Find a formula for the leading term in the truncation erwritten as in
(7.15). It will depend oray.

(c) What are the restrictions at for this two-step method to be stable? To
be convergent?

A GENERAL ERROR ANALYSIS 125

6. Considerthe model equation (7.39) wikfa square matrix of orden. Assume

9.

10.

A = P~'DP with D a diagonal matrix with entriea;,..., \,,. Introduce
the new unknown vector function = Py(¢). Show that (7.39) converts to
the form given in (7.40), demonstrating the reduction todhe-dimensional
model equation.

Hint: In (7.39) replace\ with P~' D P, and then introduce the new unknowns
z = Py. Simplify to a differential equation faz.

. ForsolvingY”’(t) = f(t,Y (¢)), consider the numerical method

h h?
Ynt+1 = Yn + 3 [Yn + Y] + I [Yn —ynia], n=>0.
Herey!, = f(tn, yn),

"o__ Of(tn,yn) Of(tn,y)
Yn= " + f(tn, yn) oy

2=Yn

with this formula based on differentiatiiy' (t) = f (¢, Y (¢)).

(@) Show that this is a fourth-order method with(Y') = O(h?).
Hint: Use the Taylor approximation method used earlier in deg\the
results of Theorem 7.2, modifying this procedure as necggeaana-
lyzing this case.

(b) Show that the region of absolute stability contains thigre negative real
axis of the complex\-plane.

. Prove that (7.8) is necessary for the multistep humeriegthod (7.1) to be

consistent.
Hint: Apply (7.1) to the initial value problem

with exact initial conditions.

(a) Find all explicit fourth-order formulas of the form
Ynt+1 = Q0Yn + Q1Yn—1 + A2Yn—2
+h[boyy + b1y 1 +bayn o], n =2

(b) Show that every such method is unstable.

(a) Consider methods of the form

P
Ynt1 = Yn—q + h Z bjf(xnfjvyn*j)

j=—1

126 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

with ¢ > 1. Show that such methods do not satisfy the strong root
condition. As a consequence, most such methods are onlyiysakle.

(b) Find an example with = 1 that is relatively stable.

11. For the polynomigh(r) = r?*' — 37 a;rP~7, assumer; > 0,0 < j < p,
andZ’;ZO a; = 1. Show that the roots gf(r) will satisfy the root conditions
(7.32) and (7.33). This shows directly that Theorem 7.4 iomltary of
Theorem 7.7.

CHAPTER 8

STIFF DIFFERENTIAL EQUATIONS

The numerical solution of stiff differential equations isnédely studied subject.
Such equations (including systems of differential equesj@ppear in a wide variety
of applications, in subjects as diverse as chemical kisgtechanical systems, and
the numerical solution of partial differential equationis this section, we sketch
some of the main ideas about this subject, and we show itsael@ the numerical
solution of the simple heat equation from partial diffefeh¢quations.

There are several definitions of the concept of stiff difféi@ equation. The
most important common feature of these definitions is thaméuch equations are
being solved with standard numerical methods (e.g., thesd@®ashforth methods
of Chapter 6), the stepsizemust be extremely small in order to maintain stability —
far smaller than would appear to be necessary from a coratiderof the truncation
error. A numerical illustration for Euler's method is givénTable 4.3 as a part of
Example 4.2 in Chapter 4.

Definitions and results related to the topic of stiff diffetial equations were in-
troduced in Chapter 4 (see (4.3)—(4.5) and (4.10)) and @h&ptsee the discussion
accompanying (6.19)—(6.20)). For convenience, we revimsé ideas here. As was
discussed preceding (4.3) in Chapter 4, the following mpdeblem is used to test

127

128 STIFF DIFFERENTIAL EQUATIONS

the performance of numerical methods,

Y'=)Y, t>0,

Y(0) = 1. (8.1)

Following (7.36) in Chapter 7, a derivation was given to sitbat (8.1) is useful
in studying the stability of numerical methods for very gextisystems of nonlinear
differential equations; we review this in more detail in telgparagraph.

When the constant is real, we assuma < 0; or more generally, when is
complex, we assumReal(\) < 0. This assumption aboutis generally associated
with stable differential equation problems (see Secti@).1The true solution of the
model problem is

Y (t) = e (8.2)
From our assumption oR, we have
Y(t) -0 as t — oo. (8.3)

The kind of stability property we would prefer for a numetioaethod is that when
it is applied to (8.1), the numerical solution satisfies

Yn(tn) — 0 as t, — o0 (8.4)

for any choice of the stepsize Such numerical methods are calkdusolutely stable
or A-stable For an arbitrary numerical method, the set of valaggor which (8.4) is
satisfied, considered as a subset of the complex plane|és ¢théregion of absolute
stability of the numerical method. The dependence on the pradudé$ based on
the general solution to the finite difference method for say(8.1), given in (7.45)
of Chapter 7.

Example 8.1 We list here the region of absolute stability as derived ifi@achapters.
Again, we consider only satisfying our earlier assumption tHatal (\) < 0.

e For Euler's method, it was shown following (4.5) that (8.¢)satisfied if and
only if
|14+ hX = |hA = (-1)] < L. (8.5)
Thush A is in the region of absolute stability if and only if it is witha distance

of 1 from the point—1 in the complex plane. The region of absolute stability
is a circle of unit radius with center atl. For real), this requires

-2 < hA <.

e For the backward Euler method of (4.9), it was shown in anlb¥ahg (4.10)
that (8.4) is satisfied for every valuefof in whichReal (\) < 0. The backward
Euler method is A-stable.

e For the trapezoidal method of (4.22), it was left to Problem Zhapter 4 to
show that (8.4) is satisfied for every value/of in whichReal (\) < 0. The
trapezoidal method is A-stable.

129
e For the Adams—Bashforth method of order 2, namely

h
Ynr1 = Yo+ 5B —Ypal, n 21 (8.6)
(see Table 6.2), it was stated in Example 6.6 that the reabp#éne region of
absolute stability is the interval

—1 < hA<O. (8.7)

Why is this of interest? If a method is absolutely stablentheere are no re-
strictions onh in order for the numerical method to be stable in the sens&.d).(
However, consider what happens to the stepsiZa method has a region of absolute
stability that is bounded (and say, of moderate size). Sspfitat the value of has
a real part that is negative and of very large magnitude. Thewst be correspond-
ingly small forh A to belong to the region of absolute stability of the methodertkif
the truncation error is small, it is necessary thatbelong to the region of absolute
stability to ensure that the error in the approximate sohufiy,, } is also small.

Example 8.2 Recall Example 4.2 in Chapter 4, which illustrated the cotaponal
effects of regions of absolute stability for the Euler, baakd Euler, and trapezoidal
methods when solving the problem

Y'(t) = Y (£) + (1 — A) cos(t) — (1 + N)sin(t), Y(0) = L (8.8)

The true solution i&"(¢) = sin(t) + cos(t). We augment those earlier calculations
by giving results for the Adams—Bashforth method (8.6) wkelving (8.8). For
simplicity, we usg;; = Y (¢;). Numerical results for several values)ofre given in
Table 8.1. The values éfare the same as those used in Table 4.3 for Euler's method
in Example 4.2. The stability of the error in the numericaluks are consistent with
the region of absolute stability given in (8.7). |

Returning to the derivation following (7.36) in Chapter 7¢ Yooked at the lin-
earization of the system
Y' =f(t,Y) (8.9)

of m differential equations, resulting in the approximatinggiar system
Y' =AY +g(t). (8.10)

In this, A = £, (¢, Yo) is them x m Jacobian matrix of evaluated afto, Yo). As
was explored in Problem 6 of Chapter 7, many such systemsecaedoiced to a set
of m independent scalar equations

Y/ =AY+ al), i=1...m.

130 STIFF DIFFERENTIAL EQUATIONS

Table8.1 The Adams-Bashforth method (8.6) for solving (8.8)

A t Error Error Error

h=0.5 h=0.1 h =0.01

-1 1 -23% -2 —758¢—4 —7.24e—6
2 4.02e — 2 213e -3 228e—-5

3 1.02e — 1 43le—3 4.33e—-5

4 8.50e — 2 298¢ -3 282 -5

5 —3.50e—3 —9.16e—4 —1.13e—-5

—-10 1 —-23%—-2 —-1.00e—4 6.38e—7
2 —1.10e+0 3.75e —4 5.25e —6

3 —523+1 383 —4 5.03e—-6

4 2.46e+3 —832e—-5 191le—-7

5 —116e+5 —596e—4 —4.83e —6

50 1 —23%9%—-2 —157e+3 22le—7
2 —325e+1 —3.64e+11 1.09¢ —6

3 44le+4 —8.44e+19 9.60e — 7

4 —598e+T7 —1.96e+ 28 —5.54e —8

5 —812e+ 10 —4.55e+ 36 —1.02e —6

As was discussed following (7.36), this leads us back to théetequation (8.1) with
A an eigenvalue of the Jacobian matfiXto, Yo).

We say that the differential equatid¥¥ = f(¢,Y) is stiff if some of the eigen-
values); of A, or more generally of, (¢, Y), have a negative real part of very large
magnitude. The question may arise as to how large the eigenshould be to be
considered large? The magnitude of the eigenvalues migigrdeon the units of
measurement used, for example, which has no impact on thergrabcomputation
needed to accurately solve a particular problem. The crtess is to consider the
eigenvalue(s) associated with the slowest rates of changesompare them with the
eigenvalue(s) associated with the fastest rates of chahgample test is to look at
the ratiomax; |\;| / min; |A;|. If this number is large, then the problem is stiff. For
example, in the pendulum model (3.13), the two eigenvaluts linearization have
the same or similar magnitudes. So it is not a stiff problenesMproblems that we
have seen so far are not stiff. Yet, stiff problems are commamactice. In the next
section we see one very important example.

We study numerical methods for stiff equations by considgtheir effect on the
model equation (8.1). This approach has its limitationmeaof which we indicate
later, but it does give us a means of rejecting unsatisfaet@mthods, and it suggests
some possibly satisfactory methods. Before giving sombdrigrder methods that
are suitable for solving stiff differential equations, wiggyan important practical
example.

THE METHOD OF LINES FOR A PARABOLIC EQUATION 131

8.1 THE METHOD OF LINES FOR A PARABOLIC EQUATION

Consider the following parabolic partial differential exion problem:

Ui =Ugr + G(z,t), 0<z<1, t>0, (8.11)
U0,t) =do(t), U1, t)=di(t), t>0, (8.12)
U(z,0) = f(z), 0<z<1. (8.13)

The unknown functiol/ (x, t) depends on the timeand a spatial variable, andU; =
oU/ot, Uy, = 0*U/0x2. The conditions (8.12) are calldzbundary conditions
and (8.13) is called amitial condition. The solutionU can be interpreted as the
temperature of an insulated rod of lengtith U (x, t), the temperature at positian
and timet; thus (8.11) is often called tHeeat equationThe functiong, dy, d1, and
f are assumed given and smooth. For a development of the thé&8y11)—(8.13),
see Widder [78] or any standard introduction to partialatiéintial equations. We
give themethod of linedor solving for U, a popular numerical method for solving
numerically linear and nonlinear partial differential @gjons of parabolic type. This
numerical method also leads to the necessity of solvingflasgtem of ordinary
differential equations.

Letm > 0 be an integer, define= 1/m, and define the spatial nodes

xj:j5, j:O,l,...,m.

We discretize (8.11) by approximating the spatial denxati,, in the equation.
Using a standard result in the theory of numerical diffetrtia,

U(.’L‘j.ﬁ_l,t) - 2U($j,t) + U(.%'j_l,t) _ ﬁale({j, t)
02 12 Ozt
forj = 1,2,...,m — 1, where eaclf; = ¢;(t) is some point between,_; and

xj+1. For a derivation of this formula, see [11, p. 318] or [12, B7R Substituting
into (8.11), we obtain

Uacac (.”L'j, t) = (814)

U(zjt1,t) —2U(z;,t) + U(zj-1,1)

Ut(:vj, t) = 52 + G(l‘j, t) (8 15)
_ 02 0'U(g. 1) l<j<m—1 '
12 Oz¢ -7 '

Equation (8.11) is to be approximated at each interior nadetp ;.
We drop the final term in (8.15), the truncation error in themauical differentia-
tion. Forcing equality in the resulting approximate eqomfiwe obtain

1
uwji(t) = 55 (g1 (t) = 2u5(t) +ujmr ()] + Gla,) (8.16)
for j = 1,2,...,m — 1. The functionsu;(¢) are intended as approximations of

U(zj,t),1 < j < m— 1. This is themethod of linesipproximation to (8.11), and

132 STIFF DIFFERENTIAL EQUATIONS

it is a system ofn — 1 ordinary differential equations. Note tha§(t) anduw,, (),
which are needed in (8.16) fgr= 1 andj = m — 1, are given using (8.12):

wo(t) = do(t), wn(t) = du(t). (8.17)
The initial condition for (8.16) is given by (8.13):
u;(0) = f(z;), 1<j<m-—1 (8.18)

The termmethod of linesomes from solving fob/ (z, ¢) along the linegz;, ¢),t > 0,
1<j<m-—1linthe(z,t) plane.
Under suitable assumptions on the functidpsdy, G, andf, it can be shown that
max |U(zj,t) —u;(t)| < Opd?. (8.19)
0<j<m
0<t<T
Thus to complete the solution process, we need only solveytstem (8.16).
It is convenient to write (8.16) in matrix form. Introduce

u(t) = [ul(t)’ s ’um—l(t)]T) Up = [f(‘rl)v SERE) f(xm—l)]T)

dol(t di(t T
g(t) = %(2)+G(:c1,t), G(x2,1), ..., G(Tm_2,1t), 15(2)+G(a:m,1,t) :
[—2 1 0 0]
1 -2 1 0
1
A:§—2
1 -2 1
L0 0 1 -2 |

The matrixA is of orderm — 1. In the definitions ofu andg, the superscripf’
indicates matrix transpose, so thieéndg are column vectors of length — 1. Using
these matrices, equations (8.16)—(8.18) can be rewriten a

u'(t) = Au(t) + g(t), u(0) = uo. (8.20)
If Euler's method is applied, we have the numerical method
Vn+1 =V,+h [AVn + g(tn)]) Vo =1ug (821)

with t,, = nh andV,, = u(t,). Thisis a well-known numerical method for the heat
equation, called theimple explicit methadWe analyze the stability of (8.21) and
some other methods for solving (8.20).

Equation (8.20) is in the form of the model equation, (8.40Y therefore we need
the eigenvalues of to examine the stiffness of the system. These eigenvaleedlar
real and are given by

4 . jm .
/\j = —6—231112 (%> , 1<5j<m-1. (822)

THE METHOD OF LINES FOR A PARABOLIC EQUATION 133

A proof (which we omit here) can be obtained by showing a reteship between
the characteristic polynomial fér and Chebyshev polynomials. Directly examining
(8.22), we have

Am—1 <A < Aq, (8.23)

with

Am_1 = __431112 <M> ~ 5_24,

—4 a7 2
A1:5—2Sln (%) ~ —T

with the approximations valid for largen. As \,,,—1/\1 ~ 4/(7§)?, it can be seen
that (8.20) is a stiff system if is small.
Applying (8.23) and (8.5) to the analysis of stability inZ8), we must have

T+hN| <1, j=1,....m—1.
Using (8.22), this leads to the equivalent statement
jm

4h
0<5—251n2(%><2, 1<j<m-1.

This will be satisfied ifth /62 < 2 or
h < 162 (8.24)

If § is at all small, sayy = 0.01, then the timestep must be quite small to ensure
stability.

In contrastto the restriction (8.24) with Euler’s methdd backward Euler method
has no such restriction since it is A-stable. Applying thekveard Euler method, our
approximation to (8.20) is

Vg1 = Vo +h[AV, 1 +g(tws1)], Vo=uo. (8.25)

This is called thesimple implicit methodor solving the heat equation. To solve this
linear problem foV,,; 1, we rewrite the equation as

Solving forV, 4 gives

Since all the eigenvalue of A are negative, the eigenvalues(@f— hA)~! are
1/(1 = hA;), which are all bounded by one. Because of this, the implicieE
method for this problem is always stable; there is no linotabn the stepsizé,
unlike the case for the explicit Euler method. Also, the ¢insystem to be solved

134 STIFF DIFFERENTIAL EQUATIONS

Table8.2 The method of lines: Euler's method & %62)

Error Error Error
t m=4 Ratio m =38 Ratio m =16

1.0 4.85e —2 4.096 1.18¢ —2 4.024 2.94e -3
2.0 439 -2 4.096 1.07e —2 4.024 2.66e — 3
3.0 3.97e -2 4.096 9.69¢ —3 4.024 2.4le—3
4.0 3.59e —2 4.096 8.77¢e —3 4.024 2.18¢ —3
5.0 3.25e—2 4.096 7.93e —3 4.024 1.97e -3

Table8.3 The method of lines: Backward Euler methdd=£ 0.1)

Error Error Error

1.0 4.85e —2 1.19¢ —2 2.99¢ — 3
2.0 4.39e —2 1.08e —2 2.70e — 3
3.0 3.98¢e —2 9.73e —3 2.45e -3
4.0 3.60e —2 8.8le —3 2.2le—3
5.0 3.25e —2 7.97e —3 2.00e — 3

is a tridiagonal system, and there is a well-developed nigaleanalysis for such
linear systems (e.g. see [11, p. 527] or [12, p. 287]). It carsdived very rapidly
with approximatelysm arithmetic operations per timestep, excluding the cost of
computing the right side in (8.26). The cost of solving thdeEunethod (8.21) is
almost as large, and thus the solution of (8.26) is not eafigtime-consuming.

Example 8.3 Solve the partial differential equation problem (8.11)2@ with the
functionsG, dy, d1, and f, determined from the known solution

U=e 1 sin(mz), 0<z<1, t>0. (8.28)

Results for Euler's method (8.21) are given in Table 8.2, @sdlts for the backward
Euler method (8.25) are given in Table 8.3.

For Euler's method, we takes = 4, 8, 16, and to maintain stability, we take =
%52 from (8.24). This leads to the respective timestep's 6f0.031, 0.0078, 0.0020.
From (8.19) and the error formula for Euler's method, we veibekpect the error to
be proportional t@?, sinceh = %52. This implies that the error should decrease by
a factor of4 whenm is doubled, and the results in Table 8.2 agree. In the tdide, t
column “Error” denotes the maximum error at the node pofnist), 0 < j < n, for
the given value of.

For the solution of (8.20) by the backward Euler method,e&hexed no longer be
any connection between the spatial stepsiaed the timestep. By observing the

THE METHOD OF LINES FOR A PARABOLIC EQUATION 135

error formula (8.19) for the method of lines and the trurmaterror formula (8.33)
(usep = 1) for the backward Euler method, we see that the error in sglthe
problem (8.11)—(8.13) will be proportional fo+ 62. For the unknown functiol/

of (8.26), there is a slow variation with Thus, for the truncation error associated
with the time integration, we should be able to use a relbtilzgge timesteph as
compared to the spatial stepsizdor the two sources of error be relatively equal in
size. In Table 8.3, we ude= 0.1 andm = 4, 8, 16. Note that this timestep is much
larger than that used in Table 8.2 for Euler's method, and the backward Euler
method is much more efficient for this example. |

For more discussion of the method of lines, see Aiken [1, [#3-148] and
Schiesser [71].

8.1.1 MATLAB ® programs for the method of lines

We give MATLAB programs for both the Euler method (8.21) ainel backward Euler
method (8.27).

Euler method code:

function [x,t,u] = MOL_Euler(d0,d1,f,G,T,h,m)

yA

% function [x,t,u] = MOL_Euler(d0,d1,f,G,T,h,m)

yA

% Use the method of lines to solve

% ut =uxx + G(x,t), 0 < x <1, 0<t<T
% with boundary conditions

yA u(0,t) = do(t), u(l,t) = di(t)

% and initial condition

% u(x,0) = f(x).

% Use Euler’s method to solve the system of ODEs.

% For the discretization, use a spatial stepsize of
% delta=1/m and a timestep of h.

h

% For numerical stability, use a timestep of

% h = 1/(2*m"2) or smaller.

"
]

linspace(0,1,m+1)’; delta = 1/m; delta_sqr = delta"2;
(0:h:T)’; N = length(t);

ot
]

% Initialize u.

u = zeros(m+1,N);

u(:,1) = £(x);

u(l,:) = do(t); ulm+1,:) = di(t);

136 STIFF DIFFERENTIAL EQUATIONS

% Solve for u using Euler’s method.
for n=1:N-1
g = G&x(2:m),t(n));
u(2:m,n+1) = u(2:m,n) + (h/deltasqr)*(u(l:(m-1),n)
- 2xu(2:m,n) + u(3:(m+1),n)) + hxg;
end
u=nu’;
end % MOL_Euler

Test of Euler method code:

function [x,t,u,error] = Test_MOL_Euler(index_u,t_max,h,m)

% Try this test program with
% [x,t,u,error] = Test MOL_Euler(2,5,1/128,8);

[x,t,u] = MOL_Euler(@d0,@d1,@f,QG,tmax,h,m);

% Graph numerical solution

[X,T] = meshgrid(x,t);

figure; mesh(X,T,u); shading interp

xlabel(’x’); ylabel(’t’);

title([’Numerical solution u: index of u = 7,...
num2str (indexu)])

disp(’Press any key to continue.’); pause

% Graph error in numerical solution

trueu = true_soln(X,T); error = trueu - u;

disp([’Maximum error = ’,num2str (max(max(abs(error))))])

figure; mesh(X,T,error); shading interp

xlabel(’x’); ylabel(’t’);

title([’Error in numerical solution u: index of u=’,...
num2str(indexu)])

disp(’Press any key to continue.’); pause

% Produce maximum errors over X as t varies.

maxerr_in_x = max(abs(error’));

figure; plot(t,maxerr_in x); text(1.02*%tmax,0,’t’)
title(’Maximum error for x in [0,1], as a function of t’)

function trueu = true_soln(z,s)
switch index_u

case 1
trueu = s.72 + z.74;

THE METHOD OF LINES FOR A PARABOLIC EQUATION 137

case 2
trueu = exp(-0.1%s) .*sin(pi*z);
end
end % trueu

function answer = G(z,s)

% This routine assumes s is a scalar, while z can be a vector.
switch index_u
case 1
answer = 2%xs — 12%xz.72;

case 2
answer = (pi”2 - 0.1)*exp(-0.1%s).*sin(pi*z);

end
end % G

function answer = d0(s)
z = zeros(size(s));
answer = true_soln(z,s);
end % dO

function answer = di(s)
z = ones(size(s));
answer = true_soln(z,s);
end % di

function answer = f(z)
s = zeros(size(z));
answer = true_soln(z,s);
end % f

end % Test MOL_Euler

Backward Euler method code:
function [x,t,u] = MOL_BEuler(d0,d1,f,G,T,h,m)

yA

% function [x,t,u] = MOL_BEuler(d0,d1,f,G,T,h,m)
yA

% Use the method of lines to solve

% ut = uxx + G(x,t), 0 < x <1, 0<t<T
% with boundary conditions

yA u(0,t) = do(t), u(l,t) = di(t)

% and initial condition

% ulx,0) = £f(x).

% Use the backward Euler’s method to solve the system of

138 STIFF DIFFERENTIAL EQUATIONS

% ODEs. For the discretization, use a spatial stepsize of
% delta=1/m and a timestep of h.

x = linspace(0,1,m+1)’; delta = 1/m; delta_sqr = delta”2;
= (0:h:T)’; N = length(t);

ot
|

% Initialize u.

u = zeros(m+1,N);

u(:,1) = £(x);

u(l,:) =4d0(t); ulm+l,:) = di(e);

% Create tridiagonal coefficient matrix.
a = -(h/delta_sqr)*ones(m-1,1); c = a;

b = (1+2+h/delta_sqr)*ones(m-1,1);

a(1) = 0; c(m-1) = 0; option = 0;

% Solve for u using the backward Euler’s method.
for n=2:N

g = Gx(2:m),t(n));

g(1) = g(1) + (1/delta sqr)*u(l,n);

g(m-1) = g(m-1) + (1/delta_sqr)*u(m+l,n);

f = u(2:m,n-1) + hx*g;

switch option

case O % first time: factorize matrix
[v,alpha,beta,message] = tridiag(a,b,c,f,m-1,option);
option = 1;
case 1 % other times: use available factorization
v = tridiag(alpha,beta,c,f,m-1,option);
end
u(2:m,n) = v;
end
u=nu’;

end % MOL_BEuler

function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

% function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)
% Solve a tridiagonal linear system Mx=f

% INPUT:

% The order of the linear system is given as n.

% The subdiagonal, diagonal, and superdiagonal of M are given
% by the arrays a,b,c, respectively. More precisely,

h
h
)
)
)
)
)
)
)
)
h
h
)
)
)
)
)
)
)

i

e

)
)

i

e
X

THE METHOD OF LINES FOR A PARABOLIC EQUATION 139

M(i,i-1) = a(i), i=2,...,n
M(i,i) = b(i), i=1,...,n
M(i,i+1) = c(i), i=1,...,n-1
option=0 means that the original matrix M is given as
specified above. We factorize M.
option=1 means that the LU factorization of M is already
known and is stored in a,b,c. This will have been
accomplished by a previous call to this routine. 1In
that case, the vectors alpha and beta should have
been substituted for a and b in the calling sequence.
A1l input values are unchanged on exit from the routine.

OUTPUT:

Upon exit, the LU factorization of M is already known and

is stored in alpha,beta,c. The solution x is given as well.

message=0 means the program was completed satisfactorily.

message=1 means that a zero pivot element was encountered
and the solution process was abandoned. This case
happens only when option=0.

f option ==
alpha = a; beta = b;
alpha(1) = 0;

% Compute LU factorization of matrix M.
for j=2:n

if beta(j-1) ==

message = 1; return

end

alpha(j) = alpha(j)/beta(j-1);

beta(j) = beta(j) - alpha(j)*c(j-1);
end

if beta(n) == 0
1

message = 1; return
end
nd
Compute solution x to M*x = f using LU factorization of M.

Do forward substitution to solve lower triangular system.
f option == 1
alpha = a; beta = b;
nd
= f; message = 0;

140 STIFF DIFFERENTIAL EQUATIONS

for j=2:n
x(j) = x(j) - alpha(j)*x(j-1);
end

% Do backward substitution to solve upper triangular system.
x(n) = x(n)/beta(n);
for j=n-1:-1:1
x(3) = (x(3) - c(GI*x(3+1))/beta(]);
end

end % tridiag

The test code foMOL _BEuler is essentially the same as that fiIL_Euler. In
Test MOL_Euler, simply replace the phras®L_Euler with MOL_BEuler through-
out the code.

8.2 BACKWARD DIFFERENTIATION FORMULAS

The concept of a region of absolute stability is the init@ltused in studying the
stability of a numerical method for solving stiff differeat equations. We seek
methods whose stability region each contains the entirativegreal axis and as
much of the left half of the complex plane as possible. Thez@aumber of ways to
develop such methods, but we discuss only one of them in ltaigter — obtaining
thebackward differentiation formula@DFs).

Let P,(t) denote the polynomial of degreep that interpolated”(¢) at the points
tnti,tns .- s tn—py1 fOrsomep > 1,

p—1
Bp(t) = > Y(tnj)lin(t), (8.29)
j=-1
where{l; ,(¢) : j = —1,...,p — 1} are the Lagrange interpolation basis functions
for the nodes,, 1, ..., tn—p+1 (See (B.4) in Appendix B). Use
Py(tnt1) =Y (tni1) = f(tn+1, Y (tnr1))- (8.30)

Combining (8.30) with (8.29) and solving f&f(¢,,+1), we obtain

p—1

Y(tng1) m Y Y (tng) + hBS (tag1, Y (taga)) - (8.31)
j=0

Thep-step BDF method is given by

p—1

Ynt1 = Z QjYn—j + hBf(tnst, Ynt1)- (8.32)
=0

STABILITY REGIONS FOR MULTISTEP METHODS 141

Table8.4 Coefficients of BDF method (8.32)

p B Qo (o7 (e % a3 Q4 as
1 1 1
2 4 1
2 3 3 —3
6 18 9 2
CINE s U v S S + 3
4 12 48 36 16 3
25 25 25 25 25
5 60 300 300 200 _ 75 @ 12
137 137 137 137 137 137
6 80 360 450 400 225 72 _ 10
147 147 147 147 147 147 147
The coefficients for the casespf= 1, ..., 6 are given in Table 8.4. The cage= 1

is simply the backward Euler method of (4.9) in Chapter 4. frbhacation error for
(8.32) can be obtained from the error formulas for numeuifftrentiation (e.g. see
[11, (5.7.5)]),

B

T (Y) = _mhﬁly@’“)(gn) (8.33)

for somet,,—p11 < &n < tpti.
The regions of absolute stability for the formulas of Tahk &e given in Figure
8.3. To create these regions, we must find all valuke$or which

Irj(hA)| <1, j=0,1,...,p, (8.34)

where the characteristic rootg(h\) are the solutions of

p—1
P =P T 4 hABr”. (8.35)
j=0
It can be shown that fop = 1 andp = 2, the BDF's are A-stable, and that for
3 < p < 6, the region of absolute stability becomes smallep axreases, although
containing the entire negative real axis in each casep Eof, the regions of absolute

stability are not acceptable for the solution of stiff pretnls. This is discussed in
greater detail in the following section.

