
NUMERICAL SOLUTION OF
ORDINARY DIFFERENTIAL
EQUATIONS

Kendall Atkinson, Weimin Han, David Stewart
University of Iowa
Iowa City, Iowa

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright c©2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales
representatives or written sales materials. The advice andstrategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Numerical Solution of Ordinary Differential Equations / Kendall E. Atkinson . . . [et al.].
p. cm.—(Wiley series in ???????)

“Wiley-Interscience."
Includes bibliographical references and index.
ISBN ????????????? (pbk.)
1. Numerical analysis. 2. Ordinary differential equations.

I. Atkinson, Kendall E. II. Series.

MATLABR© is a trademark of The MathWorks, Inc. and is used with permission.
The MathWorks does not warrant the accuracy of the text or exercises in this book.
This book’s use or discussion of MATLABR© software or related products does not
constitute endorsement or sponsorship by The MathWorks of aparticular pedagogical
approach or particular use of the MATLABR© software.

QA31.????.???? 2008
510.??????-???
Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To Alice, Huidi, and Sue

Preface

This book is an expanded version of supplementary notes thatwe used for a course on
ordinary differential equations for upper-division undergraduate students and begin-
ning graduate students in mathematics, engineering, and sciences. The book intro-
duces the numerical analysis of differential equations, describing the mathematical
background for understanding numerical methods and givinginformation on what
to expect when using them. As a reason for studying numericalmethods as a part
of a more general course on differential equations, many of the basic ideas of the
numerical analysis of differential equations are tied closely to theoretical behavior
associated with the problem being solved. For example, the criteria for the stability
of a numerical method is closely connected to the stability of the differential equation
problem being solved.

This book can be used for a one-semester course on the numerical solution of dif-
ferential equations, or it can be used as a supplementary text for a course on the theory
and application of differential equations. In the latter case, we present more about
numerical methods than would ordinarilybe covered in a class on ordinarydifferential
equations. This allows the instructor some latitude in choosing what to include, and
it allows the students to read further into topics that may interest them. For example,
the book discusses methods for solving differential algebraic equations (Chapter 10)
and Volterra integral equations (Chapter 12), topics not commonly included in an
introductory text on the numerical solution of differential equations.

vii

viii PREFACE

We also include MATLABR© programs to illustrate many of the ideas that are
introduced in the text. Much is to be learned by experimenting with the numerical
solution of differential equations. The programs in the book can be downloaded from
the following website.

http://www.math.uiowa.edu/NumericalAnalysisODE/

This site also contains graphical user interfaces for use inexperimenting with Euler’s
method and the backward Euler method. These are to be used from within the
framework of MATLAB.

Numerical methods vary in their behavior, and the many different types of differ-
ential equation problems affect the performance of numerical methods in a variety of
ways. An excellent book for “real world” examples of solvingdifferential equations
is that of Shampine, Gladwell, and Thompson [74].

The authors would like to thank Olaf Hansen, California State University at San
Marcos, for his comments on reading an early version of the book. We also express
our appreciation to John Wiley Publishers.

CONTENTS

Introduction 1

1 Theory of differential equations: An introduction 3

1.1 General solvability theory 7

1.2 Stability of the initial value problem 8

1.3 Direction fields 11

Problems 13

2 Euler’s method 15

2.1 Definition of Euler’s method 16

2.2 Error analysis of Euler’s method 21

2.3 Asymptotic error analysis 26

2.3.1 Richardson extrapolation 28

2.4 Numerical stability 29

2.4.1 Rounding error accumulation 30

Problems 32

ix

x CONTENTS

3 Systems of differential equations 37

3.1 Higher-order differential equations 39

3.2 Numerical methods for systems 42

Problems 46

4 The backward Euler method and the trapezoidal method 49

4.1 The backward Euler method 51

4.2 The trapezoidal method 56

Problems 62

5 Taylor and Runge–Kutta methods 67

5.1 Taylor methods 68

5.2 Runge–Kutta methods 70

5.2.1 A general framework for explicit Runge–Kutta methods 73

5.3 Convergence, stability, and asymptotic error 75

5.3.1 Error prediction and control 78

5.4 Runge–Kutta–Fehlberg methods 80

5.5 MATLAB codes 82

5.6 Implicit Runge–Kutta methods 86

5.6.1 Two-point collocation methods 87

Problems 89

6 Multistep methods 95

6.1 Adams–Bashforth methods 96

6.2 Adams–Moulton methods 101

6.3 Computer codes 104

6.3.1 MATLAB ODE codes 105

Problems 106

7 General error analysis for multistep methods 111

7.1 Truncation error 112

7.2 Convergence 115

7.3 A general error analysis 117

7.3.1 Stability theory 118

7.3.2 Convergence theory 122

7.3.3 Relative stability and weak stability 122

Problems 123

CONTENTS xi

8 Stiff differential equations 127

8.1 The method of lines for a parabolic equation 131

8.1.1 MATLAB programs for the method of lines 135

8.2 Backward differentiation formulas 140

8.3 Stability regions for multistep methods 141

8.4 Additional sources of difficulty 143

8.4.1 A-stability and L-stability 143

8.4.2 Time-varying problems and stability 145

8.5 Solving the finite-difference method 145

8.6 Computer codes 146

Problems 147

9 Implicit RK methods for stiff differential equations 149

9.1 Families of implicit Runge–Kutta methods 149

9.2 Stability of Runge–Kutta methods 154

9.3 Order reduction 156

9.4 Runge–Kutta methods for stiff equations in practice 160

Problems 161

10 Differential algebraic equations 163

10.1 Initial conditions and drift 165

10.2 DAEs as stiff differential equations 168

10.3 Numerical issues: higher index problems 169

10.4 Backward differentiation methods for DAEs 173

10.4.1 Index 1 problems 173

10.4.2 Index 2 problems 174

10.5 Runge–Kutta methods for DAEs 175

10.5.1 Index 1 problems 176

10.5.2 Index 2 problems 179

10.6 Index three problems from mechanics 181

10.6.1 Runge–Kutta methods for mechanical index 3 systems 183

10.7 Higher index DAEs 184

Problems 185

11 Two-point boundary value problems 187

11.1 A finite-difference method 188

11.1.1 Convergence 190

xii CONTENTS

11.1.2 A numerical example 190

11.1.3 Boundary conditions involving the derivative 194

11.2 Nonlinear two-point boundary value problems 195

11.2.1 Finite difference methods 197

11.2.2 Shooting methods 201

11.2.3 Collocation methods 204

11.2.4 Other methods and problems 206

Problems 206

12 Volterra integral equations 211

12.1 Solvability theory 212

12.1.1 Special equations 214

12.2 Numerical methods 215

12.2.1 The trapezoidal method 216

12.2.2 Error for the trapezoidal method 217

12.2.3 General schema for numerical methods 219

12.3 Numerical methods: Theory 223

12.3.1 Numerical stability 225

12.3.2 Practical numerical stability 227

Problems 231

Appendix A. Taylor’s Theorem 235

Appendix B. Polynomial interpolation 241

References 245

Index 250

Introduction

Differential equations are among the most important mathematical tools used in pro-
ducing models in the physical sciences, biological sciences, and engineering. In this
text, we consider numerical methods for solving ordinary differential equations, that
is, those differential equations that have only one independent variable.

The differential equations we consider in most of the book are of the form

Y ′(t) = f(t, Y (t)),

whereY (t) is an unknown function that is being sought. The given functionf(t, y)
of two variables defines the differential equation, and examples are given in Chapter
1. This equation is called afirst-order differential equationbecause it contains a
first-order derivative of the unknown function, but no higher-order derivative. The
numerical methods for a first-order equation can be extendedin a straightforward way
to a system of first-order equations. Moreover, a higher-order differential equation
can be reformulated as a system of first-order equations.

A brief discussion of the solvability theory of the initial value problem for ordi-
nary differential equations is given in Chapter 1, where theconcept of stability of
differential equations is also introduced. The simplest numerical method,Euler’s
method, is studied in Chapter 2. It is not an efficient numerical method, but it is an
intuitive way to introduce many important ideas. Higher-orderequations and systems
of first-order equations are considered in Chapter 3, and Euler’s method is extended

1

2 INTRODUCTION

to such equations. In Chapter 4, we discuss some numerical methods with better
numerical stability for practical computation. Chapters 5and 6 cover more sophisti-
cated and rapidly convergent methods,namely Runge–Kutta methods and the families
of Adams–Bashforth and Adams–Moulton methods, respectively. In Chapter 7, we
give a general treatment of the theory of multistep numerical methods. The numerical
analysis of stiff differential equations is introduced in several early chapters, and it
is explored at greater length in Chapters 8 and 9. In Chapter 10, we introduce the
study and numerical solution of differential algebraic equations, applying some of the
earlier material on stiff differential equations. In Chapter 11, we consider numerical
methods for solving boundary value problems of second-order ordinary differential
equations. The final chapter, Chapter 12, gives an introduction to the numerical solu-
tion of Volterra integral equations of the second kind, extending ideas introduced in
earlier chapters for solving initial value problems. Appendices A and B contain brief
introductions to Taylor polynomial approximations and polynomial interpolation.

CHAPTER 1

THEORY OF DIFFERENTIAL
EQUATIONS: AN INTRODUCTION

For simple differential equations, it is possible to find closed form solutions. For
example, given a functiong, the general solution of the simplest equation

Y ′(t) = g(t)

is

Y (t) =

∫
g(s) ds+ c

with c an arbitrary integration constant. Here,
∫
g(s) ds denotes any fixed antideriva-

tive ofg. The constantc, and thus a particular solution, can be obtained by specifying
the value ofY (t) at some given point:

Y (t0) = Y0.

Example 1.1 The general solution of the equation

Y ′(t) = sin(t)

is
Y (t) = − cos(t) + c.

3

4 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

If we specify the condition

Y
(π

3

)
= 2,

then it is easy to findc = 2.5. Thus the desired solution is

Y (t) = 2.5 − cos(t).

The more general equation

Y ′(t) = f(t, Y (t)) (1.1)

is approached in a similar spirit, in the sense that usually there is a general solution
dependent on a constant. To further illustrate this point, we consider some more
examples that can be solved analytically. First, and foremost, is the first-order linear
equation

Y ′(t) = a(t)Y (t) + g(t). (1.2)

The given functionsa(t) andg(t) are assumed continuous. For this equation, we
obtain

f(t, z) = a(t)z + g(t),

and the general solution of the equation can be found by the so-calledmethod of
integrating factors.

We illustrate the method of integrating factors through a particularly useful case,

Y ′(t) = λY (t) + g(t) (1.3)

withλ a given constant. Multiplying the linear equation (1.3) by the integrating factor
e−λt, we can reformulate the equation as

d

dt

(
e−λtY (t)

)
= e−λtg(t).

Integrating both sides fromt0 to t, we obtain

e−λtY (t) = c+

∫ t

t0

e−λsg(s) ds,

where
c = e−λ t0Y (t0). (1.4)

So the general solution of (1.3) is

Y (t) = eλt

[
c+

∫ t

t0

e−λsg(s) ds

]
= ceλt +

∫ t

t0

eλ(t−s)g(s) ds. (1.5)

This solution is valid on any interval on whichg(t) is continuous.
As we have seen from the discussions above, the general solution of the first-order

equation (1.1) normally depends on an arbitrary integration constant. To single out

5

a particular solution, we need to specify an additional condition. Usually such a
condition is taken to be of the form

Y (t0) = Y0. (1.6)

In many applications of the ordinary differential equation(1.1), the independent vari-
ablet plays the role of time, andt0 can be interpreted as the initial time. So it is
customary to call (1.6) aninitial value condition. The differential equation (1.1) and
the initial value condition (1.6) together form aninitial value problem

Y ′(t) = f(t, Y (t)),
Y (t0) = Y0.

(1.7)

For the initial value problem of the linear equation (1.3), the solution is given by
the formulas (1.5) and (1.4). We observe that the solution exists on any open interval
where the data functiong(t) is continuous. This is a property for linear equations.
For the initial value problem of the general linear equation(1.2), its solution exists
on any open interval where the functionsa(t) andg(t) are continuous. As we will
see next through examples, when the ordinary differential equation (1.1) is nonlinear,
even if the right-side functionf(t, z) has derivatives of any order, the solution of the
corresponding initial value problem may exist on only a smaller interval.

Example 1.2 By a direct computation, it is easy to verify that the equation

Y ′(t) = −[Y (t)]2 + Y (t)

has a so-called trivial solutionY (t) ≡ 0 and a general solution

Y (t) =
1

1 + c e−t
(1.8)

with c arbitrary. Alternatively, this equation is a so-called separable equation, and its
solution can be found by a standard method such as that described in Problem 4. To
find the solution of the equation satisfyingY (0) = 4, we use the solution formula at
t = 0:

4 =
1

1 + c
,

c = −0.75.

So the solution of the initial value problem is

Y (t) =
1

1 − 0.75e−t
, t ≥ 0.

With a general initial valueY (0) = Y0 6= 0, the constantc in the solution formula
(1.8) is given byc = Y −1

0 − 1. If Y0 > 0, thenc > −1, and the solutionY (t) exists
for 0 ≤ t < ∞. However, forY0 < 0, the solution exists only on the finite interval

6 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

[0, log(1 − Y −1
0)); the valuet = log(1 − Y −1

0) is the zero of the denominator in the
formula (1.8). Throughout this work,log denotes the natural logarithm.

Example 1.3 Consider the equation

Y ′(t) = −[Y (t)]2.

It has a trivial solutionY (t) ≡ 0 and a general solution

Y (t) =
1

t+ c
(1.9)

with c arbitrary. This can be verified by a direct calculation or by the method described
in Problem 4. To find the solution of the equation satisfying the initial value condition
Y (0) = Y0, we distinguish several cases according to the value ofY0. If Y0 = 0,
then the solution of the initial value problem isY (t) ≡ 0 for any t ≥ 0. If Y0 6= 0,
then the solution of the initial value problem is

Y (t) =
1

t+ Y −1
0

.

ForY0 > 0, the solution exists for anyt ≥ 0. ForY0 < 0, the solution exists only on
the interval[0,−Y−1

0). As a side note, observe that for0< Y0 < 1 with c = Y −1
0 −1,

the solution (1.8) increases fort ≥ 0, whereas forY0 > 0, the solution (1.9) with
c = Y −1

0 decreases fort ≥ 0.

Example 1.4 The solution of

Y ′(t) = λY (t) + e−t, Y (0) = 1

is obtained from (1.5) and (1.4) as

Y (t) = eλt +

∫ t

0

eλ(t−s)e−s ds.

If λ 6= −1, then

Y (t) = eλt

{
1 +

1

λ+ 1
[1 − e−(λ+1)t]

}
.

If λ = −1, then
Y (t) = e−t (1 + t) .

We remark that for a general right-side functionf(t, z), it is usually not possible
to solve the initial value problem (1.7) analytically. One such example is for the
equation

Y ′ = e−t Y 4

.

In such a case, numerical methods are the only plausible way to compute solutions.
Moreover, even when a differential equation can be solved analytically, the solution

GENERAL SOLVABILITY THEORY 7

formula, such as (1.5), usually involves integrations of general functions. The inte-
grals mostly have to be evaluated numerically. As an example, it is easy to verify that
the solution of the problem

{
Y ′ = 2 t Y + 1, t > 0,
Y (0) = 1

is

Y (t) = et2
∫ t

0

e−s2

ds+ et2 .

For such a situation, it is usually more efficient to use numerical methods from the
outset to solve the differential equation.

1.1 GENERAL SOLVABILITY THEORY

Before we consider numerical methods, it is useful to have some discussions on prop-
erties of the initial value problem (1.7). The following well-known result concerns
the existence and uniqueness of a solution to this problem.

Theorem 1.5 Let D be an open connected set inR2, let f(t, y) be a continuous
function oft and y for all (t, y) in D, and let(t0, Y0) be an interior point ofD.
Assume thatf(t, y) satisfies theLipschitz condition

|f(t, y1) − f(t, y2)| ≤ K |y1 − y2| all (t, y1), (t, y2) in D (1.10)

for someK ≥ 0. Then there is a unique functionY (t) defined on an interval
[t0 − α, t0 + α] for someα > 0, satisfying

Y ′(t) = f(t, Y (t)), t0 − α ≤ t ≤ t0 + α,

Y (t0) = Y0.

The Lipschitz condition onf is assumed throughout the text. The condition (1.10)
is easily obtained if∂f(t, y)/∂y is a continuous function of(t, y) overD, the closure
of D, with D also assumed to be convex. (A setD is calledconvexif for any two
points inD the line segment joining them is entirely contained inD. Examples of
convex sets include circles, ellipses, triangles, parallelograms.) Then we can use

K = max
(t,y)∈D

∣∣∣∣
∂f(t, y)

∂y

∣∣∣∣ ,

provided this is finite. If not, then simply use a smallerD, say, one that is bounded
and contains(t0, Y0) in its interior. The numberα in the statement of the theorem
depends on the initial value problem (1.7). For some equations, such as the linear
equation given in (1.3) with a continuous functiong(t), solutions exist for anyt, and
we can takeα to be∞. For many nonlinear equations, solutions can exist only in

8 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

bounded intervals. We have seen such instances in Examples 1.2 and 1.3. Let us look
at one more such example.

Example 1.6 Consider the initial value problem

Y ′(t) = 2t[Y (t)]2, Y (0) = 1.

Here

f(t, y) = 2ty2,
∂f(t, y)

∂y
= 4ty,

and both of these functions are continuous for all(t, y). Thus, by Theorem 1.5 there
is a unique solution to this initial value problem fort in a neighborhood oft0 = 0.
This solution is

Y (t) =
1

1 − t2
, −1 < t < 1.

This example illustrates that the continuity off(t, y) and∂f(t, y)/∂y for all (t, y)
does not imply the existence of a solutionY (t) for all t.

1.2 STABILITY OF THE INITIAL VALUE PROBLEM

When numerically solving the initial value problem (1.7), we will generally assume
that the solutionY (t) is being sought on a given finite intervalt0 ≤ t ≤ b. In that
case, it is possible to obtain the following result on stability. Make a small change in
the initial value for the initial value problem, changingY0 toY0 +ǫ. Call the resulting
solutionYǫ(t),

Y ′
ǫ (t) = f(t, Yǫ(t)), t0 ≤ t ≤ b, Yǫ(t0) = Y0 + ǫ. (1.11)

Then, under hypotheses similar to those of Theorem 1.5, it can be shown that for all
small values ofǫ, Y (t) andYǫ(t) exist on the interval[t0, b], and moreover,

‖Yǫ − Y ‖∞ ≡ max
t0≤t≤b

|Yǫ(t) − Y (t)| ≤ c ǫ (1.12)

for somec > 0 that is independent ofǫ. Thus small changes in the initial valueY0

will lead to small changes in the solutionY (t) of the initial value problem. This is a
desirable property for a variety of very practical reasons.

Example 1.7 The problem

Y ′(t) = −Y (t) + 1, 0 ≤ t ≤ b, Y (0) = 1 (1.13)

has the solutionY (t) ≡ 1. The perturbed problem

Y ′
ǫ (t) = −Yǫ(t) + 1, 0 ≤ t ≤ b, Yǫ(0) = 1 + ǫ

STABILITY OF THE INITIAL VALUE PROBLEM 9

has the solutionYǫ(t) = 1 + ǫe−t. Thus

Y (t) − Yǫ(t) = −ǫe−t,

|Y (t) − Yǫ(t)| ≤ |ǫ| , 0 ≤ t ≤ b.

The problem (1.13) is said to be stable.

Virtually all initial value problems (1.7) are stable in thesense specified in (1.12);
but this is only a partial picture of the effect of small perturbations of the initial
valueY0. If the maximum error‖Yǫ − Y ‖∞ in (1.12) is not much larger thanǫ,
then we say that the initial value problem (1.7) iswell-conditioned. In contrast, when
‖Yǫ − Y ‖∞ is much larger thanǫ [i.e., the minimal possible constantc in the estimate
(1.12) is large], then the initial value problem (1.7) is considered to beill-conditioned.
Attempting to numerically solve such a problem will usuallylead to large errors in
the computed solution. In practice, there is a continuum of problems ranging from
well-conditioned to ill-conditioned, and the extent of theill-conditioning affects the
possible accuracy with which the solutionY can be found numerically, regardless of
the numerical method being used.

Example 1.8 The problem

Y ′(t) = λ [Y (t) − 1] , 0 ≤ t ≤ b, Y (0) = 1 (1.14)

has the solution
Y (t) = 1, 0 ≤ t ≤ b.