8.3 STABILITY REGIONS FOR MULTISTEP METHODS

Recalling (7.1), all general multistep methods, includiig, AM, and BDF (and
other) methods, can be represented as follows:

P P
Uni1 =3 i Ynj+h ¥ b fltn_j, Yns)- (8.36)
=0

j=—1

142 STIFF DIFFERENTIAL EQUATIONS

0.8

0.6

0.41

0.2

Im(hA)
<

—0.2F

-0.4

-1 L I

Figure8.1 Stability regions for Adams—Bashforth methods. Note tHalAs Euler's method

For the test equatioY/dt = \Y, we havef(¢t,Y) = \Y; and recalling (7.42), the
characteristic polynomial for (8.36) is

p
0= (1—=hXb_y)r"™h =3 " (a; + hAb;) r"~7. (8.37)
3=0
Theboundaryof the stability region is where all roots of this characéd equation
have magnitude 1 or less, and at least one root with magnitudée can find all the
values ofh. A where one of the roots has magnitude 1. All roots with magigitiican
be represented as= ¢’ with i = v/—1. So we can find alb\ where (8.37) holds
with » = ¢, Separating ouk\ gives

P P
rP1 — Zaj rP=J = hA Z by,
=0

Jj=-1

P P
hX = | rPTL — g a; P + g bjrP=I1 |,
=0

j=—1

wherer = ¢ for 0 < § < 27 gives a set that includes the boundary of the stability
region. With a little more care, we can identify which of tiegions separated by this
curve form the true stability region.

Remark. From Section 7.3 of Chapter 7, the root condition (7.3233Yis nec-
essary for convergence and stability of a multistep methblis form of stability

ADDITIONAL SOURCES OF DIFFICULTY 143

z
< o g
E i
\
\
_1, \ 1 -
Y ! AM1
I
\ | (outside circle)
N |
-2r L AM4 S 4
I
s | AM2
_al el -7 AMB 1 (left of line) J
1
-6 -5 -4 -3 -2 -1 0 1 2

Figure 8.2 Stability regions for Adams—Moulton methods. Note that Aldthe implicit
Euler method, and AM2 is the trapezoidal method. Note thiedint scale on the axes as
compared to Figure 8.1

is sometimes also callagleak stability as we ordinarily require additional stability
conditions for a practical numerical method. Without thetroondition, the method
cannot be expected to produce numerical solutions thabagprthe true solution as
h — 0, regardless of the value of The root condition sometimes fails for certain
consistent multistep methods, but almost no one discubsse tmethods because
they are useless except to explain the importance of didbilis a simple example
of such a method, recall Example 7.34 from Section 7.3.

8.4 ADDITIONAL SOURCES OF DIFFICULTY

8.4.1 A-stability and L-stability

There are still problems with the BDF methods and with othetirads that are chosen
solely on the basis of their region of absolute stabilitysEiwith the model equation
Y’ =)Y, if Real()\) is of large magnitude and negative, then the solutitn)
goes to the zero very rapidly, and Bsal(\) — —oo, the convergence to zero of
Y (t) becomes more rapid. We would like the same behavior to holtiéonumerical
solution of the model equatidpy,, }. To illustrate this idea, we show that tHestable
trapezoidal rule does not maintain this behavior.

144 STIFF DIFFERENTIAL EQUATIONS

4 \ T
\ \
\ \
\
3t ' .
N \
2 N BDF5 '\
1 BDF6 ~ - _
2
< o0
E
-1t - -
_2, //
/
s /
/
_37 // /
!
/ 1
-4 / . L
Z6 -4 -2

Re(hA)

Figure 8.3 Stability regions for backward difference formula methodsote that BDF1
is again the implicit Euler method. The labels are insidestability region for the labeled
method.

Apply the trapezoidal method (4.22) to the model equatioh)(8Doing so leads
to the numerical approximation

1+ 3hA]"
Yn = { — %h)\} , n>0. (8.38)
If |[Real(\)| is large, then the fraction inside the brackets is less thamiagnitude,
but is nearly equal te-1; and thusgy,, decreases to quite slowly. This suggests that
the trapezoidal method may not be a completely satisfactuice for stiff problems.
In comparison, the A-stable backward Euler method has tls@etebehavior.
From (4.10) in Chapter 4, the solution of the model problem is

1 n
= > 0.
yn [1—h)\] » m20

As |A| increases, the sequentg,} goes to zero more rapidly. Thus the backward
Euler solution better reflects the behavior of the true sotubdf the model equation.
An A-stable numerical method is calleestableif at each fixed = ¢,,, the numerical
solutiony,, att,, satisfiesy, — 0 asReal (\) — —oo. The trapezoidal rule is not
L-stable, whereas the backward Euler method is L-stablés mhterial was explored
earlier in Problems 14 and 15 of Chapter 4.

SOLVING THE FINITE-DIFFERENCE METHOD 145

8.4.2 Time-varying problems and stability

A second problem with the use of stability regions to deteemninethods for stiff
problemsis thatitis based on using consteand linear problems. The linearization
(8.10) is often valid, but not always. For example, consttiersecond-order linear
problem

y" +ay + (1 +b-cos(2my))y =g(t), t>0, (8.39)

in which one coefficient is not consta@onvert it to the equivalent system

Y1 = Y2,

/
1
8.40
yh = —(1+b-cos(2mt))y1 — aya + g(t). (:

We assume > 0, |b] < 1. The eigenvalues of the Jacobian matrix for this system
are

N —a+ \/a2—4[21+b-cos(27rt)]' (8.41)
These are either negative real numbers or complex numb#rswegative real parts.
On the basis of the stability theory for the constant coeffiti{or constani) case,
we might be led to assume that the effect of all perturbatiorike initial data for
(8.40) would die away as — oo. But in fact, the homogeneous part of (8.39) will
have unbounded solutions. Thus there will be perturbatidtise initial values that
will lead to unbounded perturbed solutions in (8.39). Tha#iscinto question the
validity of the use of the model equatigh= Ay + ¢(¢). Using the model equation
(8.1) suggests methods that we may want to study furthebyitiself, this approach
is not sufficient to encompass the vast variety of linear asdinear problems. The
example (8.39) is taken from Aiken [1, p. 269].

8.5 SOLVING THE FINITE-DIFFERENCE METHOD

We illustrate the difficulty in solving the finite differen@guations by considering
the backward Euler method,

Yni1 = Yn + hf(tng1,Yng1), n =0 (8.42)

first for a single equation and then for a system of equatiéios.a single equation,
we summarize the discussion involving (4.12)—(4.16) of i@ee4. If the ordinary
iteration formula

g = yu + hf (b, yl)), G20 (8.43)
is used, then
j af tnt1, Yn j
st — g9 (#ﬂ) [yn+1 B yfﬁl} _

For convergence, we would need to have

haf(tn+17yn+1)

1. 8.44
Y < (8.44)

146 STIFF DIFFERENTIAL EQUATIONS

But with stiff equations, this would again fordeto be very small, which we are
trying to avoid. Thus another rootfinding method must be ueesblve fory,, 1 in
(8.42).

The most popular methods for solving (8.42) are based on dlesvnethod and
variants of it. For a single differential equation, Newt®niethod for findingy,, ;1 is

. . . -1
WD = 30, — [t = hfy b)) 045

X |:yr(zj-ﬁ)-1 — Yn — hf(tn+17 yy(lj.q)-):|

forj > 0. Acrudeinitial guess ig,(f)ll = y,, although generally this can be improved
on.
With a system ofn differential equations, as in (8.9), Newton’s method is

|:I - hfy(tn+lay$g-§)—l):| (S’SIJ) = Y;J.)H —Yn — hf(tn+l7y£lj-ﬁ)-1)7

yszj:-rll) = ygll - 57(lj)7 j=0.

(8.46)

Thisis asystem afi linear simultaneous equations for the vedigt R™, and such
a linear system must be solved repeatedly at each.stefphe matrix of coefficients
changes with each iterayéj}rl and with each step,. This rootfinding procedure is
usually costly to implement; consequently, we seek vasiahNewton’s method that
require less computation time.

As one approach to decreasing the cost of (8.46), the maigroximation

I —hty(tusr,2) ~ T — hfy(tai1,yY),), somez~y, (8.47)

is used for allj and for a number of successive stéps Thus Newton’s method
(8.46) is approximated by

I = hEy(tnin,2)] 69 =yY) —y, — hf(th, yfgjl) ,
_ _ _ (8.48)
ygj-rll) = .foll 69, j=>o.
This amounts to solving a number of linear systems with theeseoefficient matrix.
This can be done much more cheaply than when the matrix igbeodified with
each iteration and each new stgp The matrix in (8.47) will have to be updated
periodically, but the savings will still be very significamhen compared to an exact

Newton method. For a further discussion of this topic, sdesAi[1, p. 7].

8.6 COMPUTER CODES

The MATLAB programode15s is used to solve stiff ordinary differential equations.
It is based on a modification of the variable order family of BMethods discussed
earlier in the chapter. Details of the actual methods angt thgplementation can

COMPUTER CODES 147

be found in Shampine and Reichelt [73, Section 2]. The nealiffinite difference
system (see (8.42) for the backward Euler method) at eadakstapt,, is solved by

a variant of the modified Newton method of (8.47)—(8.48). phagramode15s is
used in precisely the same manner as the progr@m5s discussed in Chapter 5 and
the progranpde113 of Chapter 6; and the entire suite of MATLAB ODE programs
is discussed at length in [73], [74].

A package of programs callegundials[46] includes state-of-the-art programs
for solving initial value problems for ordinary differeatiequations, including stiff
equations, and differential algebraic equations. Inallidean interface for use with
MATLAB. The Sundialspackage is the latest in a sequence of excellent programs
from the national energy laboratories (especially Laweshivermore Laboratory
and Sandia Laboratory) in the USA, for use in solving ordyrdifferential equations
and developed over more than 30 years.

A general presentation of the method of lines is given in &s$ér [71]. For
some older “method of lines codes” to solve systems of nealiparabolic partial
differential equations in one and two space variables, sgm®ec and Madsen [75]
and Melgaard and Sincovec [63]. For use with MATLAB, the RaiDifferential
Equations Toolbox solves partial differential equaticarsg it contains a \method of
lines codes" code to solve parabolic equations. It also make of the MATLAB
suite of programs for solving ordinary differential eqwais.

Example 8.4 We modify the programest_ode45 of Section 5.5 by replacingie45
with ode15s throughout the code. We illustrate the useode15s with the earlier
example (8.8), solving it of0, 20] and usingAbsTol = 1075, RelTol = 10~
We choose\ to be negative, but allow it to have a large magnitude, as anfiple
8.2 for the Adams—Bashforth method of order 2 (see Table 8%)a comparison
to ode15s, we also give the results obtained usisie45 andode113. We give the
number of needed derivative evaluations with the three narog, and we also give
the maximum error in the computed solution o{@&r20]. This maximum error is for
the interpolated solution at the points defined in the temjmtest_ode15s. The
results, shown in Table 8.5, indicate clearly that as tHftness increases (or a3
increases), the efficiencies ofie45 andode 113 decreases. In comparison, the code
odel5s is relatively unaffected by the increasing magnitud@\of |

PROBLEMS

1. Derive the BDF method of order 2.

2. Consider the BDF method of order 2. Show that its regiorbsbéute stability
contains the negative real axispo < hA < 0.

3. Using the BDF method of order 2, repeat the calculationExample 8.2.
Comment on your results.
Hint: Note that the linearity of the test equation (8.8) allows itinplicit BDF
equation fory,, 11 to be solved explicitly; iteration is unnecessary.

148 STIFF DIFFERENTIAL EQUATIONS

Table8.5 Comparison ofode15s, ode45, andode113 for the stiff equation (8.8)

odelbs ode4b5 odel13
A=—-1
Maximum error 5.44e —4 1.43e—4 3.40e —4
Function evaluations 235 229 132
A=-10
Maximum error 1.54e —4 4.51le—5 9.05e — 4
Function evaluations 273 979 337
A= -50
Maximum error 8.43e —5 4.24de—5 1.4le—3
Function evaluations 301 2797 1399
A = —500
Maximum error 4.67e —5 1.23e—4 3.44e—3
Function evaluations 309 19663 13297

4. Implement MOL_Euler. Use it to experiment with various choicesdofndh
with the true solutiorl/ = e~%1*sin(rz). Use some values dfandh that
satisfy (8.24) and others not satisfying it. Comment on yesuilts.

5. ImplementMOL_Euler andMOL_BEuler. Experiment as in Example 8.3. Use
various values of, andd. Do so for the following true solution8 (note that
the functionsiy, d;, f, andG are determined from the known test césp

(@) U = z* + 2.
(b) U=(1—-e""cos(rz).
() U=-exp(1/(t+1))cos(mz).

CHAPTER 9

IMPLICIT RK METHODS FOR STIFF
DIFFERENTIAL EQUATIONS

Runge—Kutta methods were introduced in Chapter 5, and wewamt to consider
them as a means of solving stiff differential equations. YWiverking with multistep

methods in Chapter 8, we needed to use implicit methods ieraxl solve stiff

equations; the same is true with Runge—Kutta methods. Adsowith multistep
methods, we need to develop the appropriate stability thaod carefully analyze
what happens when we apply these methods to stiff equations.

9.1 FAMILIES OF IMPLICIT RUNGE-KUTTA METHODS

Runge—Kutta methods can be used for stiff differential #qua. However, we need
implicit Runge—Kutta methods, which were introduced in Section b@hapter 5.

149

150 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

The general forms of these equations, for a method witages, are as follows:

znﬂi:yn—i—hZaiyjf(tn—i—cjh, Zn,j) s i=1,...,s, (9.1)
j=1

Yn+1 = Yn —+ thjf(tn —+ th, Zn,j) . (92)
j=1

Note that the equation for, ; involvesall the z,, ; values. So for implicit Runge—
Kutta methods we need to solve an extended system of eqsatf@achy,, is a real
number, then we have a systemsoéquations ins unknowns for each timestep. If
eachy,, is a vector of dimensio®v then we have a system &fs equations inVs
unknowns. Asin Chapter 5, we can representimplicit Rungeteknethods in terms
of Butcher tableaus (see (5.26)),

C1 ai, ai,2 al,s—1 ai,s
C2 az;1 az;1 az,s—1 az,;s
Cc3 as,1 as,2 as s—1 as,s c | A
or ——— (9.3)
| b*
Cs as,1 as,2 ce As,s—1 As,s
| bl b2 et bsfl bs

Some implicit methods we have already seen are actuallyicihflunge—Kutta
methods, namely, the backward Euler method and the trag@zoie. Their Butcher
tableaus are shown in Tables 9.1 and 9.2.

Table9.1 Butcher tableau - backward Euler method
1)1

| 1

Table9.2 Butcher tableau - trapezoidal method

ol o o
1]1/2 1/2
| 172 1/2

These methods are also BDF methods. However, higher-ofdEnmBethods require
yn—1 t0 computey,, ;1 and so they are not Runge—Kutta methods.

Higher-order Runge—Kutta methods have been developediah the conditions
that need to be satisfied for such Runge—Kutta methods todrdeep become very
complex for largep. Nevertheless, a few families of Runge—Kutta methods with
arbitrarily high-order accuracy have been created. Oné $amily is the set of

FAMILIES OF IMPLICIT RUNGE-KUTTA METHODS 151

Gauss methods given in (5.63)—(5.64) of Chapter 5; theylasely related to Gauss—
Legendre quadrature for approximating integrals. These tiae property that the
values are the roots of the Legendre polynomial

dS

e [z° (1 —2)°].

The other coefficients of these methods can be determinexl the c; values by
means of the so-callesimplifying assumptionsf Butcher [23]:

- 1

B(p): bick =2, k=1,2,... 9.4

<p>;cz o 12 P (9:4)
S C]-g

C’(q):Zaijcf_l:?, k=1,2,...,q, 1=1,2,...,s, (9.5)
j=1

ConditionB(p) says that the quadrature formula

t+h s
/ F(s)ds = h S bi £t + c5h)
t i=1

is exact for all polynomials of degree p. If this condition is satisfied, we say
that the Runge—Kutta method h@isadrature orderp . ConditionC(q) says that the
corresponding quadrature formulas oyt + ¢;h], namely

t+cih S
/ f(S) ds ~ h Zai]‘ f(t+0jh)
t

J=1

are exact for all polynomials of degreeq. If this condition is satisfied, we say that
the Runge—Kutta method hstge ordery . The importance of these assumptions is
demonstrated in the following theorem of Butcher [23, Thin. 7

Theorem 9.1 If a Runge—Kutta method satisfies conditid®@), C(q), and D(r)
withp < g+ r+ 1 andp < 2q + 2, its order of accuracy ip.

We can use this theorem to construct the Gauss methodswEirdtoosg ¢; }, the
quadrature points of the Gaussian quadrature. This canreeliidooking up tables of
these numbers, and then scaling and shifting them from taea[—1, +1]to [0, 1].
Alternatively, they can be computed as zeros of approptiaggendre polynomials
[11, Section 5.3]. We then choose the quadrature weights makeB(p) true for
as large a value af as possible. For the Gaussian quadrature points, this-i2s.
Note that if conditionB(p) fails, then the methodannothave ordep.

152 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

This leaves us with the? coefficientsa;; to find. These can be determined by
applying conditionsC'(¢) and D(r) with sufficiently largeq andr. Fortunately,
there are some additional relationships between thesdt@mral It turns out that if
B(gq + r) andC(q) hold, thenD(r) holds as well. Also ifB(q +) andD(r) hold,
then so doe€’(¢) [23, Thms. 3, 4, 5 & 6].

So we just need to satisfy(s) in addition. ThenB(2s) andC(s) together imply
D(s); settingg = r = s andp = 2s in Theorem 9.1 gives us a method of order
2s. Imposing conditiorC(s) gives us exactly? linear equations for the;; values,
which can be easily solved. Thus the order of thetage Gauss methodds.

Some Gauss methods are shown in Tables 9.3-9.5. For thatitem\of these
formulas, refer back to Section 5.6 in Chapter 5.2. The twovpGauss method was
given in (5.70)-(5.71) of Section 5.6.1.

Table9.3 Butcher tableau for Gauss method of order 2
1/2] 1/2

| 1

Table 9.4 Butcher tableau for Gauss method of order 4
(3-+3)/6 1/4 (3-2v3) /12
(34++3) /6 | (3+2V3) /12 1/4

| 1/2 1/2

Table 9.5 Butcher tableau for Gauss method of order 6

(5—+V15) /10 5/36 2/9 —15/5 5/36 —/15/30
1/2 5/36 + /15/24 2/9 5/36 —/15/24
(5+V15) /10 | 5/36 +v/15/30 2/9+V15/5 5/36

| 5/18 4/9 5/18

There are some issues that Gauss methods do not addresgy amumber of
closely related methods have been developed. The most iamaf these are the
Radau methods, particularly the Radau IIA methods. For R 1A methods the
¢; terms are roots of the polynomial

ds—l
dI571

In particular, we have:;; = 1, as we can see in Tables 9.6 and 9.7, which show
the lower-order Radau IIA methods. The simplifying assuons satisfied by the
Radau llAmethods arB(2s—1),C(s), andD(s—1), so thatthe order of a Radau ll1A
method is2s — 1. The order 1 Radau II1A method is just the implicit Euler metho
given in Table 9.1. The derivation of these formulas is samib that for the Gauss

[z (1—2)"].

FAMILIES OF IMPLICIT RUNGE-KUTTA METHODS 153

formulas, only now we are using Radau quadrature rulesrttha Gauss—Legendre
quadrature rules; see Section 5.6.

Table 9.6 Butcher tableau for Radau method of order 3
1/3 | 5/12 —1/12
1 | 3/4 1/4

| 3/4 1/4

Table 9.7 Butcher tableau for Radau method of order 5

(4—+v6) /10 (88 — 7v/6) /360 (296 — 169v/6) /1800 (-2 + 3V/6) /225
(4+v6) /10 | (296 + 169v/6) /1800 (88 + 7V/6) /360 (—2-3V6) /225
1 (16 — v/6) /36 (16 +v/6) /36 1/9

| (16 —6) /36 (16 + v/6) /36 1/9

A third family of Runge—Kutta methods worth considering #re Lobatto I1IC
methods; the; values are the roots of the polynomial

ds—2
dxs—Q

[CCS_I(l _ I)S_l] ’

and we use the simplifying conditiom3(2s — 2), C'(s — 1), andD(s — 1). The
Lobatto IlIC methods have; = 0 ande, = 1. The order of the-stage Lobatto I11C
method i2s — 2.

Other Runge—Kutta methods have been developed to handdesather issues.
For example, while general implicit Runge—Kutta methodthwi stages require
the solution of a system a¥s equations inVs unknowns, some implicit Runge—
Kutta methods require the solution of a sequence ®fstems ofV equations inV
unknowns. This is often simpler than solvidgs equations inVs unknowns. These
methods are known atiagonally implicit Runge—Kutta metho{BIRK methods).
For these methods we take; = 0 whenever < j. Two examples of DIRKs are
given in Table 9.8. The method of Alexander [2] is an order 3huod with three
stages. The method of Crouzeix and Raviart [31] is an ordeethad with three
stages. The constants in Alexander’'s method are

_ 3 2,3 1 1
a = therootof z° — 32"+ sz —§ in (5, 3),
T2=%(1+a),
by = —1(60 — 16a + 1),

by = 1(6a” — 20a + 5).

(SIS

154 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

The constants in Crouzeix and Raviart’s method are given by

= i co8 (l) + 1
T AR\I8) Ty
1
b= ———.
6(2y—1)
There are a large number of DIRK methods, and some of them edaund, for
example, in Hairer and Wanner’s text [44].

Table 9.8 Butcher tableau for DIRK methods

« «
T2 T2 — X (0%
1 b1 b2 «
| b1 b2 (0%
(a) Method of Alexander
v v
1/2 | 1/2 -« vy
1—7 2y 1—-4y v
1 1-20 6

(b) Method of Crouzeix & Raviart

9.2 STABILITY OF RUNGE-KUTTA METHODS

Implicit Runge—Kutta methods need the same kind of stghilibperties as found
in multistep methods if they are to be useful in solving differential equations.
Fortunately, most of the stability aspects can be derivathusome straightforward
linear algebra.

Consider the model differential equation

Y =Y.

Following (9.1)—(9.2), denotel = [z, 1, zn2,- -, 2n.s|- Apply (9.1)—(9.2) to this
differential equation:

Zn, = Yn€+ hAAz,,
Yn+1 = Yn + hAbTz,,.

Heree” = [1, 1, ..., 1] is thes-dimensional vector of all ones. Some easy algebra
gives

Yns1 = [1 +hAbT (I —haA)™! e} yn = R(hA) yn.

The stability function is

R() =14+nb" (I-nA) e 9.7)

STABILITY OF RUNGE-KUTTA METHODS 155

As before, the Runge—Kutta method is A-stablitn)| < 1 for all complexr, with
Realn < 0.

All Gauss (Tables 9.3-9.5), Radau IIA (Tables 9.1, 9.6, ,9and some DIRK
methods (Table 9.8) are A-stable, which makes them stabéafo\ with Real A < 0.
However, this does not necessarily make therourate For more on this topic, see
the following section on order reduction.

For nonlinear problems, there is another form of stabilitgttis very useful, called
B-stability. This is based on differential equations

Y' = f(t,Y), Y(to) = Yo,
wheref(¢,y) satisfies only ane-sided Lipschitz condition

(y—2)" (fty) = f(t,2) < ply — 2.

If f(t,y) is Lipschitz iny with Lipschitz constanf (see (1.10) in Chapter 1), then
it automatically satisfies the one-sided Lipschitz conditivith . = L. However,
the reverse need not hold. For example, the system of diff@leequations (8.16)
obtained forthe heat equation in Section 8.1 satisfies thesaied Lipschitz condition
with ¢ = 0, no matter how fine the discretization. The ordinary Lipschbnstant,
however, is roughly proportional t@2, wherem is the number of grid points chosen
for the space discretization.

The importance of one-sided Lipschitz conditions is thaythre closely related
to stability of the differential equation. In particulat, i

Y'=f(t,Y), Y(ty) = Yo,
Z/:f(t,Z), Z(tO):ZOa

andf(t,y) satisfies the one-sided Lipschitz condition with constarihen
1Y (t) = Z(0)]| < ") ||Yy = Zo| -
This can be seen by differentiating

m(t) = |Y(t) = Z(0)|* = (Y(t) = Z2(1))" (Y (t) - Z(1))

as follows:
m/(t) =2(Y(t) - Z(t))" (Y'(t) - Z'(t))
=2(Y(t) - Z()" [f(t,Y (1) — f(t. Z(t))]
<2 |V () = Z(t)|* = 2pm(t).
Hence

m(t) < 62“(t7t“)m(t0),

and taking square roots gives

1Y (8) = Z(@)l| < e [|Yo — Zo|| -

156 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

The case where the one-sided Lipschitz constaig zero means that the dif-
ferential equation izontractive that is, different solutions cannot become further
apart or separated. If we require that the numerical satutie also contractive
([yns1 — 2zns1ll < |lyn — 2a|| for any two numerical solutiong, andz;) whenever
u = 0, then the method is calldglstable[24]. This condition seems very useful, but
rather difficult to check. Fortunately, a simple and easydiaon to test was found
independently in [22] and [30]: namely, if

b; >0 foralli (9.8)

and

M = [b;a;j + bjaj; — bl-bj]fj:1 is positive semidefinite (9.9)

(i.e., w" Mw > 0 for all vectorsw), then the Runge—Kutta method is B-stable.
Testing a matrix\/ for being positive semidefinite is actually quite easy. Gast ts
to compute the eigenvalues df if M is symmetric. If all eigenvalues are 0, then
M is positive semidefinite. For a nonsymmetric mathi it is positive semidefinite
if all the eigenvalues of the matrid/ + M7T)/2 are nonnegative.

If a method is B-stable, then it is A-stable. To see this, fBrstable method we
can look at the differential equation

/ a +0
v=[5

which has the one-sided Lipschitz constant 0 if « < 0. The eigenvalues of this
2 x 2 matrix aren.+ i3, which are in the left half of the complex planeif< 0. Soifa
method is B-stable, then < 0 implies that the numerical solution is contractive, and
thus the stability region includes the left half-planettisathe method is A-stable.

This test for B-stability quickly leads to the realizatidrat a number of important
families of implicit Runge—Kutta methods are B-stable sas the Gauss methods,
the Radau IA, and the Radau IIA methods. The DIRK method ineTat8 (part
b) is, however, A-stable but not B-stable. What does thisnriagoractice? For
strongly nonlinear problems, A-stability may not sufficestasure good behavior of
the numerical method, especially if we consider integrafa long time periods. It
also means that Gauss or Radau IIA methods are probably etteDIRK methods
despite the extra computational cost of the Gauss and Radthods.

9.3 ORDER REDUCTION

Stability is clearly necessary, but it is not sufficient taaib accurate solutions to
stiff systems of ordinary differential equations. A phereron that is commonly
observed is that when applied to stiff problems, many inifphiethods do not seem
to achieve the order of accuracy that is expected for the ogetfrhis phenomenon
is calledorder reductionf44, pp. 225-228].

Order reduction occurs for certain Runge—Kutta methodshbtfor BDF meth-
ods.

ORDER REDUCTION 157

10

-5

10 °

=1

error at t

-10|

10

10° 10" 10° 10° 10" 10°
number of steps (n)

Figure9.1 Error norms for the test equation (9.10)

Example 9.2 Consider, for example, the fourth-order Gauss method with2 (see
Tables 9.3-9.5) . Figure 9.1 shows how the error behavestistaquation

Y' =D (Y —g(t)+4'(t), Y(0)=g(0). (9.10)

For this particular exampld is a100 x 100 diagonal matrix with negative diagonals
randomly generated inthe range frel8—2%to —2+2% ~ —106. The diagonal entries
are exponentials of uniformly distributed pseudo-randatugs. The functiom(t)
likewise involves pseudo-random numbers, but is a smoatttion ofz. The exact
solution isY (t) = ¢(t), so we can easily compute errors in the numerical solution.
For the functiory(t) we usedy(t) = cos(t) z1 — exp(—t) z2 with z1, zo randomly
generated vectors using a normal distribution.

Note that the Gauss method with= 2 is a fourth-order method, so that we expect
the errors to b&(h?) as the stepsize becomes small. But this ignores two factors:
(1) the hidden constant in thf2 expression may be quite large because of the stiffness
of the differential equation, and (2) asymptotic resuks lihis are true providet is
“small enough”. How small is “small enough” depends on thelyem, and for stiff
differential equations, this can depend on how stiff theadim is. Make the stiffness
go to infinity, and the limit for “small enough” may go to zerndthat happens, then
the standard convergence theory may be meaningless faiqaiestiff problems.

As can be seen from Figure 9.1, the error for larger values efems to behave
more like O(h?) than O(h*). Also, for smaller values of. we seeO(h*) error
behavior (as we might expect), but with a large value for tigklén constant inside

158 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

theO. For very smalk and many steps, we see that roundoff error from floating4poin
arithmetic limits the accuracy possible with this methothéd quantity. in the graph
denotes the unit round of the floating-point arithmetic.w# increase the stiffness
of the problem as we reduce the sizehpfve might only see thé(h?) behavior of
the error. This is the effect afrder reduction |

Order reduction can be explained in terms of the followinge version of the
test differential equation (9.10),

Y'(t) =AY —g(t) +4'(t), Y(to) = g(to)- (9.11)

The exact solution i¥(¢) = g(¢) for all . However, the numerical solution of this
is not exact, particularly ik is large. What we want to find out is the magnitude of
the error in terms ofi independently of\h. This can be different from the order of
the error for fixed\ ash — 0. The Runge—Kutta equations are

zm:yn—i—hZalj f(tn—i—cjh,zn,j), 1=1,2,...,s.

Jj=1

From this formula, it seems that the intention is fqr; ~ Y (¢, + ¢;h). Consider
for a moment the even simpler test problem

=g, Vi) =glto)

The stage orderof a Runge—Kutta method comes from the order of the errorén th
approximatiore,, ; =~ g(t, + ¢;h),

g(tn +cih) = g(ty) + hz aij g (tn + cjh) + O(hITH)

j=1

for all ¢, indicating a stage order gf Thequadrature ordeiis the order of the final
formula for this very simple test equation; the result

gltn +h) = gltn) + By b; g (tn + c;h) + O(hP*)

J=1

means that the quadrature ordep.idJsually the stage order is of no concern for non-
stiff differential equations, and only the quadrature onthatters. This is important
for explicit methods, since the first step of an explicit nugtlis essentially a step of
the explicit Euler method; this means that the stage ordexplicit methods is one.
Nevertheless, for nonstiff differential equations, we é&unge—Kutta methods of
arbitrarily high-order.

ORDER REDUCTION 159

On the other hand, stiffness means that the stage order thaignored. Going
back to the test equation (9.11), write

Ani = gtn + cih) = g(tn) — B> aij g (tn + c;h),

j=1

En = g(tn + h) - g(tn) - hz bj g/(tn + th).
Jj=1
Then, after some calculation, we find that

Ynt1 — 9(tnt1) = R(WA) [y — g(ta)] — BADT (I —hAA) ™ A, — A,

Clearly we still needR(h\)| < 1 for stability. But we have to be careful abailf,
(the stage errors) as well as, (the quadrature error). In other words, our accuracy
can be reduced by a low stage order as well as by a low quadraitder.

Many Runge—Kutta methods for stiff differential equatiars stiffly accurate
This simply means that the last row dfis b”’; that is,a;; = b; fori =1, 2, ..., s.
An example is the trapezoidal rule:

Yn+1 = YUn + %h [f(tnayn) + f(tn-l—layn—i—l)] .
The quadrature order is 2(, = O(h?)), which is the same order as the second stage
(An 2 = O(h?)). The order of the first stage is infiniteX,, ; = 0, sincec; = 0 and
g(tn + 0h) = g(t,,) + 0. For the test equation (9.10), we have
Yns1 — G(tnp1) = R(AA) [yn — g(tn)] — BADT (I —hAA) T A, — A,

as before. For this method

1
_ ohA [1 1] | 1=5hA 0 0
T 1 _
—hAbT (I —hXNA) A, = [} 12 [(9]

hA—2 |27 2 Ly (h?)
2
hA .
=5 O,

So thestiff order of the trapezoidal method is 2, the same as its “normal” or@leis
is a desirable trait, but it is not shared by most higher-ondethods.

Consider, for example, the Gauss methods. d4stage Gauss method has order
2s. However, its stiff order is onlg. A simple example is the = 1 Gauss method,
which is also known as thmidpoint methogas shown in Table 9.3. Then

_2hA
2—hA

—hAbT (I —hAA) A, = O(h?).

So while the quadrature order of the midpoint rule is 2, it etder is 1. Further
analysis for the other Gauss methods can be found in [44].

160 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

DIRK methods of any number of stages have stage otd&rand so the stiff order
(for arbitraryh\) is < 2. Radau IIA methods with stages have ordés — 1, but the
stiff order (for arbitraryh \) is s + 1. In fact, the global error for Radau IIA methods
is O(h**t1/(hA)). If we consider only the case\ — oo andh — 0, we find that,
because the Radau IIA methods are stiffly accurate, we agaif(@ ') global
errorin the limitashA — oo. This turns outto be very useful for differential algebraic
equations, the topic discussed in Chapter 10. Howeverpfairg problems such as
the heat equation (see Section 8.1), there are many eigersvgl some small and
some large. So we cannot assume that- oc.

On the other hand, order reduction does not occur for BDF ouxth While a
complete answer is beyond the scope of this book, considddifferential equation

Y'=XY —g®)+4'(t) Y(to) = g(to)-

The exact solution i¥(t) = g(¢) for all t. If we applied a BDF method to this
equation, we get

p—1

Yni1 =D aYn—j + BB (Wni1 — g(tns1)) + g (tni1)].
Jj=0

If e, = yr — g(tx) were the error at timestejp after some algebra we would get

p—1 p—1
(1 —=hA)ens1 — Zajen—j = Zajg(tn—j) +hBg (tns1) — g(tnt1)
=0 =0
= O(hP™),

since the BDF method has orderBut for 2\ in the stability region, this means that
en = O(hP); if |hA| — oo along the negative real axis, thep = O(h?/ |hA)).

9.4 RUNGE-KUTTA METHODS FOR STIFF EQUATIONS IN PRACTICE

While a great many Runge—Kutta methods have been develfmpestiff differential
equations, the field narrows to a relatively small numberettrads, all of which have
the desirable characteristics of stability (especiallgtBbility) and accuracy (when
order reduction is taken into account). The Radau A meshaxbre well on just
about every characteristic, as they are B-stable, areystiffturate and have a high
order, even after order reduction is taken into account.

The downside is that Radau methods, like Gauss methodsxpeasve to im-
plement. For stiff differential equations, we cannot expiesolve the Runge—Kutta
equations by simple iteration. Some sort of nonlinear équnaolver is needed.
Newton’s method is the most common method, but simplifiedives of Newton’s
method are often used in practice, as discussed in Secbon 8hapter 8. For large-
scale systems of differential equations, even implemgntiewton’s method can be
difficult as large linear systems need to be solved. This eathdme efficiently using

RUNGE-KUTTA METHODS FOR STIFF EQUATIONS IN PRACTICE 161

the tools of numerical linear algebra. This is an excitind emeresting area in itself,
but beyond the scope of this book.

Practical codes for a number of these methods, such as tee-stage, fifth-
order Radau IIA method, have been carefully designed, imptged, and tested. An
exampleis th@adau andRadau5 codes of Hairer. For more details see p. 183. These
codes are automatic methods that can adjust the stepsizbitva a user-specified
error tolerance.

PROBLEMS
1. Show that the Gauss methods with- 1 ands = 2 stages have stiff order
2. Consider the following iterative method for solving therige—Kutta equations
Zn,i:yn—f—h Zai]‘ f(tn—i—cjh, ij), 1=1,2,...,s.
h=1

We set

2 =yt h > aij ftn + cih, A, =12,

n,t
=1

for k = 0,1, 2,.... Show that iff(¢,z) is Lipschitz inz with Lipschitz
constant, then this method is a contractive interation mapping ptesi

1<i<s 4

hL max Z|aij| < 1.
7j=1

Is this method useful for stiff problems?

3. Show that the Gauss methods with= 1 ands = 2 are B-stable using the
algebraic condition (9.8)—(9.9).

4. Repeat Problem 4 for the Radau IIA methodsdfer 1 ands = 2.
5. Show that the DIRK method in Table 9.8&1st B-stable.
6. Show that

f(t,y) = { _aﬁ ;Lﬁ]y

satisfies a one-sided Lipschitz condition with> «. Use this to prove that
B-stability implies A-stability.
Hint: First show that the eigenvalues of the matrix definfrarea + if5.

7. The one-stage Gauss method is

Zn1l = Yn + %hf(tn + %ha Zn,l)a
Ynt1 = Yn +h f(tn + %ha Zn,1)-

162

IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

Find the Taylor series expansionz?stl_rl =g(tn+crh)—g(tn) —hair g (tn+
ca1h) (e = a1 = %) to show that the stage order of this method is 1 while the
quadrature order of the method is 2.

. Derive the coefficients for the Lobatto [IIC method withieth stagess(= 3,

order= 2s — 2 = 4). The quadrature points arg = 0, co = % andcs = 1.
Use the simplifying condition®3(2s — 2) to compute the); values, and the
simplifying conditionsC(s — 1) and one of the conditions i(s — 1) to
compute theu;; matrix entries.

CHAPTER 10

DIFFERENTIAL ALGEBRAIC
EQUATIONS

In Chapter 3 we considered the motion of a pendulum congisti massn at the
end of a light rigid rod of lengtly; see Figure 3.1. Deriving the differential equation
for the angld involved computing the torque about the pivot point. In diegystems
like this, it is fairly easy to derive the differential eqi@t from a good knowledge of
mechanics. But with more complex systems it can become difficst to obtain the
differential equation to be solved.

Here we will consider a different way of handling this prabléhat makes it
much easier to derive a mathematical model, but at a conipo#dtcost. These
models contain not only differential equations but als@éddraic” equations. Here
“algebraic” does not signify that only the usual operatiofarithmetic ¢+, —, x, and
/) can appear; rather, it means that no derivatives or integfainknown quantities
can appear in the equation. Differential and algebraic gojs are collectively
referred to aglifferential algebraic equationsr by the acronym DAE. A number of
texts deal specifically with DAES, such as Ascher and PefAdlfiand Brenan et al.
[19].

In this new framework, the position of the mass is given byrdomtes(x, y)
relative to the pivot for the pendulum. There is a constrdum to the rigid rod:
v/22 +y? = 1. There are also two forces acting on the mass. One is gravitat

163

164 DIFFERENTIAL ALGEBRAIC EQUATIONS

which acts downward with strengthmg. The other is the force that the rod exerts
on the mass to maintain the constraint. This force is in thection of the rod; let its
magnitude beV, so that the force itself i&~ Nz, —Ny)/+/x2 + y2. This provides

a complete model for the pendulum:

d*x T
d*y y
My =~ T—i—yQ —mg, (10.2)

0=1— 22+ 42 (10.3)

This second-order system can be rewritten as a first-orcesy

' =u, (10.4)

y =, (10.5)

my = —N——o (10.6)
Va? + y?

my' = -N—2___ _ mg, (10.7)
Va? + y?

0=10—+22+y2 (10.8)

The unknowns are the coordinateg), y(t), their velocitiesu(t) andwv(t), and the
force exerted by the rod & (¢). Allin all, there are five equations and five unknown
functions. However, only four of the equations are difféi@requations. The last is
an “algebraic” equation. Also, there is no equation wifki/d¢ in it, so N is called
analgebraic variable

For simplicity, we will write A = N/(m+/2? + y?) so thatdu/dt = —\z and
dv/dt = — Ay — g. Also, the constraint equation will be replaced by

0=12—22—¢y%

We can turn the differential algebraic equations into a pyem of differential
equations. To do that, we need to differentiate the algetequation until we can
obtain an expression fak\/dt. Differentiating the constraint three times gives first

d
0= T (12 —z? - y2) = —2zu — 2yv, (10.9)
d2
O - w (12 - .':CQ - y2) - —2(U2 + ’02) + 2)\('r2 + y2) + 2yg? (10'10)
and then
& 2 2 2 dA 5 2
O:ﬁ(l — _y):ZE(a: +y)—|—ﬁgv. (10.112)

The number of times that the algebraic equations of a DAE treleel differentiated
in order to obtairdifferential equationsor all of the algebraic variables is called the

INITIAL CONDITIONS AND DRIFT 165

indexof the DAE. Two differentiations allow us to findlin terms ofz, y, u, andv.
But three differentiations are needed to compiigdt in terms of these quantities.
So our pendulum problem is an index 3 DAE.

Solving for A from the second derivative of the constraint gives

u?+0—yg ul+o?—yg

10.12
22 + 42 12 ()

Substituting this expression gives a system of ordinarfgdéhtial equations:

2 =u, (10.13)
y =, (10.14)
u? + v? — yg
e) (10.15)
2., .2
v = _uy —g. (10.16)

12 ‘

If, instead of substituting fok, we differentiate the constraint a third time, we obtain
a differential equation foh:

x’ = u, (10.17)
y =, (10.18)
u' = -\, (10.19)
v =-\y—g, (10.20)
N =39 (10.21)
12
The general scheme for a system of differential algebraiaggns is
Y'=f(t.Y,Z), Y(t)="Yo, (10.22)
0=y4(tY,2). (10.23)

TheY variables are the differential variables, while thevariables are the algebraic
variables.

10.1 INITIAL CONDITIONS AND DRIFT

In the general scheme, the constraints ¢(t, Y, Z) must hold at time = ¢, so that
g(to, Yo, Zo) = 0, whereZ, = Z(to). So the algebraic variables must also have the
right initial values. But the conditions do not stop thene.atldition, differentiating
the constraints once at= t, gives

d
—9(t,Y,Z)|t=t, =0
dtg(a))|t—t0 ’

166 DIFFERENTIAL ALGEBRAIC EQUATIONS

and differentiating twice gives

2

ﬁg(ta Ya Z)|t:t0 = 07

and so on. This gives a whole sequence of extra initial carditthat must be
satisfied. Fortunately, the number of extra conditions isimfinite: the number of
differentiatons needed to obtain the needed extra comdit®one less than thedex
of the problem.

Consider, for example, the pendulum problem. Initially plosition of the mass is
constrained by the length of the rod(t,)? +y(to)? = I°. Differentiating the length
constraint (10.8) at = ¢, gives

0 = z(to)u(to) + y(to)v(to);

that is, the initial velocity must be tangent to the circlattthe pendulum sweeps out.
Finally, the initial forceN (¢o) (or equivalently\(¢y)) must be set correctly in order
for the solution to follow the circle:® + 32 = [2. This gives a total of three extra
conditions to satisfy for the initial conditions, comingfn the constraint function

and its first and second derivatives.

Note that the constraint and the subsequent conditionsrtaildnly at the initial
time, but also at any instant. Thus the differential equegiobtained that have the
algebraic constraint removed (such as (10.13)—(10.16)(26d.7)—(10.20)) must
satisfy these additional conditions at all times. Numengathods do not necessarily
preserve these properties even though they are presertheldifferential equations.
This is known agrift. In theory, if a numerical method for a differential equatio
or DAE is convergent, then as the stepsizgoes to zero, the amount of drift will
also go to zero on any fixed time interval. In practice, howgwstabilities that may
be introduced by the DAE or ODE formulation mean that extigramall stepsizes
may be needed to keep the drift sufficiently small for meafiihanswers.

Figure 10.1 shows plots of the trajectories for the pendutwoblem using the
formulation (10.13)—(10.16) and the Euler and Heun methgds (4.29)) for its
solution.

There are a number of ways of dealing with drift.

1. Project current solution back to the constraints, eithereaery step, or oc-
casionally For the pendulum example, this means projecting not ordy th
positions(z,y) back tox? + y? = [2, but also the velocities. Moreover, if
A is computed via a differential equation, it, too, must bejgeted onto its
constraints. Care must be taken in doing this, particuaiynultistep meth-
ods where projecting just the current solution veetpwill introduce errors in
the approximate solution. Instead, all solution vectgrs; for j = 0,1,...,p
should be projected, whepas the number of previous iterates used by the mul-
tistep method. Also, if the index s high, we should projeattanly the solution
vector, but also the derivative and (if the index is high egiguhigher-order
derivatives as well onto the appropriate manifold.

INITIAL CONDITIONS AND DRIFT 167

1.2+

—-1.4+

0 012 014 016 0‘.8
X
(a) Euler's methodi = 0.015)

-0.91

-0.92

-0.93F

-0.94r-

-0.95r

y(®

-0.96 -

-0.97-

-0.98

-0.99-

-1.01
4

(b) Heun’s methodH = 0.1)

Figure 10.1 Plots of trajectories for (10.13)—(10.16) showing drift feuler and Heun'’s
methods

168 DIFFERENTIAL ALGEBRAIC EQUATIONS

2. Modify the differential equation to make the constraintstable, but otherwise
do not change the trajectorieshis technique has been used in a number of
contexts, but it almost always has to be done separatelywinyaew case.
An example of this technique is the method of Baumgarte [b6fjuality-
constrained mechanical systems. Thiswould replace thditomg (¢, Y, Z) =
0 with a differential equation, such &8/dt)g(t,Y, Z) +a g(t,Y, Z) = 0 with
a > 0; thatis

which can be solved to give a differential equationfor(Note thaty, (¢, Y, Z)
is the Jacobian matrix of(t,Y, Z) with respect toY. See (10.3) below.)
For index 3 systems, such as those arising in mechanicde stabond-order
equations must be used such as

L 4 5 (t,Y,Z)=0
az Y g\ 5 a) =

with suitable choices forv and 3. These modifications need to be done with
care to ensure that they really are stable, not just for théimoous problem but
also for the numerical discretization. Since these stadtibn methods have
one or more free scaling parameter¢sfand), these must be chosen with
care. For more information about dealing with these issses,Ascher et al.

[5].

3. Use anumerical method that explicitly respects the coimgsaThese methods
treat the differential algebraic equaticasdifferential algebraic equations. In-
stead of necessitating one or more differentiations inicaiénd differential or
other equations for the “algebraic” variables, they ar@matically computed
by the method itself. These have been developed for gemsvahidex DAEs.
Petzold, who developed the first such methods, producedlkagadASSL
(see [19], [21], [65]) based on backward differentiatiomfialas (BDFs) for
solving index 1 DAEs. Many other methods have been develdpgdhese
tend to be limited in terms of the index that they can handli.séch meth-
ods are implicit, and so require the solution of a linear anlim@ar system of
equations at each step.

To summarize: methods 1 and 2 for handling DAEs have somdgnah The
projection method can work with some ODE methods. The Bautegtabilization
method can also be made to work, but requires “tuning” thigiltation parameters;
this method can run into trouble for stiff equations. Meti®dlesigning numerical
methods that explicitly recognize the constraints, is the that we focus on in the
remainder of the chapter.

10.2 DAES AS STIFF DIFFERENTIAL EQUATIONS

Differential algebraic equations can be treated as the lirhordinary differential
equations. Notethat(t,Y, Z) = Oifand only if By(t, Y, Z) = 0 for any nonsingular

NUMERICAL ISSUES: HIGHER INDEX PROBLEMS 169

square matrix3. Then the DAE (10.22)—(10.23) can be treated as the limit-as0
of

Y'=f(t,Y,Z), Y(ty) =Y, (10.24)
eZ' = B(Y)g(t,Y, Z). (10.25)

The matrix functionB(Y") should be chosen to make the differential equatio in
(10.25) stable, so thatthe solution for (10.25t), convergesto the solutidti = Z*
whereg(t,Y, Z*) = 0.

Fore small, these equations agtff, so implicit methods are needed. Furthermore,
since the order obtained in practice for an implicit methad differ from the order of
the method for nonstiff problems, the order of an implicitthred may deviate from
the usual order when it is applied to differential algebegiciations.

But how do we apply a numerical method for stiff ODEs to a DAHE® Bimplest
method to apply is the implicit Euler method. If we apply ithe stiff approximation
(10.24)—(10.25) using step sizewe get

Yn+1 = Yn + h’f(tn+la Yn+1, yn+1)a (1026)
€Znt1 = €2n + W BYnt1)9(tns1, Ynt1, Zny1)- (10.27)

Taking the limitas — 0 and recalling thaB(Y") is nonsingular, we get the equations

Ynt1 = Yn + 0 f(tns1, Yns1, Zn+l)7 (10.28)
0= g(tn+1,Yn+1, 2nt1)- (10.29)

This method will work for index 1 DAESs, but not in general fagher index DAEs.

An issue regarding accuracy is te#ff order of an ODE solver: the order of a
method for solving stiff ODEs may be lower than that for sotya nonstiff ODE, as
noted in Section 9.3. Since DAEs can be considered to be agneatform of stiff
ODEs, this can also affect DAE solvers. With some methodsescomponents of
the solution (e.g., positions) can be computed more acelyrifian other components
(e.g., forces).

10.3 NUMERICAL ISSUES: HIGHER INDEX PROBLEMS

Consider index 1 problems in standard form:

Y/:f(taYaZ)v Y(to):%,
0=g(tY,2).

HereY (t) is ann-dimensional vector and (¢) is anm-dimensional vector. The
function

g(tvxz) = [gl(thaZ)vQQ(tvxz)v"'7gm(t7YaZ)]T

170 DIFFERENTIAL ALGEBRAIC EQUATIONS

must have values that are-dimensional vectors. For an index 1 problem, the Jaco-
bian matrix ofg(¢, Y, Z) with respect taZ, specifically

091/0z1 0g1/0z2 -+ 0g1/0%m
092/0z1 0920z -+ 0g2/0%m
gz (ta Ya Z) =
8gm/321 8gm/aZQ T 3gm/8zm (4,Y,2)

is nonsingular. So we can apply the implicit function thente show that whenever

9(to,y0,20) = 0, there is locally a smooth solution functian= ¢(¢,y), where

z0 = p(to,y0). With a numerical solutioffy,,, z,), n = 0,1,2,..., the error in

zn Should be of the same order as the errogjn This does not always happen,

but requires some special properties of the numerical nteths we will see for

Runge—Kutta methods, we need the method to be stiffly accutatethod is stiffly

accurate when the last row of tematrix in the Butcher tableau is the same as the

bottom rowb”" of the Butcher tableau. Stiff accuracy is important for urstiending

Runge—Kutta methods for stiff differential equations, aswoted in Section 9.3.
Index 2 problems have a standard form:

Y' = f(t,Y,Z), Y(t) =Y, (10.30)
0=g(tY), (10.31)

where the product of Jacobian matricesgptt,Y) f.(¢,Y, Z) is nonsingular. But
now, to determineZ(¢), we need!Y/d¢. Thus numerical methods applied to index
2 problems will need to perform some kind of “numerical diffetiation” in order to
find Z(¢). This may result in a reduction of the order of accuracy innhenerical
approximationZ(t), which can feed back into the equation (10.30)¥dt).

Index 3 problems, such as our pendulum problem, require speialized treat-
ment. These problems are discussed in Subsection 10.6vieuéq the same com-
plication arises — different components of the solution bawe different orders of
convergence.

To illustrate this complication, consider the problem of gpherical pendulum.
This is just like the ordinary planar pendulum, except thatrhass is not constrained
to a single vertical plane. This is sometimes called “Foltsapendulum”, and can
be used to demonstrate the rotation of the earth, althougmodel will not include
that effect. For this system, we uge= [z, y, z]* for the position of the masas:,
which is subject to the constraint thaf q = ¢2 and a downward gravitational force
of strengthmg. Using the methods of Subsection 10.6.1, we obtain theiatig
index 3 DAE:

mv' = —-\q —mgk,

/

q =YV,

1
0= i(qTq - 22)1

NUMERICAL ISSUES: HIGHER INDEX PROBLEMS 171

10°

—— position
- - -velocity
- - force

10° F

error norm

10

10710 L

107?

. .
10° 10" 10° 10°
number of steps (n)

Figurel0.2 Errorsinsolvingthe spherical pendulum problem usinghineg¢-stage Radau llA
method with an index 1 DAE

wherek is the unit vector pointing upward. Note that the state veftiothe DAE is
T _ g7 vT.)\
y' =l[a, v AL
By differentiating the constraints as we did for the plaremgulum, we can obtain
lower index DAEs. If we differentiate the constraint onces abtain

0=vTq

to give an index 2 DAE. If we differentiate again, we obtain
T A T T
0=vv-—q'q-k qg
m

to give an index 1 DAE.

Using the Radau IlA method with three stages (which is nolgfdth-order),
we can solve each of these systems. Figures 10.2—10.4 skawutherical results
for each of these DAEs with indices 1, 2 and 3. The specificrpatar values used
arem = 2 and/ = %; the initial time wast = 0, and the errors were computed
att = 1. As can be clearly seen, for both index 2 and index 3 casedothes
are computed considerably less accurately than are the ctingponents, and the
slope of the error line for the forcea) is substantially less than those for the other
components. This indicates a lower-order of convergencthiforces in the index
2 and index 3 versions of the problem. For the index 3 casdy that forces and
velocities) appear to have a lower-order of convergence than the posiig).
However, the order of convergence of the positions doese®ngo be affected by
the index of the DAE.

172 DIFFERENTIAL ALGEBRAIC EQUATIONS

10 < —
R NN —— position
N N - - -velocity
~ N N - - force
10 - D \ d

error norm
=
o,
3
T
.
/
.

107 - N B

-10

10 - AN]

-12

10 . .
10 10 10 10
number of steps (n)

Figurel10.3 Errorsinsolvingthe spherical pendulum problem usinghineg-stage Radau llA
method with an index 2 DAE

10° < =
S~ ~s ——position
S - - - - velocity

~ RS - - force
10° N ~ B

10} ~ |

10° + g

error norm

10710 L i

1072 I I

10 10 10 10
number of steps (n)

Figurel0.4 Errorsinsolvingthe spherical pendulum problem usinglineg-stage Radau llA
method with an index 3 DAE

BACKWARD DIFFERENTIATION METHODS FOR DAES 173

From these numerical results, the following question masearWhy use high
index DAEs? As noted above, one reason is that using the hidgxiformulation
can prevent drift in the main constraigitq) = 0. Another reason is that the model
of the spherical pendulum is most naturally given as an iI&AE. The lower
index DAEs are constructed by differentiating the constrainction. While this is
often the quickest approach for simple problems, for lamgpdlems this can become
difficult to do, and might not be possible in practice for ftions defined by some
(complicated) piece of code.

10.4 BACKWARD DIFFERENTIATION METHODS FOR DAES

The first ODE methods to be applied to DAEs were the backwafdrdntiation
formula (BDF) methods. These work well for index 1 DAEs, anglthe basis of the
code DASSL [19], [65]. These implicit methods were introddén Section 8.2 and

have the form
p—1
Yn+1 = Z Ap—j Yn—j + hﬁ f(tn+17 yn+1)'

Jj=0

The coefficients; andj are chosen so that

p—1

1
y/(tn+1) - ﬁ_h Yn+1 — Zajynfj + O(hp)a
)

giving a method of ordep.

These methods, while not A-stable, are nevertheless vdhpeleaved, at least for
nonoscillatory problems fgr < 6. If p > 7, part of the negative real axis lies outside
the stability region, and the method can become unstablk for0 large enough to
puth in the unstable region. For this reason, we resjrist 6 for BDF methods.