The perturbed problem

Y ′
ǫ (t) = λ[Yǫ(t) − 1], 0 ≤ t ≤ b, Yǫ(0) = 1 + ǫ

has the solution
Yǫ(t) = 1 + ǫeλt, 0 ≤ t ≤ b.

For the error, we obtain

Y (t) − Yǫ(t) = −ǫeλt, (1.15)

max
0≤t≤b

|Y (t) − Yǫ(t)| =

{
|ǫ| , λ ≤ 0,

|ǫ| eλb, λ ≥ 0.

If λ < 0, the error|Y (t) − Yǫ(t)| decreases ast increases. We see that (1.14) is well-
conditioned whenλ ≤ 0. In contrast, forλ > 0, the error|Y (t) − Yǫ(t)| increases
as t increases. And forλb moderately large, sayλb ≥ 10, the change inY (t) is
quite significant att = b. The problem (1.14) is increasingly ill-conditioned asλ
increases.

For the more general initial value problem (1.7) and the perturbed problem (1.11),
one can show that

Y (t) − Yǫ(t) ≈ −ǫ exp

(∫ t

t0

g(s) ds

)
(1.16)

10 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

with

g(t) =
∂f(t, y)

∂y

∣∣∣∣
y=Y (t)

for t sufficiently close tot0. Note that this formula correctly predicts (1.15), since in
that case

f(t, y) = λ (y − 1) ,

∂f(t, y)

∂y
= λ,

∫ t

0

g(s) ds = λt.

Then (1.16) yields
Y (t) − Yǫ(t) ≈ −ǫeλt,

which agrees with the earlier formula (1.15).

Example 1.9 The problem

Y ′(t) = −[Y (t)]2, Y (0) = 1 (1.17)

has the solution

Y (t) =
1

t+ 1
.

For the perturbed problem,

Y ′
ǫ (t) = −[Yǫ(t)]

2, Yǫ(0) = 1 + ǫ, (1.18)

we use (1.16) to estimateY (t) − Yǫ(t). First,

f(t, y) = −y2,

∂f(t, y)

∂y
= −2y,

g(t) = −2Y (t) = − 2

t+ 1
,

∫ t

0

g(s) ds = −2

∫ t

0

ds

s+ 1
= −2 log(1 + t) = log(1 + t)−2,

exp

[∫ t

0

g(s) ds

]
= elog(t+1)−2

=
1

(t+ 1)2
.

For t ≥ 0 sufficiently small, substituting into (1.16) gives

Y (t) − Yǫ(t) ≈
−ǫ

(1 + t)2
. (1.19)

DIRECTION FIELDS 11

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Y=et

Y=−et

Figure 1.1 The direction field of the equationY ′ = Y and solutionsY = ±et

This indicates that (1.17) is a well-conditioned problem.

In general, if
∂f(t, Y (t))

∂y
≤ 0, t0 ≤ t ≤ b, (1.20)

then the initial value problem is generally considered to bewell-conditioned. Al-
though this test depends onY (t) over the interval[t0, b], one can often show (1.20)
without knowingY (t) explicitly; see Problems 5, 6.

1.3 DIRECTION FIELDS

Direction fields serve as a useful tool in understanding the behavior of solutions
of a differential equation. We notice that the graph of a solution of the equation
Y ′ = f(t, Y) is such that at any point(t, y) on the solution curve, the slope isf(t, y).
The slopes can be represented graphically in direction fielddiagrams. In MATLABR©,
direction fields can be generated by using themeshgrid andquiver commands.

Example 1.10 Consider the equationY ′ = Y . The slope of a solution curve at a
point(t, y) on the curve isy, which is independent oft. We generate a direction field
diagram with the following MATLAB code:
First draw the direction field:

[t,y] = meshgrid(-2:0.5:2,-2:0.5:2);

12 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

−1.5 −1 −0.5 0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 1.2 The direction field of the equationY ′ = 2tY 2 and the solutionY = 1/
`
1 − t2

´

dt = ones(9); %Generates a matrix of 1’s.

dy = y;

quiver(t,y,dt,dy);

Then draw two solution curves:

hold on

t = -2:0.01:1;

y1 = exp(t); y2 = -exp(t);

plot(t,y1,t,y2)

text(1.1,2.8,’\itY=e^t’,’FontSize’,14)
text(1.1,-2.8,’\itY=-e^t’,’FontSize’,14)
hold off

The result is shown in Figure 1.1.

Example 1.11 Continuing Example 1.6, we use the following MATLAB M-file to
generate a direction field diagram and the particular solutionY = 1/(1−t2) in Figure
1.2.

[t,y] = meshgrid(-1:0.2:1,1:0.5:4);

dt = ones(7,11); dy = 2*t.*y.^2;

quiver(t,y,dt,dy);

hold on

tt = -0.87:0.01:0.87;

DIRECTION FIELDS 13

yy = 1./(1-tt.^2);

plot(tt,yy)

hold off

Note that for largey values, the arrows in the direction field diagram (Figure 1.2)
point almost vertically. This suggests that a solution to the equation may exist only
in a bounded interval of thet axis, which, indeed, is the case.

PROBLEMS

1. In each of the following cases, show that the given function Y (t) satisfies the
associated differential equation. Then determine the value ofc required by the
initial condition. Finally, with reference to the general format in (1.7), identify
f(t, z) for each differential equation.

(a) Y ′(t) = −Y (t) + sin(t) + cos(t), Y (0) = 1;
Y (t) = sin(t) + ce−t.

(b) Y ′(t) =
[
Y (t) − Y (t)2

]
/t, Y (1) = 2; Y (t) = t/(t+ c), t > 0.

(c) Y ′(t) = cos2(Y (t)), Y (0) = π/4; Y (t) = tan−1(t+ c).

(d) Y ′(t) = Y (t)[Y (t) − 1], Y (0) = 1/2; Y (t) = 1/(1 + cet).

2. Use MATLAB to draw direction fields for the differential equations listed in
Problem 1.

3. Solve the following problem by using (1.5) and (1.4):

(a) Y ′(t) = λY (t) + 1, Y (0) = 1.

(b) Y ′(t) = λY (t) + t, Y (0) = 3.

4. Consider the differential equation

Y ′(t) = f1(t)f2(Y (t))

for some given functionsf1(t) andf2(z). This is called aseparabledifferential
equation, and it can be solved by direct integration. Write the equation as

Y ′(t)

f2(Y (t))
= f1(t),

and find the antiderivative of each side:
∫

Y ′(t) dt

f2(Y (t))
=

∫
f1(t) dt.

On the left side, change the integration variable by lettingz = Y (t). Then the
equation becomes ∫

dz

f2(z)
=

∫
f1(t) dt.

14 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

After integrating, replacez by Y (t); then solve forY (t), if possible. If these
integrals can be evaluated, then the differential equationcan be solved. Do
so for the following problems, finding the general solution and the solution
satisfying the given initial condition.

(a) Y ′(t) = t/Y (t), Y (0) = 2.

(b) Y ′(t) = te−Y (t), Y (1) = 0.

(c) Y ′(t) = Y (t)[a− Y (t)], Y (0) = a/2, a > 0.

5. Check the conditioning of the initial value problems in Problem 1. Use the test
(1.20).

6. Check the conditioning of the initial value problems in Problem 4(a), (b). Use
the test (1.20).

7. Use (1.20) to discuss the conditioning of the problem

Y ′(t) = Y (t)2 − 5 sin(t) − 25 cos2(t), Y (0) = 6.

You do not need to know the true solution.

8. Consider the solutionsY (t) of

Y ′(t) + aY (t) = de−bt

with a, b, d constants anda, b > 0. Calculate

lim
t→∞

Y (t).

Hint: Consider the casesa 6= b anda = b separately.

CHAPTER 2

EULER’S METHOD

Although it is possible to derive solution formulas for someordinary differential
equations, as is shown in Chapter 1, many differential equations arising in applications
are so complicated that it is impractical to have solution formulas. Even when a
solution formula is available, it may involve integrals that can be calculated only by
using a numerical quadrature formula. In either situation,numerical methods provide
a powerful alternative tool for solving the differential equation.

The simplest numerical method for solving the initial valueproblem is called
Euler’s method. We first define it and give some numerical illustrations, andthen
we analyze it mathematically. Euler’s method is not an efficient numerical method,
but many of the ideas involved in the numerical solution of differential equations are
introduced most simply with it.

Before beginning, we establish some notation that will be used in the rest of this
book. As before,Y (t) denotes the true solution of the initial value problem with the
initial valueY0:

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b,

Y (t0) = Y0.
(2.1)

15

16 EULER’S METHOD

Numerical methods for solving (2.1) will find an approximatesolution y(t) at a
discrete set of nodes,

t0 < t1 < t2 < · · · < tN ≤ b. (2.2)

For simplicity, we will take these nodes to be evenly spaced:

tn = t0 + nh, n = 0, 1, . . . , N.

The approximate solution will be denoted usingy(t), with some variations. The
following notations are all used for the approximate solution at the node points:

y(tn) = yh(tn) = yn, n = 0, 1, . . . , N.

To obtain an approximate solutiony(t) at points in[t0, b] other than those in (2.2),
some form of interpolation must be used. We will not considerthat problem here,
although there are standard techniques from the theory of interpolation that can be
easily applied. For an introduction to interpolation theory, see, e.g., [11, Chap. 3],
[12, Chap. 4], [57, Chap. 8], [68, Chap. 8].

2.1 DEFINITION OF EULER’S METHOD

To derive Euler’s method, consider the standard derivativeapproximation from be-
ginning calculus,

Y ′(t) ≈ 1

h
[Y (t+ h) − Y (t)]. (2.3)

This is called aforward difference approximationto the derivative. Applying this to
the initial value problem (2.1) att = tn,

Y ′(tn) = f(tn, Y (tn)),

we obtain

1

h
[Y (tn+1) − Y (tn)] ≈ f(tn, Y (tn)),

Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)). (2.4)

Euler’s method is defined by taking this to be exact:

yn+1 = yn + hf(tn, yn), 0 ≤ n ≤ N − 1. (2.5)

For the initial guess, usey0 = Y0 or some close approximation ofY0. Sometimes
Y0 is obtained empirically and thus may be known only approximately. Formula
(2.5) gives a rule for computingy1, y2, . . . , yN in succession. This is typical of most
numerical methods for solving ordinary differential equations.

Some geometric insight into Euler’s method is given in Figure 2.1. The line
z = p(t) that is tangent to the graph ofz = Y (t) at tn has slope

Y ′(tn) = f(tn, Y (tn)).

DEFINITION OF EULER’S METHOD 17

Y(t
n
)

Y(t
n+1

) Y(t
n
)+h f(t

n
,Y(t

n
))

t

z

z=Y(t)Tangent line

t
n

t
n+1

Figure 2.1 An illustration of Euler’s method derivation

Using this tangent line to approximate the curve near the point (tn, Y (tn)), the value
of the tangent line

p(t) = Y (tn) + f(tn, Y (tn))(t − tn)

at t = tn+1 is given by the right side of (2.4).

Example 2.1 The true solution of the problem

Y ′(t) = −Y (t), Y (0) = 1 (2.6)

is Y (t) = e−t. Euler’s method is given by

yn+1 = yn − hyn, n ≥ 0 (2.7)

with y0 = 1 andtn = nh. The solutiony(t) for three values ofh and selected values
of t is given in Table 2.1. To illustrate the procedure, we compute y1 andy2 when
h = 0.1. From (2.7), we obtain

y1 = y0 − hy0 = 1 − (0.1)(1) = 0.9, t1 = 0.1,

y2 = y1 − hy1 = 0.9 − (0.1)(0.9) = 0.81, t2 = 0.2.

For the error in these values, we have

Y (t1) − y1 = e−0.1 − y1
.
= 0.004837,

Y (t2) − y2 = e−0.2 − y2
.
= 0.008731.

18 EULER’S METHOD

Table 2.1 Euler’s method for (2.6)

h t yh(t) Error Relative
Error

0.2 1.0 3.2768e − 1 4.02e − 2 0.109

2.0 1.0738e − 1 2.80e − 2 0.207

3.0 3.5184e − 2 1.46e − 2 0.293

4.0 1.1529e − 2 6.79e − 3 0.371

5.0 3.7779e − 3 2.96e − 3 0.439

0.1 1.0 3.4867e − 1 1.92e − 2 0.0522

2.0 1.2158e − 1 1.38e − 2 0.102

3.0 4.2391e − 2 7.40e − 3 0.149

4.0 1.4781e − 2 3.53e − 3 0.193

5.0 5.1538e − 3 1.58e − 3 0.234

0.05 1.0 3.5849e − 1 9.39e − 3 0.0255

2.0 1.2851e − 1 6.82e − 3 0.0504

3.0 4.6070e − 2 3.72e − 3 0.0747

4.0 1.6515e − 2 1.80e − 3 0.0983

5.0 5.9205e − 3 8.17e − 4 0.121

Example 2.2 Solve

Y ′(t) =
Y (t) + t2 − 2

t+ 1
, Y (0) = 2 (2.8)

whose true solution is

Y (t) = t2 + 2t+ 2 − 2(t+ 1) log(t+ 1).

Euler’s method for this differential equation is

yn+1 = yn +
h(yn + t2n − 2)

tn + 1
, n ≥ 0

with y0 = 2 andtn = nh. The solutiony(t) is given in Table 2.2 for three values
of h and selected values oft. A graph of the solutionyh(t) for h = 0.2 is given in
Figure 2.2. The node valuesyh(tn) have been connected by straight line segments in
the graph. Note that the horizontal and vertical scales are different.

In both examples, observe the behavior of the error ash decreases. For each fixed
value oft, note that the errors decrease by a factor of about2 whenh is halved. As

DEFINITION OF EULER’S METHOD 19

0 1 2 3 4 5 6
0

5

10

15

20

25

y
h
(x)

Y(x)

Figure 2.2 Euler’s method for problem (2.8),h = 0.2

an illustration, take Example 2.1 witht = 5.0. The errors forh = 0.2, 0.1, and0.05,
respectively, are

2.96 × 10−3, 1.58 × 10−3, 8.17 × 10−4

and these decrease by successive factors of1.93 and1.87. The reader should do the
same calculation for other values oft, in both Examples 2.1 and 2.2. Also, note that
the behavior of the error ast increases may be quite different from the behavior of
the relative error. In Example 2.2, the relative errors increase initially, and then they
decrease with increasingt.

MATLAB R© program. The following MATLAB program implements Euler’s method.
The Euler method is also called theforward Euler method. The backward Euler
methodis discussed in Chapter 4.

function [t,y] = euler for(t0,y0,t end,h,fcn)

%

% function [t,y]=euler for(t0,y0,t end,h,fcn)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use Euler’s method with a stepsize of h. The user must

% supply a program to define the right side function of the

% differential equation. Use some name, say deriv, and a

20 EULER’S METHOD

Table 2.2 Euler’s method for (2.8)

h t yh(t) Error Relative
Error

0.2 1.0 2.1592 6.82e − 2 0.0306

2.0 3.1697 2.39e − 1 0.0701

3.0 5.4332 4.76e − 1 0.0805

4.0 9.1411 7.65e − 1 0.129

5.0 14.406 1.09 0.0703

6.0 21.303 1.45 0.0637

0.1 1.0 2.1912 3.63e − 2 0.0163

2.0 3.2841 1.24e − 1 0.0364

3.0 5.6636 2.46e − 1 0.0416

4.0 9.5125 3.93e − 1 0.0665

5.0 14.939 5.60e − 1 0.0361

6.0 22.013 7.44e − 1 0.0327

0.05 1.0 2.2087 1.87e − 2 0.00840

2.0 3.3449 6.34e − 2 0.0186

3.0 5.7845 1.25e − 1 0.0212

4.0 9.7061 1.99e − 1 0.0337

5.0 15.214 2.84e − 1 0.0183

6.0 22.381 3.76e − 1 0.0165

% first line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=euler for(t0,z0,b,delta,’deriv’)

%

% Output:

% The routine eulercls will return two vectors, t and y.

% The vector t will contain the node points

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end-h, t(N)+h > t end-h

% The vector y will contain the estimates of the solution Y

% at the node points in t.

%

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);

ERROR ANALYSIS OF EULER’S METHOD 21

y(1) = y0;

for i = 2:n

y(i) = y(i-1)+h*feval(fcn,t(i-1),y(i-1));

end

2.2 ERROR ANALYSIS OF EULER’S METHOD

The purpose of analyzing Euler’s method is to understand howit works, be able to
predict the error when using it, and perhaps accelerate its convergence. Being able to
do this for Euler’s method will also make it easier to answer the same questions for
other, more efficient numerical methods.

For the error analysis, we assume that the initial value problem (1.7) has a unique
solutionY (t) on t0 ≤ t ≤ b, and further, that this solution has a bounded sec-
ond derivativeY ′′(t) over this interval. We begin by applying Taylor’s theorem to
approximatingY (tn+1),

Y (tn+1) = Y (tn) + hY ′(tn) + 1
2h

2Y ′′(ξn)

for sometn ≤ ξn ≤ tn+1. Using the fact thatY (t) satisfies the differential equation,

Y ′(t) = f(t, Y (t)),

our Taylor approximation becomes

Y (tn+1) = Y (tn) + hf(tn, Y (tn)) + 1
2h

2Y ′′(ξn). (2.9)

The term
Tn+1 = 1

2h
2Y ′′(ξn) (2.10)

is called thetruncation errorforEuler’s method, and it is theerror in theapproximation

Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)).

To analyze the error in Euler’s method, subtract

yn+1 = yn + hf(tn, yn) (2.11)

from (2.9), obtaining

Y (tn+1) − yn+1 = Y (tn) − yn + h[f(tn, Y (tn)) − f(tn, yn)]

+ 1
2h

2Y ′′(ξn).
(2.12)

The error inyn+1 consists of two parts: (1) the truncation errorTn+1, newly intro-
duced at steptn+1; and (2) thepropagated error

Y (tn) − yn + h[f(tn, Y (tn)) − f(tn, yn)].

22 EULER’S METHOD

The propagatederror can be simplified by applying the mean value theorem tof(t, z),
considering it as a function ofz,

f(tn, Y (tn)) − f(tn, yn) =
∂f(tn, ζn)

∂y
[Y (tn) − yn] (2.13)

for someζn betweenY (tn) andyn. Letek ≡ Y (tk)− yk, k ≥ 0, and then use (2.13)
to rewrite (2.12) as

en+1 =

[
1 + h

∂f(tn, ζn)

∂y

]
en + 1

2h
2Y ′′(ξn). (2.14)

These results can be used to give a general error analysis of Euler’s method for the
initial value problem.

Let us first consider a special case that will yield some intuitive understanding of
the error in Euler’s method. Consider using Euler’s method to solve the problem

Y ′(t) = 2t, Y (0) = 0, (2.15)

whose true solution isY (t) = t2. Then, from the error formula (2.14), we have

en+1 = en + h2, e0 = 0,

where we are assuming the initial valuey0 = Y (0). This leads, by induction, to

en = nh2, n ≥ 0.

Sincenh = tn,
en = htn. (2.16)

For each fixedtn, the error attn is proportional toh. The truncation error isO(h2),
but the cumulative effect of these errors is a total error proportional toh.

We now turn to a convergence analysis of Euler’s method for solving the general
initial value problem on a finite interval[t0, b]:

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b,
Y (t0) = Y0.

(2.17)

For the complete error analysis, we begin with the followinglemma. It is quite
useful in the analysis of most numerical methods for solvingthe initial value problem.

Lemma 2.3 For any realt,
1 + t ≤ et,

and for anyt ≥ −1, anym ≥ 0,

0 ≤ (1 + t)m ≤ emt. (2.18)

Proof. Using Taylor’s theorem yields

et = 1 + t+ 1
2 t

2eξ

ERROR ANALYSIS OF EULER’S METHOD 23

with ξ between0 and t. Since the remainder is never negative, the first result is
proved. Formula (2.18) follows easily.

For this and several of the following chapters, we assume that the derivative func-
tion f(t, y) satisfies the following stronger Lipschitz condition: there existsK ≥ 0
such that

|f(t, y1) − f(t, y2)| ≤ K |y1 − y2| (2.19)

for −∞ < y1, y2 < ∞ and t0 ≤ t ≤ b. Although stronger than necessary, it
simplifies the proofs. In addition, given a functionf(t, y) satisfying the weaker
condition (1.10) and a solutionY (t) to the initial value problem, the functionf can
be modified to satisfy (2.19) without changing the solutionY (t) or the essential
character of the initial value problem (2.17) and its numerical solution.