10.4.1 Index 1 problems
For DAEs of the form

Y' = f(Y,Z), Y(to) =Y, (10.32)

3

0=g(Y, 2), (10.33)

the BDF method becomes

p—1
Uni1 = D aYn—j + 1B f(Yns1, Znt1),
=0

0= g(yn+17 Zn+1)'

174 DIFFERENTIAL ALGEBRAIC EQUATIONS

For index 1 DAEs, the equatigj(y, z) = 0 givesz implicitly as a function ofy. If
we write z = ¢(y) as this implicit function, the BDF method can be reduced to

p
YUnt1 = Y an—j + DB f(Ynt1,0(Yni1)),
=0

which is the result of applying the BDF method to the reducpabagion

Y= fy,(Y)).

Thusthe BDF method gives a numerical solution with the etqzb@te of convergence
to the true solution.

10.4.2 Index 2 problems

BDF methods can be used for DAEs of index 2 as well as indexrlicpkarly for the
semi-explicit index 2 DAEs:

Y'=f(Y,Z), Y(to)=yo, (10.34)
0= g(Y). (10.35)

Recall thaty(Y") is anm-dimensional vector for eacH, so thatg,(Y") is anm x n
matrix. On the other hand(Y, Z) is ann-dimensional vector, so thgt (Y, Z) is
ann x m matrix. The producy, (V) f.(Y, Z) is thus ann x m matrix. We assume
thatg,(Y) f.(Y, Z) is nonsingular.

The DAE (10.34)—(10.35) is index 2 if we can (locally) solee £ (t) from Y (¢)
using only one differentiation of the “algebraic” equatipfY’) = 0. Differentiating
gives0 = ¢,(Y)dY/dt = g,(Y) f(Y,Z). So for an index 2 DAE, the function
Z — gy(Y) f(Y, Z) needs to be invertible so that we can find a smooth implicit
functionY — Z. The usual requirement needed is that the Jacobian mattheof
mapZ — g,(Y) f(Y, Z) be an invertible matrix on the exact solution. From the
usual rules of calculus, this comes down to requiring that (¢)) £.(Y (¢), Z(t))
is an invertible matrix for allt on the exact solution. Note that this implies that
g9,(Y) f.(Y, Z) is invertible for any(Y, Z) sufficiently nearthe exact solution as
well.

Assuming thay, (Y) f.(Y, Z) is nonsingular, we can show that thestep BDF
method for DAEs,

p—1
Unt1 = D 0 Yn—j + BB f(Ynt1, 2nt1),
i=0
0= 9(Yn+1),

is convergent of ordey for p < 6. Recall that fop > 7, the stability region for the
p-step BDF methodoes noinclude all of the negative real axis, making it unsuitable
for stiff ODEs or DAEs.

RUNGE-KUTTA METHODS FOR DAES 175

It should be noted that these methods are implicit, and thereequire the solution
of a nonlinear system of equations. We can use Newton’s mdethany number of
variants thereof [55]. The system of equations to be sohesa.h+ m equations and
n + m unknowns.

For thep-step BDF method, we have

Yn — Y(tn)
Zn — Z(tn)

o(n"),
O(n?),

providedy; — Y (¢;) = O(hP*!) for j = 0,1,2,...,p — 1 ([20], [40], [44], [60]).
Note that we need one order higher accuracy inttiteal values; this is necessary as
our estimates fog;, j = 0,1,...,p — 1, are essentially obtained by differentiating
the data fory;, j =0,1,...,p — 1.

Note thatitis particularly importantto solve the equatig(y,+1) = 0 accurately.
Noise in the solution of these equations will be amplified Bgaor of orderl /h to
produce errors ir,, 1. This, in turn, will result in larger errors ig,, over time.

10.5 RUNGE-KUTTA METHODS FOR DAES

As for stiff equations, the Runge—Kutta methods used for BAEed to be implicit
methods. The way that a Runge—Kutta method is used for tlex ihdDAE (10.32)—
(10.33),

V'=f(Y,2), Y(to)= Yo, (10.36)
0=9(Y,2), (10.37)
is
Uni =Un+h > aij f(Ynjs 2ns), (10.38)
j=1
0= Z aij 9(Yn.js #n.j); (10.39)
j=1
Uni1 =Yn +h Y b FUn.js 2n5), (10.40)
j=1
fori =1,2,...,s. Provided the matri¥ is invertible, (10.39) is equivalent to

0=9Yn,i»zni), i=1,2,...,s.

As for BDF methods, these are systems of nonlinear equatiotscan be solved
by Newton’s method or its variants [55]. Unlike the BDF matbpthe number of
equations to be solved aseM + N) with s(M + N) unknowns wheré&” is a vector

with N components and hasM unknowns.

176 DIFFERENTIAL ALGEBRAIC EQUATIONS

Also, the analysis of error in stiff problems in Section 9t®ws that the stage
order of the Runge—Kutta method essentially determine®ttier of the Runge—
Kutta method for DAEs. For this to work well, we usually reguthat the method
be stiffly accurate(such as Radau IIA methods); that 187 must be the bottom
row of A: b, = a,,; fori = 1,2,...,s. This means thag,+1 = y»,s and setting
Zn+1 = Zn,s SOthaly(ynt1, 2n+1) = 0. As with stiff equations, the stability function
R(h\) =1+ hAbT (I — hA A)’1 e (see (9.7)) gives crucial information about the
behavior of the method. However, for DAES, we are considevitnat happens as
hA — —oco. SinceR(hA) is a rational function of.), the important quantity is
R(c0) = R(—o0) = 1 — bT A~te for nonsingularA.

10.5.1 Index 1 problems

Consider index 1 problems of the form

Y/:f(Y’Z)’ Y(to)ZYb,
0=g(Y,2).

Let us suppose that we have an implicit functiorior g, meaning that whenever
0 = g(y, 2), thenz = (y). If we can do this, then the problem reduces to finding
the solution of

Y = f(Y’ SD(Y))a Y(tO) = Yo.

Note that if the Jacobian matri,, f(y*, z*) is nonsingular, then we can findacal
implicit function ¢ so thaty(y*) = z* andp is smooth nearby tg*. Then in this
caseyg(Yn.i, zn,i) = 0 implies thatz,, ; = ¢(yn.;), and our Runge—Kutta equations
imply that

S
Yni = Yn+h Y aij [Ynjs 2n5)

j=1

=Y+ 1D s [(Yn g p(Un;):

j=1

For a stiffly accurate methog,,+1 = yn.s @ndzu41 = zns = ©(Yn,s) = ©(Yn+1)-
This is exactly what the Runge—Kutta method would give whmatiad to the ordinary
differential equation

Y = f(Ya @(Y))v Y(tO) =Yo.

So the order of accuracy is exactly what we would expect faramordinary differ-
ential equations.

The case where the methodrist stiffly accurate is a litle more complex; the
argument for the accuracy @f, ~ Y (¢,,) is not changed, but the accuracy of the
computed values,, ~ Z(t,) is, and can depend on the value Bfoc). Recall
thatp is the quadrature order of the method, ant the stage order. In terms of
the simplifying conditions (9.4)—(9.6), conditio®(p) and C(q) hold. The error

RUNGE-KUTTA METHODS FOR DAES 177

2n — Z(t,) = O(h"), wherer = min(p,q + 1) if =1 < R(c0) < 1 andr =
min(p—1, q) if R(o0) = 1; butz,, —z(t,,) diverges exponentially in if |R(co)| > 1.
We show this below.

Suppose our Runge—Kutta method has stage eré@d quadrature order, so
that for a smooth functiogh(-), we obtain

w(tn + Cih) = w(tn) + hz aijw/(tn + th) + O(hq+1)7
J=1

i=1,...,s, (10.41)

Yltnsr) = V(tn) + 1Y bt (tn + c;h) + O(APT1). (10.42)

=1

The global order of this method for DAEs can be determinedhftbe stage and
quadrature orders depending on several cases: (1) the distktffly accurate, (2)
—1 < R(x) <1,(3)R(c0) =1, 0r (4)|R(c0)| > 1.

If the method is stiffly accurate, then (as we have seen) theracy for index 1
DAEs is the same as for smooth ordinary differential equesti®” (¢,,) —y,, = O(hP),
providedt,, — t, is bounded.

If the method is not stiffly accurate, then the stage ordeecomes important. If
we write

\Ijn = [’l/](tn + Clh), Q/J(tn + CQh)a R ,’l/](tn + csh)]Ta
\I/;l = [1/}/(tn + Clh)vw/(tn + CQh)v ceey ¢/(tn + Csh’)]Tv

then, from (10.41), we obtain
U, = Y(tn)e + hAY, + O(hIT),

so that for nonsingulad, we have

U =h'AT (U, —et(ty,)) + O(hY).
Substituting this into (10.42) gives

Y(tnt1) = (L=bTA ' e) Y(t,) + bT AW, + O(RTT) + O(RPT).
Butl —bTA 'e = R(c0). Thus
V(tnt1) = R(00) (ts) + bT A1, + O(hTH!) + O(RPHY).

In particular, we can takeé(t) = Z(t) andy(t) = Y (¢), giving

Z(tny1) = R(00) Z(t,) + bTATZ,, + O(hT) + O(RPTY), (10.43)
Y (tni1) = R(c0) Y (t,) + bTATYY,, + O(hITY) + O(RPT),

178 DIFFERENTIAL ALGEBRAIC EQUATIONS

with

Z,, = [Z(ty +c1h),. .., Z(t, + csh)]F,
Yo = [Y(tn +c1h), ..., Y (tn + csh)]".

NOW g(yn,i, 2n.i) = 0802, ; = ¢(yn,i) as noted above. Let

Yﬂ = [yn,h Yn,2y - - - ayn,s]Ta
Zn = [277,,17 Zn,2y .- ,Zn,S]T

Then the Runge—Kutta equations can be written (as we didyyithabove) as
Zna1 = R(0) 2 + BT A7 Z,. (10.44)

The errorAz,+1 = Z(tn,+1) — zn+1 IS given by subtracting the above equations
(10.43) and (10.44), yielding

Azpi1 = R(00) Az, +bTA™! (zn - Zn) + ORI + O(hPHY).

Note thatz,, ; = ©(yn,i) andZ(t, + ¢;h) = (Y (tn + ¢;h). The stage order ig, so
from the differential equation for” and the Runge—Kutta method,

=Yn — Y(tn)

+ Y i (FWngs 0(ng)) = FY (b + cih), @Y (tn + ¢;h)))) + O(RITT).
j=1

Sincey,, = Y (t,) + O(h?), we get
Yn.i = Y (ty + c;h) + O(R™nEPa+1))

So
Zn,i — Z(tn + cih) = So(yn,i) — (Y (tn +cih)) = O(hmin(p7q+l))-

Therefore |
Azpp1 = R(00) Az, + O(hMPat1)y,

If |[R(c0)| < 1, then we obtain the expected global ordergf If R(co) = 1 we
the errors can accumulate giving a convergence order ofes® lIf|R(c0)| > 1,
then z, will grow exponentially inn. If R(co) = —1, then we need to do some
more analysis to show that the hidden constant in gh™*(-4+1))” is actually a
smooth function of. Then successive steps will cause cancellation of the,@maolr
the global error for,, is O(R™n(P-a+1)),

To illustrate these theoretical results, consider agagmtiimerical results shown
in Figure 10.2 for the index 1 version of the spherical penduproblem using the
3-stage 5th-order Radau IIA method. All components of tHetem converge with

RUNGE-KUTTA METHODS FOR DAES 179

roughly the same order of accuracy. In fact, the slopes oftitaéghtest parts of the
the graphsin Figure 10.2 arer —5.10, —5.04, and—5.05 for the position, velocity,
and force components of the solution, respectively. Thicates that the index 1
DAE is being solved with the full order of accuracy that theethrstage Radau IIA
method can provide.

10.5.2 Index 2 problems

Here we consider index 2 problems of the form

Y' = f(Y’ Z),
0=g(Y).

As in Subsection 10.4.2, we assume thatY’) f.(Y, Z) is a square nonsingular
matrix on the exact solution.

Index 2 problems are considerably harder to solve numdyitten corresponding
index 1 problems. In the index 1 case where the “algebraicaégnsg (Y, Z) = 0
give Z as a function ot (Z = ¢(Y")), the result of solving this system of equations
could be substituted intdY /dt = f(Y, Z) = f(Y, »(Y")) to form a smooth ordinary
differential equation. This is not possible in the index 2ecalndeed, the task of
determining whether initial valugg, zo) are consistent (i.eg, (yo) f (o, z0) = 0)
is a non-trivial task.

Runge—Kutta methods for index 2 problems have the form

yn +h Zaij fWnjs2n,j), fori=1,2,....s,

Jj=1

Yn,i
S

zm:zn—i—hZaijfn,j, fori=1,2,...,s,
j=1

Yn+t1 = Yn +h Z b; f(yn,j’ Zn,j)v

=1
tnit =2+ h Y bi o,
j=1
0=9g(yn:), fori=1,2,...,s.

Note that we have extra variablés; that are needed to solve the equatigfs, ;) =
0. If (yn, z») is sufficiently close to being consistent, there exigts 1, z,+1) (aswell
as they, ;, z, ;, and{, ;) satisfying the Runge—Kutta equations, &9gl 1, zn+1)
is also close to being consistent.

This non-linear system of equations can be solved usinggXample, Newton'’s

method. Given currently computed vallg)é?, szj) éffg andy,, z, fromthe previous
step, we compute corrected valug§) = y*) + Ay, ;, 20T = 2P 4 Az,

180 DIFFERENTIAL ALGEBRAIC EQUATIONS

Table10.1 Order of accuracy for index 2 DAEs of the form (10.34)—(10.85
methods withs stages

Method y z
Gauss s+1, sodd { s—1, sodd
S, s even s—2, seven
Radau ll1A 25 —1 s
Lobatto IlIC 25 — 2 s—1
DIRK a 2 1

andfffjl) = Effg + A/, ; by solving the linear system

k k k
ynz"'Aynz—yn‘i‘hZam[yflga 1(13)+fy(yn77 flj))Ayn,j
Jj=1

+fz(y,(f3, M)Azn]}, fori=1,2,...,s,

)

Z,(llfl) + Aznyi =zp+h Zaij {6553 + Agnj:| R fori = 1, 2, o, S

O—g(())—l—gy(ynl)Aynl, fori=1,2,...,s

There are several implications of the theory of these problr numerical meth-
ods, such as Runge—Kutta methods, for index 2 DAEs.

1. The order of accuracy for the numerical solutieps~ Z(t,,) andy,, =~ Y (t,,)
are often different.

2. The non-linear systems are generally harder to solvenfiex 2 systems than
for index 1 systems. More specifically, the condition numbkthe linear
system for Newton’s method increases(3d /h) as the step size becomes
small [44,§ VII.4]. By comparison, the linear systems for Newton’s nuth
for index 1 DAEs have bounded condition number& ames to zero.

3. Additional conditions are needed to obtain convergefiteenumerical meth-
ods.

Developmentof the theory for the order of convergence afé¢hmeethods is beyond
the scope of this book. However, we can present results foedamilies of Runge—
Kutta methods, which are summarized in Table 10.1 ([42])thintable, the DIRK
method is taken from Table 9.8 (a) in Chapter 9 witk 3.

Note that the Gauss methods suffer a strong loss of accurbiaining only order
s + 1 at best fory (compared t@s — 1 for ordinary differential equations), while
Radau IIA methods keep the same orderjoais for solving ordinary differential
equations. The order for is less for all methods listed, often quite substantially
less. One reason for the good performance of Radau IIA metisatthat it is stiffly

INDEX THREE PROBLEMS FROM MECHANICS 181

accurate, and has a high stage ordga§ well as having a good quadrature orggr (
The Lobatto IlIC method, which is stiffly accurate, also hgoad order of accuracy.

One of the most popular methods for solving DAEs is the 5titeqgr 3-stage
Radau IIA method (Table 9.7). This is the basis for some paadftware for DAES.
For more information, see p. 183. Numerical results for thisthod (with a fixed
stepsize) are shown in Figure 10.3 for the index 2 versioh@fpherical pendulum
problem. The slopes of the graphs axe—5.01, —4.98, and—2.85 for the position,
velocity, and force components, respectively. In this igrsthe force component
plays the role ofZ, while the position and velocity components play the rol& of
These results seem roughly consistent with the expectédditter convergence of
yn t0 Y (¢), and third-order convergence of to Z(t).

Some other Runge—Kutta-type methods have been developeuiéx 2 DAEs,
such as that proposed by Jay [51], which uses separate nsefibiotheY and Z
components of the solution.

10.6 INDEX THREE PROBLEMS FROM MECHANICS

Mechanics is a rich source of DAES; the pendulum examplegifei3.1 and (10.1)—
(10.3) is a common example. For general mechanical systeims)eed a more
systematic way of deriving the equations of motion. Theetaro main ways of
doing this: Lagrangian mechanics and Hamiltonian meclsanfdthough closely
related, they each have their own specific character. Weus# the Lagrangian
approach here.

For more information about this area, which is often caiedlytical mechanics
see Fowles [38] for a traditional introduction, and Arnodd r Marsden and Ratiu
[61] for more mathematical treatments. A comprehensiva@ggh can be found
in Fasano and Marmi [37], which includes extensions to stiatil mechanics and
continuum mechanics as well as more traditional topics.

In the Lagrangian approach to mechanics, the main variaethegeneralized
coordinatesy = [q1, 2, - .,q,])T and thegeneralized velocities = dq/dt. Note
that in this sectiory is not the stage order. The generalized coordinates can be any
convenient system of coordinates for representing the gorgtion of the system.
For example, for a pendulumin the plane, we could use eitieeamgle to the vertical
0, or z andy coordinates for the center of mass. In the latter case weneéd to
include one (or more) constraints on the coordinatgs) = 0. Note that since the
generalized coordinates could include angles, the gemedaVelocity vector could
include angular velocities as well as ordinary velocities.

The function that defines the motion in Lagrangian mechangitse Lagrangian
function L(q,v), a scalar function of the generalized coordinates and gdined
velocities. For a system with no constraints on the cootémave have

L(q,v) = T(q,v) — V(q),

182 DIFFERENTIAL ALGEBRAIC EQUATIONS

whereT' (g, v) is the kinetic energy of the system aldq) is the potential energy of
the system. Usually the kinetic energy is quadratic in tHeacity:

T(q,v) = $u"M(q) .
Here M (q) is the mass matrix although sincey may contain quantities such as
angular as well as ordinary velocities, the entried\iifg) may include quantities
such as moments of inertia as well as ordinary masses. If wed@nstraints on the
coordinate} g(q) = 0, then these constraints can be incorporated into the Lggman
function using Lagrange multipliers:

L(g,v,A) = T(q,v) = V(q) — A" g(q).

The Lagrange multipliers can be regarded as generalizeg$dhat ensure that the
constraints are satisfied. The equations of motion are rdxtiaby means of the
Euler-Lagrange equations

d
0= ELv(qv’U) - Lq(Qa 1}),
whereL,(q, v) is the gradient vector af (g, v) with respect tw, andL,(q, v) is the
gradient vector ofL(g, v) with respect tag. If we have constraintg(q) = 0, the
Euler—Lagrange equations become

d
0= ELU(LL v,)‘) - Lq(Qa v, /\)7 (1045)
0=g(q) = La(g,v,A). (10.46)

For the pendulum example, let us uge- [z, y]” as the position of the mass, and
v =dq/dt = [dx/dt,dy/dt]" is its velocity. The constraint is

1
9(a) = 5 (2® +y* — %) =0.

The kinetic energy is just the energy of a mass moving witocigf v:

1 dz\? dy 2
T(q,v) = 3m [(E) + <E)] .
The potential energy is just the potential energy due toigra¥V (¢) = mgy. The
Lagrangian is then

L(q,dg/dt,) = =

dz\? dy\” 1,5 5 5
5 <(E> +(E>)—mgy—)\g(:c +y —é).

1Here we have constraints on the generalized coordirstes g(q) = 0. These are calleolonomic
constraints.

INDEX THREE PROBLEMS FROM MECHANICS 183

The Euler—Lagrange equations are then

dx
d P 0 T
- - t
0=— |m % +[mg]+A{y],
dt

0=%(w2+y2—£2).

This is essentially the pendulum DAE (10.1)—(10.3) reageah
Not only does this DAE have index 3, but all problems of thizethave index 3 (or
higher). In general, for mechanical systems, the Eulerrdiage equations become

M(@) % = Ka0) —~ VV(g) - Vgla)" A (10.47)
% — v, (10.48)
0=g(q), (10.49)

where

1 & om;, Omg; Omy .
ki(q,v) = = 2 _ v VU, =1,2,...,n.
@3 j;1< Oqi dq. g) R !

Differentiatingg(q) = 0 givesVg(q) dg/dt = Vg(q)v = 0; differentiating again
gives

dv

0=V, (Vo(a)v) 2+ Vg(q) &

=V, (Vg(q)v) v+ Vg(q) M(q)~" [k(q,v) = VV(q) — V()" A]

which can be solved foxin terms ofg andv providedVg(q) M (q)~! Vg(q)* is non-
singular. So, provide® g(q) M(q)~! Vg(q)* is nonsingular, the system (10.47)—
(10.49) is an index 3 DAE. Sinc¥ (¢) can usually be taken to be symmetric positive
definite, all that is really needed is f&fg(q) to have full row rank (i.e., the rows of
Vg(q) should be linearly independent).

Note that we need initial conditions to be consistent; thaf(iy(ty)) = 0 and

(d/dt)g(q(t))li=t, = Vg(q(to)) v(to) = 0.

Indeed, at every time, we haveg(q(t)) = 0 and Vg(q(t))v(t) = 0 for the
true solution. We can obtain the consistency condition Xdoy differentiating
Vg(q(t)) v(t) = 0 once again.

10.6.1 Runge—Kutta methods for mechanical index 3 systems

Apart from the index reduction techniques introduced atstiaet of this chapter, we
can apply Runge—Kutta methods directly to the system (38(2@.49). The Runge—
Kutta equations are even harder to solve than those for dgexblems (the condition

184 DIFFERENTIAL ALGEBRAIC EQUATIONS

Table10.2 Proven order of accuracy for index 3 problems of typs 3 for
(10.47)—(10.49)

Method q v A

RadaullA 2s—1 s s—1
LobattollIC s+1 s—1 s—2

number of the Jacobian matrix in Newton’s method grows ¢Ke —2)), but this can
be done provided the computed generalized coordinataad generalized velocities
v, are sufficiently close to being consistegt4,,) ~ 0 andVg(q,) v, = 0), and the
newly computed valueg, +; andv,,,, are also close to being consistent.

The order of accuracy is still not known in general for the &aWRadau Il1A, and
Lobatto IIIC families of Runge—Kutta methods. However, fiar more than three
stages, this is known for the Radau IIA and Lobatto IlIC meaand is given in
Table 10.2 ([42], [49]).

Again, the order of accuracy of the different components(dmates, velocities,
and constraint forces) are different— and again the wineenss to be the Radau IIA
methods (at least up to three stages). Indeed, the thrge-R&dau IIA method has
been implemented askORTRAN 77 code calleckadaub, which is available from

http://www.unige.ch/"hairer/software.html

Also available from this website Badau, anotheffORTRAN 77 code for Radau I1A
methods that can switch between the methods of orders 5d91 &for DAEs and
stiff ODEs.

Numerical results for a fixed stepsize, three-stage Radamkthod are shown
in Figure 10.4 for the index 3 version of the spherical pendubroblem. With
s = 3 we expect fifth-order convergence for positions, thirdesrdonvergence for
the velocities, and second-order convergence for the ordeeleed, the slopes of the
graphs in Figure 10.4 arez —4.66, —3.04, and—2.05 for the positions, velocities,
and forces, respectively. This slight drop in the slope ffono 4.66 for the posi-
tion errors is due mainly to the accuracy with which the Ruf¢étta equations are
solved, which limits the overall accuracy of the numeriadlutions. Otherwise, the
theoretical expectations are confirmed by these numeegsalts.

Other approaches to Runge—Kutta methods for index 3 DAEs fn@chanics can
be found in [50] for constrained Hamiltonian systems usin@aa of Runge—Kutta
methods. Essentially one Runge—Kutta method is used fandraentum variables
and another for the generalized coordinate variables. Pptial choice of methods
for this approach is a combination of Lobatto I1IA and LobdatiB methods.

10.7 HIGHER INDEX DAES

The theory and practice of DAEs become harder as the indesases. Beyond index
3, the complexity of establishing the order of convergerieemethod (oif a method

HIGHER INDEX DAES 185

converges) becomes almost prohibitive for standard agpexsuch as Runge—Kutta
methods. Approaches to these problems can be developeddnsmésymbolic as
well as numerical computation. A survey of approaches tahaghigh-index DAEs
can be found in [26]. Software techniques suchAasomatic Differentiatiorf29],
[69] can be used instead of symbolic computation (as caoigthy MathematicaV,
Maple™, MacsymaM, etc.). These approaches take us well outside the scopisof th
book, but may be useful in handling problems of this kind.

PROBLEMS

1. Obtain theRadau or Radau5 code, and use it to solve the pendulum DAE
(10.4)—(10.8) as a DAE.

2. Repeat Problem 1 with the reduced index DAE (10.4)—(MitA)the constraint
0 = zu+ yv. Thisis an index 2 DAE. In particular, check the drift, or htaw
x? 4 y? — % is from zero.

3. Repeat Problem 1 with the ODE (10.13)—(10.16). As in RnobB, check the
drift in both 22 + 32 — 12 and inzu + yv from zero.

4. Repeat Problem 3 using the MATLABroutineode23t instead ofRadau or
Radaub.

5. Consider a system of chemical reactions

X+Y =2,
Y+U=V.

Assuming that these ammplereactions, the reaction rate of the first is pro-
portional to the products of the concentrations of X and ¥t ik, for the first
reaction, we obtain

diX] _
WX~)
d[z]
i +E [X] Y]

However, the second reaction is reversible:

%9=+bWHW—%WL
du]
— = —ka[Y] U] + Ks[V].

Chemical species Y participates in both reactions:

dlY] _
ek +k3[V] — k1 [X] [Y].

186

DIFFERENTIAL ALGEBRAIC EQUATIONS

2
m

(%.Y,)
2
Figure10.5 Compound pendulum

Suppose thaks, k3 > ki, enabling us to treat the second reaction as being
very nearly in equilibrium. (Mathematically, consider fimit as k5, k3 — oo
butks/ks — c.) Write down the resulting system of differential and alggb
equations (perhaps involving the initial concentrationl, [U]o, [V]o, etc.).
Show that they form an index 1 DAE.

. Derive the equations of motion of a compound pendulum agvshn Fig-

ure 10.5 as an index 3 DAE in terms of the coordinates of theecenf masses
(w1,y1) and(zz, y2). This will entail the use of two constraints? + y? = [?
and (x5 — x1)” + (y2 —y1)” = (2. Compare this with the same derivation
instead using just two generalized coordinatgsandf,. (Using6; and 6.
will give ugly expressions for the kinetic energy, but witwfer variables than
usingx1, y1, r2, andys.)

CHAPTER 11

TWO-POINT BOUNDARY VALUE
PROBLEMS

In Chapter 3 we saw that the initial value problem for the selcorder equation
Y = f(tY,Y) (11.1)

can be reformulated as an initial value problem for a systéfinst-order equations,
and that numerical methods for first-order initial valuelgeoms can then be applied
to this system. In this chapter, we consider the numeridatism of another type of
problem for the second-order equation (11.1), one wherditions on the solutio”
are given attwo distinctvalues. Such a problemis calletio-point boundary value
problem (or sometimes for brevity, a BVP). For simplicity, we begimraliscussion
with the following BVP for a second-ordéinear equation:

Y'(#)=pt)Y'(t)+qt)Y(t) +r(t), a<t<b, (11.2)
Y(a) =g, Y(b)=go (11.3)
The conditionsY (a) = ¢; andY (b) = go are called theboundary conditions.
Boundary conditions involving the derivative of the unknmofunction are also
common in applications, and we discuss them later in thetehap

We assume the given functiopsq andr to be continuous ofu, b]. A standard
theoretical result states thatift) > 0fort € [a, b], then the boundary value problem

187

188 TWO-POINT BOUNDARY VALUE PROBLEMS

(11.2)—(11.3) has a unique solution; see Keller [53, p. ¥1§.will assume that the
problem has a unique smooth solutibn

We begin our discussion of the numerical solution of BVPs tyoiducing a
finite-difference approximation to (11.2). Later we looknabre general two-point
BVPs forthe more general nonlinear second-order equatibd }, generalizing finite-
difference approximations as well. We also introduce othenerical methods for
these nonlinear BVPs.

11.1 A FINITE-DIFFERENCE METHOD

The main feature of the finite-difference method is to obtdistrete equations by
replacing derivatives with appropriate finite divided di#nces. We derive a finite-
difference system for the BVP (11.2)—(11.3) in three steps.

In the first step, we discretize the domain of the problem:inkerval [a, b]. Let
N be a positive integer, and divide the interf@lb] into N equal parts:

[a,b] = [to,tl] U [tl,tg] J---u [tN—latN]a

wherea =ty < t; < -+ < ty_1 < ty = b are the grid (or node) points. Denote
h = (b—a)/N, called thestepsize Then the node points are given by

ti=a+ih, 0<i<N. (11.4)

A nonuniform partition of the interval is also possible, andiact this is preferable if
the solution of the boundary value problem (11.2)—(11.3)gfes much more rapidly
in some parts ofa, b] as compared to other parts of the interval. We restrict our
presentation to the case of uniform partitions for the siaityl of exposition. We
use the notatiom; = p(t;), ¢ = q(t;), ri = r(t;), 0 < i« < N, and denotey;,
0 < ¢ < N, as numerical approximations of the true solution valies= Y (¢;),
0<t<N.

Inthe second step, we discretize the differential equaidme interior node points

t1,...,ty—1. Forthis purpose, let us note the following difference appmation
formulas
Yie1 —Yi_ h?
fepy o Litl i=1 D B3) (.
Y/(t) = o =Y O, (11.5)
Yit1 —2Yi4+ Y1 K2
"4y i+1 7 zl__ (4) (¢,
Y (t:) = 57 (11.6)

forsomet;—1 < &, m < tiv1,0=1,...,N — 1. The errors can be obtained by
using Taylor polynomial approximations¥9(t). We leave this as an exercise for the
reader; or see [155.7], [12,55.4]. Using these relations, the differential equation at
t = t; becomes

Yipin -2V +Y 1 Y-V

12 =Pi— 7 — +q;Y; + 1+ O(h?). (11.7)

A FINITE-DIFFERENCE METHOD 189

Dropping the remainder ter@(h?) and replacing’; by y;, we obtain the difference
equations
Yit1 —2Yi +yi-1 _ p; Yt Ui
h? ! 2h
which can be rewritten as
— (L4 3hp) yie1 + (24 2@y + (3hpi — 1) yig
=—h%r;, 1<i<N-1.
The third step is devoted to the treatment of the boundargitions. The differ-
ence equations (11.9) consistéf 1 equations fotV 4+ 1 unknownsyg, 41, - . ., yn -
We need two more equations, and they come from discretizatidghe boundary

conditions. For the model problem (11.2)—(11.3), the @i8zation of the boundary
conditions is straightforward:

L g+, 1<i<N-1, (11.8)

(11.9)

Yo = g1, YN = G2 (11.10)

Equations (11.9) and (11.10) together form a linear syst8ince the values of
yo andy are explicitly given in (11.10), we can eliminajg andyy from the linear
system. Withyy = g1, we can rewrite the equation in (11.9) with= 1 as

2+ h2q)y + (3hp1 — 1) yo = —hPr1 + (14 3hp1) g1. (11.11)
Similarly, from the equation in (11.9) with= N — 1, we obtain
— (L4 $hpn—1) yn—2 + (2+ hPqn_1) yn—1
=—h*ry—1+ (1= thpn—1) 2.

So finally, the finite-difference system for the unknown nuice solution vector
y =1y, yn-a]" is

(11.12)

Ay = b, (11.13)
where
2 + hqu %hpl — 1 1
— (14 3hp2) 2+ h%g Thps —1
A — . .

24+ h%qn_o shpn—2 —1
— (14 ihpy_1) 2+ R%*qn-1 |

is the coefficient matrix and
—h%r1 + (1+ hp1) 91, i=1
b; = —h2r,, 1=2,...,N—=2 (11.14)
—h?ry_1 + (1 — %hpN,l) ge, 1=N—1.

The linear system (11.13) isidiagonal, and the solution of tridiagonal linear
systems is a very well-studied problem. Examples of progréon the efficient
solution of tridiagonal linear systems can be foundl APACK[3].

190 TWO-POINT BOUNDARY VALUE PROBLEMS

Table11.1 Numerical errors’ (z) — yx (x) for solving (11.19)

t =1/20 =1/40 Ratio =1/80 Ratio h=1/160 Ratio

0.1 5.10e—-5 127e—5 4.00 3.18e—6 4.00 7.96e —7 4.00
02 784e—-5 196e—5 4.00 490e—6 4.00 1.22e -6 4.00
0.3 864e—-5 216e—5 4.00 540e—6 4.00 1.35e —6 4.00
0.4 808 —5 202—-5 400 5.05—-6 4.00 1.26e —6 4.00
0.5 6.73¢e -5 168e—5 400 42le—6 4.00 1.05e — 6 4.00
0.6 508 —5 127e—5 4.00 3.17¢e—6 4.00 7.94e —7 4.00
0.7 344e—-5 8.60e—6 4.00 2.15¢—6 4.00 538e—7 4.00
0.8 2.00e—-5 50le—6 400 125¢—-6 4.00 3.13e—7 4.00
0.9 850e—6 213e—6 4.00 532e—-7 4.00 1.33e =7 4.00

11.1.1 Convergence

It can be shown that if the true solutidn(¢) is sufficiently smooth, say, with con-
tinuous derivatives up to order 4, then the difference s&héhl.13)—(11.14) is a
second-order method,

N | — 2
omax |V (t:) —yi| = O(h"). (11.15)

For a detailed discussion, see Ascher et al. [9, p. 189]. Mae if Y (¢) has six
continuous derivatives, the following asymptotic erroparsion holds:

Y (t:) — yn(t:) = h*D(t;) + O(h*), 0<i<N (11.16)

for some functionD(t) independent ok. The Richardson extrapolation formula for
this case is

Un(ti) = 3 [Aynti) — yan(ts)] (11.17)

and we have
Y(ti) — Gn(t:) = O(h*). (11.18)

11.1.2 A numerical example

We illustrate the finite-difference approximation (11.1Rg error result (11.15), and
the Richardson extrapolation results (11.16)—(11.18 MATLAB ® codes that we
use for our calculations are given following the example.

Example 11.1 Consider the boundary value problem

2t 2
- Y +Y +—— —log(14+¢3), 0<t<1,
14 ¢2 1+¢2 08() (11.19)

Y(0)=0, Y(1)=log(2).

YI/ —

The true solution i&”(t) = log(1 +t2). In Table 11.1, we report the finite-difference
solution errorsy” — y;, at selected node points for several values.oin Table 11.2,

A FINITE-DIFFERENCE METHOD 191

Table11.2 Extrapolation errord”(¢;) — yn(¢;) for solving (11.19)

t h=1/40 =1/80 Rato h=1/160 Ratio

0.1 —9.23e — 09 —5.76e —10 16.01 —3.60e — 11 16.00
0.2 —1.04e — 08 —6.53e —10 15.99 —4.08e — 11 15.99
0.3 —6.60e — 09 —4.14e —10 15.96 —2.59e — 11 15.98
04 —1.18e —09 —7.57e —11 15.64 —4.78e — 12 15.85
0.5 33le—09 2.05e—10 16.14 1.28e —11 16.06
0.6 5.76e —09 3.59e —10 16.07 2.24e —11 16.04
0.7 6.12¢ —09 3.81le—10 16.04 2.38¢e —11 16.03
0.8 4.88e—09 3.04e—10 16.03 1.90e—11 16.03
09 267¢—-09 1.67¢e—10 16.02 1.04e —11 16.03

we report the errors of the extrapolated solutidhs- %(4 Yn — Y21) at the same
node points and the associated ratios of the errors fondiftestepsizes. The column
marked “Ratio” next to the column of the solution errors fatapsizeh consists of
the ratios of the solution errors for the stepskZewith those for the stepsizie. We
clearly observe an error reduction of a factor of approxehad when the stepsize is
halved, indicating a second-order convergence of the ndedb@sserted in (11.15).
There is a dramatic improvement in the solution accuraoyugh extrapolation.
The extrapolated solutiog), with h = 1/40 is much more accurate than the solution
yn, With b = 1/160. Note that the cost of obtaining with h = 1/40 is substantially
smaller than that fog;, with h = 1/160. Also observe that for the extrapolated solu-
tionyy,, the error decreases by a factor of approximately 16 whisrhalved. Indeed,
it can be shown that if the true solutidf(t) is 8 times continuously differentiable,
then we can improve the asymptotic error expansion (11d.6) t

Y (t:) — yn(t:) = h2Dy(t;) + h* Da(t;) + O(h°). (11.20)
Then (11.17) is replaced by
Y (t;) — yn(t:) = =4 h*Da(t;) + O(RS). (11.21)

Therefore, we can also perform an extrapolation proceduig @o get an even more
accurate numerical solution through the following formula

Y (t:) — 15 [16Gn(t:) — Gan(ti)] = O(h°). (11.22)

As an example, at; = 0.5, with h = 1/80, the doubly extrapolated solution has an
error approximately equal te 1.88x 10712 [|

MATLAB program. The following MATLAB code0DEBVP implements the differ-
ence method (11.13) for solving the problem (11.2)—(11.3).

function z = ODEBVP(p,q,r,a,b,ga,gb,N)
%

192 TWO-POINT BOUNDARY VALUE PROBLEMS

% function z = ODEBVP(p,q,r,a,b,ga,gb,N)

% A program to solve the two point boundary
% value problem

% y'=p()y’+qt)y+r(t), a<t<b

% y(a)=gl, y)=g2

% Input

% P, 9, r: coefficient functions

% a, b: the end-points of the interval

% ga, gb: the prescribed function values

% at the end-points

% N: number of sub-intervals

% Output

% z=1[1tt yy]: tt is an (N+1) column vector
% of the node points

% yy is an (N+1) column vector of
% the solution values

% A sample call would be

% z=0DEBVP(’p’,’q’,’r’,a,b,ga,gb,100)

% The user must provide m-files to define the
% functions p, q, and r.

% The user must also supply a MATLAB program, called
% tridiag.m, for solving tridiagonal linear systems.

% Initialization

N1 = N+1;

h = (b-a)/N;

h2 = hxh;

tt = linspace(a,b,N1)’;
yy = zeros(N1,1);

yy(1) = ga;

yy(N1) = gb;

% Define the sub-diagonal avec, main diagonal bvec,
% superdiagonal cvec

pp(2:N) = feval(p,tt(2:N));

avec(2:N-1) = -1-(h/2)*pp(3:N);

bvec(1:N-1) 2+h2x*feval(q,tt(2:N));
cvec(1:N-2) = -1+(h/2)*pp(2:N-1);

% Define the right hand side vector fvec
fvec(1:N-1) = -h2xfeval(r,tt(2:N));

fvec(l) = fvec(1)+(1+h*pp(2)/2)*ga;

fvec(N-1) = fvec(N-1)+(1-h*pp(N)/2)*gb;

% Solve the tridiagonal system

yy(2:N) = tridiag(avec,bvec,cvec,fvec,N-1,0);

Z

The

£
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

i

A FINITE-DIFFERENCE METHOD 193

= [tt’; yy’17%;
following MATLAB codetridiag solves tridiagonal linear systems.

unction [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)
function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)
Solve a tridiagonal linear system M*x=f

INPUT:

The order of the linear system is given as n.

The subdiagonal, diagonal, and superdiagonal of M are given

by the arrays a,b,c, respectively. More precisely,
M(i,i-1) = a(i), i=2,...,n
M(i,i) = b(i), i=1,...,n
M(i,i+1) = c(i), i=1,...,n-1

option=0 means that the original matrix M is given as
specified above.

option=1 means that the LU factorization of M is already
known and is stored in a,b,c. This will have been
accomplished by a previous call to this routine. 1In
that case, the vectors alpha and beta should have
been substituted for a and b in the calling sequence.

All input values are unchanged on exit from the routine.

OUTPUT:

Upon exit, the LU factorization of M is already known and

is stored in alpha,beta,c. The solution x is given as well.

message=0 means the program was completed satisfactorily.

message=1 means that a zero pivot element was encountered
and the solution process was abandoned. This case
happens only when option=0.

f option ==
alpha = a; beta = b;
alpha(1) = 0;

% Compute LU factorization of matrix M.
for j=2:n

if beta(j-1) ==

message = 1; return

end

alpha(j) = alpha(j)/beta(j-1);

beta(j) = beta(j) - alpha(j)*c(j-1);
end

194 TWO-POINT BOUNDARY VALUE PROBLEMS

if beta(n) ==
message = 1; return
end
end

% Compute solution x to M*x = f using LU factorization of M.
% Do forward substitution to solve lower triangular system.
if option == 1

alpha = a; beta = b;
end
x = f; message = 0;

for j=2:n
x(j) = x(j) - alpha(j)*x(j-1);
end

% Do backward substitution to solve upper triangular system.
x(n) = x(n)/beta(n);
for j=n-1:-1:1

x(3) = (x(§) - c(G)*x(j+1)) /veta(j);

end
end % tridiag

11.1.3 Boundary conditions involving the derivative

The treatment of boundary conditions involving the defxeof the unknowrl’(¢)
is somewhat involved. Assume that the boundary conditiagn=ab is

Y'(b) + kY (b) = go. (11.23)
One obvious discretization is to approximat&d) by (Yx — Yy _1)/h. However,
Y'(b) — % = O(h), (11.24)

and the accuracy of this approximation is one order lowen th& remainder term
O(h?)in(11.7). As aresult, the corresponding difference solutiith the following
discrete boundary condition

YN —YN-1

h

will have an accuracy of(h) only. To retain the second-order convergence of the
difference solution, we need to approximate the boundandition (11.23) more
accurately. One such treatment is based on the formula

_3YN—4YN 1+ YN o2
N 2h

+Ekyn = g2 (11.25)

Y'(b) + O(Rh?). (11.26)

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 195

Then the boundary condition (11.23) is approximated by

3yn —4yn—1+YN—2
2h
It can be shown that the resulting difference scheme is agmiond-order accurate.
A similar treatment can be given for more general boundanglit@mns that involve
the derivatived™’ (a) andY”(b). For a comprehensive introduction to this and to the
general subject of the numerical solution of two-point badany value problems, see
Keller [53], Ascher et al [9], or Ascher and Petzold [10, Cha]p

+kyn = g2- (11.27)

11.2 NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

Consider the two-point boundary value problem

Y"=f(tY,Y), a<t<hb,

A[}{I((‘i))] +B[}{I((l;)) } _ { 1; } ' (11.28)

The termsA and B denote given square matrices of ordex 2, andvy; and~; are
given constants. The theory for BVPs such as this one is nmmpltex than that for
the initial value problem.

The theory for the nonlinear problem (11.28) is more congtéid than that for the
linear problem (11.2). We give an introduction to that thefar the following more
limited problem:

Y"=ftY,Y'), a<t<b, (11.29)

apy(a) —ary'(a) = g1, boy(b) + b1y’ (b) = g2 (11.30)

with {ag, a1,bo, b1, 91,92} as given constants. The functigris assumed to satisfy
the following Lipschitz condition,

|f(t7u17v) - f(t,UQ,U)| < K|U1 - U2|,
|f(tau7U1) - f(t,u,v2)| < K |’U1 - U2|

for all points(¢, u;, v), (t,u,v;), i = 1,2, in the region

(11.31)

R={(t,u,v) |a<t<b, —o0<u,v<oo}.

This is far stronger than needed, but it simplifies the statenof the following
theorem; and although we do not give it here, it also simglifiee error analysis of
numerical methods for (11.29)—(11.30).

Theorem 11.2 For the problem (11.29)—(11.30), assuifie;, u, v) to be continuous
on the regionRk and that it satisfies the Lipschitz condition (11.31). In iidd,
assume that o, f satisfies

af(x7 u7 v)
ou

8f(I, u7 ’U)

<M (11.32)
ov

-0, |

196 TWO-POINT BOUNDARY VALUE PROBLEMS

for some constant/ > 0. For the boundary conditions of (11.30), assume
apal Z O, b0b1 Z O, (1133)

lao| + la1| # 0, [bo| + [b1] # 0, |ao| + |bo| # 0.

Then the BVP (11.29)—(11.30) has a unique solution.

For a proof, see Keller [53, p. 9].

Although this theorem gives conditions for the BVP (11.22)}-30) to be uniquely
solvable, in fact nonlinear BVPs may be nonuniquely solwalith only a finite
number of solutions. This is in contrast to the situation Ifoear problems such
as (11.2)-(11.3) in which nonuniqueness always impliesnéinify of solutions.
An example of such nonunique solvability for a nonlinear BigRhe second-order

problem

d dy
- - in(Y) = 1
p [I(t) o } +Asin(Y) =0, 0<t<l,

Y(0)=Y'(1)=0, [Y(@)|<m

which arises in studying the buckling of a vertical columnemha vertical force
is applied. The unknowir (¢) is related to the displacement of the column in the
radial direction from its centerline. In the equatidft) is a given function related
to physical properties of the column; and the paramgisrproportional to the load
on the column. Wher exceeds a certain size, there is a solution to the problem
(11.34) other than the zero solution. Agontinues to increase, the BVP (11.34) has
an increasing number of nonzero solutions, only one of wiithe correct physical
solution. For a detailed discussion of this problem, seésiKahd Antman [54, p. 43].
As with the earlier material on initial value problems in @ker 3, all boundary
value problems for higher-order equations can be refortadlas problems for sys-
tems of first-order equations. The general form of a two-pBMP for a system of
first-order equations is

(11.34)

Y =£(tY), a<t<hb,
(11.35)
AY(a) + BY (b) = g.
This represents a system «of first-order equations. The quantitidg(t), f(¢,Y),
andg are vectors withn components, and and B are matrices of ordemn x m.
There is a theory for such BVPs, analogous to that for thepaiot problem (11.28),
but we omit it here because of space limitations.

In the remainder of this section, we describe briefly the@pal numerical meth-
ods for solving the two-point BVP (11.28). These methodsegalive to first-order
systems such as (11.35), but again, because of spaceilimgate omit those results.
Much of our presentation follows Keller [53], and a theory fiost-order systems is
given there. Unlike the situation with initial value probis, it is often advantageous
to directly treat higher-order BVPs rather than to numdiycsolve their reformula-
tion as a first-order system. The numerical methods for tleepiaint boundary value

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 197

problem (11.28) are also less complicated to present, adfthre we have opted to
discuss the second-order problem (11.28) rather than #tersy(11.35).

11.2.1 Finite difference methods
We consider the two-point BVP:
Y"'=f(tY,Y), a<t<b,
Y(a)=g1, Y(b) =g

with the true solution denoted by (¢). The boundary conditions are of the same
form as used with our earlier finite-difference approxiroatfor the linear problem
(11.2)—(11.3). As before, in (11.4), introduce an equghgced subdivision

(11.36)

a=ty<t1<---<ty=0b

At each interior node point;, 0 < ¢ < N, we approximat&™(¢;) andY”(¢;)
as in (11.5)—(11.6). Dropping the final error terms in (14(8)1.6) and using these
approximationsin the differential equation, we are ledi®dpproximating nonlinear
system:

i1 — 2 + Yi— i+l — Yi- ;
Vi hy2+y 1:f(ti7yi’%), i=1. . N—1 (11.37)

This is a system oV — 1 nonlinear equations in th&¥ — 1 unknownsy, ..., yn_1;
compare with the system (11.8). The valggs= g1 andyy = g» are known from
the boundary conditions.

The analysis of the error ifiy; } as compared tdY (¢;)} is too complicated to
be given here, because it requires methods for analyzingdivability of systems
of nonlinear equations. In essenceYift) is 4 times differentiable, if the problem
(11.36) is uniquely solvable for some region about the gmapfu, b] of Y'(¢), and
if f(t,u,v) is sufficiently differentiable, then there is a solution d (37), and it
satisfies

2
Jmax [V (t:) = il = O(h?). (11.38)
For an analysis, see Keller [52, Sec. 3.2] or [53, Sec. 3.3rddver, with additional
assumptions oif and the smoothness &f, it can be shown that

Y (t;) — yi = D(t;)h?* + O(h*) (11.39)

with D(t) independent of. This can be used to justify Richardson extrapolation to
obtain results that converge more rapidly, just as eantigfiil.16)—(11.18). (There
are other methods for improving the convergence, based weating for the error
in the central difference approximations of (11.5)—(11€6j., see [27], [77].)

The system (11.37) can be solved in a variety of ways, soméafhnare simple
modifications of Newton’s method for solving systems of noedr equations. We
describe here the application of the standard Newton method

198 TWO-POINT BOUNDARY VALUE PROBLEMS

In matrix form, we have

-2 1 0 0 "
1 1 -2 1 Y2
h2
1 -2 1
0 0 1 —2 YN-1
_ 1 .
fltoy, = (Y2 — g1) g1
2h =
1 h?
_ f(tz,ym%(ys—yl)) 3 0 7
1 i
i f<tN17yN17 o (92 — yN2))] h?
which we denote by
1 .
ﬁTy =f(y)+g. (11.40)

The matrixT is both tridiagonal and nonsingular (see Problem 14). Asdississed
earlier for the solution of (11.13) for the linear BVP (11®)1.3), tridiagonal linear
systemd'z = b are easily solvable. This can be used to show that (11.46)ialsle
for all sufficiently small values of; moreover, the solution is unique in a region of
RY~! corresponding to some neighborhood of the graph of theisol¥t(¢) for the
original BVP (11.36). Newton’s method (see [2,11]) for solving (11.40) is given

by
1 ' R
yr) = ylm — [ﬁT - F(y(m))} {pTy(m) —f(y"™)—g| (11.41)

with F the Jacobian matrix foff,

_|2h
)= [ayj‘|i,j_1 N—-1

This matrix simplifies considerably because of the speoiahfoff(y),

0
[F(y)]; = 8—yjf(ti,yi, % (Yiy1 — yi—l)) :

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 199
Thisis zerounles$ =i — 1,4, ori + 1:

[ﬂwh—ﬁcmmi

i+l —Yi-1)), 1<i<N -1,
57, Wit — Y 1)) i

-1 1
Fy)l;ic1 =573\t Yis 57 Wit1 —¥i-1)), 2<i<N-—1,
F@ s = o (100 55 v = 3100)) ;

1 1 _
[FEW)iie1 = %f?, (ti,yi, oh (Yir1 — yi—l)) , 1<i<N-2

with f2(t, u,v) andfs(¢, u, v) denoting partial derivatives gf with respect ta: and
v, respectively. Thus the matrix being inverted in (11.41jiciagonal. Letting

1 m
By = 55T - F(y™), (11.42)

we can rewrite (11.41) as

y(m+1) = y(m) _ §0m)

3

B, = %Ty(m) —fy™) —g. (11439

This linear system is easily and rapidly solvable, for exemnpsing the MATLAB
code of Subsection 11.1.2. The number of multiplicatiorts@ivisions can be shown
to equal approximatelyN, a relatively small number of operations for solving a linea
system of N — 1 equations. Additional savings can be made by not varypgor
by changing it only after several iterations of (11.43). Rarextensive survey and
discussion of the solution of nonlinear systems that arissmnnection with solving
BVPs, see Deuflhard [32].

Example 11.3 Consider the two-point BVP:

2(Y/)2
Y= —y+ ———, -l<z<l,
Y Y v (11.44)

Y(=1) =Y (1) = (e+e 1)1 = 0.324027137.

The true solution i§ (t) = (ef +e~*)~1. We applied the preceding finite-difference
procedure (11.37) to the solution of this BVP. The resulésgiven in Table 11.3 for
successive doublings &f = 2/h. The nonlinear system in (11.37) was solved using
Newton’s method, as described in (11.43). The initial gwess

)

(@) =(e+e), i=01,....N
based on connecting the boundary values by a straight line.gUantity

_ (m+1) _ (m)
dp = omax |V; Ys

200 TWO-POINT BOUNDARY VALUE PROBLEMS

Table 11.3 Finite difference method for solving (11.44)

N =2/h Ey, Ratio

2.63e — 2

5.87e —3 4.48
16 1.43e —3 4.11
32 3.55e —4 4.03
64 8.86e —5 4.01

was computed for each iterate, and when the condition
dp, <1071

was satisfied, the iteration was terminated. In all casesntimber of iterates com-
puted was or 6. For the error, let

Ep = (max, Y (i) — yn ()]

with y, the solution of (11.37) obtained with Newton’s method. Arling to (11.38)
and (11.39), we should expect the valdgsto decrease by a factor of approximately
4 whenh is halved, and that is what we observe in the table. |

Higher-order methods can be obtained in several ways.
1. Using higher-orderapproximationsto the derivativegtioving (11.5)—(11.6).

2. Using Richardson extrapolation based on (11.39), as was th Subsection
11.1.1 for the linear BVP (11.2)—(11.3). Richardson exttapion can be used
repeatedly to obtain methods of increasingly higher-ortibis was discussed
in Subsection 11.1.2, yielding the formulas (11.20)—(2)far extrapolating
twice.

3. The truncation errors in (11.5)—(11.6) can be approxauatith higher-order
differences using the calculated valuegpf Using these values as corrections
in (11.37), we can obtain a new, more accurate approximtditire differential
equation in (11.36), leading to a more accurate solutionis Ehsometimes
called themethod of deferred correction®r more recent work, see [27], [77].

All of these techniques have been used, and some have betlamimged as quite
sophisticated computer codes.

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 201

11.2.2 Shooting methods

Another popular approach to solving a two-point BVP is toueslit to a problem
in which a program for solving initial value problems can Is=d. We now develop
such a method for the BVP (11.29)—(11.30).

Consider the initial value problem

Y"=f(tY,Y), a<t<b,
(11.45)
Y(a)=a1s—c1g1 Y'(a) = aps — cogn,

depending on the parameterwherecy andc; are arbitrary (user chosen) constants
satisfying
a1Co — apt1 = 1.

Denote the solution of (11.45) by (¢; s). Then it is a straightforward calculation
using the initial condition in (11.45) to show that

aoY (a;8) —a1Y'(a;s) = g1

for all s for which Y exists. This shows thdlt (¢; s) satisfies the first boundary
condition in (11.30).

SinceY is a solution of (11.29), all that is needed for it to be a solbf the
BVP (11.29)—(11.30)is to have it satisfy the remaining kaanmy condition ab. This
means thal’ (¢; s) must satisfy

o(s) =boY (b;8) + b1Y'(b;s) — ga = 0. (11.46)

This is a nonlinear equation fer If s* is aroot ofp(s), thenY (¢; s*) will satisfy the
BVP (11.29)—(11.30). It can be shown that under suitablaraptions onf and its
boundary conditions, equation (11.46) will have a uniguetsmn s*; see Keller [53,
p. 9]. We can use a rootfinding method for nonlinear equatiors®lve fors*. This
way of finding a solution to a BVP is calledshooting method The name comes
from ballistics, in which one attempts to determine the mekiditial conditions at
t = a in order to obtain a certain value @t b.

Most rootfinding methods can be applied to solving) = 0. Each evaluation
of ¢(s) involves the solution of the initial value problem (11.45)0 [, b], and
consequently, we want to minimize the number of such eviainat As a specific
example of an important and rapidly convergent method, wke & Newton’s method:

Sm41 = Sm — w,(s’”) ., m=0,1,.... (11.47)
¢’ (8m)
To calculatey’(s), differentiate the definition (11.46) to obtain
¢'(s) = bo&s (b) + b1, (b), (11.48)
where oy
&(t) = (t:5) (11.49)

0s

202 TWO-POINT BOUNDARY VALUE PROBLEMS

To find &,(t), differentiate the equation
Y(t;s) = f(t,Y(t;5), Y (t;5))
with respect tas. Thené, satisfies the initial value problem
() = fat, Y (1), Y/ (5:9)6s (1) + fa(t, Y (155), Y/ (6:9))€4(1), (11.50)
§s(a) =a1, &(a) =ao.

The functionsf, and f5 denote the partial derivatives ¢{¢, u, v) with respect ta:
andwv, respectively. The initial values are obtained from thas€l1i1.45) and from
the definition ofg;.