Theorem 2.4 Letf(t, y) be a continuous function fort0 ≤ t ≤ b and−∞ < y <∞,
and further assume thatf(t, y) satisfies theLipschitz condition(2.19). Assume that
the solutionY (t) of (2.17) has a continuous second derivative on[t0, b]. Then the
solution{yh(tn) | t0 ≤ tn ≤ b} obtained by Euler’s method satisfies

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ e(b−t0)K |e0| +
[
e(b−t0)K − 1

K

]
τ(h), (2.20)

where
τ(h) = 1

2h ‖Y ′′‖∞ = 1
2h max

t0≤t≤b
|Y ′′(t)| (2.21)

ande0 = Y0 − yh(t0).
If, in addition, we have

|Y0 − yh(t0)| ≤ c1h ash→ 0 (2.22)

for somec1 ≥ 0 (e.g., ifY0 = y0 for all h, thenc1 = 0), then there is a constant
B ≥ 0 for which

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ Bh. (2.23)

Let en = Y (tn) − y(tn), n ≥ 0. LetN ≡ N(h) be the integer for which

tN ≤ b, tN+1 > b.

Define
τn = 1

2hY
′′(ξn), 0 ≤ n ≤ N(h) − 1,

based on the truncation error in (2.10). Easily, we obtain

max
0≤n≤N−1

|τn| ≤ τ(h)

using (2.21).
Recalling (2.12), we have

en+1 = en + h [f(tn, Yn) − f(tn, yn)] + hτn. (2.24)

24 EULER’S METHOD

We are using the common notationYn ≡ Y (tn). Taking bounds using (2.19), we
obtain

|en+1| ≤ |en| + hK |Yn − yn| + h |τn| ,

|en+1| ≤ (1 + hK) |en| + hτ(h), 0 ≤ n ≤ N(h) − 1. (2.25)

Apply this recursively to obtain

|en| ≤ (1 + hK)n |e0| +
[
1 + (1 + hK) + · · · + (1 + hK)n−1

]
hτ(h).

Using the formula for the sum of a finite geometric series,

1 + r + r2 + · · · + rn−1 =
rn − 1

r − 1
, r 6= 1, (2.26)

we obtain

|en| ≤ (1 + hK)n |e0| +
[
(1 + hK)n − 1

K

]
τ(h). (2.27)

Using Lemma 2.3, we obtain

(1 + hK)n ≤ enhK = e(tn−t0)K ≤ e(b−t0)K ,

and this with (2.27) implies the main result (2.20).
The remaining result (2.23) is a trivial corollary of (2.20)with the constantB given

by

B = c1e
(b−t0)K +

1

2

[
e(b−t0)K − 1

K

]
‖Y ′′‖∞ .

The result (2.23) is consistent with the behavior observed in Tables 2.1 and 2.2
earlier in this chapter, and it agrees with (2.16) for the special case (2.15). Whenh
is halved, the boundBh is also halved, and that is the behavior in the error observed
earlier. Euler’s method is said to converge with order1, because that is the power of
h that occurs in the error bound. In general, if we have

|Y (tn) − yh(tn)| ≤ chp, t0 ≤ tn ≤ b (2.28)

for some constantp ≥ 0, then we say that the numerical method isconvergent with
order p. Naturally, the higher the orderp, the faster the convergence we can expect.

We emphasize that for the error bound (2.20) to hold, the truesolution must be
assumed to have a continuous second derivativeY ′′(t) over[t0, b]. This assumption
is not always valid. WhenY ′′(t) does not have such a continuous second derivative,
the error bound (2.20) no longer holds. (See Problem 11.)

The error bound (2.20) is valid for a large family of the initial value problems.
However, it usually produces a very pessimistic numerical bound for the error, due to
the presence of the exponential terms. Under certain circumstances, we can improve
the result. Assume

∂f(t, y)

∂y
≤ 0, (2.29)

ERROR ANALYSIS OF EULER’S METHOD 25

K ≡ sup
t0≤t≤b

−∞<y<∞

∣∣∣∣
∂f(t, y)

∂y

∣∣∣∣ <∞. (2.30)

Note the relation of (2.29) to the stability condition (1.20) in Chapter 1. Also assume
thath has been chosen so small that

1 − hK ≥ −1, t0 ≤ t ≤ b, −∞ < z <∞.

Returning to (2.14), we have

en+1 = en + h
∂f(tn, ζn)

∂y
en + 1

2h
2Y ′′(ξn) (2.31)

with ζn betweenY (tn) andyn. Using (2.29) and (2.30), we have

1 ≥ 1 + h
∂f(tn, ζn)

∂y
≥ 1 − hK ≥ −1.

When combined with (2.31), we have

|en+1| ≤ |en| + ch2, t0 ≤ tn ≤ b, (2.32)

where
c = 1

2 ‖Y
′′‖∞ = 1

2 · max
t0≤t≤b

|Y ′′(t)| .

In addition, assumee0 = 0. Applying (2.32) inductively, we obtain

|en| ≤ nch2 = c (tn − t0) h. (2.33)

The error is bounded by a quantity proportional toh, and the coefficient of theh term
increases linearly with respect to the pointtn, in contrast to the exponential growth
given in the bound (2.20).

The error bound in Theorem 2.4 is rigorous, and is useful in providing an insight
to the convergence behavior of the numerical solution. However, it is rarely advisable
to use (2.20) for an actual error bound, as the next example shows.

Example 2.5 The problem

Y ′(t) = −Y (t), Y (0) = 1 (2.34)

was solved earlier in this chapter, with the results given inTable 2.1. To apply (2.20),
we have∂f(t, y)/∂y = −1,K = 1. The true solution isY (t) = e−t; thus

max
0≤t≤b

|Y ′′(t)| = 1.

With y0 = Y0 = 1, the bound (2.20) becomes
∣∣e−tn − yh(tn)

∣∣ ≤ 1
2h
(
eb − 1

)
, 0 ≤ tn ≤ b. (2.35)

26 EULER’S METHOD

Ash→ 0, this shows thatyh(t) converges toe−t. However, this bound is excessively
conservative. Asb increases, the bound increases exponentially. Forb = 5, the bound
is ∣∣e−tn − yh(tn)

∣∣ ≤ 1
2h
(
e5 − 1

)
≈ 73.7h, 0 ≤ tn ≤ 5.

And this is far larger than the actual errors shown in Table 2.1, by several orders of
magnitude. For the problem (2.34), the improved error bound(2.33) applies with
c = 1

2 (see Problem 7). A more general approach for accurate error estimation is
discussed in the following section.

2.3 ASYMPTOTIC ERROR ANALYSIS

To obtain more accurate predictions of the error, we consider asymptotic error esti-
mates. Assume thatY is 3 times continuously differentiable and

∂f(t, y)

∂y
,

∂2f(t, y)

∂y2

are both continuous for all values of(t, y) near(t, Y (t)), t0 ≤ t ≤ b. Then one can
prove that the error in Euler’s method satisfies

Y (tn) − yh(tn) = hD(tn) + O(h2), t0 ≤ tn ≤ b. (2.36)

The termO(h2) denotes a quantity of maximal size proportional toh2over the interval
[t0, b]. More generally, the statement

F (h; tn) = O(hp), t0 ≤ tn ≤ b

for some constantp means

max
t0≤tn≤b

|F (h; tn)| ≤ c hp

for some constantc and all sufficiently small values ofh.
Assumingy0 = Y0, the usual case, the functionD(t) satisfies an initial value

problem for a linear differential equation,

D′(t) = g(t)D(t) + 1
2Y

′′(t), D(t0) = 0, (2.37)

where

g(t) =
∂f(t, y)

∂y

∣∣∣∣
y=Y (t)

.

WhenD(t) can be obtained explicitly, the leading error termhD(tn) from the formula
(2.36) usually provides a quite good estimate of the true error Y (tn) − yh(tn), and
the quality of the estimation improves with decreasing stepsizeh.

ASYMPTOTIC ERROR ANALYSIS 27

Example 2.6 Consider again the problem (2.34). ThenD(t) satisfies

D′(t) = −D(t) + 1
2e

−t, D(0) = 0.

The solution is
D(t) = 1

2 te
−t.

Using (2.36), the error satisfies

Y (tn) − yh(tn) ≈ 1
2htne

−tn . (2.38)

We are neglecting theO(h2) term, since it should be substantially smaller than the
termhD(t) in (2.36), for all sufficiently small values ofh. To check the accuracy of
(2.38), considertn = 5.0 with h = 0.05. Then

1
2htne

−tn
.
= 0.000842.

From Table 2.1, the actual error is0.000817, which is quite close to our estimate of
it.

How do we obtain the result given in (2.36)? We sketch the mainideas but do not
fill in all of the details. We begin by approximating the errorequation (2.31) with

ên+1 =

[
1 + h

∂f(t, Y (tn))

∂y

]
ên + 1

2h
2Y ′′(tn). (2.39)

We have used

∂f(tn, ζn)

∂y
≈ ∂f(t, Y (tn))

∂y
,

Y ′′(ξn) ≈ Y ′′(tn).

This will cause an approximation error

en − ên = O(h2), (2.40)

although that may not be immediately evident. In addition, we may write

ên = hδn, n = 0, 1, . . . , (2.41)

on the basis of (2.33); and for simplicity, assumeδ0 = 0.
Substituting (2.41) into (2.39) and then cancelingh, we obtain

δn+1 =

[
1 + h

∂f(t, Y (tn))

∂y

]
δn + 1

2hY
′′(tn)

= δn + h

[
∂f(t, Y (tn))

∂y
δn + 1

2Y
′′(tn)

]
.

28 EULER’S METHOD

This is Euler’s method applied to (2.37). Applying the earlier convergence analysis
for Euler’s method, we have

max
t0≤tn≤b

|D(tn) − δn| ≤ Bh

for some constantB > 0. We then multiply byh to get

max
t0≤tn≤b

|hD(tn) − ên| ≤ Bh2.

Combining this with (2.40) demonstrates (2.36), although we have omitted a number
of details.

We comment that the functionD(t) defined by (2.37) is continuously differen-
tiable. Then the error formula (2.36) allows us to use the divided difference

yh(tn+1) − yh(tn)

h

as an approximation to the derivativeY ′(tn) (or Y ′(tn+1)),

Y ′(tn) − yh(tn+1) − yh(tn)

h
= O(h). (2.42)

The proof of this is left as Problem 16.

2.3.1 Richardson extrapolation

It is not practical to try to find the functionD(t) from the problem (2.37), principally
because it requires knowledgeof the true solutionY (t). The real power of the formula
(2.36) is that it describes precisely the error behavior. Wecan use (2.36) to estimate
the solution error and to improve the quality of the numerical solution, without an
explicit knowledge of the functionD(t). For this purpose, we need two numerical
solutions, say,yh(t) andy2h(t) over the intervalt0 ≤ t ≤ b.

Assume thatt is a node point with the stepsize2h, and note that it is then also a
node point with the stepsizeh. By the formula (2.36), we have

Y (t) − yh(t) = hD(t) + O(h2),

Y (t) − y2h(t) = 2hD(t) + O(h2).

Multiply the first equation by 2, and then subtract the secondequation to eliminate
D(t), obtaining

Y (t) − [2 yh(t) − y2h(t)] = O(h2). (2.43)

This can also be written as

Y (t) − yh(t) = yh(t) − y2h(t) + O(h2). (2.44)

We know from our earlier error analysis thatY (t)− yh(t) = O(h). By dropping the
higher-order termO(h2) in (2.43), we obtainRichardson’s extrapolation formula

Y (t) ≈ ỹh(t) ≡ 2yh(t) − y2h(t). (2.45)

NUMERICAL STABILITY 29

Table 2.3 Euler’s method with Richardson extrapolation

t Y (t) − yh(t) yh(t) − y2h(t) eyh(t) Y (t) − eyh(t)

1.0 9.39e − 3 9.81e − 3 3.6829346e − 1 −4.14e − 4

2.0 6.82e − 3 6.94e − 3 1.3544764e − 1 −1.12e − 4

3.0 3.72e − 3 3.68e − 3 4.9748443e − 2 3.86e − 5

4.0 1.80e − 3 1.73e − 3 1.8249877e − 2 6.58e − 5

5.0 8.17e − 4 7.67e − 4 6.6872853e − 3 5.07e − 5

Dropping the higher-order term in (2.44), we obtainRichardson’s error estimate

Y (t) − yh(t) ≈ yh(t) − y2h(t). (2.46)

With these formulas, we can estimate the error in Euler’s method and can also obtain
a more rapidly convergent solutioñyh(t).

Example 2.7 Consider (2.34) with stepsizeh = 0.05, 2h = 0.1. Then Table 2.3
contains Richardson’s extrapolation results for selectedvalues oft. Note that (2.46)
is a fairly accurate estimator of the error, and thatỹh(t) is much more accurate than
yh(t).

Using (2.43), we have

Y (tn) − ỹh(tn) = O(h2), (2.47)

an improvement on the convergence order of Euler’s method. We will consider again
this type of extrapolation for the methods introduced in later chapters. However, the
actual formulas may be different from (2.45) and (2.46), andthey will depend on the
order of the method.

2.4 NUMERICAL STABILITY

Recall the discussion of stability for the initial value problem given in Section 1.2. In
particular, recall the result (1.12) bounding the change inthe solutionY (t) when the
initial condition is perturbed byε. To perform a similar analysis for Euler’s method,
we define a numerical solution{zn} by

zn+1 = zn + hf(tn, zn), n = 0, 1, . . . , N(h) − 1 (2.48)

with z0 = y0 + ǫ. This is analogous to looking at the solutionY (t; ε) to the perturbed
initial value problem, in (1.11). We compare the two numerical solutions{zn} and
{yn} ash→ 0.

30 EULER’S METHOD

Let en = zn − yn, n ≥ 0. Thene0 = ǫ, and subtractingyn+1 = yn + hf(tn, yn)
from (2.48), we obtain

en+1 = en + h [f(tn, zn) − f(tn,yn)] .

This has exactly the same form as (2.24),withτn set to zero. Using the same procedure
as that following (2.24), we have

max
0≤n≤N(h)

|zn − yn| ≤ e(b−t0)K |ǫ| .

Consequently, there is a constantĉ ≥ 0, independent ofh, such that

max
0≤n≤N(h)

|zn − yn| ≤ ĉ |ǫ| . (2.49)

This is the analog to the result (1.12) for the original initial value problem. This
says that Euler’s method is a stable numerical method for thesolution of the initial
value problem (2.17). We insist that all numerical methods for initial value problems
possess this form of stability, imitating the stability of the original problem (2.17). In
addition, we require other forms of stability, based on replicating additional properties
of the initial value problem; these are introduced later.

2.4.1 Rounding error accumulation

The finite precision of computer arithmetic affects the accuracy in the numerical
solution of a differential equation. To investigate this effect, consider Euler’s method
(2.5). The simple arithmetic operations and the evaluationof f(xn, yn) will usually
contain errors due to rounding or chopping. For definitions of chopped and rounded
floating-point arithmetic, see [12, p. 39]. Thus what is actually evaluated is

ŷn+1 = ŷn + hf(xn,ŷn) + δn, n ≥ 0, ŷ0 = Y0. (2.50)

The quantityδn will be based on the precision of the arithmetic, and its sizeis affected
by that ofŷn. To simplify our work, we assume simply

|δn| ≤ cu · max
x0≤x≤xn

|Y (x)| , (2.51)

whereu is themachine epsilonof the computer (see [12, p. 38]) andc is a constant
of magnitude1 or larger. Using double precision arithmetic with a processor based
on the IEEE floating-point arithmetic standard,u

.
= 2.2 × 10−16.

To compare{ŷn} to the true solutionY (x), we begin by writing

Y (xn+1) = Y (xn) + hf(xn, Y (xn)) + 1
2h

2Y ′′(ξn), (2.52)

which was obtained earlier in (2.9). Subtracting (2.50) from (2.52), we get

Y (xn+1) − ŷn+1 = Y (xn) − ŷn + h[f(xn, Y (xn)) − f(xn, ŷn)]

+ 1
2h

2Y ′′(xn) − δn, n ≥ 0
(2.53)

NUMERICAL STABILITY 31

with Y (x0) − ŷ0 = 0. This equation is analogous to the error equation given earlier
in (2.12), with the role of the truncation error12h

2Y ′′(ξn) in that earlier equation
replaced by the term

1
2h

2Y ′′(ξn) − δn = h

[
1
2hY

′′(ξn) − δn
h

]
. (2.54)

If the argument in the proof of Theorem 2.4 is applied to (2.53) rather than to (2.12),
then the error result (2.20) generalizes to

|Y (xn) − ŷn| ≤ c1

{
1
2h

[
max

x0≤x≤b
|Y ′′(x)|

]
+
cu

h

[
max

x0≤x≤b
|Y (x)|

]}
(2.55)

for x0 ≤ xn ≤ b, we obtain

c1 =
e(b−x0)K − 1

2K
,

andK is the supremum of|∂f(x, y)/∂y|, defined in (2.30). The term in braces on
the right side of (2.55) is obtained by bounding the term in brackets on the right side
of (2.54) and using the assumption (2.51).

In essence, (2.55) says that

|Y (xn) − ŷn| ≤ α1h+
α2

h
, x0 ≤ xn ≤ b

for appropriate choices ofα1,α2. Note thatα2 is generally small becauseu is small.
Thus the error bound will initially decrease ash decreases; but at a critical value of
h, call it h∗, the error bound will increase, because of the termα2/h. The same
qualitative behavior turns out to apply also for the actual error Y (xn) − yn. Thus
there is a limit on the attainable accuracy, and it is less than the number of digits
available in the machine floating-point representation. This same analysis is valid
for other numerical methods, with a term of the form

cu

h

[
max

x0≤x≤b
|Y (x)|

]

to be included as part of the global error for the numerical method. With rounded
floating-pointarithmetic, this behavior can usually be improvedon. But with chopped
floating-point arithmetic, it is likely to be accurate in a qualitative sense: ash is halved,
the contribution to the error due to the chopped arithmetic will double.

Example 2.8 Solve the problem

Y ′(x) = −Y (x) + 2 cos(x), Y (0) = 1

using Euler’s method. The true solution isY (x) = sinx + cosx. Use a four digit
decimal machine with chopped floating-point arithmetic, and then repeat the calcu-
lation with rounded floating-point arithmetic. The machineepsilon in this arithmetic
is u = 0.001. Finally, give the results of Euler’s method with exact arithmetic. The

32 EULER’S METHOD

Table 2.4 Effects of rounding/chopping errors in Euler’s method

h x Chopped arithmetic Rounded arithmetic Exact arithmetic
Y (x) − ŷh(x) Y (x) − ŷh(x) Y (x) − yh(x)

0.04 1 −1.00e − 2 −1.70e − 2 −1.70e − 2

2 −1.17e − 2 −1.83e − 2 −1.83e − 2

3 −1.20e − 3 −2.80e − 3 −2.78e − 3

4 1.00e − 2 1.60e − 2 1.53e − 2

5 1.13e − 2 1.96e − 2 1.94e − 2

0.02 1 7.00e − 3 −9.00e − 3 −8.46e − 3

2 4.00e − 3 −9.10e − 3 −9.13e − 3

3 2.30e − 3 −1.40e − 3 −1.40e − 3

4 −6.00e − 3 8.00e − 3 7.62e − 3

5 −6.00e − 3 8.50e − 3 9.63e − 3

0.01 1 2.80e − 2 −3.00e − 3 −4.22e − 3

2 2.28e − 2 −4.30e − 3 −4.56e − 3

3 7.40e − 3 −4.00e − 4 −7.03e − 4

4 −2.30e − 2 3.00e − 3 3.80e − 3

5 −2.41e − 2 4.60e − 3 4.81e − 3

results with decreasingh are given in Table 2.4. The errors for the answers that
are obtained by using floating–point chopped and/or roundeddecimal arithmetic are
based on the true answers rounded to four digits.

Note that the errors with the chopped case are affected ath = 0.02, with the error
atx = 3 larger than whenh = 0.04 for that case. The increasing error is clear with
the h = 0.01 case, at all points. In contrast, the errors using rounded arithmetic
continue to decrease, although theh = 0.01 case is affected slightly, in comparison
to the true errors when no rounding is present. The column with the errors for the
case with exact arithmetic show that the use of the rounded decimal arithmetic has
less effect on the error than does the use of chopped arithmetic. But there is still an
effect.

PROBLEMS

1. Solve the following problems using Euler’s method with stepsizes ofh =
0.2, 0.1, 0.05. Compute the error and relative error using the true solution
Y (t). For selected values oft, observe the ratio by which the error decreases
whenh is halved.

(a) Y ′(t) = [cos(Y (t))]2, 0 ≤ t ≤ 10, Y (0) = 0;

NUMERICAL STABILITY 33

Y (t) = tan−1(t).

(b) Y ′(t) =
1

1 + t2
− 2[Y (t)]2, 0 ≤ t ≤ 10, Y (0) = 0;

Y (t) =
t

1 + t2
.

(c) Y ′(t) =
1

4
Y (t)

[
1 − 1

20
Y (t)

]
, 0 ≤ t ≤ 20, Y (0) = 1;

Y (t) =
20

1 + 19e−t/4
.

(d) Y ′(t) = −[Y (t)]2, 1 ≤ t ≤ 10, Y (1) = 1;

Y (t) =
1

t
.

(e) Y ′(t) = te−t − Y (t), 0 ≤ t ≤ 10, Y (0) = 1;

Y (t) =

(
1 +

1

2
t2
)
e−t.

(f) Y ′(t) =
t3

Y (t)
, 0 ≤ t ≤ 10, Y (0) = 1;

Y (t) =

√
1

2
t4 + 1.

(g) Y ′(t) =
(
3t2 + 1

)
Y (t)2, 0 ≤ t ≤ 10, Y (0) = −1;

Y (t) = −
(
t3 + t+ 1

)−1
.

2. Compute the true solution to the problem

Y ′(t) = −e−tY (t), Y (0) = 1.

Using Euler’s method, solve this equation numerically withstepsizes ofh =
0.2, 0.1, 0.05. Compute the error and relative error using the true solutionY (t).

3. Consider the linear problem

Y ′(t) = λY (t) + (1 − λ) cos(t) − (1 + λ) sin(t), Y (0) = 1.

The true solution isY (t) = sin(t) + cos(t). Solve this problem using Euler’s
method with several values ofλ andh, for 0 ≤ t ≤ 10. Comment on the
results.

(a) λ = −1; h = 0.5, 0.25, 0.125.

(b) λ = 1; h = 0.5, 0.25, 0.125.

(c) λ = −5; h = 0.5, 0.25, 0.125, 0.0625.

(d) λ = 5; h = 0.125, 0.0625.

34 EULER’S METHOD

4. As a special case in which the error of Euler’s method can beanalyzed directly,
consider Euler’s method applied to

Y ′(t) = Y (t), Y (0) = 1.

The true solution iset.

(a) Show that the solution of Euler’s method can be written as

yh(tn) = (1 + h)tn/h, n ≥ 0.

(b) Using L’Hospital’s rule from calculus, show that

lim
h→0

(1 + h)1/h = e.

This then proves that for fixedt = tn,

lim
h→0

yh(t) = et.

(c) Let us do a more delicate convergence analysis. Use the propertyab =
eb log a to write

yh(tn) = etn log(1+h)/h.

Then use the formula

log(1 + h) = h− 1
2h

2 + O(h3)

and Taylor expansion of the natural exponential function toshow that

Y (tn) − yh(tn) = 1
2htne

tn + O(h2).

This shows that forh small, the error is almost proportional toh, a phe-
nomenon already observed from the numerical results given in Tables 2.1
and 2.2.

5. Repeat the general procedures of Problem 4, but do so for the initial value
problem

Y ′(t) = cY (t), Y (0) = 1

with c 6= 0 a given constant.

6. Check the accuracy of the error bound (2.35) forb = 1, 2, 3, 4, 5 andh =
0.2, 0.1, 0.05. Compute the error bound and compare it with Table 2.1.

7. Consider again the problem (2.34) of Example 2.5. Let us derive a more
accurate error bound than the one given in Theorem 2.4. From (2.14) we have

en+1 = (1 − h) en + 1
2h

2e−ξn .

NUMERICAL STABILITY 35

Using this formula with0 < h ≤ 1, and recallinge0 = 0, show the error bound

|en| ≤ 1
2htn.

Compare this error bound to the true errors in Table 2.1.
Hint: 1 − h ≤ 1 ande−ξn ≤ 1.

8. Compute the errorbound (2.20), assumingy0 = Y0, for the problem (2.8) given
earlier in this chapter. Compare the bound with the actual errors given in Table
2.2, forb = 1, 2, 3, 4, 5 andh = 0.2, 0.1, 0.05.

9. Repeat Problem 8 for the equation in Problem 1(a).

10. For Problems 1 (b)–(d), the constantK in (2.19) will be infinite. To use the
error bound (2.20) in such cases, let

K = 2 · max
t0≤t≤b

∣∣∣∣
∂f(t, Y (t))

∂y

∣∣∣∣ .

This can be shown to be adequate for all sufficiently small values ofh. Then
repeat Problem 8 for Problem 1(b)–(d).

11. Consider the initial value problem

Y ′(t) = α tα−1, Y (0) = 0,

whereα > 0. The true solution isY (t) = tα. Whenα 6= integer, the true solu-
tion is not infinitely differentiable. In particular, to haveY twice continuously
differentiable, we needα ≥ 2. Use the Euler method to solve the initial value
problem forα = 2.5, 1.5, 1.1 with stepsizeh = 0.2, 0.1, 0.05. Compute the
solution errors at the nodes, and determine numerically theconvergence orders
of the Euler method for these problems.

12. The solution of

Y ′(t) = λY (t) + cos(t) − λ sin(t), Y (0) = 0

is Y (t) = sin(t). Find the asymptotic error formula (2.36) in this case. Also
compute the Euler solution for0 ≤ t ≤ 6, h = 0.2, 0.1, 0.05, andλ = 1,−1.
Compare the true errors with those obtained from the asymptotic estimate

Y (tn) − yn ≈ hD(tn).

13. Repeat Problem 12 forProblem1(d). Compare for1 ≤ t ≤ 6,h = 0.2, 0.1, 0.05.

14. For the example (2.8), with the numerical results in Table 2.2, use Richardson’s
extrapolation to estimate the errorY (tn) − yh(tn) whenh = 0.05. Also,
produce the Richardson extrapolateỹh(tn) and compute its error. Do this for
tn = 1, 2, 3, 4, 5, 6.

36 EULER’S METHOD

15. Repeat Problem 14 for Problems 1 (a)–(d).

16. Use Taylor’s theorem to show the standard numerical differentiation method

Y ′(tn+1) =
Y (tn+1) − Y (tn)

h
+ O(h).

Combine this with (2.36) to prove the error result (2.42).

CHAPTER 3

SYSTEMS OF DIFFERENTIAL
EQUATIONS

Although some applications of differential equations involve only a single first-order
equation, most applications involve a system of several such equations or higher-order
equations. In this chapter, we consider systems of first-order equations, showing
how Euler’s method applies to such systems. Numerical treatment of higher-order
equations can be carried out by first converting them to equivalent systems of first-
order equations.

To begin with a simple case, the general form of a system of twofirst-order differ-
ential equations is

Y ′
1(t) = f1(t, Y1(t), Y2(t)),
Y ′

2(t) = f2(t, Y1(t), Y2(t)).
(3.1)

The functionsf1(t, z1,z2) andf2(t, z1, z2) define the differential equations, and the
unknown functionsY1(t) andY2(t) are being sought. The initial value problem
consists of solving (3.1), subject to the initial conditions

Y1(t0) = Y1,0, Y2(t0) = Y2,0. (3.2)

37

38 SYSTEMS OF DIFFERENTIAL EQUATIONS

Example 3.1

(a) The initial value problem

Y ′
1(t) = Y1(t) − 2Y2(t) + 4 cos(t) − 2 sin(t), Y1(0) = 1,

Y ′
2(t) = 3Y1(t) − 4Y2(t) + 5 cos(t) − 5 sin(t), Y2(0) = 2

(3.3)

has the solution

Y1(t) = cos(t) + sin(t), Y2(t) = 2 cos(t).

This example will be used later in a numerical example illustrating Euler’s
method for systems.

(b) Consider the system

Y ′
1(t) = AY1(t)[1 −BY2(t)], Y1(0) = Y1,0,

Y ′
2(t) = CY2(t)[DY1(t) − 1], Y2(0) = Y2,0

(3.4)

with constantsA,B,C,D > 0. This is called the Lotka–Volterra predator–
prey model. The variablet denotes time,Y1(t) the numberof prey (e.g., rabbits)
at timet, andY2(t) the number of predators (e.g., foxes). If there is only a
single type of predator and a single type of prey, then this model is often a
reasonable approximation of reality. The behavior of the solutionsY1 andY2

is illustrated in Problem 8.

The initial value problem for a system ofm first-order differential equations has
the general form

Y ′
1(t)= f1(t, Y1(t), . . . , Ym(t)), Y1(t0) = Y1,0,

...
Y ′

m(t)= fm(t, Y1(t), . . . , Ym(t)), Ym(t0)= Ym,0.

(3.5)

We seek the functionsY1(t), . . . , Ym(t) on some intervalt0 ≤ t ≤ b. An example of
a three-equation system is given later in (3.21).

The general form (3.5) is clumsy to work with, and it is not a convenient way to
specify the system when using a computer program for its solution. To simplify the
form of (3.5), represent the solution and the differential equations by using column
vectors. Denote

Y(t) =



Y1(t)

...
Ym(t)


, Y0 =



Y1,0

...
Ym,0


, f(t,y) =



f1(t, y1, . . . , ym)

...
fm(t, y1, . . . , ym)


 (3.6)

with y = [y1, y2, . . . , ym]T. Then (3.5) can be rewritten as

Y′(t) = f(t,Y(t)), Y(t0) = Y0. (3.7)

HIGHER-ORDER DIFFERENTIAL EQUATIONS 39

This resembles the earlier first-order single equation, butit is general as to the number
of equations. Computer programs for solving systems will almost always refer to the
system in this manner.

Example 3.2 System (3.3) can be rewritten as

Y′(t) = AY(t) + G(t), Y(0) = Y0

with

Y =

[
Y1

Y2

]
, A =

[
1 −2

3 −4

]
,

G(t) =

[
4 cos(t) − 2 sin(t)

5 cos(t) − 5 sin(t)

]
, Y0 =

[
1

2

]
.

In the notation of (3.6), we obtain

f(t,y) = Ay + G(t), y = [y1, y2]
T.

The general theory in Chapter 1 for a single differential equation generalizes in
an easy way to systems of first-order differential equations, once we have introduced
appropriate notation and tools for (3.6). For example, the role of the partial differential
∂f/∂y is replaced with the Jacobian matrix

fy(t,y) =

[
∂fi(t, y1, . . . , ym)

∂yj

]m

i,j=1

. (3.8)

We replace the absolute value|·| with a vector norm. A convenient choice is the
maximum norm:

‖y‖∞ = max
1≤i≤m

|yi| , y ∈ R
m.

With this, we can generalize the Lipschitz condition (2.19)to

‖f(t,y) − f(t, z)‖∞ ≤ K ‖y − z‖∞ , y, z ∈ R
m, t0 ≤ t ≤ b, (3.9)

K = max
t0≤t≤b

max
1≤i≤m

sup
y∈Rm

m∑

j=1

∣∣∣∣
∂fi(t,y)

∂yj

∣∣∣∣ .

3.1 HIGHER-ORDER DIFFERENTIAL EQUATIONS

In physics and engineering, the use ofNewton’s second law of motionleads to systems
of second-order differential equations, modeling some of the most important physical
phenomena of nature. In addition, other applications also lead to higher-order equa-
tions. Higher-order equations can be studied either directly or through equivalent
systems of first-order equations.

40 SYSTEMS OF DIFFERENTIAL EQUATIONS

m

θ=0 mg

θ(t)
l

Figure 3.1 The schematic of pendulum

As an example, consider the second-order equation

Y ′′(t) = f(t, Y (t), Y ′(t)), (3.10)

wheref(t, y1, y2) is given. The initial value problem consists of solving (3.10) subject
to the initial conditions

Y (t0) = Y0, Y ′(t0) = Y ′
0 . (3.11)

To reformulate this as a system of first-order equations, denote

Y1(t) = Y (t), Y2(t) = Y ′(t).

ThenY1 andY2 satisfy

Y ′
1(t) = Y2(t), Y1(t0) = Y0,

Y ′
2(t) = f(t, Y1(t), Y2(t)), Y2(t0) = Y ′

0 .
(3.12)

Also, starting from this system, it is straightforward to show that the solutionY1 of
(3.12) will also have to satisfy (3.10) and (3.11), thus demonstrating the equivalence
of the two formulations.

Example 3.3 Consider the pendulum shown in Figure 3.1, of massm and lengthl.
The motion of this pendulum about its centerlineθ = 0 is modeled by a second-order

HIGHER-ORDER DIFFERENTIAL EQUATIONS 41

differential equation derived from Newton’s second law of motion. If the pendulum is
assumed to move back and forth with negligible friction at its vertex, then the motion
is modeled fairly accurately by the equation

ml
d2θ

dt2
= −mg sin(θ(t)), (3.13)

wheret is time andθ(t) is the angle between the vertical centerline and the pendulum.
The description of the motion is completed by specifying theinitial positionθ(0) and
initial angular velocityθ′(0). To convert this to a system of two first-order equations,
we may write

Y1(t) = θ(t), Y2(t) = θ′(t).

Then (3.13) and the initial conditions can be rewritten as

Y ′
1(t) = Y2(t), Y1(0) = θ(0)

Y ′
2(t) = −g

l
sin(Y1(t)), Y2(0) = θ′(0).

(3.14)

This system is equivalent to the initial value problem for the original second-order
equation (3.13).

A general differential equation of orderm can be written as

dmY (t)

dtm
= f

(
t, Y (t),

dY (t)

dt
, . . . ,

dm−1Y (t)

dtm−1

)
, (3.15)

and the initial conditions needed to solve it are given by

Y (t0) = Y0, Y ′(t0) = Y ′
0 , . . . , Y (m−1)(t0) = Y

(m−1)
0 . (3.16)

It is reformulated as a system ofm first-order equations by introducing

Y1(t) = Y (t), Y2(t) = Y ′(t), . . . , Ym(t) = Y (m−1)(t).

Then the equivalent initial value problem for a system of first-order equations is

Y ′
1(t)=Y2(t), Y1(t0)=Y0,

...
...

Y ′
m−1(t)=Ym(t), Ym−1(t0)=Y

(m−2)
0 ,

Y ′
m(t)=f(t, Y1(t), . . . , Ym(t)), Ym(t0)=Y

(m−1)
0 .

(3.17)

A special case of (3.15) is the orderm linear differential equation

dmY

dtm
= a0(t)Y + a1(t)

dY

dt
+ · · · + am−1(t)

dm−1Y

dtm−1
+ b(t). (3.18)

42 SYSTEMS OF DIFFERENTIAL EQUATIONS

This is reformulated as above, with

Y ′
m = a0(t)Y1 + a1(t)Y2 + · · · + am−1(t)Ym + b(t) (3.19)

replacing the last equation in (3.17).

Example 3.4 The initial value problem

Y ′′′(t) + 3Y ′′(t) + 3Y ′(t) + Y (t) = −4 sin(t),

Y (0) = Y ′(0) = 1, Y ′′(0) = −1
(3.20)

is reformulated as

Y ′
1(t)=Y2(t), Y1(0)=1,

Y ′
2(t)=Y3(t), Y2(0)=1,

Y ′
3(t)=−Y1(t) − 3Y2(t) − 3Y3(t) − 4 sin(t), Y3(0)=−1.

(3.21)

The solution of (3.20) isY (t) = cos(t) + sin(t), and the solution of (3.21) can be
generated from it. This system will be solved numerically later in this chapter.

3.2 NUMERICAL METHODS FOR SYSTEMS

Euler’s method and the numerical methods discussed in laterchapters can be applied
without change to the solution of systems of first-order differential equations. The
numerical method should be applied to each equation in the system, or more simply,
in a straightforward way to the system written in the matrix–vector format (3.7). The
derivation of numerical methods for the solution of systemsis essentially the same as
is done for a single equation. The convergence and stabilityanalyses are also done
in the same manner.

To be more specific, we consider Euler’s method for the general system of two
first-order equations that is given in (3.1). By following the derivation given for
Euler’s method in obtaining (2.9), Taylor’s theorem gives

Y1(tn+1) = Y1(tn) + hf1(tn, Y1(tn), Y2(tn)) +
h2

2
Y ′′

1 (ξn),

Y2(tn+1) = Y2(tn) + hf2(tn, Y1(tn), Y2(tn)) +
h2

2
Y ′′

2 (ζn)

for someξn, ζn in [tn, tn+1]. Dropping the error terms, we obtain Euler’s method for
a system of two equations forn ≥ 0:

y1,n+1 = y1,n + hf1(tn, y1,n, y2,n),

y2,n+1 = y2,n + hf2(tn, y1,n, y2,n).
(3.22)

NUMERICAL METHODS FOR SYSTEMS 43

In matrix–vector format, this is

yn+1 = yn + hf(tn,yn), y0 = Y0. (3.23)

The convergence and stability theory of Euler’s method and of the other numerical
methods also generalizes. The key is to use the matrix–vector notation introduced
earlier in the chapter together with (3.8)–(3.9). This allows a straightforward imitation
of the proofs given in earlier chapters for a single equation.

Letm = 2 as above, and consider Euler’s method (3.22) together with the exact
initial valuesy1,0 = Y1,0, y2,0 = Y2,0. If Y1(t), Y2(t) are twice continuously
differentiable, then it can be shown that

|Y1(tn) − y1,n| ≤ ch, |Y2(tn) − y2,n| ≤ ch

for all t0 ≤ tn ≤ b, for some constantc. In addition, the earlier asymptotic error
formula (2.36) will still be valid; forj = 1, 2, we obtain

Yj(tn) − yj,n = Dj(tn)h+ O(h2), t0 ≤ tn ≤ b.

Thus Richardson’s extrapolation and error estimation formulas will still be valid. The
functionsD1(t),D2(t) satisfy a particular linear system of differential equations, but
we omit it here. Stability results for Euler’s method generalize without any significant
change. Thus in summary, the earlier work for Euler’s methodgeneralizes without
significant change to systems. The same is true of the other numerical methods
given earlier, thus justifying our limitation to a single equation for introducing those
methods.

MATLAB R© program. The following is a MATLAB codeeulersys implementing
the Euler method to solve the initial value problem (3.7). Itcan be seen that the
codeeulersys is just a slight modification of the codeeuler for for solving a
single equation in Chapter 2. The program can automaticallydetermine the number
of equations in the system.

function [t,y] = eulersys(t0,y0,t end,h,fcn)

%

% function [t,y]=eulersys(t0,y0,t end,h,fcn)

%

% Solve the initial value problem of a system

% of first order equations

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use Euler’s method with a stepsize of h.

% The user must supply a program to compute the

% right hand side function with some name, say

% deriv, and a first line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=eulersys(t0,z0,b,delta,’deriv’)

44 SYSTEMS OF DIFFERENTIAL EQUATIONS

Table 3.1 Solution of (3.3) using Euler’s method

j t Yj(t) Yj(t) − yj,2h(t) Yj(t) − yj,h(t) Ratio yj,h(t) − yj,2h(t)

1 2 0.49315 −5.65e − 2 −2.82e − 2 2.0 −2.83e − 2

4 −1.41045 −5.64e − 3 −2.72e − 3 2.1 −2.92e − 3

6 0.68075 4.81e − 2 2.36e − 2 2.0 2.44e − 2

8 0.84386 −3.60e − 2 −1.79e − 2 2.0 −1.83e − 2

10 −1.38309 −1.81e − 2 −8.87e − 3 2.0 −9.40e − 2

2 2 −0.83229 −3.36e − 2 −1.70e − 2 2.0 −1.66e − 2

4 −1.30729 5.94e − 3 3.19e − 3 1.9 2.75e − 3

6 1.92034 1.59e − 2 7.69e − 3 2.1 8.17e − 3

8 −0.29100 −2.08e − 2 −1.05e − 2 2.0 −1.03e − 2

10 −1.67814 1.26e − 3 9.44e − 4 1.3 3.11e − 4

%

% The program automatically determines the

% number of equations from the dimension of

% the initial value vector y0.

%

% Output:

% The routine eulersys will return a vector t

% and a matrix y. The vector t will contain the

% node points in [t0,t end]:

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% The matrix y is of size N by m, with m the

% number of equations. The i-th row y(i,:) will

% contain the estimates of the solution Y

% at the node points in t(i).