In practice, we convert the problems (11.45) and (11.50) system of four
first-order equations with the unknows Y’, &, and¢.. This system is solved
numerically, say, with a method of ordgrand stepsizé.. Let y,(t;s) denote the
approximation td’ (¢; s) with a similar notation for the remaining unknowns. From
earlier results for solving initial value problems, it caandhown that these approximate
solutions will be in error by) (hP). With suitable assumptions on the original problem
(11.29)—(11.30), it can then be shown that the rgobbtained will also be in error
by O(h?) and similarly for the approximate solutian (¢; s,) when compared to the
solutionY'(¢; s*) of the boundary value problem. For details of this analysés
Keller [53, pp. 47-54].

Example 11.4 We apply the preceding shooting method to the solution oB¥E
(11.45), used earlier to illustrate the finite-differencethod. The initial value prob-
lem (11.35) for the shooting method is

2(Y’)2
no__ _
e (11.51)
Y(-1)=(e+eH™t Y/ (-1)=s.
The associated problem (11.50) fafx) is
p Y\ Y’
gs: _1_2(_) §S+4_ ga
Y Y (11.52)

gs(_l) =0, 5./9(_1) =1

The equation fok! uses the solutioy’(z; s) of (11.51). The functiony(s) for
computings* is given by

o(s)=Y(1;8) — (e +e 1)t
For use in defining Newton's method, we have

'(s) = &(1).

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 203

Table11.4 Shooting method for solving (11.44)

n=2/h s"—sj Ratio Ey Ratio

4.0le — 3 2.83e — 2

1.52e =3 2.64 7.30e —3 3.88
16 4.64e —4 328 1.82¢e -3 4.01
32 1.27e —4 3.64 4.54e -4 4.01
64 3.34e —5 3.82 1.14e—4 4.00

From the true solutiot” of (11.44) and the conditiop’(—1) = s in (11.51), the
desired root™* of ©(s) is simply

e—e !

s =Y'(-1) = 5 = 0.245777174.

(e+et)

To solve the initial value problem (11.51)—(11.52), we use@ond-order Runge—
Kutta method, such as (5.21), with a stepsizé&.of 2/n. The results for several
values ofn are given in Table 11.4. The solution of (11.52) is denotedhy; s),
and the resulting root for

on(s)=yn(l;8) —(e+e)t =0
is denoted bys; . For the error iny,(¢; s7,), let

By = max Y (t:) — yn(ti;)]
where{t;} are the node points used in solving the initial value probl&he columns
labeled “Ratio” give the factors by which the errors decesashem was doubled (or
h was halved). Theoretically these factors should apprdaghce the Runge—Kutta
method has an error @(h?). Empirically, the factors approach0, as expected.
For the Newton iteration (11.479¢ = 0.2 was used in each case. The iteration was
terminated when the test

|Sm+1 - Sm| < 10_10

was satisfied. With these choices, the Newton method neéxédrations in each
case, except that of = 4 (when seven iterations were needed). Howeves; H= 0
was used, the5 iterations were needed for tle= 4 case, showing the importance
of a good choice of the initial guess. |

Anumber of problems can arise with the shooting methodt Rirere is no general
guesss for the Newton iteration, and with a poor choice, the itematmay diverge.
For this reason, a modified Newton method may be needed te émnavergence. A
second problem is that the choicewf(¢; s) may be very sensitive tb, s, and other
characteristics of the boundary value problem. For exaniptbe linearization of

204 TWO-POINT BOUNDARY VALUE PROBLEMS

the initial value problem (11.45) has large positive eigdags, then the choice of
Y (¢; s) is likely to be sensitive to variations in For a thorough discussion of these
and other problems, see Keller [53, Chap. 2], Ascher et &lofAscher and Petzold
[10, Chap. 7]. Some of these problems are more easily exahfonéinear BVPs, as
is done in Keller [53, Chap. 2].

11.2.3 Collocation methods

To simplify the presentation, we again consider only théedéntial equation
Y = f(t,Y,Y"), a<t<b. (11.53)
Further simplifying the BVP, we consider only the homogarsmoundary conditions
Y(a)=0, Y(b)=0. (11.54)

It is straightforward to modify the nonhomogeneous boupdanditions of (11.36)
to obtain a modified BVP having homogeneous boundary camditisee Problem 16.
The collocation methods are much more general than indidatesolving (11.53)—
(11.54), but the essential ideas are more easily undergtdbds context.

We assume that the solutidf(¢) of (11.53)—(11.54) is approximable by a linear
combination ofn given functionsy: (t), .. ., ¥, (t),

n

V() ~ya(e) =Y e(t), a<z<b (11.55)

Jj=1

The functions); (¢) are all assumed to satisfy the boundary conditions

Yi(a) = () =0, j=1,...n, (11.56)
and thus any linear combination (11.55) will also satisg/tloundary conditions. The
coefficientscy, . . ., ¢, are determined by requiring the differential equation $B).
to be satisfied exactly at preselected points ifu, b),

y;:(gl) :f(gzayn(gl)vy;z(gl))v i=1,...,n (1157)
with given points
a<& <& << <b. (11.58)

The procedure of defining,, (¢) implicitly through (11.57) is known asollocation
and the pointg¢; } are callectollocation points
Substituting from (11.55) into (11.57), we obtain

> (&) =f (Su ZCj%(&%ZCﬂ%(&)) , (11.59)
j=1 Jj=1 J=1

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 205

fori = 1,...,n. This is a system of. nonlinear equations in the unknowns
c1,.--,Cq. IN general, this system must be solved numerically, as e daith the
finite-difference approximation (11.37) discussed eaitieSection 11.2.1.

In choosing a collocation method, we must do the following.

1. Choose the family of approximating functiofig: (¢), ..., v, (¢)}, including
the requirement (11.56) for the endpoint boundary conadéio

2. Choose the collocation node poifts} of (11.58).

3. Choose away to solve the nonlinear system (11.59). ledirdthis is choosing
an initial guess for the method of solving the nonlinearasystand this may
be difficult to find.

For a general survey of this area, see the text by Ascher §0glfor collocation
software, see [6], [7].
We describe briefly a particular collocation method thatlesn implemented as
a high quality computer code. Let > 0, h = (b — a) /m, and define breakpoints
{t;} by
t; =a+ jh, 7=0,1,...,m.

Consider all functiong(t) that satisfy the following conditions:

e p(t) is continuously differentiable far <t < b.

« pla) = p(b) = 0.

e On each subintervédt;_1,t;], p(t) is a polynomial of degree 3.

We use these functions as our approximatign$) in (11.57). There are a number of
ways to writey,, (t) in the form of (11.55), witlm = km. A good way to choose the
functions{v, (¢) } is to use the standard basis functions for cubic Hermitegoltation
on each subintervdt,_1,¢,]; see [11, p. 162].

For the collocation points, let; = —1/\/5, p2 = 1/\/5, which are the zeros of
the Legendre polynomial of degree 2 pnl, 1]. Using these, define

§i7j:%(ti_1+ti)+%hpj, 1=12, «i=1,...,m.

This defines: = 2m points¢; ;, and these will be the collocation points used in
(11.57).

With this choice fory,, (t) and{¢; ; }, and assuming sufficient differentiability and
stability in the solvability of the BVP (11.53)—(11.54),d&n be shown thag,, (¢)
satisfies the following:

max |Y(t) — yn(t)| = O(h*) .

a<t<b

An extensive discussion and generalizations of this me#nedjiven in [9].

206 TWO-POINT BOUNDARY VALUE PROBLEMS

11.2.4 Other methods and problems

Yet another approach to solving a boundary value problem sotve an equiva-
lent reformulation as an integral equation. There is mueh Eevelopment of such
numerical methods, although they can be very effective messituations. For an
introduction to this approach, see Keller [53, Chap. 4].

There are also many other types of boundary value probleomse £ontaining
certain types of singular behavior, that we have not disiggere. An excellent
general reference is the book by Ascher, Mattheij, and RU€e In addition, see
the research papers in the proceedings of Ascher and R{8kselziz [13], Childs
et al. [28], and Gladwell and Sayers [41]; see also Keller [52ap. 4] for singular
problems. For discussions of software, see Childs et a], @R&dwell and Sayers
[41], and Enright [35].

PROBLEMS

1. In general, study of existence and uniqueness of a soltdgidoundary value
problems is more complicated. Consider the boundary vaiolelem
Y”(t) =0, 0<t<1,
Y'(0) = g1, Y'(1) = ga.
Show that the problem has no solutiogif# g2, and infinitely many solutions
Whengl = g2.
Hint: For the case # g2, integrate the differential equation over 1].

2. As another example of solution non-uniqueness, verdyfir any constant,
Y (t) = ¢ sin(t) solves the boundary value problem

Y't)+Y(@t) =0, 0<t<m,
{ Y(0)=Y(x)=0.

3. Verify that any function of the fornir (¢) = c1ef + coe ™t satisfies the equation
Y'(t)-Y(t) =0.

Determinec; andc, for the functionY (¢) to satisfy the following boundary
conditions:

(@ Y(0)=1,Y(1)=0.
(b) Y(0)=1,Y"(1) = 0.
(C)Y(O)_l Y (1) =0.
(d) Y'(0) =1, Y"(1) = 0.

4. Assume thaY is 3 times continuously differentiable. Use Taylor’s thexorto
prove the formula (11.26).

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 207

5. Prove the formula (11.18) by using the asymptotic expangil.16).

6. Use the asymptotic error formula (11.16) witl{t) twice continuously differ-
entiable to show

V() - % [yn(tir) — 2yn(ts) +yn(tic1)] = O(R%), 1<i< N -1

In other words, the second-order centered divided diffeeasf the numerical
solution is a second-order approximation of the seconddéve of the true
solution at any interior node point.

7. Verify that any function of the forni (t) = c;/t + cot* satisfies the equation
Y (t) — LeY'(t) + 2V (t) = 0.

Determine the solution of the equation with the boundardiions

Use the MATLAB progran0DEBVP to solve the boundary value problem for
h =0.1,0.05,0.025, and print the errors of the numerical solutions at 1.2,
1.4,1.6,1.8. Commenton how errors decrease wihda halved. Do the same
for the extrapolated solutions.

8. The general solution of the equation
Y —t(t+2)Y +(t+2)Y =0

isY (t) = c1t+catet. Determine the solution of the equation with the boundary
conditions
Y(1)=e, Y(2)=2¢%

Use the MATLAB progran0ODEBVP to solve the boundary value problem for
h =0.1,0.05,0.025, print the errors of the numerical solutionstat 1.2,1.4,
1.6 and1.8. Comment on how errors decrease wiigs halved. Do the same
for the extrapolated solutions.

9. The general solution of the equation
tY"—2t+1)Y' +(t+1)Y =0

isY (t) = cie! + cot?e’. Find the solution of the equation with the boundary
conditions
Y'(1) =0, Y(2)=¢%

Write down a formula for a discrete approximation of the bdary condition
Y’(1) = 0 similar to (11.27), which has an accura®yfh?). Implement the
method by modifying the prograbDEBVP, and solve the problem with= 0.1,
0.05, 0.025. Print the errors of the numerical solutionstat 1, 1.2, 1.4, 1.6,

208

10.

11.

12.

13.

14.

TWO-POINT BOUNDARY VALUE PROBLEMS

1.8, and comment on how errors decrease whes halved. Do the same for
the extrapolated solutions.

Consider the boundary value problem (11.2) with, andr constant. Modify
the MATLAB program so that the commarf@dval does not appear. Use the
modified program to solve the following boundary value pesbl

@
Y'=-Y, 0<t<Z,

Y(0)=Y (37) =1.
The true solution i¥"(¢) = sint + cost.

(b)
Y"+Y =sint, 0<t<Z,

Y (0) =Y (37) =0.
The true solution i (t) = —1 t cost.
Give a second-order scheme for the following boundalye/problem.
Y"=sin(tY')+1, 0<t<1,
Y(0)=0, Y(1)=1.
Consider modifying the material of Section 11.1 to soheBVP

Y'(t)=pt)Y'(t) + q(t) Y (t) +7(t), a<t<b,
Y(a)=g1, Y'(b)+kY(b)= g2

Do so with the first-order approximation given in (11.25)vé&the analogs of
the results (11.8)—(11.14).

Continuing with the preceding problem, modify§EBVP to handle this new
boundary condition. Apply it to the boundary value problem

2¢ 2
— Y 4Y 4+ — —log(1+12), 0<t<1
T Y+ s+, 0<t<l,

Y(0) =0, Y'(1)+Y(1) =1+log(2).

Y// —

The true solutioni§”(¢) = log(1+t?), just as with the earlierexample (11.19).
Repeat the calculations leading to Table 11.1. Check ttegtams on the order
of convergence given in Section 11.1.3 in the sentence wongg(11.25).

Consider showing that the tridiagonal matffiof (11.40) is nonsingular. For
simplicity, denote its order byn x m. To show thatl" is nonsingular, it is
sufficient to show that the only solutian € R™ of the homogeneous linear
systeml'z = 0 is the zero solutiorw = 0. Letc = maxi<j<m |z;|. We want

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 209

to showe = 0. Begin by assuming the contrary, namely that 0. Write the
individual equations in the systefi: = 0. In particular, consider an equation
corresponding to a componentothat has magnitude (of which there must
be at least one), and denote its indexkbyAssume initially thatl < k& < m.
Show from equatiort thatzy, 1 andz,_; must also have magnitude By
induction, show that all components must have magnitydgand then show
from the first or last equation that this leads to a contréaalict

15. For each of the following BVPs for a second-order diffei@ equation, con-
sider converting it to an equivalent BVP for a system of fostier equations,
asin (11.35). What are the matricdasand B of (11.35)?

(a) Thelinear BVP (11.2)—(11.3).
(b) The nonlinear BVP of (11.44).

(c) The nonlinear BVP (11.29)—(11.30).
(d) The following system of second-order equations:(fet ¢ < 1,

cy(t)
(x()? +y(1)2)**

cx(t)
(x(t)? +y(t)2)**

with the boundary conditions

maz” (t) = my” (t) =

16. Consider converting nonzero boundary conditions to keundary conditions.

(a) Consider the two-point boundary value problem (11.36)convert this
to an equivalent problem with zero boundary conditionstevi(z) =
z(z) + w(zx) with w(x) a straight line satisfying the following boundary
conditions: w(a) = v, w(b) = 7,. Derive a new boundary value
problem forz(z).

(b) Generalize this procedure to problem (11.29). Obtaievaproblem with
zero boundary conditions. What assumptions, if any, ardeeéor the
coefficientsag, a1, by, andb, ?

17. Using the shooting method of Subsection 11.2.2, sob/fallowing boundary-
value problems. Study the convergence raté &svaried.

2
@Y'=-=YY 1<z<2 Y(1)=3Y(2) =2
X
True solution:Y (z) = z/(1 + x).
(b) Y'=2YY', 0<z<im Y(0)=0Y (37) =1.
True solution:Y (x) = tan(x).

CHAPTER 12

VOLTERRA INTEGRAL EQUATIONS

In earlier chapters the initial value problem
Yi(s) = f(s,Y(s)), to<s<b
Y(to) = Yo
was reformulated using integration. In particular, by graing over the interval

[to, t], we obtain

Y(t) =Y, + /t f(s,Y(s)) ds, to<t<h.

This is an integral equation of Volterra type. Motivated arfby this reformulation,
we consider now the integral equation

Y(t)=g(t) + /Ot K(t,s,Y(s))ds, 0<t<T. (12.1)

In this equation, the functionk (¢, s, u) and g(t) are given; the functiorY (¢) is
unknown and is to be determined on the intexval ¢ < T'. This equation is called

211

212 VOLTERRA INTEGRAL EQUATIONS

a Volterra integral equation of the second kinduch integral equations occur in
a variety of physical applications, and few of them can bemeatilated easily as
differential equation initial value problems. Howevergthumerical methods for
such equations are linked to those for the initial value fol and we consider such
methods in this chapter.

12.1 SOLVABILITY THEORY

We begin by discussing some of the theory behind such eaqstimeginning with
the linear equation

Y(t)=9g()+ /Ot K(t,s)Y(s)ds, 0<t<T. (12.2)

The functionk (¢, s) is called the “kernel function” of the integral operatorsimply
the “kernel”. An important theoretical tool for studyingishequation is the use of
“successive approximations” or “Picard iteration”.

As aninitial estimate of the solution, choddgt) = ¢(t). Then define a sequence
of iterates{Y%(¢)} by

Vi) =0+ [Kvil)as, 0<i<T
for¢=0,1,... To develop some intuition, we calculaig(t):
Ya(t) = g(t) + /Ot K(t,s)Y1(s)ds
~g(t)+ | K(t,9) o)+ [Ko gte) o)
o)+ [CK() g(s) ds
—|—/OtK(t,s) /OSK(S,v)g(v)dv ds. (12.3)
We then introduce a change in the order of integration,

//SK(t,s)K(s,v)g(v)dvds
070 (12.4)

_ /Otg(v)/vtK(t, §) K (s,v) ds dv.

and define

¢
Kg(t,v):/K(t,s)K(s,v)ds, 0<v<t<T.

SOLVABILITY THEORY 213

Then (12.3) becomes

+/0 K(t,s)g(s)ds—i—/o KQ(t,v)g(v)dv

This can be continued inductively to give

£ t
t) + Z/ K;(t,s)g(s)ds (12.5)
j=1"0
for ¢ =1,2,... The kernel functiongs; are defined by
Kq(t,s) = K(t,s),
;(t,s) /Ktu K 1(u,s)du, j=2,3,.... (12.6)

Much of the theory of solvability of the integral equatior2(2) can be developed by
looking at the limit of (12.5) ag — oco. This, in turn, requires an examination of the
kernel functions K (¢, s)} .- Doing so yields the following theorem.

Theorem 12.1 Assume thal{ (¢, s) is continuous fof < s <t < T, and thatg(t)
is continuous off0, T']. Then (12.2) has a unique continuous solufioft) on [0, 71,
and

Y (t)] < P max |g(s)|, (12.7)

0<s<t
whereB = maxo<s<t<T |K(t, S)|
Some details of the proof are taken up in the problems.

A related approach can be used to prove the following thedognhe fully non-
linear equation (12.1). The Picard iteration is now

Yoq(t /K))ds, 0<t<T

fore=0,1,...

Theorem 12.2 Assume that the functidi (¢, s, u) satisfies the following two condi-
tions:

(&) K(t,s,u)is continuous fob < s <t < T and—oo < u < o0.

(b) K (t, s,u) satisfies a Lipschitz condition,

|K(t,s,u1) — K(t,s,us)| <clug —ua|, 0<s<t<T

for all —oo < u1,us < oo, with some: > 0.
Assume further thaj(¢) is continuous ori0, 7. Then equation (12.1) has a unique
continuous solutiofy”(¢) on the interval0, T']. In addition,

V()] < e max g(s)|- (12.8)

0<s<t

214 VOLTERRA INTEGRAL EQUATIONS

For a proof, see Linz [59, Chap. 4].

As with differential equations, itis important to examihe stability of the solution
Y (¢) with respect to changes in the data of the equatfiomndg. We consider only
the perturbation of the linear equation (12.2) by changifig to g(t) + (¢). Let
Y (¢;) denote the solution of the perturbed equation,

Y(t;e) = g(t) +e(t) + /Ot K(t,s)Y(s;e)ds, 0<t<T. (12.9)

Subtracting (12.2), we have

Y(t;e) =Y (t) =€(t)
t (12.10)
—I—/ K(t,s)[Y(s;e) =Y (s)]ds, 0<t<T
0
Applying (12.7) from Theorem 12.1, we have
[V (t;e) — Y (t)| < P max |e(s)]. (12.11)

0<s<t

This shows stability of the solution with respect to peratibns in the functiory
in (12.2). This is a conservative estimate because thepiyitig factore®* increases
very rapidly witht. The analysis of stability can be improved by examining 102.
in greater detail, just as was done for differential equatim (1.16) of Section 1.2.
We can also generalize these results to the nonlinear equ@t2.1); see [59], [64].

12.1.1 Special equations

A model equation for studying the numerical solution of ()4s the simple linear
equation

t
Y(t)=9g()+)\/ Y(s)ds, t>0. (12.12)
0
This can be reformulated as the initial value problem
Y'(t) =AY () +4'(t), t>0, (12.13)
Y (0) = g(0),

which is the model equation used in earlier chapters fonshgdnumerical methods
for solving the initial value problem for ordinary differgal equations. Using the
solution of this simple linear initial value problem leads t

Y(t)=g(t) + /\/Ot e)‘(t_s)g(s) ds, t>0. (12.14)

Recall from (1.20) of Section 1.2 that, usually, (12.13)assidered stable fox < 0
and is considered unstable for> 0. Thus the same is true of the Volterra equation
(12.12).

NUMERICAL METHODS 215

As another model Volterra integral equation, consider
ﬂﬂ:g@+AA%m“%K@%, t>0. (12.15)
This can be reduced to the form of (12.12), and this leadsaadiution
1qw=mﬂ+xék@wwﬂ@@M& t>0. (12.16)
Equations of the form
Y () =g(t) + /\/Ot K(it—-s)Y(s)ds, t>0 (12.17)

are said to be of ‘convolution type’, and thaplace transforntan often be used to
obtain a solution. Discussion of the Laplace transform &mdpplication in solving
differential equations can be found in most undergraduatébooks on ordinary
differential equations; for example, see [16]. If&{r) denote the Laplace transform
of K (t), and letL(t; A) denote the inverse Laplace transform of
K(r)

1—MK(7)

The solution of (12.17) is given by

Y(t)=g(t) + /\/Ot L(t—s; M) g(s)ds, t>0. (12.18)

Both (12.12) and (12.15) are special cases of (12.17).

12.2 NUMERICAL METHODS
Numerical methods for solving the Volterra integral eqoati
t
Y(t) = g(¥) —|—/ K(t,s,Y(s))ds, 0<t<T (12.19)
0

are similar to numerical methods for the initial value perhlfor ordinary differential
equations. A set of grid poinfg; : ¢ = 0,1, ... } is chosen, and an approximation to
{Y(t;) :¢=0,1,...} is computed in a step-by-step procedure. For simplicity, we
use an equally spaced grid,

t; =ih, i=0,1,...,Np,

whereh N, < T andh (N, +1) > T. To aid in developing some intuition for
this topic, we begin with an important special case, ttapezoidal method Later
a general scheme is given for the numerical approximatio(ilaf19). As with
numerical methods for ordinary differential equationsyledenote an approximation
of Y(t,,). From (12.19), takey = Y (0) = ¢(0).

216 VOLTERRA INTEGRAL EQUATIONS

12.2.1 The trapezoidal method

Forn > 0, write
tn
V(ta) = glt) + [KltnsY(5) ds.
0
Using the trapezoidal numerical integration rule, we abtai
tn n "
K(tn,s,Y(s))ds = hY " K(tn, t;,Y(t;)). (12.20)
0 =0

In this formula, the double-prime superscript indicatest e first and last terms

should be halved before being summed. Using this approiométads to the nu-
merical formula

Y(tn) m gtn) + 0 Y K(tn,t;, Y (t;))
j=0

Un = g(tn) + 0> K(tn,tj,y;), n=1,2,... Ny (12.21)
j=0

This equation defineg, implicitly, as earlier with the trapezoidal rule (4.22) of
Section 4.2 for the initial value problem. Also, as beforbemh is sufficiently small,
this can be solved fay,, by simple fixed point iteration,

h
g = (1) + §K(tn7t07y0)
n-1 L " (12.22)
RS K (tn, ti,y; —K(tn,tn, n’“) E=0,1,...
+ ; (J y]) + B Y

with some givery,(?). Newton’s method and other rootfinding methods can also be
used. A MATLAB® program implementing (12.21)—(12.22) is given at the end of
the section.

Example 12.3 Consider solving the equation
Y (t) = cost — /Ot Y(s)ds, t>0 (12.23)
with the true solution
Y(t) = % (cost —sint+e” "), t>0.
Equation (12.23) is the model equation (12.12) with= —1 and g(¢) = cost.

Numerical results for the use of (12.21) are shown in Tablé 18 varying stepsizes
h. It can be seen that the error at each valueisfof sizeO (h?). [|

NUMERICAL METHODS 217

Table12.1 Numerical results for solving (12.23) using the trapezbidathod (12.21)

Error
t h=02 Ratio h=0.1 Ratio h =0.05

0.8 1.85e —4 4.03 4.66e—5 4.01 1.17e -5
1.6 9.22¢e —4 4.03 23le—4 4.01 5.77e—-5
24 1.74e—3 4.03 4.36e—4 4.01 1.09¢ —4
3.2 1.95e -3 4.03 488e—4 401 1.22e—-4
4.0 1.25e—-3 4.04 3.1le—4 401 7.76e -5

12.2.2 Error for the trapezoidal method

To build some intuition for the behaviour of (12.21), we cioles first the linear case
(12.2),

Yn = g(t +hz (tn,t;)y;, n=1,2,..., Ny (12.24)

Rewrite the original equation (12.2) using the trapezoidaherical integration rule
with its error formula,

n

Y(tn) = g(tn) + 0> K(tn,t;) Y (t;) + Qultn), (12.25)

Jj=0

forn=1,2,..., N,. The error term can be written in various forms:

" h? 92
Qh(tn):—zlz 553 Kt s)Y(s)]| (12.26)
2 2
_ _% % (K (£, 5) Y (5)] (12.27)
h? 9 o
K,)Y 12.28
13 9 K (tn,8) Y (5)] . (12.28)

In (12.26),r,, ; is some unknown pointift;_1,¢;]; and in (12.27)7, is an unknown
pointin|0, ¢,]. These are standard error formulas for the trapezoidal gk rule;
e.g. see [12§5.2]. Subtract (12.24) from (12.25), obtaining

n

Bn(tn) =h) K(tn,t;) En(t;) + Qn(tn) (12.29)

=0
in which B (tn) = Y (tn) — yn.

Example12.4 As a simple particular case of (12.24), chodsét, s)

= X and
Y (s) = s%. We are solving the equation (12.12) with a suitable choice (6

).

218 VOLTERRA INTEGRAL EQUATIONS

Using (12.27) and noting thd;, (¢y) = Ex(0) = 0, (12.29) becomes

— hA K2t .
En(tn) = > hAEW(t;) + = Bultn) — =Y "(7).
j=1

Becaus&”(s) = 2, this simplifies further to

n—1
En(tn) = > _ BAEW(t;) + $hAEn(tn) — £h%tn, (12.30)
j=1
forn =1,..., N,,. This complicated expression can be solved explicitly.

Write the same formula with — 1 replacingn, and then subtract it from (12.30).
This yields

En(tn) — En(tn—1) = hRAER (tn—1) + $hAEL(tn) — hAER (tn—1)
— A0 (tn — tn-1).

Solving for Ey, (t,,), we obtain

1+ 5hA 1 R
En(ty) = —2=) Ex(tn_1) - ———— —, > 0.
e = (F3) Bt - = 72
Using induction, this has the solution
1+ 3na\" gy R N I T
En(t,) = | —2—= En(ty) — 2 —. (12.31

=0

The firstterm equals zero siné®, (¢y) = 0; and the second term involves a geometric
series which sums to

(1+%h/\)" .

1— 3hA 2 — hA hx 1"

i = Lt —— | — 1.
<1 + §h)\> . 2hA 1—1hA
— 1hA

Using this in (12.31),

h? hA "
Eh(tn):_a{[l+T}Lx\:| —1}.
2

For afixedt = ¢,, = nh, ash — 0, this can be manipulated to obtain the asymptotic

formula
Y
Eh(tn)%—a (e "—1). |

NUMERICAL METHODS 219

For this special case, the numerical solution of (12.12)giie trapezoidal method
has an error of siz&(h?). Thisis of the same order inas the discretization error for
the trapezoidal rule approximation in (12.20). Althouglsttesult has been shown
for only a special solution, it turns out to be true in genérathe trapezoidal method
of (12.21). This is discussed in greater detail in Sectior3,lihcluding a general
convergence theorem that includes the trapezoidal rulegbapplied to the fully
nonlinear equation (12.19).

12.2.3 General schema for numerical methods

As a general approach to the numerical solution of the iadegguation (12.19),
consider replacing the integral term with an approximabased on numerical inte-
gration. Introduce the numerical integration

tn n
/ K(tn,5,Y(s)) ds ~ by wp i K(tn, t;,Y(t;)). (12.32)
0 =0

The quadrature weightsw,, ; are allowed to vary with the grid poirt,, in contrast
to the trapezoidal method. Equation (12.19) is approxichhte

j=0

As with the earlier trapezoidal methoduf, ,, # 0, then (12.33) must be solved for
yn Dy some rootfinding method. For example, simple iteratiamtha form

n—1
y7(1k+1) = g(tn) + hzwn,jK(tna tja y])
pr (12.34)

+hwnnK(tnatn7yr(Lk)) 9 k:O,:l,

for some given initial estimat,e,(LO). Also, many such methods (12.33) require>
p + 1 for some small integep; the valuesyy, ..., y, must be determined by some
other “starting method”.