%

m = length(y0);

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,m);

y(1,:) = y0;

for i = 2:n

y(i,:) = y(i-1,:) + h*feval(fcn,t(i-1),y(i-1,:));

end

NUMERICAL METHODS FOR SYSTEMS 45

Example 3.5

(a) Solve (3.3) using Euler’s method. The numerical resultsare given in Table 3.1,
along with Richardson’s error estimate

Yj(tn) − yj,h(tn) ≈ yj,h(tn) − yj,2h(tn), j = 1, 2.

In the table,h = 0.05, 2h = 0.1. It can be seen that this error estimate is quite
accurate, except for the one casej = 2, t = 10. To get the numerical solution
values and their errors at the specified node pointst = 2, 4, 6, 8, 10, we used
the following MATLAB commands, which can be included at the end of the
programeulersys for this example.

n1 = (n-1)/5;

for i = n1+1:n1:n

e(i,1) = cos(t(i))+sin(t(i))-y(i,1);

e(i,2) = 2*cos(t(i))-y(i,2);

end

diary euler sys1

fprintf(’ h = 6.5f\n’, h)

disp(’ t y(1) e(1) y(2) e(2)’)

for i = n1+1:n1:n

fprintf(’2.0f%10.2e%10.2e%10.2e%10.2e\n’, ...

t(i), y(i,1),e(i,1),y(i,2),e(i,2))

end

diary off

The right-hand side function for this example is defined by the following.

function z = eulersys fcn(t,y);

z = zeros(1,2);

z(1) = y(1)-2*y(2)+4*cos(t)-2*sin(t);

z(2) = 3*y(1)-4*y(2)+5*cos(t)-5*sin(t);

(b) Solve the third-order equation in (3.20), using Euler’smethod to solve the
reformulated problem (3.21). The results fory(t) = Y1(t) = sin(t) + cos(t)
are given in Table 3.2, for stepsizes2h = 0.1 andh = 0.05. The Richardson
error estimate is again quite accurate.

Other numerical methods apply to systems in the same straightforward manner.
Also, by using the matrix form (3.7) for a system, there is no apparent change in the
numerical method. For example, the Runge–Kutta method (5.20), given in Section
5.2 of Chapter 5, is

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + hf(tn, yn))], n ≥ 0. (3.24)

46 SYSTEMS OF DIFFERENTIAL EQUATIONS

Table 3.2 Solution of (3.20) using Euler’s method

t y(t) y(t) − y2h(t) y(t) − yh(t) Ratio yh(t) − y2h(t)

2 0.49315 −8.78e − 2 −4.25e − 2 2.1 −4.53e − 2

4 −1.41045 1.39e − 1 6.86e − 2 2.0 7.05e − 2

6 0.68075 5.19e − 2 2.49e − 2 2.1 2.70e − 2

8 0.84386 −1.56e − 1 −7.56e − 2 2.1 −7.99e − 2

10 −1.38309 8.39e − 2 4.14e − 2 2.0 4.25e − 2

Interpret this for a system of two equations with

yn =

[
y1,n

y2,n

]
, f(tn,yn) =

[
f1(tn, y1,n, y2,n)

f2(tn, y1,n, y2,n)

]
,

yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn + hf(tn,yn))], n ≥ 0. (3.25)

In component form, the method is

yj,n+1 = yj,n + 1
2h[fj(tn, y1,n, y2,n)

+fj(tn+1, y1,n + hf1(tn, y1,n, y2,n),

y2,n + hf2(tn,y1,n, y2,n))]

(3.26)

for j = 1, 2. The matrix–vector format (3.25) can be programmed very conveniently
on a computer. We leave its illustration to the problems.

PROBLEMS

1. Let

A =

[
1 −2

2 −1

]
, Y =

[
Y1

Y2

]
,

G(t) =

[
−2e−t + 2

−2e−t + 1

]
, Y0 =

[
1

1

]
.

Write out the two equations that make up the system

Y′(t) = AY(t) + G(t), Y(t0) = Y0.

The true solution isY(t) = [e−t, 1]T .

2. Express the system (3.21) to the general form of Problem 1,giving the matrix
A.

3. Convert the following higher-order equations to systemsof first-order equa-
tions.

NUMERICAL METHODS FOR SYSTEMS 47

(a) Y ′′′(t) + 4Y ′′(t) + 5Y ′(t) + 2Y (t) = 2t2 + 10t+ 8,
Y (0) = 1, Y ′(0) = −1, Y ′′(0) = 3.

The true solution isY (t) = e−t + t2.

(b) Y ′′(t) + 4Y ′(t) + 13Y (t) = 40 cos(t),
Y (0) = 3, Y ′(0) = 4.

The true solution isY (t) = 3 cos(t) + sin(t) + e−2t sin(3t).

4. Convert the following system of second-order equations to a larger system
of first-order equations. This system arises from studying the gravitational
attraction of one mass by another:

x′′(t) =
−cx(t)
r(t)3

, y′′(t) =
−cy(t)
r(t)3

, z′′(t) =
−cz(t)
r(t)3

Herec is a positive constant andr(t) = [x(t)2 + y(t)2 + z(t)2]1/2, with t
denoting time.

5. Using Euler’s method, solve the system in Problem 1. Use stepsizes ofh =
0.1, 0.05, 0.025, and solve for0 ≤ t ≤ 10. Use Richardson’s error formula to
estimate the error forh = 0.025.

6. Repeat Problem 5 for the systems in Problem 3.

7. Consider solving the pendulum equation (3.13) withl = 1 andg = 32.2 ft/s2.
For the initial values, choose0 < θ(0) ≤ π/2, θ′(0) = 0. Use Euler’s method
to solve (3.14),and experiment with various values ofh so as to obtain a suitably
small error in the computed solution. Grapht vs.θ(t), t vs.θ′(t), andθ(t) vs.
θ′(t). Does the motion appear to be periodic in time?

8. Solve the Lotka–Volterra predator–prey model of (3.4) with the parameters
A = 4, B = 1

2 , C = 3, D = 1
3 , and useeulersys to solve approximately

this model for0 ≤ t ≤ 5. Use stepsizesh = 0.001, 0.0005, 0.00025. Use the
initial valuesx(0) = 3, y(0) = 5. Plotx andy as functions oft, and plotx
versusy. Comment on your results. We return to this problem in later chapters
when we have more efficient methods for its solution.

CHAPTER 4

THE BACKWARD EULER METHOD AND
THE TRAPEZOIDAL METHOD

In Section 1.2 of Chapter 1, we discussed the stability property of the initial value
problem (1.7). Roughly speaking,stability means that a small perturbation in the
initial value of the problem leads to a small change in the solution. In Section 2.4 of
Chapter 2, we showed that an analogous stability result was true forEuler’s method. In
general, we want to work with numerical methods for solving the initial value problem
that are numerically stable. This means that for any sufficiently small stepsizeh, a
small change in the initial value will lead to a small change in the numerical solution.
Indeed, such a stability property is closely related to the convergenceof the numerical
method, a topic we discuss at length in Chapter 7. For anotherexample of the relation
between convergence and stability, we refer to Problem 16 for a numerical method
that is neither convergent nor stable.

A stable numerical method is one for which the numerical solution is well behaved
when considering small perturbations, provided that the stepsizeh is sufficiently
small. In actual computations,however, the stepsizeh cannot be too small since a very
small stepsize decreases the efficiency of the numerical method. As can be shown,
the accuracy of the forward difference approximations, such as[Y (t+ h)− Y (t)]/h
to the derivativeY ′(t), deteriorates when, roughly speaking,h is of the order of the
square root of themachine epsilon. Hence, for actual computations, what matters

49

50 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

is the performance of the numerical method whenh is not assumedvery small. We
need to further analyze the stability of numerical methods whenh is not assumed to
be small.

Examining the stability question for the general problem

Y ′(t) = f(t, Y (t)), Y (t0) = Y0 (4.1)

is too complicated. Instead, we examine the stability of numerical methods for the
model problem

Y ′(t) = λY (t) + g(t), Y (0) = Y0 (4.2)

whose exact solution can be found from (1.5). Questions regarding stability and
convergence are more easily answered for this problem, and the answers to these
questions can be shown to usually be the answers to those samequestions for the
more general problem (4.1).

Let Y (t) be the solution of (4.2), and letYǫ(t) be the solution with the perturbed
initial dataY0 + ǫ:

Y ′
ǫ (t) = λYǫ(t) + g(t), Yǫ(0) = Y0 + ǫ.

LetZǫ(t) denote the change in the solution

Zǫ(t) = Yǫ(t) − Y (t).

Then, subtracting (4.2) from the equation forYǫ(t), we obtain

Z ′
ǫ(t) = λZǫ(t), Zǫ(0) = ǫ.

The solution is
Zǫ(t) = ǫeλt.

Typically in applications, we are interested in the case that eitherλ is real and negative
or λ is complex with a negative real part. In such a case,Zǫ(t) will go to zero as
t→ ∞ and, thus, the effect of theǫ perturbation dies out for large values oft. (See a
related discussion in Section 1.2 of Chapter 1.) We would like the same behavior to
hold for the numerical method that is being applied to (4.2).

By considering the functionZǫ(t)/ǫ instead ofZǫ(t), we obtain the following
model problem that is generally used to test the performanceof various numerical
methods:

Y ′ = λY, t > 0,
Y (0) = 1.

(4.3)

In the following, when we refer to the model problem (4.3), wealways assume that
the constantλ < 0 or λ is complex and withReal(λ) < 0. The true solution of the
problem (4.3) is

Y (t) = eλ t, (4.4)

which decays exponentially int since the parameterλ has a negative real part.

THE BACKWARD EULER METHOD 51

The kind of stability property we would like for a numerical method is that when
it is applied to (4.3), the numerical solution satisfies

yh(tn) → 0 as tn → ∞ (4.5)

for any choice of the stepsizeh. The set of valueshλ, considered as a subset of the
complex plane, for whichyn → 0 asn→ ∞, is called theregion of absolute stability
of the numerical method. The use ofhλ arises naturally from the numerical method,
as we will see.

Let us examine the performance of the Euler method on the model problem (4.3).
We have

yn+1 = yn + hλ yn = (1 + hλ) yn, n ≥ 0, y0 = 1.

By an inductive argument, it is not difficult to find

yn = (1 + hλ)n, n ≥ 0. (4.6)

Note that for a fixed node pointtn = nh ≡ t, asn→ ∞, we obtain

yn =

(
1 +

λt

n

)n

→ eλt.

The limiting behavior is obtained using L’Hospital’s rule from calculus. This confirms
the convergence of the Eulermethod. We emphasize that this is an asymptotic property
in the sense that it is valid in the limit ash→ 0.

From formula (4.6), we see thatyn → 0 asn→ ∞ if and only if

|1 + hλ| < 1.

Forλ real and negative, the condition becomes

−2 < hλ < 0. (4.7)

This sets a restriction on the range ofh that we can take to apply Euler’s method,
namely,0 < h < −2/λ.

Example 4.1 Consider the model problem withλ = −100. Then the Euler method
will perform well only whenh < 2×100−1 = 0.02. The true solutionY (t) = e−100t

at t = 0.2 is 2.061 × 10−9. Table 4.1 lists the Euler solution att = 0.2 for several
values ofh.

4.1 THE BACKWARD EULER METHOD

Now we consider a numerical method that has the property (4.5) for any stepsizeh
when applied to the model problem (4.3). Such a method is saidto beabsolutely
stable.

52 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

Table 4.1 Euler’s solution atx = 0.2 for Example 4.1

h yh(0.2)

0.1 81
0.05 256
0.02 1
0.01 0
0.001 7.06e − 10

In the derivation of the Euler method, we used the forward difference approxima-
tion

Y ′(t) ≈ 1

h
[Y (t+ h) − Y (t)].

Let us use, instead, thebackward difference approximation

Y ′(t) ≈ 1

h
[Y (t) − Y (t− h)]. (4.8)

Then the differential equationY ′(t) = f(t, Y (t)) at t = tn is discretized as

yn = yn−1 + h f(tn, yn).

Shifting the index by 1, we then obtain thebackward Euler method
{
yn+1 = yn + h f(tn+1, yn+1), 0 ≤ n ≤ N − 1,
y0 = Y0.

(4.9)

Like the Euler method, the backward Euler method is of first-order accuracy, and a
convergenceresult similar to Theorem 2.4 holds. Also, an asymptotic error expansion
of the form (2.36) is valid. The method of proof is a variationon that used for Euler’s
method in Section 2.3 of Chapter 2.

Let us show that the backward Euler method has the desired property (4.5) on the
model problem (4.3). We have

yn+1 = yn + hλ yn+1,

yn+1 = (1 − hλ)−1yn, n ≥ 0.

Using this together withy0 = 1, we obtain

yn = (1 − hλ)−n. (4.10)

For any stepsizeh > 0, we have|1 − hλ| > 1 and soyn → 0 asn→ ∞.
Continuing with Example 4.1, in Table 4.2 we give numerical results for the back-

ward Euler method. A comparison between Tables 4.1 and 4.2 reveals that the back-
ward Euler method is substantially better than the Euler method on the model problem
(4.3).

THE BACKWARD EULER METHOD 53

Table 4.2 Backward Euler solution atx = 0.2 for Example 4.1

h yh(0.2)

0.1 8.26e − 3
0.05 7.72e − 4
0.02 1.69e − 5
0.01 9.54e − 7
0.001 5.27e − 9

The major difference between the two methods is that for the backward Euler
method, at each timestep, we need to solve a nonlinear algebraic equation

yn+1 = yn + h f(tn+1, yn+1) (4.11)

for yn+1. Methods in whichyn+1 must be found by solving a rootfinding problem
are calledimplicit methods, sinceyn+1 is defined implicitly. In contrast, methods that
giveyn+1 directly are calledexplicit methods. Euler’s method is an explicit method,
whereas the backward Euler method is an implicit method. Under the Lipschitz
continuity assumption (2.19) on the functionf(t, z), it can be shown that ifh is small
enough, the equation (4.11) has a unique solution.

Traditional rootfinding methods (e.g., Newton’s method, the secant method, the
bisection method) can be applied to (4.11) to find its rootyn+1; but often that is a
very time-consuming process. Instead, (4.11) is usually solved by a simple iteration
technique. Given an initial guessy(0)

n+1 ≈ yn+1, definey(1)
n+1, y(2)

n+1, etc., by

y
(j+1)
n+1 = yn + h f(tn+1, y

(j)
n+1), j = 0, 1, 2, (4.12)

It can be shown that ifh is sufficiently small, then the iteratesy(j)
n+1 will converge to

yn+1 asj → ∞. Subtracting (4.12) from (4.11) gives us

yn+1 − y
(j+1)
n+1 = h [f(tn+1, yn+1) − f(tn+1, y

(j)
n+1)],

yn+1 − y
(j+1)
n+1 ≈ h · ∂f(tn+1, yn+1)

∂y
[yn+1 − y

(j)
n+1].

The last formula is obtained by applying the mean value theorem to f(tn+1, z),
considered as a function ofz. This formula gives a relation between the error in
successive iterates. Therefore, if

∣∣∣∣h · ∂f(tn+1, yn+1)

∂y

∣∣∣∣ < 1, (4.13)

then the errors will converge to zero, as long as the initial guessy(0)
n+1 is a sufficiently

accurate approximation toyn+1.

54 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

The preceding iteration method (4.12) and its analysis is a special case of the theory
of fixed-point iterationfor solving a nonlinear equationz = g(z). The iteration
scheme is

zj+1 = g(zj), j = 0, 1, 2, . . . (4.14)

with z0 an initial estimate of the solution being sought. Denote byα the solution
we are seeking for the equationz = g(z). Assuming thatg(z) is continuously
differentiable in a neighborhood ofα, we have that the iteration (4.14) will converge
if

|g′(α)| < 1 (4.15)

and if the initial estimatez0 is chosen sufficiently close toα; see [11,§2.5], [12,§3.4],
[68, §6.3]. Applying this notation to our iteration (4.12),α = yn+1 is the fixed point,
and

g(z) ≡ yn + h f(tn+1, z).

The convergence condition (4.13) is simply the condition (4.15).
In practice, one uses a good initial guessy

(0)
n+1, and one chooses anh that is so

small that the quantity in (4.13) is much less than1. Then the erroryn+1 − y
(j)
n+1

decreases rapidly to a small quantity asj increases, and often only one iterate needs
to be computed. The usual choice of the initial guessy

(0)
n+1 for (4.12) is based on the

Euler method
y
(0)
n+1 = yn + hf(tn, yn). (4.16)

This is called apredictor formula, as it predicts the root of the implicit method.
For many equations, it is usually sufficient to do the iteration (4.12) once. Thus,

a practical way to implement the backward Euler method is to do the following one-
point iteration for solving (4.11) approximately:

yn+1 = yn + h f(tn+1, yn),

yn+1 = yn + h f(tn+1, yn+1).

The resulting numerical method is then given by the formula

yn+1 = yn + h f(tn+1, yn + h f(tn+1, yn)). (4.17)

It can be shown that this method is still of first-order accuracy. However, it is no
longer absolutely stable (see Problem 1).

MATLAB R© program. We now turn to an implementation of the backward Euler
method. At each step, withyn available from the previous step, we use the Euler
method to compute an estimate ofyn+1:

y
(1)
n+1 = yn + hf(tn, yn).

Then we carry out the iteration

y
(k+1)
n+1 = yn + h f(tn+1, y

(k)
n+1)

THE BACKWARD EULER METHOD 55

until the difference between successive values of the iterates is sufficiently small,
indicating a sufficiently accurate approximation of the solutionyn+1. To prevent an
infinite loop of iteration, we require the iteration to stop if 10 iteration steps are taken
without reaching a satisfactory solution; in this latter case, an error message will be
displayed.

function [t,y] = euler back(t0,y0,t end,h,fcn,tol)

%

% function [t,y] = euler back(t0,y0,t end,h,fcn,tol)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use the backward Euler method with a stepsize of h.

% The user must supply an m-file to define the

% derivative f, with some name, say ’deriv.m’, and a

% first line of the form

% function ans=deriv(t,y)

% tol is the user supplied bound on the difference

% between successive values of the backward Euler

% iteration. A sample call would be

% [t,z]=euler back(t0,z0,b,delta,’deriv’,1.0e-3)

%

% Output:

% The routine euler back will return two vectors,

% t and y. The vector t will contain the node points

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end, t(N)+h > t end

% The vector y will contain the estimates of the

% solution Y at the node points in t.

%

% Initialize.

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);

y(1) = y0;

i = 2;

% advancing

while i <= n

%

% forward Euler estimate

%

yt1 = y(i-1)+h*feval(fcn,t(i-1),y(i-1));

% one-point iteration

56 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

count = 0;

diff = 1;

while diff > tol & count < 10

yt2 = y(i-1) + h*feval(fcn,t(i),yt1);

diff = abs(yt2-yt1);

yt1 = yt2;

count = count +1;

end

if count >= 10

disp(’Not converging after 10 steps at t = ’)

fprintf(’%5.2f\n’, t(i))

end

y(i) = yt2;

i = i+1;

end

4.2 THE TRAPEZOIDAL METHOD

One main drawback of both the Euler method and the backward Euler method is the
low convergenceorder. Next we present a method that has a higher convergenceorder
and in which, at the same time, the stability property (4.5) is valid for any stepsizeh
in solving the model problem (4.3).

We begin by introducing thetrapezoidal rulefor numerical integration:

∫ b

a

g(s) ds ≈ 1
2 (b− a) [g(a) + g(b)] . (4.18)

This rule is illustrated in Figure 4.1. The graph ofy = g(t) is approximated on[a, b]
by the linear functiony = p1(t) that interpolatesg(t) at the endpoints of[a, b]. The
integral ofg(t) over [a, b] is then approximated by the integral ofp1(t) over [a, b].
By using various approaches, we can obtain the more completeresult

∫ b

a

g(s) ds = 1
2 (b− a) [g(a) + g(b)] − 1

12 (b− a)
3
g′′(ξ) (4.19)

for somea ≤ ξ ≤ b.
We integrate the differential equation

Y ′(t) = f(t, Y (t))

from tn to tn+1:

Y (tn+1) = Y (tn) +

∫ tn+1

tn

f(s, Y (s)) ds. (4.20)

THE TRAPEZOIDAL METHOD 57

t

y

a b

y=g(t)

y=p
1
(t)

Figure 4.1 Illustration of trapezoidal rule

Use the trapezoidal rule (4.18) to approximate the integral. Applying (4.19) to this
integral, we obtain

Y (tn+1) = Y (tn) + 1
2h [f(tn, Y (tn)) + f(tn+1, Y (tn+1))]

− 1
12h

3Y (3)(ξn)
(4.21)

for sometn ≤ ξn ≤ tn+1. By dropping the final error term and then equating both
sides, we obtain thetrapezoidal methodfor solving the initial value problem (1.7):

yn+1 = yn + 1
2h [f(tn, yn) + f(tn+1, yn+1)] , n ≥ 0, (4.22)

with y0 = Y0.
The truncation error for the trapezoidal method is

Tn+1 = − 1
12h

3Y (3)(ξn). (4.23)

It can be shown that the trapezoidal method is of second-order accuracy. Assuming
y0 = Y0, we can show

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ ch2

for all sufficiently smallh, with c independentofh. The method of proof is a variation
of that used for Euler’s method in Chapter 2. In addition, thetrapezoidal method is

58 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

absolutely stable. This higher order and its absolute stability has made the trapezoidal
method an important tool when solving partial differentialequations of parabolic type;
see Section 8.1 in Chapter 8.