There are many possible such schemes (12.33), and we gatestinly one pair of
such formulas, both based on Simpson’s numerical integrdtirmula. The simple
Simpson rule has the form

a+2h
/ F(s)ds =~

This classical quadrature formula is very popular, welieéd, and well-understood,;
e.g., see [12, Sections 5.1-5.2]. In producing the appratian of (12.32), consider

[F(a) +4F(a+h) + F(a+2h)].

Wl

220 VOLTERRA INTEGRAL EQUATIONS

first the case where is even. Then define

tn n/2 Lt
K(tn,s,Y(s)) ds = _ K(tn,s,Y(s)) ds
0 j:l t2j72
/2 (12.35)

~
~

3 Z (K (tn, taj—2,Y (t2j—2)) + 4K (tn, t2j—1,Y (t2j-1))

=1
+ K (tn, t25,Y (25))] -

This has an error of siz& (h*).

Consider nextthe case thawvhere odd and > 3. Thenthe intervdD, ¢,,] cannot
be divided into a union of subintervals;_», t2;]; and thus Simpson’s integration
rule cannot be applied in the manner of (12.35). To maintaénaiccuracy implicit
in using Simpson'’s rule, we use Newtor%’s rule over one subinterval of lengéh,

a+3h 3N
/ F(s)ds%?[F(a)+3F(a+h)+3F(a+2h)+F(a+3h)].

We then use Simpson’srule over the remaining subinterfésgth2h. The interval
[0, t,] can be subdivided in two convenient ways,

Scheme 1: [0,t,] = [0,t3] U [ts,t5] U -+ U [tn_2,tn]; (12.36)

Scheme 2: [0, tn] = [0, tg] J---u [tn_g,, tn_3] U [tn_g, tn] . (1237)
With the first scheme, we apply Nevvtorgés rule over[0, t5] and apply Simpson’s
rule over the subintervalgs, ts], . . ., [tn—2, t,]. With the second scheme, we apply
Nevvton’sg’s rule over(t,_s, t,] and Simpson’s rule over the remaining subintervals

[O, tQ]r ceey [tn757 tnf3]-
To be more precise, with the second scheme we begin by writing

tn (n—3)/2

K(tn,s,Y(s))ds = Z /t K(ty,s,Y(s))ds

0

tn
+/ K (tn,s,Y(s))ds.
tn—3

Approximating the integrals as described above, we obtain

tn n/2

1
K(tn, S, Y(S)) ds =~ —hz {K(tn, tgj_g, Y(lej_g))
0 35

FAK (b, t2j-1,Y (t2j-1)) + K(tn 25, Y (t25))] (12.38)
3
+§h{K(tn,tn,3, Y (tn-3)) + 3K (tn, tn—2,Y (th—2))
+3K(tn, tn—1, Y(tn_l)) + K(tn, tn, Y(tn))} .

NUMERICAL METHODS 221

Using (12.36) leads to a similar formula, but with Newtoé"s rule applied over
[Oa t3]'

We denote by “Simpson method 2” the combination of (12.3%) @?2.38); and
we denote as “Simpson method 1” the combination of (12.386)tae analog of
(12.38) for the subdivision of (12.36). Both methods regqtiivat the initial valuey;
be calculated by another method.

Both approximations have discretization errors of si#é*), but method 2 turns
out to be much superior to method 1 when solving (12.19). &hasthods are
discussed and illustrated in Section 12.3.

MATLAB program. The following MATLAB program implements the trapezoidal
method (12.21)—(12.22).

function soln = vie_trap(Nh,T,fcn g,fcn k)

%

% function soln = vie_trap(Nh,T,fcn_g,fcn k)

%

% This solves the integral equation

yA t

% Y(t) = g(t) + Int k(t,s,Y(s))ds

% 0

% ==INPUT==

% N_h: The number of subdivisions of [0,T].

% T: [0,T] is the interval for the solution function.

% fcn_g: The handle of the driver function g(t).
% fcnk: The handle of the kernel function k(t,s,u).

%, ==0UTPUT==

% soln: A structure with the following components.

% soln.t: The grid points at which the solution Y(t) is
% approximated.

% soln.y: The approximation of Y(t) at the grid points.

% The implicit trapezoidal equation is solved by simple fixed

% point iteration at each grid point in t. For simplicity,

% the program uses a crude means of controlling the iteration.
% The iteration is executed a fixed number of times, controlled
% by ’loop’.

loop = 10; % This is much more than is usually needed.

h = T/Nh; t = linspace(0,T,N.h+1);

gvec = fcn g(t);

gvec = zeros(size(t)); yvec(1l) = gwvec(l);

for n=1:Nh
yvec(n+l) = yvec(n); % Initial estimate for the iteration.
kvec = fcnk(t(n+l),t(1:n+1),yvec(l:n+1));

222 VOLTERRA INTEGRAL EQUATIONS

for j=1:loop
y-vec(n+l) = gvec(n+l) + h*(sum(k_vec(2:n))
+ (kwvec(1) + kvec(n+1))/2);
kvec(n+l) = fcnk(t(n+l),t(nt+l),yvec(n+l));

end
end
soln.t = t;
soln.y = y._vec;

end % vie_trap

The following program is a test program for the abade _trap.

function test_vie_trap(lambda,Nh,T,output_step)

% function test_vie_trap(lambda,Nh,T,output_step)

% ==INPUT==

% lambda: Used in defining the integral equation.

% Nh: The number of subdivisions of [0,T].

% T: [0,T] is the interval for the solution function.
% output_step: The solution is output at the indices

% v = 1l:output_step:N_h+1

soln = vie_trap(Nh,T,Q@g driver,@kernel);
t = soln.t; y = soln.y;

true = true_soln(t);

error = true - y;

format short e

v = l:output_step:N_h+1;

disp([t(v)’ y(v)’ error(v)’])

YA
function ans_g = g driver(s)

ans_g = (1-lambda)*sin(t) + (1+lambda)*cos(t) - lambda;
end % g-driver

function ans_true = true_soln(s)
ans_true = cos(s) + sin(s);
end % true_soln

function ans_k = kernel(tau,s,u)

% tau is a scalar, s and u vectors of the same dimension.
ans_k = lambda*u;

end % kernel

%

end % test_vie_trap

NUMERICAL METHODS: THEORY 223

12.3 NUMERICAL METHODS: THEORY

We begin by considering the convergence of methods

yn:g(tn)+hzwn,jK(tnvtj7yj)a n=p+1,...,Np (1239)
j=0
with yo = g(0) and withy, .. ., y, determined by another method. For example, the

trapezoidal method has= 0, and the two Simpson methods discussed in and fol-
lowing (12.35) have = 1. Later we discuss the error requirements when computing
such initial values, . . ., yp.

To analyze the error in using (12.39) to solve

Y(t)=g(t)+ /Ot K(t,s,Y(s))ds, 0<t<T, (12.40)

we proceed in analogy with the error equation (12.29) fotthpezoidal method. As
in Section 12.1, we assume thid{¢, s, u) is continuous fof < s < ¢ < T’ further,
we assume thak (¢, s, u) satisfies the Lipschitz condition

|K(t,s,u1) — K(t,s,u2)| < clug —ug|, 0<s<t<T (12.41)

for —oo < uy,us < co. These are the assumptions used in Theorem 12.2.
Rewrite (12.40) using numerical integration and the asgedierror,

Y(t,) =g(t,) +h an tnatjay tj
(tn) = g(tn) jz_:ow JE((t)) (12.42)

+Qh(tn), n=p+1,...,Np.

The quantity®Qy,(t,,) denotes the error in the quadrature approximation to thegnal
in (12.40). As an example of the quadrature error, recall32-(12.28) for the
trapezoidal method.

Subtract (12.39) from (12.42), obtaining

Bn(tn) = 1Y wnj [K(tn,t5, Y () = K(tn, t5,y;)] + Qultn) (12.43)
j=0

forn =p+1,..., Ny, with B, (¢,) = Y (¢,) —y.. Applying the Lipschitz condition
(12.41) to (12.43), we have

|En(ta)l < he > Jwn | 1En(t) + Qultn), n=p+1,...,Ny. (12.44)
=0

If we assume thalt is small enough thdic |w,, ,,| < 1, then we can boun&y, (t,,)]
in terms of preceding errors:

n—1
hc Qn(ty)

En(tn)] < ——— | [En ()] + —<tin) 12.45
[En(tn)| ot 2 sl B+ 1249

~—1—hc

224 VOLTERRA INTEGRAL EQUATIONS

forn=p+1,...,Np.
To further simplify this, we assume

. < .
Ogggg%(]vn [wni| <7< o0 (12.46)

forall 0 < h < hg for some small value offy. Without any loss of generality when
analyzing convergence as— 0, (12.46) permits the assumption that

he jwp,n| < % (12.47)

is true for allh andn of interest. With (12.46) and (12.47), the inequality (8.4
becomes

n—1

|En(ta)| < 2vch > |En(t;)| +2Qn(ts), n=p+1,...,Nyp. (1248
Jj=0

This can be solved to give a useful convergence result.

Theorem 12.5 In the Volterra integral equation (12.40), assume that thiection
K(t,s,u) is continuous fol) < s <t < T, —00 < u < oo, and further that it
satisfies the Lipschitz condition (12.41). Assume gligtis continuous o0, T]. In
the numerical approximation (12.39), assume (12.46) obhice

P
n(h) =Y _|En(t))], (12.49)
j=0

O(tn;h) = max |Qn(t;)].
Then
|En(tn)| < €7 [2ychn(h) + 6(tn;h)], n=p+1,...,Ny. (12.50)
Proof. This bound is a consequence of (12.48), the following lemand,the bound

(1+ 2’ych)n_p_l < e2veltn—tpi1) < 62’70tn’ n>p+1.

To show this bound, recall Lemma 2.3 from Section 2.2. A mamaglete proof is
given in [59, Section 7.3]. |

Lemma 12.6 Let the sequencgeg, 1, . .. } satisfy

n—1
lenl <@ lejl+Bn, m=p+1,.... (12.51)
j=0
Then
1 p
< np- , 1. .
len] < (14) O‘Z lej] + |, nax |51 (12.52)

=0

NUMERICAL METHODS: THEORY 225

Proof. This can be proved using mathematical inductions, and weeléaas an
exercise for the reader. |

The bound (12.50) assures us of convergence provigéd) — 0andd(t,; h) —
0ash — 0.

Example 12.7 Recall the trapezoidal method of (12.21). Thea- 0 andn(h) =
|Y'(0) — yo|. For the purpose of analyzing convergence, we take= Y (0) and
n(h) = 0. Also, from (12.27), we can take

B h%t, 0?

max |—s
12 0<s<t, |O0s2

O(tn; h) =

[K (tn,s) Y (s)]|. (12.53)

From (12.50), we obtain
| En(tn)] < €275 (tns h),

and this is of siz@(fﬂ) on each finite intervad < t,, < T. Thus the trapezoidal
method is convergent; and we say it is of order 2.

Example 12.8 Recall Simpson method 2 from (12.35), (12.38), and the destsat
Simpson method 1. Both methods require- 1, and

1 (h) = [En(to)| + [En(t1)]-

Again, we take Ej, ()| = 0. The quadrature erroi(t,,; k) can be shown to be of
sizeO(h*) on each finite interval, ¢,,]. If we also havehn(h) = O(h*), then the
overall error in both Simpson methods is of s@¢éh*) on each finite intervdD, 7.

If we use the simple trapezoidal method to genegate¢hen it can be shown that
n(h) = (’)(h3) for this special case of a fixed finite number of errors (in igatar,
Ey(t1)); this is sufficient to yieldin(h) = O(h*). We illustrate this using Simpson
method 2 to solve

t
Y (t) = cost — / Y(s)ds, t>0 (12.54)
0
with the true solution

Y(t) =3 (cost —sint+e”"), t>0, (12.55)

the same test equation as in example 12.3. The numericétsrasth varying values
of h are given in Table 12.2. The values in the columns lab&kedio” approach 16
ash decreases, and this is consistent with a convergence ra&(af'). [|

12.3.1 Numerical stability

In addition to being convergent, a numerical method mustla¢snumerically stable.
As with numerical methods for the initial value problem fafferential equations,

226 VOLTERRA INTEGRAL EQUATIONS

Table12.2 Numerical results for solving (12.54) using the Simpsonhrodt2

Error
t h=0.2 Ratio h=0.1 Ratio &~ =0.05 Ratio h = 0.025
0.8 1.24e — 6 10.2 1.23¢ — 7 13.4 9.15¢ —9 14.8 6.16e — 10
1.6 —5.56e —7 —71.0 7.84e—9 6.4 1.23e —9 13.5 3.09e — 11
24 —1.90e — 6 14.2 —1.34e — 7 14.3 —9.37¢ — 9 15.1 —6.22¢ — 10
3.2 —1.95e —6 10.4 —1.87e — 7 13.6 —1.38e — 8 14.9 —9.24e — 10
4.0 —7.10e — 7 6.2 —1.15e—7 12.9 —8.95e — 9 14.7 —6.07¢ — 10

various meanings are given to the concept of “numericaiplst’. We begin with
stability as discussedin (12.9)-(12.11) for the linearatoun (12.2). Thisisin analogy
with stability as discussed in Section 7.3 of Chapter 7 foltistep methods for the
initial value problem for differential equations.

In the numerical method

yn:g(tn)—i—thn’jK(tn,tj,yj), n=p+1,...,Np. (12.56)
j=0

consider perturbing the initial values, . . ., y,, say, by changing them g + n, ;,
j =0,...,p. Also, perturbg(ty,) to g(t,) + enn forn > p 4+ 1. We are inter-
ested in knowing how the perturbatiofis, ;} and{e}, » } affect the solutiof{y,},
particularly for small perturbations and small valueg.of

Let{y, : 0 < n < N} denote the numerical solution in this perturbed case,

gn = g(tn) + €h,n + hzwn,JK(tnvtjvgj) y N= p+ 17 v 7Nh7
=0 (12.57)

Yn = Yn + Th,j5

Subtracting (12.56) from (12.57), using the Lipschitz ctiod (12.41) and the bound
(12.46) for the weights, we obtain

7=0,...,p.

n
Un = Ynl < lenml +herd [=y, p+1<n< Ny,
j=0

Yn — Yn = Th,j5,
With assumption (12.47) and Lemma 12.6, we obtain

j=0,...,p.

p
|37n - yn| < e*1ctn 2h’ycz |77h,j| +

max |en,
: p+1<j<n ’
J=0
This simplifies as
[Un —yn] < C5, p+1<n<Np 0<h<hyg, (12.58)

NUMERICAL METHODS: THEORY 227

whereC' is a constant independentbfand

0= h
of}%o { orgaé(p nil +1< <N e h”'}
The upper bound on 4 is to be chosen so that for ail
hoc |wy,n| < %

The bound (12.58) says that the numerical solufign: p + 1 <n < N, } varies
continuously with the initial starting valuggy, . . ., y, } and the functiory(t). This
is true in a uniform sense for all sufficiently small valueswofThe bound (12.58) is
the numerical analogue of the stability result (12.11) far linear equation (12.2).
The result (12.58) says that virtually all convergent qaagre schemes lead to
numerical methods (12.56) that are numerically stablerdnfice, however, a number
of such methods remain very sensitive to perturbations énsttarting values. In
particular, experimental results imply that Simpson mdtBas numerically stable,
whereas Simpson method 1 has practical stability probl&kfigt is the explanation
for this?

12.3.2 Practical numerical stability

In discussing practical stability difficulties when usingmerical methods (12.39),
we follow Linz [59,§7.4]. We consider only the linear equation

t
+/ K(t,s)Y(s)ds, 0<t<T, (12.59)
0

although the results generalize to the fully nonlinear ¢éigua(12.40). The type
of stability that is considered is related to the conceptrefdtive stability” from
Subsection 7.3.3.

Consider the numerical method (12.39) as applied to (12.59)

Yn =gt +thnJ (tn,t;)y;, n=p+1,...,Ny (12.60)

with yo = ¢(0) and withy,, . . ., y, obtained by other means. The true solufio(t)
satisfies

Y (tn)+ thm (tn: 1) Y (t5) + Qn(ta) , (12.61)
forn=p+1,...,N,. Subtracting (12.60) from (12.61), we obtain

—thm (tn,t;) En () + Qnltn) , (12.62)

228 VOLTERRA INTEGRAL EQUATIONS

forn=p+1,...,Np.
To aid in understanding the behavior BY,(t,,) ast,, increases, the error is de-

composed into two parts. First, I%TE,? (tn)} denote the solution of

hzwnJ t"7t (tJ)+Qh(tn)7 n:p+17"'aNh7

Ef@d=& j=0,....p.
(12.63)
This error is due entirely to the quadrature errg€g,(¢,) : n > p + 1} that occur
in discretizing the integral equation (12.59); it assunied there is no error in the

initial valuesyy, . . ., y,. Second, consider the errak%’ (¢,,) obtained by solving
thM (tn,t;) EZ(t;)), n=p+1,...,Np, (12.64)
Eh(j):nja j:O,,p (1265)
The quantitiegno, ..., 7, } are the errors in the starting valuégo, ..., y,} when

using (12.60). The original errdty, (¢,,) is given by
En(ty) = ER(tn) + E5(tn), n=0,1,...,Ny.

Returning to (12.63), assume that the quadrature error ha&xpansion of the
form
Qn(tn) = alta)h™ + O (")

for some integern > 1. For example, the trapezoidal method has

Qnltn) = a(t)h® + O(h*),

1 0 K

a(t) = =35 77 [K(t,5)Y(s)

(see (12.28)). Then it can be shown thﬁ (t») has the asymptotic formula
EP(t,) = b(t,) h™ + O(h™H) (12.66)
with the functionb the solution of the integral equation
t
—|—/K(t,s)b(s)d5, 0<t<T.
0
For a derivation of this, see [59, Theorem 7.3]. The asympformula (12.66)
applies to virtually all quadrature schemes that are likelige used in setting up the

numerical scheme (12.56), and it forms the basis for nurabgidrapolation schemes
for error estimation.

NUMERICAL METHODS: THEORY 229

The second errotzy (¢,,), is more subtle to understand. To begin, consider the
weights{w,, ;} for the two Simpson methods.

e Simpson method 1:

.14 2 4 2 4 1.
n even: 37373737 " ») 373730
3 993,142 4 2 41 (12.67)
nodd: £ 55,5535 5 5335
all being multiplied byh. The weights satisfy
Wngpi = Wnis 1=4,...,n

with p = 2, but not withp = 1. We say the weights haveapetition factorof
2.

e Simpson method 2:

. 1 4 2 4 2 4 1,
neven: L1 424, 241 1268)
. 1 4 2 4 2 4 1 3 9 9 3 '
nodd: 3,355 553 T s s
The weights satisfy
Wn41,i = Wi, 1 =0,1,...,n—4.

and again, all being multiplied by. These weights have a repetition factor of
1.

Both of these methods have an asymptotic formula#gxt,,); see [59, Theorem
7.4].
In particular, for Simpson method 2 assume that the staviihges{y,, y1 } satisfy

Y (t:) — yi = 0;h + O(h*). (12.69)
Then
E} (tn) = h* [60Co(tn) + 61C1(tn)] + O(R?) (12.70)
with C;(¢) satisfying

t
Ci(t) = VK (t,t;) —i—/ K(t,s)Ci(s)ds, i=0,1,2.
0

The constanty] are derived as a part of the proofin [59, Theorem 7.4]. Thetions
Cy(t) andC; (t) can be shown to be well behaved, and consequently, the sarae is
of the errorin (12.70).

For Simpson method 1, there is an asymptotic formulap(t,,), but it is not as
well behaved as is (12.70) for Simpson method 2. For Simpsethaod 1, it can be
shown that

B} (tan) = ha(ton) + O(R?) (12.71)
E} (tant1) = hy(tontr) + O(hz) (12.72)

230 VOLTERRA INTEGRAL EQUATIONS

with (z(t),y(t)) the solution of a system of two Volterra integral equatioff$ie
functionsz(t) andy(t) can be written in the form

1

f (12.73)
2

with z1 (t) andz(t) the solutions of the Volterra integral equation

zi(t):gi(t)—i—/OtK(L‘,s)zi(s)ds7 0<t<T

for particular values of;(t) that depend on botk (¢, s) and the constantsy,, 41 }
of (12.69).

To develop some intuition from this, consider the speciakdd(t, s) = A. Then
z1(t) andzy(t) have the forms

Z1 (t) = Al (t) + Bl (t)e”,
ZQ(t) = AQ(t) + Bg(t)e_kt/;

Recalling the special formulas of (12.12)—(12.14), theecas: 0 is associated with
stability in the Volterra integral equation and> 0 is associated with instability.
Considering only the case wheke< 0, the functionz; (¢) behaves “properly” as
t increases. In contrast, the functies(t) is exponentially increasing asncreases.
Applying this to (12.73), we have that(t) andy(¢) will also increase exponen-
tially, although with opposite signs depending on whetheribdex fort,, is even or
odd. Using this in (12.71)-(12.72), we find that the erréi3(t,,) should increase
exponentially for larger values of, and that there should be an oscillation in sign.

Example 12.9 Recall Example 12.8 in which we examined Simpson methodthéor
linear integral equation (12.54). We solve it again, nowwaivth Simpson methods 1
and 2, doing so off), 10] with 4 = 0.1. A plot of the error when using Simpson method
lis givenin Figure 12.1, and that for Simpson method 2 ismgiad=igure 12.2. The
error with Simpson method 1 is as predicted from the aboweudison: it increases
rapidly with increasing, and it is oscillatory in sign. With Simpson method 2 there is
a much more regular and better behavior in the error, in thi®©f sinusoidal form,

reflecting the sinusoidal form of the true solutidf(t) = 3 (cost —sint + e~).
There are also some oscillations, but they are more minoraa@dmposed on the
dominant form of the error. |

A very good introduction to the topic of numerical stabilftyr solving \Volterra
integral equationsis given by Linz [59, Section 7.4]. ltdksa very good introduction
to the general subject of the numerical solution of Voltemtagral equations. An
excellent, more recent, and more specialized treatmemiéndpy Brunner [17].

NUMERICAL METHODS: THEORY 231

x 10

Figure12.1 The errorin solving (12.54) using Simpson method 1

PROBLEMS

1. For the following Volterra integral equations of the sedd&ind, show that the
given functionY (¢) is the solution of the given equation.

(@)
Y (t) = cos (t) — /Ot (t —) cos (t — 5) Y (s) ds,
Y (t) = 2 cos(V3t) + .
(b)
Y(t)=t+ /Ot sin (t — s) Y (s) ds,
Y(t)=t+ 1t
(©

Y (t) = sinh (¢) — /Ot cosh(t — s) Y (s) ds,

Y(t) = % sinh<§t> e 2,

232

VOLTERRA INTEGRAL EQUATIONS

Figure12.2 The errorin solving (12.54) using Simpson method 2

2. Reduce equation (12.15) to (12.12) by introducing the meknown function

Z(t) = e~ MY (t). Use this transformation to obtain (12.16) from (12.14).

. Demonstrate formula (12.4).

. Using mathematical induction, show that the kerd€$t, s) of (12.6) satisfy

t—s))
|K;(t, s)| < ﬁBﬁ Jj=> L
From this, show that
t J
_ (tB)
| Kot oaoras| < E25 max o)

. Using the result of Problem 4, and motivated by (12.5)ystiat the series

M+ZA&@M®%
j=1

is absolutely convergent. Note that it still remains neass show that this
function satisfies (12.2). We refer to Linz [59, p. 30] for aef, along with a
proof of the uniquess of the solution.

6.

7.

8.

10.
11.

12.

13.

14.

NUMERICAL METHODS: THEORY 233

Assume that it has been shown, based on (12.5), that
o t
V() =g)+ Y [Kits)gle)ds
j=1"9
is an absolutely convergent series. Combine this with Rrabl to show that
Y (¢) satisfies (12.7).
LetY (¢) be the continuous solution of (12.2).

(a) Assumethak (¢, s) is differentiable with respect teand that K (¢, s) /Ot
is continuousfob < s <t < T'. Assume furtherthaj(¢) is continously
differentiable o0, T']. Show thafY’(¢) is differentiable and that

t
Y'(t) = g'(t) + K(t,8) Y (1) + / %Y(t} dt.
0

(b) Give a corresponding result that guarantees Yh@) is twice continu-

ously differentiable ono, T'].

Using the MATLAB programvie_trap, solve (12.23) orj0, 12]. Do so for
stepsizes = 0.2,0.1, 0.05; then graph the errors over the full interval.

. Apply the MATLAB programvie_trap to the equation

Y(t)=g(t) +)\/t Y(s)ds, t>0,
0
g(t) =(1—X)sint + (1 + A) cost — A

over the interval0, 27]. The true solution i (t) = cost + sint. Do so for
stepsizes ofi = 0.5,0.25,0.125 and\ = —1, 1. Observe the decrease in the
error ash is halved. Comment on any differences observed betweeragesc
of A\ =—1land\ =1.

Using mathematical induction en prove Lemma 12.6.

In Example 12.8 it is asserted thatt;) — y1 = O(h3). Explain why this is
true.

Write MATLAB programs for both Simpson methods 1 and 2. n&atey,
using the trapezoidal method. After writing the prograne itsto solve the
linear integral equation (12.54), say {ih10]. Use a stepsize df = 0.2 and
graph the errors using MATLAB.

Using the programs of Problem 12, solve the equatiomgiv®roblem 9. Do
so with both Simpson methods. Do so with bath= —1 andX = 1. Use
h =0.2,0.1 and solve the equation @6, 10].

In analogy with the formulas (12.26)—(12.28) for the dpadure error for the
trapezoidal rule, give the corresponding formulas for Siopmethod 2. Note
that this includes the Nevvto"gfs rule.

APPENDIX A

TAYLOR'S THEOREM

For a function with a number of derivatives at a specific poiraylor's theorem
provides a polynomial that is close to the function in a nbmood of the point
and an error formula for the difference between the functiad the polynomial.
Taylor's theorem is an important tool in developing numalrimethods and deriving
error bounds. We start with a review of the mean value theorem

Theorem A.1 (Mean value theorem) Assume thfét:) is continuous ora, b] and is
differentiable on(a, b). Then there is a point € (a, b) such that

f®) = fla) = f'(c) (b - a). (A1)

The numbere in (A.1) is usually unknown. There is an analogous form of the
theorem for integrals. Assume thatx) is continuous offa, b], w(x) is nonnegative
and integrable offu, b]. Then there exists € (a, b) for which

b b
| @@ de =) [wi e (A2)

235

236 APPENDIX A. TAYLOR'S THEOREM

Theorem A.2 (Taylor's theorem for functions of one real variable) Assutmatf (x)
hasn + 1 continuous derivatives far < x < b, and letz, € [a,b]. Then

(@) = pul@) + Ru(x), a<a<b, (A.3)
where

pn(2) = f(x0) + (x — 20) f'(20)
(x —)
2l
N (= —j !500)3 F9 (o) (A.4)

(x —z)"

+ f(@wo) + -+ + £ (@o)

n!

j=0

is the Taylor polynomial of degreefor the functionf(x) and the point of approx-
imationxo, and R,,(x) is the remainder in approximatingi(z) by p,,(z). We have

Ro@) = [@0 (A5)
:@é%§iﬂ“W%> (A.6)

with ¢, an unknown point betweery andz.
The Taylor polynomial is constructed by requiring
pgzj)(xo):fo)(xo)a j:O,l,...,TL.