Notice that the trapezoidal method is animplicit method.In a general step,yn+1

is found from the equation

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)], (4.24)

although this equation can be solved explicitly in only a relatively small number of
cases. The discussion for the solution of the backward Eulerequation (4.11) applies
to the solution of the equation (4.24), with a slight variation. The iteration formula
(4.12) is now replaced by

y
(j+1)
n+1 = yn +

h

2
[f(tn, yn) + f(tn+1, y

(j)
n+1)], j = 0, 1, 2, (4.25)

If y(0)
n+1 is a sufficiently good estimate ofyn+1 and ifh is sufficiently small, then the

iteratesy(j)
n+1 will converge toyn+1 asj → ∞. The convergence condition (4.13) is

replaced by ∣∣∣∣
h

2
· ∂f(tn+1, yn+1)

∂y

∣∣∣∣ < 1. (4.26)

Note that the condition (4.26) is somewhat easier to satisfythan (4.13), indicating
that the trapezoidal method is slightly easier to use than the backward Euler method.

The usual choice of the initial guessy(0)
n+1 for (4.25) is based on the Euler method

y
(0)
n+1 = yn + hf(tn, yn), (4.27)

or an Adams–Bashforth method of order 2 (see Chapter 6)

y
(0)
n+1 = yn +

h

2
[3f(tn, yn) − f(tn−1, yn−1)]. (4.28)

These are calledpredictor formulas. In either of these two cases for generatingy
(0)
n+1,

computey(1)
n+1 from (4.25) and accept it as the rootyn+1. In the first step (n = 0), we

use the Euler predictor formula rather than the predictor (4.28). With both methods of
choosingy(0)

n+1, it can be shown that the global error in the resulting solution{yh(tn)}

is still O(h2). If the Euler predictor (4.27) is used to definey(0)
n+1, and if we accept

y
(1)
n+1 as the value ofyn+1, then the resulting new scheme is

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + h f(tn, yn))] , (4.29)

known asHeun’s method. The Heun method is still of second-order accuracy.
However, it is no longer absolutely stable.

THE TRAPEZOIDAL METHOD 59

MATLAB program. In our implementation of the trapezoidal method, at each step,
with yn available from the previous step, we use the Euler method to compute an
estimate ofyn+1:

y
(0)
n+1 = yn + hf(tn, yn).

Then we use the trapezoidal formula to do the iteration

y
(k+1)
n+1 = yn +

h

2

[
f(tn, yn) + f(tn+1, y

(k)
n+1)

]

until the difference between successive values of the iterates is sufficiently small,
indicating a sufficiently accurate approximation of the solutionyn+1. To prevent an
infinite loop of iteration, we require the iteration to stop if 10 iteration steps are taken
without reaching a satisfactory solution; and in this latter case, an error message will
be displayed.

function [t,y] = trapezoidal(t0,y0,t end,h,fcn,tol)

%

% function [t,y] = trapezoidal(t0,y0,t end,h,fcn,tol)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use trapezoidal method with a stepsize of h. The

% user must supply an m-file to define the derivative

% f, with some name, say ’deriv.m’, and a first line

% of the form

% function ans=deriv(t,y)

% tol is the user supplied bound on the difference

% between successive values of the trapezoidal

% iteration. A sample call would be

% [t,z]=trapezoidal(t0,z0,b,delta,’deriv’,1e-3)

%

% Output:

% The routine trapezoidal will return two vectors,

% t and y. The vector t will contain the node points

% t(1) = t0, t(j) = t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end, t(N)+h > t end

% The vector y will contain the estimates of the

% solution Y at the node points in t.

%

% Initialize.

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);

y(1) = y0;

60 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

i = 2;

% advancing

while i <= n

fyt = feval(fcn,t(i-1),y(i-1));

%

% Euler estimate

%

yt1 = y(i-1)+h*fyt;

% trapezoidal iteration

count = 0;

diff = 1;

while diff > tol & count < 10

yt2 = y(i-1) + h*(fyt+feval(fcn,t(i),yt1))/2;

diff = abs(yt2-yt1);

yt1 = yt2;

count = count +1;

end

if count >= 10

disp(’Not converging after 10 steps at t = ’)

fprintf(’%5.2f\n’, t(i))

end

y(i) = yt2;

i = i+1;

end

Example 4.2 Consider the problem

Y ′(t) = λY (t) + (1 − λ) cos(t) − (1 + λ) sin(t), Y (0) = 1, (4.30)

whose true solution isY (t) = sin(t) + cos(t). Euler’s method is used for the
numerical solution, and the results for several values ofλ andh are given in Table
4.3. Note that according to the formula (2.10) for the truncation error, we obtain

Tn+1 = 1
2h

2Y ′′(ξn).

The solutionY (t) does not depend onλ. But the actual global error depends strongly
onλ, as illustrated in the table; and the behavior of the global error is directly linked
to the size ofλh and, thus, to the size of the stability region for Euler’s method. The
error is small, provided that|λ| h is sufficiently small. The cases of an unstable and
rapid growth in the error are exactly the cases in which|λ|h is outside the range (4.7).
We then apply the backward Euler method and the trapezoidal method to the solution
of the problem (4.30). The results are shown in Tables 4.4 and4.5, with the stepsize
h = 0.5. The error varies withλ, but there are no stability problems, in contrast to
the Euler method. The solutions of the backward Euler methodand the trapezoidal
method foryn+1 were done exactly. This is possible because the differential equation
is linear inY . The fixed-point iterations (4.12) and (4.25) do not converge when|λ|h
is large.

THE TRAPEZOIDAL METHOD 61

Table 4.3 Euler’s method for (4.30)

λ t Error Error Error
h = 0.5 h = 0.1 h = 0.01

−1 1 −2.46e − 1 −4.32e − 2 −4.22e − 3

2 −2.55e − 1 −4.64e − 2 −4.55e − 3

3 −2.66e − 2 −6.78e − 3 −7.22e − 4

4 2.27e − 1 3.91e − 2 3.78e − 3

5 2.72e − 1 4.91e − 2 4.81e − 3

−10 1 3.98e − 1 −6.99e − 3 −6.99e − 4

2 6.90e + 0 −2.90e − 3 −3.08e − 4

3 1.11e + 2 3.86e − 3 3.64e − 4

4 1.77e + 3 7.07e − 3 7.04e − 4

5 2.83e + 4 3.78e − 3 3.97e − 4

−50 1 3.26e + 0 1.06e + 3 −1.39e − 4

2 1.88e + 3 1.11e + 9 −5.16e − 5

3 1.08e + 6 1.17e + 15 8.25e − 5

4 6.24e + 8 1.23e + 21 1.41e − 4

5 3.59e + 11 1.28e + 27 7.00e − 5

Table 4.4 Backward Euler solution for (4.30);h = 0.5

t Error Error Error
λ = −1 λ = −10 λ = −50

2 2.08e − 1 1.97e − 2 3.60e − 3

4 −1.63e − 1 −3.35e − 2 −6.94e − 3

6 −7.04e − 2 8.19e − 3 2.18e − 3

8 2.22e − 1 2.67e − 2 5.13e − 3

10 −1.14e − 1 −3.04e − 2 −6.45e − 3

Equations withλ negative but large in magnitude are examples ofstiff differential
equations. Their truncation error may be satisfactorily small with not too small a
value ofh, but the large size of|λ| may forceh to be much smaller in order thatλh
is in the stability region. The backward Euler method and thetrapezoidal method
are therefore very desirable because their stability regions contain allλh whereλ is
negative orλ is complex with negative real part. For stiff differential equations, one
must use a numerical method with a large region of absolute stability, or elseh must
be chosen very small. The backward Euler method is preferredto the trapezoidal
method when solving very stiff differential equations (seeProblems 14, 15), although

62 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

Table 4.5 Trapezoidal solution for (4.30);h = 0.5

t Error Error Error
λ = −1 λ = −10 λ = −50

2 −1.13e − 2 −2.78e − 3 −7.91e − 4

4 −1.43e − 2 −8.91e − 5 −8.91e − 5

6 2.02e − 2 2.77e − 3 4.72e − 4

8 −2.86e − 3 −2.22e − 3 −5.11e − 4

10 −1.79e − 2 −9.23e − 4 −1.56e − 4

it is of lower-order. There are other methods, of higher-order, for approximating stiff
differential equations (see [44], [72, Chap. 8]); this is anactive area of research.
More extensive discussions on numerically solving stiff differential equations can be
found later in Chapters 8 and 9.

PROBLEMS

1. Show that the method defined by formula (4.17) is not absolutely stable.

2. Show that the trapezoidal method (4.22) is absolutely stable, but the scheme
(4.29) is not.

3. Use backward Euler’s method to solve Problem 3 of Chapter 2.

4. Use the trapezoidal method to solve Problem 3 of Chapter 2.

5. Apply the backward Euler method to solve the initial valueproblem in Problem
11 of Chapter 2 forα = 2.5, 1.5, 1.1, with h = 0.2, 0.1, 0.05. Compute the
error in the solution at the nodes,determine the convergence orders numerically,
and compare the results with those obtained by Euler’s method.

6. Apply the trapezoidal method to solve the initial value problem in Problem 11
of Chapter 2 forα = 2.5, 1.5, 1.1, with h = 0.2, 0.1, 0.05. Compute the error
in the solution at the nodes, determine numerically the convergence orders,
and compare the results with that of the Euler method and the backward Euler
method.

7. Solve the equation

Y ′(t) = λY (t) +
1

1 + t2
− λ tan−1(t), Y (0) = 0;

Y (t) = tan−1(t) is the true solution. Use Euler’s method, the backward
Euler method, and the trapezoidal method. Letλ = −1,−10,−50, and
h = 0.5, 0.1, 0.001. Discuss the results. In implementing the backward Euler

THE TRAPEZOIDAL METHOD 63

method and the trapezoidal method, note that the implicit equation foryn+1

can be solved explicitly without iteration.

8. Apply the backward Eulermethod to the numerical solutionofY ′(t) = λY (t)+
g(t) withλ < 0 and large in magnitude. Investigate how smallhmust be chosen
for the iteration

y
(j+1)
n+1 = yn + h f

(
tn+1, y

(j)
n+1

)
, j = 0, 1, 2, . . .

to converge toyn+1. Is this iteration practical for very large values of|λ|?

9. Repeat Problem 5 of Chapter 3 using the backward Euler method.

10. Determine whether the midpoint method

yn+1 = yn + h f
(
tn+1/2,

1
2 (yn + yn+1)

)
,

wheretn+1/2 = (tn + tn+1)/2, is absolutely stable.

11. Letθ ∈ [0, 1] be a constant, and denotetn+θ = (1− θ) tn + θ tn+1. Consider
the generalized midpoint method

yn+1 = yn + h f(tn+θ, (1 − θ) yn + θ yn+1)

and its trapezoidal analog

yn+1 = yn + h [(1 − θ) f(tn, yn) + θ f(tn+1, yn+1)] .

Show that the methods are absolutely stable whenθ ∈ [1/2, 1]. Determine the
regions of absolute stability of the methods when0 ≤ θ < 1

2 .

12. As a special case in which the error of the backward Euler method can be ana-
lyzed directly, we consider the model problem (4.3) again, with λ an arbitrary
real constant. The backward Euler solution of the problem isgiven by the
formula (4.10). Following the procedure for solving Problem 4(c) in Chapter
2, show that

Y (tn) − yh(tn) = −λ
2tne

λ tn

2
h+ O(h2).

13. LetY (t) be the solution, if it exists, to the initial value problem (1.7). By
integrating, show thatY satisfies

Y (t) = Y0 +

∫ t

t0

f(s, Y (s)) ds.

Conversely, show that if this equation has a continuous solution on the interval
t0 ≤ t ≤ b, then the initial value problem (1.7) has the same solution.

64 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

14. As in the previous problems, consider the model problem (4.3) with a real
constantλ < 0. Show that the solution of the trapezoidal method is

yh(tn) =

(
1 + 1

2λh

1 − 1
2λh

)n

, n ≥ 0.

Rewrite the solution formula as

yh(tn) = exp

(
[log(1 + 1

2λh) − log(1 − 1
2λh)]

h
tn

)
,

and use Taylor polynomial expansions oflog (1 ± u) aboutu = 0 to show that

Y (tn) − yh(tn) = − 1
12h

2λ3tne
λtn + O(h4).

So forh small, the error is almost proportional toh2.

15. Use the formula (4.10) for the backward Euler method and the formula from
Problem 14 for the trapezoidal method to show that the backward Euler method
performs better than the trapezoidal method problem (4.3) with λ negatively
very large.

16. In this exercise, we consider a method with third-order truncation errors, which
is not convergent or stable.

(a) GivenY (t) 3 times continuously differentiable, show that

Y (tn+1) = 3Y (tn) − 2Y (tn−1) + 1
2h[Y

′(tn) − 3Y ′(tn−1)]

+ 7
12h

3Y ′′′(tn) + O(h4). (4.31)

Thus a numerical method for solving the differential equation

Y ′(t) = f(t, Y (t))

is

yn+1 = 3yn − 2yn−1 + 1
2h[f(tn, yn) − 3f(tn−1, yn−1)], n ≥ 1.

This is a numerical method whose truncation error isO(h3). It is an
example of a multistep method (see Chapter 6). To use the method, we
need a value fory1, called an artificial initial value, in addition to the
initial valuey0 = Y0.

Hint: To prove (4.31), use a quadratic Taylor expansion about the point
tn for Y (t), including an error termR3(t). Use this to evaluateY (tn−1)
andY (tn+1), along withY ′(tn−1). Substitute into

Y (tn+1) −
{
3Y (tn) − 2Y (tn−1) + 1

2h[Y
′(tn) − 3Y ′(tn−1)]

}

THE TRAPEZOIDAL METHOD 65

to obtain the final term in (4.31).

(b) Now apply the method to solve the very simple initial value problem

Y ′(t) ≡ 0, Y (0) = 1,

whose solution isY (t) ≡ 1. Show that if the initial values are chosen to
bey0 = 1, y1 = 1+h, then the numerical solution isyn = 1−h+h 2n.
Note that|y1 − Y (h)| = h → 0 ash → 0. Let tn = 1. Show that
|Y (1) − yn| → ∞ ash→ 0. Thus, the method is not convergent.

(c) A slight variant of the arguments of (b) can be used to showthe instability
of the method. Show that with the initial valuesy0 = y1 = 1, the
numerical solution isyn = 1 for all n, while if the initial values are
perturbed toyǫ,0 = 1, yǫ,1 = 1 + ǫ, then the numerical solution becomes
yǫ,n = 1 − ǫ + ǫ 2n. Show that at any fixed node pointtn = t > 0,
|yǫ,n − yn| → ∞ ash→ 0. Hence, the method is unstable.

CHAPTER 5

TAYLOR AND RUNGE–KUTTA
METHODS

To improve on the speed of convergence of Euler’s method, we look for approxima-
tions toY (tn+1) that are more accurate than the approximation

Y (tn+1) ≈ Y (tn) + hY ′(tn),

which led to Euler’s method. Since this is a linear Taylor polynomial approximation,
it is natural to consider higher-order Taylor approximations. Doing this will lead to a
family of methods, called the Taylor methods, depending on the order of the Taylor
approximation being used.

In deriving a Taylor method, we need higher-order derivatives of the true solution,
and we obtain them using the solution itself by differentiating the differential equation.
Such expressions for higher-order derivatives are usuallytime-consuming. The idea
of Runge–Kutta methods is to use combinations of compositions of the right-side
function of the equation to approximate the derivative terms to a required order. The
resulting Runge–Kutta methods are among the most popular methods in solving initial
value problems.

67

68 TAYLOR AND RUNGE–KUTTA METHODS

5.1 TAYLOR METHODS

To keep the initial explanations as intuitive as possible, we will develop a Taylor
method for the problem

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1, (5.1)

whose true solution isY (t) = sin(t) + cos(t). To approximateY (tn+1) by using
information aboutY at tn, use the quadratic Taylor approximation

Y (tn+1) ≈ Y (tn) + hY ′(tn) + 1
2h

2Y ′′(tn). (5.2)

Its truncation error is

Tn+1(Y) = 1
6h

3Y ′′′(ξn), sometn ≤ ξn ≤ tn+1. (5.3)

To evaluate the right side of (5.2), we can obtainY ′(tn) directly from (5.1). For
Y ′′(t), differentiate (5.1) to get

Y ′′(t) = −Y ′(t) − 2 sin(t) = Y (t) − 2 cos(t) − 2 sin(t).

Then (5.2) becomes

Y (tn+1) ≈ Y (tn) + h[−Y (tn) + 2 cos(tn)]

+ 1
2h

2[Y (tn) − 2 cos(tn) − 2 sin(tn)].

By forcing equality, we are led to the numerical method

yn+1 = yn + h[−yn + 2 cos(tn)]

+ 1
2h

2[yn − 2 cos(tn) − 2 sin(tn)], n ≥ 0 (5.4)

with y0 = 1. This should approximate the solution of the problem (5.1).Because the
truncation error (5.3) contains a higher power ofh than was true for Euler’s method
[see (2.10)], it is hoped that the method (5.4) will convergemore rapidly.

Table 5.1 contains numerical results for (5.4) and for Euler’s method, and it is clear
that (5.4) is superior. In addition, if the results for stepsizesh = 0.1 and0.05 are
compared, it can be seen that the errors decrease by a factor of approximately4 when
h is halved. This can be justified theoretically, as is discussed later.

In general, to solve the initial value problem

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b, Y (t0) = Y0 (5.5)

by the Taylor method, select a Taylor approximation of certain order and proceed as
described above. For orderp, write

Y (tn+1) ≈ Y (tn) + hY ′(tn) + · · · + hp

p!
Y (p)(tn), (5.6)

TAYLOR METHODS 69

Table 5.1 Example of second-order Taylor method (5.4)

h t yh(t) Error Euler Error

0.1 2.0 0.492225829 9.25e − 4 −4.64e − 2
4.0 −1.411659477 1.21e − 3 3.91e − 2
6.0 0.682420081 −1.67e − 3 1.39e − 2
8.0 0.843648978 2.09e − 4 −5.07e − 2

10.0 −1.384588757 1.50e − 3 2.83e − 2

0.05 2.0 0.492919943 2.31e − 4 −2.30e − 2
4.0 −1.410737402 2.91e − 4 1.92e − 2
6.0 0.681162413 −4.08e − 4 6.97e − 3
8.0 0.843801368 5.68e − 5 −2.50e − 2

10.0 −1.383454154 3.62e − 4 1.39e − 2

where the truncation error is

Tn+1(Y) =
hp+1

(p+ 1)!
Y (p+1)(ξn), tn ≤ ξn ≤ tn+1. (5.7)

Find Y ′′(t), . . . , Y (p)(t) by differentiating the differential equation in (5.5) succes-
sively, obtaining formulas that implicitly involveonlytnandY (tn). As an illustration,
we have the following formulas

Y ′′(t) = ft + fyf, (5.8)

Y (3)(t) = ftt + 2 ftyf + fyyf
2 + fy(ft + fyf), (5.9)

where

ft =
∂f

∂t
, fy =

∂f

∂y
, fty =

∂2f

∂t∂y
,

and so on are partial derivatives, and together withf , they are evaluated at(t, Y (t)).
The formulas for the higher derivatives rapidly become verycomplicated as the dif-
ferentiation order is increased.