Thus, we expegt, (z) is close tof (), at least forx close tox,. Two forms of the

remainderR,,(z) are given in the theorem. The form (A.6) is derived from (Ab§)

an application of the integral form of the mean value theqi@x®). The remainder

formula (A.5) does not involve an unknown point, and it isfubeshere precise error

bound is needed. In most contexts, the remainder formul) (8 sufficient.
Taylor's theorem can be proved by repeated applicationefdhmula

x

ola) = gleo) + [g'(0) (A7)
xg
for a continuously differentiable functiojn Evidently, this formula corresponds to
Taylor’s theorem withn = 0. As an example, we illustrate the derivation of (A.3)
with n = 1; the derivation of (A.3) fom > 1 can be done similarly through an
inductive argument. We apply (A.7) fgr= f’:

fwszwf/fwm&

APPENDIX A. TAYLOR'S THEOREM 237

Thus,

= e+ [y
= f(zo) +/ﬂ: [f'(wo) +/1: I (s) ds] dt

= f(z0) + f'(x0) (x — @) + / ’ / () ds dt.

Interchanging the order of integration, we can rewrite tst term as

/ / f"(s)dtds = /(:r —5) f"(s) ds.

Changings into ¢, we have thus shown Taylor's theorem with= 1.

In applying Taylor's theorem, we often need to choose a védu¢he nonneg-
ative integem. If we want to have a linear approximation of twice continsigu
differentiable functionf (x) nearx = x, then we take: = 1 and write

f(@) = f(@o) + (x — o) f'(x0) + 3(z — 0)* f"(c)

for somec between: andzq. To show that{f(x + h) — f(z))/h (h > 0, usually
small) is a first-order approximation ¢gf (z), we choose, = 1,

flx+h)=f(@)+hf'(z)+5h* f(0),

andse fa+1) = /(@)
T+ h)— flx
RS pw)+ dh o).
As a further example, let us show thgt(x + h) — f(x))/h is a second-order ap-
proximation of f'(z + h/2). We choose: = 2, and write (herery = « + $h)

fle+h)=f(z+Lh)+Lnf(x+Ln)+3 (5h)° f" (z + Ln)
+3 (31 (e,

fx) = fz+ 3h)—% Flla+h/2)+ 1 (50)? f"(x+1/2)
oA

for somec; € (z+ $h,z + h) ande; € (z,2 + 1h). Thus,

et NI _ oy 3h) 02 7 en) + 7o)

showing(f(z + h) — f(x))/h is a second-order approximation ff(z + £ k). This
result is usually expressed by saying thatz + h) — f(z — h))/(2h) is a second-
order approximation tg’(x). Of course, in these preceding examples, we assume
the functionf(x) has the required number of derivatives.

238 APPENDIX A. TAYLOR'S THEOREM

Sample formulas resulted from Taylor's theorem are

IQ " anrl

z _q P

T A R (S TR
) ZC3 ZCS 1 x2n—1 N x2n+l
Sln(fﬂ):l'—g-i-ﬁ—-i-(—l) m-’-(-l) WCOS(C),

I2 I4 x2n I2n+2
S =1 -4 ... —1)" _yntl_=

cos(z) =1 =97 + 7 FED G T YT G o)

log(1 — x) iy L pen i
—r)=—|z+ =+ x — _ = x
S 2 ntl T—¢)nt2 = ’

wherec is betweenry = 0 andz. The first three formulas are valid for aryco <
r < Q.

Theorem A.3 (Taylor’'s theorem for functions of two real variables) As®ithat
f(z,y) has continuous partial derivatives up to order+ 1 fora < = < b and
¢ <y <d,andletzg € [a,b], yo € [¢,d]. Then

f(I,y):pn(iE,y)+Rn(I,y), CLSZESZ), nggdv (A8)
where

pu(z,y) = f(w0,v0)

n J
3 5 [s 0w] w49
n+1
Rp(z,y) = (n—i—;l)' [(50 - Io)(% +(y— yo)(%]
X f(xzo+ 6 (x —x0),y0 + 0 (y — o)) (A.10)

with an unknown numbeé € (0, 1).

In (A.9) and (A.10), the expression

[(x - 550)3% +(y— yo)%] f(x0,%0)

: J! ; P
:;W(I—Io) (¥ — o) Wyj_if(xo,yo)
is defined formally through the binomial expansion for nunsbe

J

j J! aibi—i
(a+b) _Zoii!(j—i)! S

=

APPENDIX A. TAYLOR'S THEOREM 239

For example, withj = 2, we obtain
d a1
(z— ZCO)% +(y— yo)a—y f(zo,v0)
2 32
@f(IOa Yo) + 2 (z — x0) (¥ — Yo) 920y

f (o, y0)

=(z— x0)2

32
+(y — yO)Qa_ygf('r()vyO)'

Formula (A.8) with (A.9)—(A.10) can be proved by applying/ia’s theorem for
one real variable as follows. Define a function of one reaialde

F(t) = f(wo +t(x —20),%0 +t(y — o))

Note thatF'(0) = f(zo,y0), F(1) = f(x,y). Applying formula (A.3) with (A.4)
and (A.6), we obtain

F(1) = F(0) + Xn: l| F9(0) +

Jj=1

1

5 F0)

for some unknown numbére (0, 1). Using the chain rule, we can verify that

: d a7’
@) = _ il o) —
F(0) [(:v 5100)85C +(y yo)ay J(zo0,%0)-
This argument is also valid when the function has(m > 2) real variables,
leading to Taylor's theorem for functions of real variables.

APPENDIX B

POLYNOMIAL INTERPOLATION

The problem of polynomial interpolation is the selectioragiarticular polynomial
p(z) from a given class of polynomials in such a way that the graph & p(x)
passes through a finite set of given data points. Polynomiatpolation theory has
many important uses, but in this text we are interested imirhgrily as a tool for
developing numerical methods for solving ordinary diffgial equations.

Letzg, x1,...,z, be distinct real or complex numbers, andygty, ..., y, be
associated function values. We now study the problem ofriméi polynomiap(x)
that interpolates the given data:

p(zi) =y, i=0,1,....n (B.1)

Does such a polynomial exist, and if so, what is its degree® urique? What
formula can we use to for produgé¢z) from the given data?
By writing
p(x)=ao+ a1z + -+ apa™

for a general polynomial of degree, we see that there an@ + 1 independent
parametersiy, a1, ..., a,. Since (B.1) imposes + 1 conditions onp(x), it is
reasonable to first consider the case whes n. Thenwe wanttofindg, a1, ..., a,

241

242 APPENDIX B. POLYNOMIAL INTERPOLATION

such that

2
ap + a1xo + asxf + - - + anxy = Yo,

ap + a1y + 2Tl + -+ + apTh = Y. (B.2)

This is a system ofi + 1 linear equations im + 1 unknowns, and solving it is
completely equivalent to solving the polynomial intergaa problem. In vector—
matrix notation, the system is

Xa=y
with
1 =z x% xy
X=|" -, (B.3)
1 2 5572171 S
1 =z, x2 xy
a:[GOaala---aan]Ta y:[y07"'ayn]T-

The matrixX is called aVandermonde matrjand its determinant is given by
det(X)= [(2 —a))
0<j<i<n

Theorem B.1 Givenn+ 1 distinct pointsey, . . ., z,, andn+ 1 ordinatesyq, . . . , yn,
there is a polynomiab(z) of degree< n that interpolatesy; at«;, i = 0,1,...,n.
This polynomiap(x) is unique in the set of all polynomials of degreen.

Proof. There are a number of different proofs of this importanutesWe give a
constructive proof that exhibits explicitly the interptitay polynomialp(x) in a form
useful for the applications in this text.
To begin, consider the special interpolation problem inchhi
for somei, 0 < i < n. We want a polynomial of degree n with then zerosz;,
j #1i. Then
p() =cle — o) - (v — zi—1)(@ — @it1) -+ (¥ — xn)

for some constant The conditiorp(x;) = 1 implies

¢ = [(zi —m0) - (w5 — xim1) (@i — Tig1) -+ (@i —zn)] 1
This special polynomial is written as

li(a:)—H<Il__?j>, i=0,1,...,n. (B.4)

X
g#L N

APPENDIX B. POLYNOMIAL INTERPOLATION 243

To solve the general interpolation problem (B.1), we cartevri

p(z) = yolo(x) +yrli(x) + - - + yYnln(x).

With the special properties of the polynomiadjéx), it is easy to show thap(z)
satisfies (B.1). Also, degregz) < n since all;(x) have degree.

To prove uniqueness, suppose that) is another polynomial of degree n that
satisfies (B.1). Define

r(z) = p(x) — q(@).

Then degree(z) < n and
r(zi) =p(@i) —q(@:) =y —y: =0, i=0,1,....n.

Sincer(z) hasn + 1 zeros, we must havgz) = 0. This provep(z) = g(z). B

The formula .
pa(x) =D yili(w) (B.5)
1=0
is calledLagrange’s formuldor the interpolating polynomial.
ExampleB.2
— — — _|_ —
pi(z) = S Yo + S Y1 = (@1 — 2)yo + (= Io)y1’
xro — I1 xr1 — X 1 — o
o) = (x —z1)(z — x2) . (x — zo)(x — x2)) (x — o) (x — x1) ,
(zo — 21) (20 — 22) (21 — @o) (21 — 22) (x2 — 20)(22 — 21)

The polynomial of degree 2 that passes through the three poiftisl), (—1,2),
and(1,3)is

@t - 1) E-0)-1) . -0+
Pz(w)—m'1+(_1—o)(—1—1) 2 (1-0)(1+1) 5
:1—|—%x—|—%:172. |

If a function f(x) is given, then we can form an approximation to it using the
interpolating polynomial

(5 f) = pale) = Y fla:)li(w). (B.6)
1=0
This interpolatesf(z) at xo, ..., z,. This polynomial formula is used at several

points in this text.

The basic result used in analyzing the error of interpotaiscthe following theo-
rem. As a notatiorH{a, b, c, . .. } denotes the smallest interval containing all of the
real numbers, b, c,

244 APPENDIX B. POLYNOMIAL INTERPOLATION

Theorem B.3 Letxg, z1,...,x, be distinct real numbers, and I¢tbe a real valued
function withn + 1 continuous derivatives on the intervBl = H{t, zo, ..., 2z}
with ¢ some given real number.

Then there exists € I; with

(t—x0) - (t —xp)
(n+1)!

f) =) fla))l;(t) = FUrDE). (B.7)

n
J=0

A proof of this result can be found in many numerical analyesigbooks; e.g., see
[11, p. 135]. The theory and practice of polynomial integimn represent a very
large subject. Again, most numerical analysis textbooksain a basic introduction,
and we refer the interested reader to them.

REFERENCES

N

10.

. R. Aiken (editor) Stiff ComputationOxford University Press, Oxford, 1985.

R. Alexander. “Diagonally implicit Runge-Kutta methdds stiff ODE’s”, SIAM Journal
on Numerical Analysi¢4 (1977), pp. 1006-1021.

. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. DongarrduCroz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorens8PACK Users’ Guide
SIAM Pub., Philadelphia, 1992.

. V. Arnold. Mathematical Methods of Classical Mechani&pringer—\Verlag, New York,

1974.

. U. Ascher, H. Chin, and S. Reich. “Stabilization of DAEslanvariant manifolds” Nu-

merische Mathematig7 (1994), pp. 131-149.

. U. Ascher, J. Christiansen, and R. Russell. “Collocasoftware for boundary-value

ODEs", ACM Trans. Math. Soff7 (1981), pp. 209-222.

. U. Ascher, J. Christiansen, and R. Russell. “COLSYS:daltion software for boundary-

value ODEs” ACM Trans. Math. Soff (1981), pp. 223-229.

. U. Ascher and R. Russell, eddumerical Boundary Value ODES8irkhauser, Boston,

MA, 1985.

. U. Ascher, R. Mattheij, and R. Russéllumerical Solution of Boundary Value Problems

for Ordinary Differential EquationsPrentice-Hall, Englewood Cliffs, New Jersey, 1988.

U. Ascher and L. PetzoldComputer Methods for Ordinary Differential Equations and
Differential-Algebraic EquationsSIAM, Philadelphia, 1998.

245

246

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

REFERENCES

K. Atkinson. An Introduction to Numerical Analysigrld ed., John Wiley, New York, 1989.

K. Atkinson and W. HarElementary Numerical Analysisrd ed., John Wiley, New York,
2004.

A. Aziz.Numerical Solutions of Boundary Value Problems for Ordynaifferential Equa-
tions Academic Press, New York, 1975.

C. BakerThe Numerical Treatment of Integral Equatip@arendon Press, Oxford, 1977.

J. Baumgarte. “Stabilization of constraints and irdéof motion in dynamical systems”,
Computer Methods in Applied Mechanics and Engineetifg©972), pp. 1-16.

W. Boyce and R. DiPrim&lementary Differential Equationd™ edition, John Wiley &
Sons, 2003.

H. BrunnerCollocation Methods for Volterra Integral and Related Ftinnal Equations
Cambridge Univ. Press, 2004.

P. Bogacki and L. Shampine. ‘¥2) pair of Runge-Kutta formulasAppl. Math. Lett2
(1989), pp. 321-325.

K.E. Brenan, S.L. Campbell and L.R. Petz®dimerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equationslumber 14 in Classics in Applied Mathematics.
SIAM Publ., Philadelphia, PA, 1996. Originally publisheglMorth Holland, 1989.

K.E. Brenan and B.E. Engquist. “Backward differentiatapproximations of nonlinear
differential/algebraic systemsKlathematics of Computatidsi (1988), pp. 659-676.

P.N. Brown, A.C. Hindmarsh, and L.R. Petzold. “Using Kwmethods in the solution
of large-scale differential-algebraic systemSIAM J. Scientific Computing5 (1994),
pp. 1467-1488.

K. Burrage and J.C. Butcher. “Stability criteria for iligit Runge-Kutta methods’SIAM
J. Numer. Anall6 (1979), pp. 46-57.

J.C. Butcher. “Implicit Runge-Kutta processd#diath. Comp18 (1964), pp. 50-64.

J.C. Butcher. “A stability property of implicit Rungedia methods”BIT 15 (1975), pp.
358-361.

J.C. Butcher. “General linear method&tta Numericdl (2006), Cambridge University
Press.

S.L. Campbell, R. Hollenbeck, K. Yeomans and Y. Zhongix&8d symbolic-numerical
computations with general DAESs. |. System propertidiimerical Algorithm49 (1998),
pp. 73-83.

J. Cash. “On the numerical integration of nonlinear podnt boundary value problems
using iterated deferred corrections. Il. The development analysis of highly stable
deferred correction formulaeS$IAM J. Numer. Anab5 (1988), pp. 862—882.

B. Childs, E. Denman, M. Scott, P. Nelson, and J. Danilsl,@odes for Boundary-Value
Problems in Ordinary Differential Equationd.ec. Notes in Comp. Scif6, Springer-
Verlag, New York, 1979.

G.F. Corliss, A. Griewank, P. Henneberger, G. KirlingeA. Potra, and H.J. Stetter. “High-
order stiff ODE solvers via automatic differentiation aational prediction”, ifNumerical
Analysis and its ApplicationgRousse, 1996), Lecture Notes in Computer ScietiSs,
pp. 114-125. Springer—Verlag, Berlin, 1997.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44,

45.

46.

47.
48.

REFERENCES 247

M. Crouzeix. “Sur Ia8B-stabilité des méthodes de Runge-Kuttdiimer. Math32 (1979),
pp. 75-82.

M. Crouzeix and P.A. Raviart. “Approximation des pries d’évolution”, unpublished
lecture notes, Université de Rennes, 1980.

P. Deuflhard. “Nonlinear equation solvers in boundanye/groblem codes”, ifCodes
for Boundary-Value Problems in Ordinary Differential Edigas, B. Childs, M. Scott, J.
Daniel, E. Denman, and P. Nelson, eds., Lec. Notes in Comp7&cSpringer-Verlag,
New York, 1979, pp. 40-66.

P. Deuflhard and F. Bornemar8cientific Computing with Ordinary Differential Equa-
tions Springer-Verlag, 2002.

J. Dormand and P. Prince.“A family of embedded Rungdafarmulae”,J. Comp. Appl.
Math. 6 (1980), pp. 19-26.

W. Enright. “Improving the performance of numerical trads for two-point boundary
value problems”, ilfNumerical Boundary Value ODES&). Ascher and R. Russell, eds.,
Birkhauser, Boston, MA, 1985, pp. 107-119.

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. “Intiich to adaptive methods for
differential equations”Acta Numericab (1995), Cambridge University Press.

A.Fasano and S. Marminalytical Mechanics: An Introductio®xford University Press,
Oxford, 2006.

G.R. FowlesAnalytical MechanicsHolt, Rinehart and Winston, 1962.

C. W. GealNumerical Initial Value Problemsin Ordinary Differentigbuations Prentice-
Hall, Englewood Cliffs, NJ, 1971.

C.W. Gear, B. Leimkuhler, and G.K. Gupta. “Automaticeration of Euler-Lagrange
equations with constraints”, iAroceedings of the International Conference on Computa-
tional and Applied Mathematiaqg.euven, 1984), Vol12/13 (1985), pp. 77-90.

I. Gladwell and D. Sayer€omputational Techniques for Ordinary Differential Eqoat,
Academic Press, New York, 1980.

E. Hairer, C. Lubich, and M. Roch&he Numerical Solution of Differential-Algebraic
Systems by Runge—Kutta Methddscture Notes in Mathematidgl09 (1989), Springer—
Verlag, Berlin.

E. Hairer, C. Lubich, and G. Wanner. “Geometric numéiitigration illustrated by the
Stormer-Verlet method”Acta Numerical2 (2003), Cambridge University Press.

E. Hairer and G. Wanne3olving Ordinary Differential Equations. Il. Stiff and E8fential-
Algebraic Problems2™ ed., Springer-Verlag, Berlin, 1996.

P. Henrici.Discrete Variable Methods in Ordinary Differential Equaris John Wiley
1962.

A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D.nsiker, and C. Wood-
ward. SUNDIALS: Suite of Nonlinear and Differential/Algetic Equation SolversA\CM

Transactions on Mathematical Softwadg (2005), pp. 363—396. Also, go to the URL
https://computation.linl.gov/casc/sundials/

E. Isaacson and H. Kell&nalysis of Numerical Methodgohn Wiley, New York, 1966.

A. IserlesA First Course in the Numerical Analysis of Differential Etjons Cambridge
University Press, Cambridge, United Kingdom, 1996.

248

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

REFERENCES

L. Jay. “Convergence of Runge-Kutta methods for difiéed-algebraic systems of index
3", Applied Numerical Mathematick (1995), pp. 97-118.

L. Jay. “Symplectic partitioned Runge-Kutta methodsdonstrained Hamiltonian sys-
tems”,SIAM Journal on Numerical Analys83 (1996), pp. 368—387.

L. Jay. “Specialized Runge-Kutta methods for index fedéhtial-algebraic equations”,
Mathematics of Computatiorb (2006), pp. 641-654.

H. Keller.Numerical Solution of Two-Point Boundary Value ProbleiRegional Conf.
Series in Appl. Maths24, SIAM Pub., Philadelphia, PA, 1976.

H. KellerNumerical Methods for Two-Point Boundary Value Problebsyer, New York,
1992 (corrected reprint of the 1968 edition, Blaisdell, tiWam, MA).

H. Keller and S. Antman, edBifurcation Theory and Nonlinear Eigenvalue Problems
Benjamin, New York, 1969.

C.T. Kelley.Solving Nonlinear Equations with Newton's Meth&AM Pub., Philadel-
phia, 2003.

W. Kelley and A. Petersomifference EquationsZ”d ed., Academic Press, Burlington,
Massachusetts, 2001.

R. KressNumerical AnalysisSpringer-Verlag, New York, 1998.

J. LambertComputational Methods in Ordinary Differential Equatiodshn Wiley, New
York, 1973.

P. Linz.Analytical and Numerical Methods for Volterra Equatio®AM Pub., 1985.

P. Lotstedt and L. Petzold. “Numerical solution of noe&r differential equations with
algebraic constraints. |. Convergence results for bacthdiiierentiation formulas”Math-
ematics of Computatios6 (1986), pp. 491-516.

J. Marsden and T. Ratilntroduction to Mechanics and Symmet8pringer-Verlag, New
York, 1999.

R. Marz. “Numerical methods for differential algeloraquations” Acta Numerica 1992
Cambridge University Press, 1992.

D. Melgaard and R. Sincovec. “Algorithm 565: PDETWO/AF$S#GEARB: Solution of
systems of two-dimensional nonlinear partial differeigiguations”, ACM Trans. Math.
Software7 (1981), pp. 126-135.

R. Miller.Nonlinear Volterra Integral EquationBenjamin Pub., 1971.

L.R. Petzold. “A description of DASSL.: A differentialggebraic system solver”, in R. S.
Stepleman, edito&cientific Computingpp. 65—-68. North-Holland, Amsterdam, 1983.

L. Petzold, L. Jay, and J. Yen. “Numerical solution oftygoscillatory ordinary differ-
ential equations”’Acta Numericé (1997), Cambridge University Press.

E. Platen. “An introduction to numerical methods forcsiastic differential equations”,
Acta Numerica8 (1999), Cambridge University Press.

A. Quarteroni, R. Sacco, and F. Salétumerical Mathemati¢sSpringer-Verlag, New
York, 2000.

L.B. Rall and G.F. Corliss. “An introduction to autongatlifferentiation”, inComputa-
tional Differentiation(Santa Fe, NM, 1996), pp. 1-18. SIAM, Philadelphia, PA, 1996

70

71.
72.

73.

74.

75.

76.

77.

78.

REFERENCES 249

. J. Sanz-Serna. “Symplectic integrators for Hamiltorggoblems: an overview’Acta
Numerica 1992Cambridge University Press, 1992.

W. Schiessefhe Numerical Method of LineAcademic Press, San Diego, 1991.

L. ShampineNumerical Solution of Ordinary Differential EquationShapman & Hall,
New York, 1994.

L. Shampine and M. Reichelt. “The MATLAB ODE Suité3]JAM Journal on Scientific
Computingl8 (1997), pp. 1-22.

L. Shampine, I. Gladwell, and S. Thomps&uwlving ODEs with MATLABCambridge
University Press, 2003.

R. Sincovec and N. Madsen. “Software for nonlinear phdifferential equations’ACM
Trans. Math. Softwaré (1975), pp. 232—-260.

A. Stuart. “Numerical analysis of dynamical systentta Numerica 1994Cambridge
University Press, 1994.

T. Van Hecke and M. Van Daele. “High-order convergenerdefl correction schemes
based on parameterized Runge-Kutta-Nystrom methodeéarsl-order boundary value
problems. Advanced numerical methods for mathematicalattiod”, J. Comput. Appl.
Math. 132 (2001), pp. 107-125.

D. Widder.The Heat EquationAcademic Press, New York, 1975.

INDEX

A-stability, 143, 173
absolutely stable, 51, 128
Adams-Bashforth methods, 96
asymptotic error formula, 99
convergence, 99
higher order, 99
MATLAB program, 104
order three, 99
order two, 96
predictor formula, 102
region of absolute stability, 103
truncation error, 99
Adams-Moulton methods, 101
order two, 101
trapezoidal method, 56, 101

B-stability, 155, 156

backward differentiation formulas, 140, 160
characteristic equation, 141
definition, 140
stability regions, 141

backward Euler method, 49, 51, 150
definition, 52
MATLAB program, 54

Baumgarte stabilization, 168

BDF methods, 140, 168, 173

250

boundary conditions, 187
derivative approximations, 194
boundary value problem, 187
finite difference method
convergence, 190
boundary value problem, linear, 187
discretization, 189
existence theory, 188
finite difference method, 188
MATLAB program, 191
Richardson extrapolation, 190
boundary value problem, nonlinear, 195
collocation
Newton's method, 204
existence theorem, 195
finite difference method, 197
asymptotic error formula, 197
convergence, 197
discretization, 197
Newton's method, 198
shooting method, 201
Newton's method, 201
Butcher tableau, 74, 150
Butcher's simplifying assumptions, 151

characteristic equation, 120

characteristic polynomial, 120
characteristic roots, 120
collocation
boundary value problems, 204
implicit Runge-Kutta methods, 87
Two-point collocation, 87
consistency condition, 113
contractive iteration mapping, 156

DASSL, 168, 173

diagonally implicit Runge—Kutta methods, 153,
155, 160

differential algebraic equations, 160, 163

direction field, 11

DIRK methods, 153, 155, 160

drift, 165, 166

energy
potential, 182
error per unit stepsize, 79
Euler's method, 15, 166
asymptotic error formula, 26
convergence theorem, 23
definition, 16
error analysis, 21
error bound, 23
MATLAB program, 19, 43
Richardson extrapolation, 28
rounding errors effect, 30
stability, 29
systems, 42
truncation error, 21
Euler-Lagrange equations, 182, 183
explicit method, 53, 112

fixed-point iteration, 54

Gauss implicit Runge-Kutta method, 88, 151,
155, 157, 159, 180
global error, 79

heat equation, 131, 155
discretization, 131
simple explicit method, 132
simple implicit method, 133
Heun’s method, 58, 166
higher order differential equations, 39
homogeneous linear difference equation, 120

ill-conditioned, 9
implicit method, 53, 112
solution of implicit equation, 145
implicit Runge-Kutta methods, 86, 149
B-stability, 155
collocation, 87

INDEX

DIRK methods, 153
Gauss methods, 151
Lobatto 11IC methods, 153
midpoint method, 159
Radau IIA methods, 152
index, 165, 166, 169
higher, 184
one, 169, 173, 176
three, 170, 181, 183
two, 170, 174, 179
initial value problem, 5
solvability theory, 7
stability, 8

kinetic energy, 182

L-stability, 143

Lagrangian, 181, 182

Lipschitz condition, 7, 76
one-sided, 155

Lobatto 11IC methods, 153, 181, 184

local error, 79
local solution, 79

machine epsilon, 30
mass matrix, 182
MATLAB ODE codes, 82, 105, 146
mean value theorem, 235
mechanics
Lagrangian, 181
method of lines, 131
MATLAB program, 135
midpoint method, 112
implicit Runge-Kutta, 159
weak stability, 123
model problem, 50
multistep methods, 95
characteristic equation, 120
convergence, 115
convergence theory, 122
general error analysis, 111
nonconvergent example, 118
order conditions, 113
parasitic solution, 121
relative stability, 123
root condition, 118
stability, 117, 118
stability theory, 121

Newton’s method, 146, 184
numerical stability, 29
absolute stability, 51

odell3, 106, 147
odel5s, 147

251

252 INDEX

ode45, 83, 147
one-step methods
Runge-Kutta methods, 70
Taylor series methods, 68
order of convergence, 24
order reduction, 156, 158

parasitic root, 121
parasitic solution, 121
pendulum, 166
spherical, 170
pendulum equation, 40, 163, 165, 183
polynomial interpolation, 241
error formula, 244
Lagrange’s formula, 243
solvability theorem, 242
predictor formula, 54
projection, 166

guadrature order, 151, 158, 177

Radau IIA methods, 152, 155, 160, 180, 184
Radau5 (software), 184
region of absolute stability, 51, 103, 128
relative stability, 123
repetition factor, 229
Richardson extrapolation, 78
root condition, 118
rounding error, 30
Runge-Kutta methods, 70
asymptotic formula, 77
Butcher tableau, 74
classical fourth order method, 74
consistency, 76
convergence, 75
DAEs, 175
error prediction, 78
Fehlberg methods, 80
general framework, 73
implicit methods, 86
MATLAB program, 83
order 2, 70, 72
two-point Gauss method, 88

stability
initial value problem, 8
stable numerical method, 118
stage order, 151, 158, 177
stiff differential equation, 61, 127
stiff order, 159, 169
stiffly accurate, 159, 176, 177
Sundials, 147
systems of differential equations, 37
Euler's method, 42

Taylor series methods, 68
asymptotic error formula, 70
convergence, 69

Tayor's theorem
one variable, 236

remainder formula, 236
special cases, 238
two variables, 238

trapezoidal method, 49, 56, 159
absolute stability, 58
definition, 57
Heun’s method, 58
MATLAB program, 59
numerical integration, 56
\olterra integral equation, 216

trapezoidal rule, 150

tridiagonal system, 134, 138, 189, 193

truncation error, 21, 57, 68, 112
multistep methods, 113
Runge-Kutta method, 71

two-point boundary value problem
linear, 187
nonlinear, 195

\olterra integral equation, 211
linear solvability theory, 213
nonlinear solvability theory, 213
numerical methods

convergence theorem, 224
general framework, 219
repetition factor, 229
stability, 225
theory, 223
Simpson methods, 221
stability, 229
solvability theory, 212
special cases, 214
trapezoidal method, 216
error estimate, 217
MATLAB program, 221

weak stability, 123
well-conditioned, 9