Substitute these formulas into (5.6) and then obtain a numerical method of the
form

yn+1 = yn + hy′n +
h2

2
y′′n + · · · + hp

p!
y(p)

n (5.10)

by forcing (5.6) to be an equality. In the formula,

y′n = f(tn, yn) , y′′n = (ft + fyf) (tn, yn) ,

and so on, using the pattern of (5.8)–(5.9).
If the solutionY (t) and the derivative functionf(t, z) are sufficiently differen-

tiable, then it can be shown that the method (5.10) will satisfy

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ chp · max
t0≤t≤b

∣∣∣Y (p+1)(t)
∣∣∣ . (5.11)

70 TAYLOR AND RUNGE–KUTTA METHODS

The constantc is similar to that appearing in the error formula (2.20) for Euler’s
method. A proof can be constructed along the same lines as that used for Theorem
2.4 in Chapter 2. In addition, there is an asymptotic error formula

Y (tn) − yh(tn) = hpD(tn) + O(hp+1) (5.12)

with D(t) satisfying a certain linear differential equation. The result (5.11) shows
that for any integerp ≥ 1, a numerical method based on the Taylor approximation
of orderp leads to a convergent numerical method with order of convergencep. The
asymptotic result (5.12) justifies the use of Richardson’s extrapolation to estimate the
error and to accelerate the convergence (see Problems 3, 4).

Example 5.1 With p = 2, formula (5.12) leads to

Y (tn) − yh(tn) ≈ 1
3 [yh(tn) − y2h(tn)]. (5.13)

Its derivation is left as Problem 3 for the reader. To illustrate the usefulness of the
formula, use the entries from Table 5.1 withtn = 10:

y0.1(10)
.
= −1.384588757,

y0.05(10)
.
= −1.383454154.

From (5.13),

Y (10) − y0.05(10)
.
= 1

3 [0.001134603]
.
= 3.78 × 10−4.

This is a good estimate of the true error3.62 × 10−4, given in Table 5.1.

5.2 RUNGE–KUTTA METHODS

The Taylor method is conceptuallyeasy to work with, but as wehave seen, it is tedious
and time-consuming to have to calculate the higher-order derivatives. To avoid the
need for the higher-order derivatives, the Runge–Kutta methods evaluatef(t, y) at
more points, while attempting to retain the accuracy of the Taylor approximation. The
methods obtained are fairly easy to program, and they are among the most popular
methods for solving the initial value problem.

We begin with Runge–Kutta methods of order2, and later we consider some
higher-order methods. The Runge–Kutta methods have the general form

yn+1 = yn + hF (tn, yn;h), n ≥ 0, y0 = Y0. (5.14)

The quantityF (tn, yn;h) can be regarded as some kind of “average slope” of the
solution on the interval[tn, tn+1]. But its construction is based on making (5.14) act
like a Taylor method. For methods of order2, we generally choose

F (t, y;h) = b1f(t, y) + b2f(t+ αh, y + βhf(t, y)) (5.15)

RUNGE–KUTTA METHODS 71

and determine the constants{α, β, b1, b2} so that when the true solutionY (t) is
substituted into (5.14), the truncation error

Tn+1(Y) ≡ Y (tn+1) − [Y (tn) + hF (tn, Y (tn);h)] (5.16)

will satisfy
Tn+1(Y) = O(h3), (5.17)

just as with the Taylor method of order2.
To find the equations for the constants, we use Taylor expansions to compute the

truncation errorTn+1(Y). For the termf(t + αh, y + βhf(t, y)), we first expand
with respect to the second argument aroundy. Note that we need a remainderO(h2):

f(t+ αh, y + βhf(t, y)) = f(t+ αh, y) + fy(t+ αh, y)βhf(t, y) + O(h2).

We then expand the terms with respect to thet variable to obtain

f(t+ αh, y + βhf(t, y)) = f + ftαh+ fyβhf + O(h2),

where the functions are all evaluated at(t, y). Also, recall from following (5.10) that

Y ′′ = ft + fyf.

Hence

Y (t+ h) = Y + hY ′ +
h2

2
Y ′′ + O(h3)

= Y + hf +
h2

2
(ft + fyf) + O(h3).

Then

Tn+1(Y) = Y (t+ h) − [Y (t) + hF (t, Y (t);h)]

= Y + hf + 1
2h

2(ft + fyf)

− [Y + hb1f + b2h (f + αhft + βhfyf)] + O(h3)

= h (1 − b1 − b2) f + 1
2h

2[(1 − 2 b2α) ft

+ (1 − 2 b2β)fyf] + O(h3). (5.18)

The requirement (5.17) implies that the coefficients must satisfy the system





1 − b1 − b2 = 0,
1 − 2 b2α = 0,
1 − 2 b2β = 0.

Therefore

b2 6= 0, b1 = 1 − b2, α = β =
1

2b2
. (5.19)

72 TAYLOR AND RUNGE–KUTTA METHODS

Y(t)+h F(t,Y(t);h)

z=Y(t)

t t+h

L
1

L
2

L
3

L
4

Figure 5.1 An illustration of Runge–Kutta method (5.20); the slope ofL1 is f(t, Y (t)), that
of L2 is f(t + h, Y (t) + hf(t, Y (t))), and those ofL3 andL4 are the averageF (t, Y (t);h)

Thus there is a family of Runge–Kutta methods of order2, depending on the choice
of b2. The three favorite choices areb2 = 1

2 , 3
4 , and1.

With b2 = 1
2 , we obtain the numerical method

yn+1 = yn +
h

2
[f(tn, yn) + f(tn + h, yn + hf(tn, yn))], n ≥ 0. (5.20)

This is also Heun’s method (4.29) discussed in Chapter4. Thenumberyn+hf(tn, yn)
is the Euler solution attn+1. Using it, we obtain an approximation to the derivative
at tn+1, namely,

f(tn+1, yn + hf(tn, yn)).

This and the slopef(tn, yn) are then averaged to give an “average” slope of the
solution on the interval[tn, tn+1], giving

F (tn, yn;h) = 1
2 [f(tn, yn) + f(tn + h, yn + hf(tn, yn))].

This is then used to predictyn+1 from yn, in (5.20). This definition is illustrated in
Figure 5.1 forF (t, Y (t);h) as an average slope ofY ′ on [t, t+ h].

Another choice is to useb2 = 1, resulting in the numerical method

yn+1 = yn + hf
(
tn + 1

2h, yn + 1
2hf(tn, yn)

)
. (5.21)

RUNGE–KUTTA METHODS 73

Table 5.2 Example of second-order Runge–Kutta method

h t yh(t) Error

0.1 2.0 0.491215673 1.93e − 3
4.0 −1.407898629 −2.55e − 3
6.0 0.680696723 5.81e − 5
8.0 0.841376339 2.48e − 3

10.0 −1.380966579 −2.13e − 3

0.05 2.0 0.492682499 4.68e − 4
4.0 −1.409821234 −6.25e − 4
6.0 0.680734664 2.01e − 5
8.0 0.843254396 6.04e − 4

10.0 −1.382569379 −5.23e − 4

Example 5.2 Reconsider the problem (5.1):

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1.

Here
f(t, y) = −y + 2 cos(t).

The numerical results from using (5.20) are given in Table 5.2. They show that the
errors in this Runge–Kutta solution are comparable in accuracy to the results obtained
with the Taylor method (5.4). In addition, the errors in Table 5.2 decrease by a factor
of approximately4 whenh is halved, confirming the second-order convergence of
the method.

5.2.1 A general framework for explicit Runge–Kutta methods

Runge–Kutta methods of higher-order can also be developed.An explicit Runge–
Kutta formula withs stages has the following form:

z1 = yn,

z2 = yn + ha2,1f(tn, z1),

z3 = yn + h [a3,1f(tn, z1) + a3,2f(tn + c2h, z2)] ,
...

zs = yn + h [as,1f(tn, z1) + as,2f(tn + c2h, z2)

+ · · · + as,s−1f(tn + cs−1h, zs−1)] ,

(5.22)

yn+1 = yn + h [b1f(tn, z1) + b2f(tn + c2h, z2)

+ · · · + bs−1f(tn + cs−1h, zs−1) + bsf(tn + csh, zs)] . (5.23)

74 TAYLOR AND RUNGE–KUTTA METHODS

Hereh = tn+1 − tn. The coefficients{ci, ai,j , bj} are given and they define the
numerical method. The functionF of (5.14), defining a one-step method, is defined
implicitly through the formulas (5.22)-(5.23).

More succinctly, we can write the formulas as

zi = yn + h
i−1∑

j=1

ai,jf(tn + cjh, zj) , i = 1, . . . , s, (5.24)

yn+1 = yn + h
s∑

j=1

bjf(tn + cjh, zj) . (5.25)

The coefficients are often displayed in a table called aButcher tableau(after J. C.
Butcher):

0 = c1

c2 a2,1

c3 a3,1 a3,2

...
...

. . .
cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

(5.26)

The coefficients{ci} and{ai,j} are usually assumed to satisfy the conditions

i−1∑

j=1

ai,j = ci, i = 2, . . . , s. (5.27)

Example 5.3 We give two examples of well-known Runge–Kutta methods.

• The method (5.20) has the Butcher tableau

0
1 1

1/2 1/2

• A popular classical method is the following fourth-order procedure.

z1 = yn,

z2 = yn + 1
2h f (tn, z1) ,

z3 = yn + 1
2h f

(
tn + 1

2h, z2
)
,

z4 = yn + h f
(
tn + 1

2h, z3
)
,

yn+1 = yn + 1
6h
[
f (tn, z1) + 2f

(
tn + 1

2h, z2
)

+2f
(
tn + 1

2h, z3
)

+ f (tn + h, z4)
]
.

(5.28)

CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR 75

The Butcher tableau is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(5.29)

Following an extended calculation modeled on that in (5.18), we can show
Tn+1 = O(h5).

When the differential equation is simplyY ′(t) = f(t) with no dependence of
f on Y , this method reduces to Simpson’s rule for numerical integration on
[tn, tn+1]. The method (5.28) can be easily implemented using a computer or a
programmable hand calculator, and it is generally quite accurate. A numerical
example is given at the end of the next section.

5.3 CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR

We want to examine the convergence of the one-step method

yn+1 = yn + hF (tn, yn;h), n ≥ 0, y0 = Y0 (5.30)

to the solutionY (t) of the initial value problem

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b,
Y (t0) = Y0.

(5.31)

Using the truncation error of (5.16) for the true solutionY , we introduce

τn(Y) =
1

h
Tn+1(Y).

In order to show convergence of (5.30), we need to haveτn(Y) → 0 ash→ 0. Since

τn(Y) =
Y (tn+1) − Y (tn)

h
− F (tn, Y (tn), h; f), (5.32)

we require that

F (t, Y (t), h; f) → Y ′(t) = f(t, Y (t)) ash→ 0.

Accordingly, define

δ(h) = sup
t0≤t≤b

−∞<y<∞

|f(t, y) − F (t, y, h; f)| , (5.33)

and assume
δ(h) → 0 ash→ 0. (5.34)

76 TAYLOR AND RUNGE–KUTTA METHODS

This is occasionally called theconsistency conditionfor the one-step method (5.30).
We can rewrite (5.32) in the form

Y (tn+1) = Y (tn) + hF (tn, Y (tn), h; f) + hτn(Y). (5.35)

We then introduce
τ(h) = max

t0≤tn≤b
|τn(Y)| .

The condition (5.34) can be used to showτ(h) → 0 ash → 0; or we may show this
result by other means (e.g. see (5.17)).

We also need a Lipschitz condition onF, namely

|F (t, y, h; f) − F (t, z, h; f)| ≤ L |y − z| (5.36)

for all t0 ≤ t ≤ b, −∞ < y, z < ∞, and all smallh > 0. This is in analogy with
the Lipschitz condition (1.10) forf(t, z) of Chapter 1 which was used to guarantee
the existence of a unique solution to the initial value problem forY ′ = f(t, Y). The
condition (5.36) is usually proved by using the Lipschitz condition (1.10) onf(t, y).
For example, with method (5.21), we obtain

|F (t, y, h; f) − F (t, z, h; f)|

=
∣∣f
(
t+ 1

2h, y + 1
2hf(t, y)

)
− f

(
t+ 1

2h, z + 1
2hf(t, z)

)∣∣

≤ K
∣∣y − z + 1

2h [f(t, y) − f(t, z)]
∣∣

≤ K
(
1 + 1

2hK
)
|y − z| .

The last two inequalities use the Lipschitz condition (1.10) for f . ChooseL =
K(1 + 1

2K) for h ≤ 1.

Theorem 5.4 Assume that the Runge–Kuttamethod (5.30) satisfies the Lipschitz con-
dition (5.36). Then, for the initial value problem (5.31), the solution{yn} satisfies

max
t0≤tn≤b

|Y (tn) − yn| ≤ e(b−t0)L |Y0 − y0| +
[
e(b−t0)L − 1

L

]
τ(h), (5.37)

where
τ(h) ≡ max

t0≤tn≤b
|τn(Y)| . (5.38)

If the consistency condition (5.34) is also satisfied, then the numerical solution{yn}
converges toY (t).

Proof. Subtract (5.30) from (5.35) to obtain

en+1 = en + h [F (tn, Yn, h; f) − F (tn, yn, h; f)] + hτn(Y) (5.39)

in which en = Y (tn) − yn. Apply the Lipschitz condition (5.36) and use (5.38) to
obtain

|en+1| ≤ (1 + hL) |en| + hτn(h), t0 ≤ tN ≤ b. (5.40)

CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR 77

As with the convergence proof in Theorem 2.4 for the Euler method, given in Section
2.2 of Chapter 2, this leads easily to the result (5.37).

In most cases, it is known by direct computation thatτ(h) → 0 ash → 0, and in
that case, convergence of{yn} to Y (t) is immediately proved. But all that we need
to know is that (5.34) is satisfied. To see this, write

hτn(Y) = Y (tn+1) − Y (tn) − hF (tn, Y (tn), h; f)

= hY ′(tn) +
h2

2
Y ′′(ξn) − hF (tn, Y (tn), h; f),

h |τn(Y)| ≤ hδ(h) +
h2

2
‖Y ′′‖∞ ,

τ(h) ≤ δ(h) +
1

2
h ‖Y ′′‖∞ .

Thus τ(h) → 0 ash → 0, completing the proof. The preceding examples are
illustrations of the theorem.

The following result is an immediate consequence of (5.37).

Corollary 5.5 If the Runge–Kutta method (5.30) has a truncation errorTn(Y) =
O(hm+1), then the error in the convergence of{yn} to Y (t) on [t0, b] isO(hm).

It is not too difficult to derive an asymptotic error formula for the Runge–Kutta
method (5.30), provided one is known for the truncation error. Assume

Tn(Y) = ϕ(tn)hm+1 + O(hm+2) (5.41)

with ϕ(t) determined byY (t) andf(t, Y (t)). As an example, see the result (5.18) to
obtain this expansion for second-order Runge–Kutta methods. Strengthened forms
of (5.34) and (5.36) are also necessary. Assume

F (t, y, h; f) − F (t, z, h; f) =
∂F (t, y, h; f)

∂y
(y − z) + O((y − z)2) (5.42)

and also

δ1(h) ≡ sup
t0≤t≤b

−∞<y<∞

∣∣∣∣
∂f(t, y)

∂y
− ∂F (t, y, h; f)

∂y

∣∣∣∣→ 0 ash→ 0. (5.43)

In practice, both of these results are straightforward to confirm. With these assump-
tions, we can derive the formula

Y (tn) − yh(tn) = D(tn)hm + O(hm+1), (5.44)

with D(t) satisfying the linear initial value problem

D′(t) = fy(t, Y (t))D(t) + ϕ(t), D(t0) = 0. (5.45)

78 TAYLOR AND RUNGE–KUTTA METHODS

Stability results can be obtained for Runge–Kutta methods in analogy with those
for Euler’s method as presented in Section 2.4 of Chapter 2. We omit any discussion
here.

As with Taylor methods, Richardson’s extrapolation can be justified for Runge–
Kutta methods using (5.44), and the error can be estimated. For the second-order
method (5.20), we obtain the error estimate

Y (tn) − yh(tn) ≈ 1
3 [yh(tn) − y2h(tn)],

just as we obtained it earlier for the second-order Taylor method; see Problem 3.

Example 5.6 Estimate the error forh = 0.05 andt = 10 in Table 5.2. Then

Y (10) − y0.05(10)
.
= 1

3 [−1.3825669379− (−1.380966579)]
.
= −5.34 × 10−4.

This compares closely with the actual error of−5.23 × 10−4.

Example 5.7 Consider the problem

Y ′ =
1

1 + x2
− 2Y 2, Y (0) = 0 (5.46)

with the solutionY = x/(1+x2). The method (5.28) was used with a fixed stepsize,
and the results are shown in Table 5.3. The stepsizes areh = 0.25 and2h = 0.5.
The asymptotic error formula (5.44) becomes

Y (x) − yh(x) = D(x)h4 + O(h5), (5.47)

in this case, and this leads to the asymptotic error estimate

Y (x) − yh(x) = 1
15 [yh(x) − y2h(x)] + O(h5). (5.48)

In the table the column labeled “Ratio” gives the ratio of theerrors for corresponding
node points ash is halved. The last column is an example of formula (5.48). Because
Tn(Y) = O(h5) for method (5.28), Theorem 5.4 implies that the rate of convergence
of yh(x) toY (x) isO(h4). The theoretical value of “Ratio” is16, and ash decreases
further, this value will be realized more closely.

5.3.1 Error prediction and control

The easiest way to predict the errorY (t) − yh(t) in a numerical solutionyh(t) is to
use Richardson’s extrapolation. Solve the initial value problem twice on the given
interval [t0, b], with stepsizes2h andh. Then use Richardson’s extrapolation to
estimateY (t)− yh(t) in terms ofyh(t)− y2h(t), as was done in (5.13) for a second-
order method. The cost of estimating the error in this way is an approximately50%
increase in the amount of computation, as compared with the cost of computing just

CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR 79

Table 5.3 Example of Runge-Kutta method (5.28)

x yh(x) Y (x) − yh(x) Y (x) − y2h(x) Ratio 1
15

[yh(x) − y2h(x)]

2.0 0.39995699 4.3e − 5 1.0e − 3 24 6.7e − 5
4.0 0.23529159 2.5e − 6 7.0e − 5 28 4.5e − 6
6.0 0.16216179 3.7e − 7 1.2e − 5 32 7.7e − 7
8.0 0.12307683 9.2e − 8 3.4e − 6 36 2.2e − 7

10.0 0.09900987 3.1e − 8 1.3e − 6 41 8.2e − 8

yh(t). This may seem a large cost, but it is generally worth paying except for the
most time-consuming of problems.

It would be desirable to have computer programs that would solve a differential
equation on a given interval[t0, b] with an error less than a given error tolerance
ǫ > 0. Unfortunately, this is not possible with most types of numerical methods for
the initial value problem. If at some pointtwe discover thatY (t)−yh(t) is too large,
then the error cannot be reduced by merely decreasingh from that point onward in
the computation. The errorY (t) − yh(t) depends on the cumulative effect of all
preceding errors at pointstn < t. Thus, to decrease the error att, it is necessary to
repeat the solution of the equation fromt0, but with a smaller stepsizeh. For this
reason, most package programs for solving the initial valueproblem will not attempt
to directly control the error, although they may try to monitor or bound it. Instead,
they use indirect methods to affect the size of the error.

The errorY (tn)−yh(tn) is called theglobal erroror total error attn. Rather than
controlling this global error, we control another error. Weintroduce the following
initial value problem:

u′n(t) = f(t, un(t)) , t ≥ tn,
un(tn) = yn.

(5.49)

The solutionun(t) is called thelocal solution to the differential equation at the point
(tn, yn). Using it we introduce thelocal error

LEn+1 = un(tn+1) − yn+1. (5.50)

This is the error introduced into the solution at the pointtn+1 when assuming the
solutionyn at tn is the exact solution. Most computer programs that contain error
control are based on estimating the local error and then controlling it by varyingh
suitably. By so doing, they hope to keep the global error sufficiently small. If an error
parameterǫ > 0 is given, the better programs choose the stepsizeh to ensure that the
local errorLEn+1 is much smaller, usually satisfying something like

|LEn+1| ≤ ǫ(tn+1 − tn). (5.51)

This is called controlling theerror per unit stepsize,with which the global error is
generally also kept small. For many differential equations, the global error will then
be less thanǫ(tn+1 − t0).

80 TAYLOR AND RUNGE–KUTTA METHODS

Table 5.4 Fehlberg coefficientsαi, βij

i αi βi0 βi1 βi2 βi3 βi4

1 1
4

1
4

2 3
8

3
32

9
32

3 12
13

1932
2197

− 7200
2197

7296
2197

4 1 439
216

−8 3680
513

− 845
4104

5 1
2

− 8
27

2 − 3544
2565

1859
4104

− 11
40

For more detailed discussions of one-step methods, especially Runge–Kutta meth-
ods, see Shampine [72], Iserles [48, Chap. 3], and Deuflhard and Bornemann [33,
Chaps. 4-6].

5.4 RUNGE–KUTTA–FEHLBERG METHODS

To estimate the local error (5.50), various techniques can be used, including Richard-
son’s extrapolation. A novel technique was devised in the 1970s, and it has led to the
currently most popular Runge–Kutta methods. Rather than computing with a method
of fixed order, one simultaneously computes by using two methods of different orders.
The two methods share most of the function evaluations off at each step fromtn to
tn+1. Then the higher-order formula is used to estimate the errorin the lower-order
formula. These methods are often calledFehlberg methods; we give one such pair of
methods, of orders4 and5.

Define six intermediate slopes in[tn, tn+1] by

v0 = f(tn, yn),

vi = f



tn + αih, yn + h
i−1∑

j=0

βijvj



 , i = 1, 2, 3, 4, 5.
(5.52)

Then the fourth- and fifth-order formulas are given by

yn+1 = yn + h
4∑

i=0

γivi, (5.53)

ŷn+1 = yn + h
5∑

i=0

δivi. (5.54)

The coefficientsαi, βij , γi, δi are given in Tables 5.4 and 5.5.
The local error in the fourth-order formula (5.53) is estimated by

LEn+1 ≈ ŷn+1 − yn+1. (5.55)

RUNGE–KUTTA–FEHLBERG METHODS 81

Table 5.5 Fehlberg coefficientsγi, δi

i 0 1 2 3 4 5

γi
25
216

0 1408
2565

2197
4104

− 1
5

δi
16
135

0 6656
12825

28561
56430

− 9
50

2
55

Table 5.6 Example of fourth-order Fehlberg formula (5.53)

h t yh(t) Y (t) − yh(t) ŷh(t) − yh(t)

0.25 2.0 0.493156301 −5.71e − 6 −9.49e − 7
4.0 −1.410449823 3.71e − 6 1.62e − 6
6.0 0.680752304 2.48e − 6 −3.97e − 7
8.0 0.843864007 −5.79e − 6 −1.29e − 6

10.0 −1.383094975 2.34e − 6 1.47e − 6

0.125 2.0 0.493150889 −2.99e − 7 −2.35e − 8
4.0 −1.410446334 2.17e − 7 4.94e − 8
6.0 0.680754675 1.14e − 7 −1.76e − 8
8.0 0.843858525 −3.12e − 7 −3.47e − 8

10.0 −1.383092786 1.46e − 7 4.65e − 8

It can be shown that this is a correct asymptotic result ash → 0. By using this
estimate, ifLEn+1 is too small or too large, the stepsize can be varied so as to give
a value forLEn+1 of acceptable size. Note the two formulas (5.53) and (5.54) use
the common intermediate slopesv0, . . . , v4. At each step, we need to evaluate only
six intermediate slopes. In a number of programs, the fifth-order solutionŷn+1 is
actually the numerical solution used, even though the erroris being controlled only
for the fourth-order solutionyn+1.

Example 5.8 Solve

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1 (5.56)

whose true solution isY (t) = sin(t) + cos(t). Table 5.6 contains numerical results
for h = 0.25 and0.125. Compare the global errors with those in Tables 5.1 and 5.2,
where second-order methods are used. Also, it can be seen that the global errors in
yh decrease by factors of17 to 21, which are fairly close to the theoretical value of16
for a fourth-order method. The truncation errors, estimated from (5.55), are included
to show that they are quite different from the global error. The preceding examples
are illustrations of the theorem.

The method (5.52) to (5.55) usesŷn+1 only for estimating the truncation error in
the fourth-order method. In practice,ŷn+1 is kept as the numerical solution rather than
yn+1; thusŷn should replaceyn on the right sides of (5.52) to (5.54). The quantity

82 TAYLOR AND RUNGE–KUTTA METHODS

Table 5.7 Example of fifth-order method (5.54)

h t ŷn(t) Y (t) − ŷn(t)

0.25 2.0 0.493151148 −5.58e − 7
4.0 −1.410446359 2.43e − 7
6.0 0.680754463 3.26e − 7
8.0 0.843858731 −5.18e − 7

10.0 −1.383092745 1.05e − 7

0.125 2.0 0.493150606 −1.61e − 8
4.0 −1.410446124 8.03e − 9
6.0 0.680754780 8.65e − 9
8.0 0.843858228 1.53e − 8

10.0 −1.383092644 4.09e − 9

in (5.55) will still be the truncation error in the fourth-order method. Programs based
on this will be fifth-order, but they will vary their stepsizeh to control the local error
in the fourth-order method. This tends to make these programs very accurate with
regard to global error.

Example 5.9 Repeat the last example, but use the fifth-order method described in the
preceding paragraph. The results are given in Table 5.7. Note that the errors decrease
by approximately32 whenh is halved, consistent with a fifth-order method.

5.5 MATLAB CODES

MATLAB R© contains an excellent suite of programs for solving the initial value
problem for systems of ordinary differential equations andrelated problems. The
programs use a variety of methods, and in this text we introduce and illustrate a few
of these programs. For a complete description of these programs and the various
options that are available when using them, go to the documentation for MATLAB
or to the excellent text by Shampine et al. [74]. Each such MATLAB program solves
a given differential equation in such a manner that the estimated local error in each
component of the solution satisfies a given error test. For a single equation the
estimated local error in passing fromy(tn) to y(tn+1), call it e(tn), is to satisfy

|e(tn)| ≤ max {AbsTol, RelTol· |y(tn)|} .

The error tolerancesAbsTol and RelTol can be specified by having the user run
the MATLAB programodeset; when left unspecified, the default tolerances are
AbsTol = 10−6,RelTol = 10−3. For a discussion of the construction of this MAT-
LAB suite for solving ordinary differential equations, seeShampine and Reichelt [73]
or Shampine, Gladwell, and Thompson [74].

MATLAB CODES 83

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5.2 The solution values to (5.56) obtained byode45 are indicated by the symbolo.
The curve line is obtained by interpolating these solution values fromode45 usingdeval

The codeode45 is an implementation of a method similar to the Runge–Kutta–
Fehlberg method presented earlier. The programode45 uses a pair of formulas
of orders 4 and 5 by Dormand and Prince [34, cf. Table 2], againestimating the
local error as in (5.55). We illustrate the use ofode45 with the following program
test ode45.

Example 5.10 We illustrate the use ofode45 by solving the earlier test equation
(5.56). When callingtest ode45, we useλ = −1 and the error tolerancesAbsTol=
10−6,RelTol = 10−4. In the programtest ode45,odeset is used to set parameter
values that are used inode45. For a complete description of these parameter values
and for more a complete discussion of the varied options for usingode45, consult the
MATLAB documentation. We note that in the call to programode45, we specify the
derivative function by giving as an input the function handle@deriv. The outputsoln
from ode45 is a MATLAB structure, and it contains all of the informationneeded to
obtain the solution and to interpolate the solution to othervalues of the independent
variable. In our test program, we use the MATLAB programdeval to carry out the
interpolation on an evenly spaced grid. This could have beendone directly when
callingode45, but we have chosen a more general approach to usingode45. Figures
5.2 and 5.3 contain, respectively, the interpolated numerical solution and the error in
it.

84 TAYLOR AND RUNGE–KUTTA METHODS

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Figure 5.3 The errors in the solution to (5.56) obtained usingode45

The code described in Example 5.10 proceeds as follows.

function test ode45(lambda,relerr,abserr)

%

% function test ode45(lambda,relerr,abserr)

%

% This is a test program for the ode solver ’ode45’.

% The test is carried out for the single equation

% y’ = lambda*y + (1-lambda)*cos(t) - (1+lambda)*sin(t)

% The initial value at t=0 is y(0)=1. The true solution is

% y = cos(t) + sin(t)

% The user can input the relative and absolute error

% tolerances to be used by ode45. These are incorporated

% using the initialization program ’odeset’.

% The program can be adapted easily to other equations and

% other parameter values.

% Initialize and solve

options = odeset(’RelTol’,relerr,’AbsTol’,abserr);

t begin = 0; t end = 20;

y initial = true soln(t begin);

num fcn eval = 0; % initialize count of derivative evaluations

soln = ode45(@deriv,[t begin,t end],y initial,options);

MATLAB CODES 85

% See below for function deriv.

% Produce the solution on a uniform grid using interpolation

% of the solution obtained by ode45. The points plotted with

% ’o’ are for the node points returned by ode45.

h plot = (t end-t begin)/200; t plot = t begin:h plot:t end;

y plot = deval(soln,t plot);

figure

plot(soln.x,soln.y,’o’,t plot,y plot)

title([’Interpolated solution:’,...

’ points noted by ‘‘o’’ are at ode45 solution nodes’])

xlabel([’\lambda = ’,num2str(lambda)])

disp(’press on any key to continue’)

pause

% Produce the error in the solution on the uniform grid.

% The points plotted with ’o’ are for the solution values

% at the points returned by ode45.

y true = true soln(t plot);

error = y true - y plot;

y true nodes = true soln(soln.x);

error nodes = y true nodes - soln.y;

figure

plot(soln.x,error nodes,’o’,t plot,error)

title(’Error in interpolated solution’)

xlabel([’\lambda = ’,num2str(lambda)])

norm error = norm(error,inf);

disp([’maximum of error = ’,num2str(norm error)])

disp([’number of derivative evaluations = ’,...

num2str(num fcn eval)])

function dy = deriv(t,y)

% Define the derivative in the differential equation.

dy = lambda*y + (1-lambda)*cos(t) - (1+lambda)*sin(t);

num fcn eval = num fcn eval + 1;

end % deriv

function true = true soln(t)

% Define the true solution of the initial value problem.

true = sin(t) + cos(t);

end % true soln

end % test ode45

86 TAYLOR AND RUNGE–KUTTA METHODS

5.6 IMPLICIT RUNGE–KUTTA METHODS

Return to (5.24)–(5.25) for the definition of ans-stage Runge–Kutta (RK) method.
An s-stageimplicit Runge–Kutta methodhas the form

zi = yn + h
s∑

j=1

ai,jf(tn + cjh, zj) , i = 1, . . . , s, (5.57)

yn+1 = yn + h

s∑

j=1

bjf(tn + cjh, zj) . (5.58)

It has the Butcher tableau

c1 a1,1 · · · a1,s

c2 a2,1 · · · a2,s

...
...

...
cs as,1 · · · as,s

b1 · · · bs

(5.59)

We give here a very brief introduction to implicit RK methods, referring to Chapter
9 for a more extensive discussion of the topic.

The equations (5.57) form a simultaneous system ofs nonlinear equations for the
s unknownsz1, . . . , zs; and if the equationy′ = f(t, y) is a system ofm differential
equations, then (5.57) is a simultaneous system ofsm nonlinear scalar equations.
Why does one want to consider such a complicated numerical method? The answer
is that a number of such methods (5.57)-(5.58) have desirable numerical stability
properties that are important in solving a variety of important classes of differential
equations.

We introduce one approach to deriving many such methods. We begin by convert-
ing the differential equation

Y ′(t) = f(t, Y (t))

into an integral equation. Integrating the equation over the interval[tn, t], we obtain

∫ t

tn

Y ′(r) dr =

∫ t

tn

f(r, Y (r)) dr,

Y (t) = Y (tn) +

∫ t

tn

f(r, Y (r)) dr. (5.60)

Approximate the equation, first by replacingY (tn) with yn, and then by replacing the
integrand with a polynomial interpolant of it. In particular, choose a set of parameters

0 ≤ τ1 < · · · < τs ≤ 1.

Let p(r) be the unique polynomial of degree< s that interpolatesf(r, Y (r)) at the
node points{tn,i ≡ tn + τih : i = 1, . . . , s} on [tn, tn+1]; see Appendix B. Then

IMPLICIT RUNGE–KUTTA METHODS 87

(5.60) is approximated by

Y (t) ≈ yn +

∫ t

tn

p(r) dr. (5.61)

Using the Lagrange form of the interpolation polynomial [see (B.6) from Appendix
B], we write

p(r) =

s∑

j=1

f(tn,j, Y (tn,j))lj(r).

The Lagrange basis functions{lj(r)} can be obtained from (B.4). Then (5.61) be-
comes

Y (t) ≈ yn +

s∑

j=1

f(tn,j , Y (tn,j))

∫ t

tn

lj(r) dr. (5.62)

We now determine approximatevalues for{Y (tn,j) : j = 1, . . . , s} by forcing equal-
ity in the expression (5.62) at the points{tn,j}. Let{yn,j} denote these approximate
values. They are to be determined by solving the nonlinear system

yn,i = yn +

s∑

j=1

f(tn,j, yn,j)

∫ tn,i

tn

lj(r) dr, i = 1, . . . , s. (5.63)

If τs = 1, then we defineyn+1 = yn,s. Otherwise, we define

yn+1 = yn +

s∑

j=1

f(tn,j, yn,j)

∫ tn+1

tn

lj(r) dr. (5.64)

The integrals in (5.63) and (5.64) are easily evaluated, andwe will give a particular
case below withs = 2.

The general method of forcing an approximating equation to be true at a given
set of node points is calledcollocation, and the points{tn,i} at which equality is
forced are called thecollocation node points. We should note that some Runge–Kutta
methods are not collocation methods. An example is the following implicit method
given by Iserles [48, p. 44]:

0 0 0
2/3 1/3 1/3

1/4 3/4

(5.65)

5.6.1 Two-point collocation methods

Let 0 ≤ τ1 < τ2 ≤ 1, and recall thattn,1 = tn + hτ1 andtn,2 = tn + hτ2. Then the
interpolation polynomial is

p(r) =
1

h (τ2 − τ1)
[(tn+1 − r) f(tn,1, Y (tn,1)) + (r − tn) f(tn,2, Y (tn,2))] .

(5.66)

88 TAYLOR AND RUNGE–KUTTA METHODS

Following calculation of the integrals, the system (5.64) has the Butcher tableau

τ1 (τ 2
2 − [τ2 − τ1]

2)/ (2 [τ2 − τ1]) −τ 2
1 / (2 [τ2 − τ1])

τ2 τ 2
2 / (2 [τ2 − τ1]) ([τ2 − τ1]

2 − τ 2
1)/ (2 [τ2 − τ1])

(τ 2
2 − [1 − τ2]

2)/ (2 [τ2 − τ1]) ([1 − τ1]
2 − τ 2

1)/ (2 [τ2 − τ1])

(5.67)

As a special case, note that whenτ1 = 0 andτ2 = 1, the system (5.64) becomes

yn,1 = yn,

yn,2 = yn + 1
2h [f(tn, yn,1) + f(tn+1, yn,2)] .

Substituting from the first equation into the second equation and usingyn+1 = yn,2,
we have

yn+1 = yn + 1
2h [f(tn, yn) + f(tn+1, yn+1)] ,

which is simply the trapezoidal method.
Another choice that has very good convergence and stabilityproperties is to use

τ1 = 1
2 − 1

6

√
3, τ2 = 1

2 + 1
6

√
3. (5.68)

The Butcher tableau is
`
3 −

√
3

´
/6 1/4

`
3 − 2

√
3

´
/12`

3 +
√

3
´
/6

`
3 + 2

√
3

´
/12 1/4

1/2 1/2

(5.69)

The associated nonlinear system is

yn,i = yn +

2∑

j=1

ai,jf(tn + τjh, yn,j), i = 1, 2, (5.70)

where we have used the implicit definition of{ai,j} that uses (5.59) to reference the
elements in (5.69). Then

yn+1 = yn +
h

2
[f(tn+1, yn,1) + f(tn+1, yn,2)] . (5.71)

This method, called thetwo stage Gauss method, is exact for all polynomial solutions
Y (t) of degree≤ 4. Showing that it has degree of precision 2 is straightforward,
because the linear interpolation formula (5.66) is exact whenY ′(t) = f(t, Y (t)) is
linear. Proving that the degree of precision is 4 is a more substantial argument, and
we refer the reader to [48, p. 46]. It can be shown that the truncation error for this
method has sizeO(h5), and thus the convergence isO(h4). It also has desirable
stability properties, some of which are taken up in Problem 15 and some of which are
deferred to Chapter 9. A disadvantage of the method is the need to solve the nonlinear
system in (5.70).

IMPLICIT RUNGE–KUTTA METHODS 89

A number of other families of implicit Runge–Kutta methods are discussed in
Chapter 9. These methods have stability properties that make them especially useful
for solving stiff differential equations.

PROBLEMS

1. A Taylor method of order3 for problem (5.1) can be obtained using the same
procedure that led to (5.4). On the basis of third-order Taylor approximation

Y (tn+1) ≈ Y (tn) + hY ′(tn) +
h2

2
Y ′′(tn) +

h3

6
Y ′′′(tn),

derive the numerical method

yn+1 = yn + h[−yn + 2 cos(tn)] +
h2

2
[yn − 2 cos(tn) − 2 sin(tn)]

+
h3

6
[−yn + 2 sin(tn)], n ≥ 0. (5.72)

Implement the numerical method (5.72) forsolving the problem(5.1). Compute
with stepsizes ofh = 0.1, 0.05 for 0 ≤ t ≤ 10. Compare to the values in Table
5.1, and also check the ratio by which the error decreases when h is halved.

Hint: To simplify the programming, just modify the Euler program given in
Chapter 2.

2. Compute solutions to the followingproblems with asecond-orderTaylormethod.
Use stepsizesh = 0.2, 0.1, 0.05.

(a) Y ′(t) = [cos(Y (t))]2, 0 ≤ t ≤ 10, Y (0) = 0;

Y (t) = tan−1(t).

(b) Y ′(t) = 1/(1 + t2) − 2[Y (t)]2, 0 ≤ t ≤ 10, Y (0) = 0;

Y (t) = t/(1 + t2).

(c) Y ′(t) = 1
4Y (t)[1 − 1

20Y (t)], 0 ≤ t ≤ 20, Y (0) = 1;

Y (t) = 20/(1 + 19e−t/4).

(d) Y ′(t) = −[Y (t)]2, 1 ≤ t ≤ 10, Y (1) = 1;

Y (t) = 1/t.

(e) Y ′(t) = −e−tY (t), 0 ≤ t ≤ 10, Y (0) = 1;

Y (t) = exp (e−t − 1).

These were solved previously in Problems 1 and 2 of Chapter 2.Compare your
results with those earlier ones.

90 TAYLOR AND RUNGE–KUTTA METHODS

3. Recall the asymptotic error for Taylor methods, given in (5.12). For second-
order methods, this yields

Y (tn) − yh(tn) = h2D(tn) + O(h3).

From this, derive the Richardson extrapolation formula

Y (tn) = 1
3 [4yh(tn) − y2h(tn)] + O(h3)

≈ 1
3 [4yh(tn) − y2h(tn)] ≡ ỹh(tn)

and the asymptotic error estimate

Y (tn) − yh(tn) = 1
3 [yh(tn) − y2h(tn)] + O(h3)

≈ 1
3 [yh(tn) − y2h(tn)].

Hint: Consider the formula

Y (tn) − y2h(tn) = 4h2D(tn) + O(h3)

and combine it suitably with the earlier formula forY (tn) − yh(tn).

4. Repeat Problem 3 for methods of a general orderp ≥ 1. Derive the formulas

Y (tn) ≈ 1

2p − 1
[2pyh(tn) − y2h(tn)] ≡ ỹh(tn)

with an error proportional tohp+1, and

Y (tn) − yh(tn) ≈ 1

2p − 1
[yh(tn) − y2h(tn)].

5. Use Problem 3 to estimate the errors in the results of Table5.1, for h =
0.05. Also produce the Richardson extrapolateỹh(tn) and calculate its error.
Compare its accuracy to that ofyh(tn).

6. Derive the second-orderRunge–Kutta methods (5.14) corresponding tob2 = 3
4

andb2 = 1 in (5.15). Forb2 = 1, draw an illustrative graph analogous to that
of Figure 5.1 forb2 = 1

2 . Give the Butcher tableau for this method.

7. Give the Butcher tableau for each of the following methods.
(a) The second-order method (5.21)
(b) The Fehlberg formulas (5.53) and (5.54).

8. Solve the problem (5.1) with one of the formulas from Problem 6. Compare
your results to those in Table 5.2 for formula (5.20) withb2 = 1

2 .

9. Using (5.20), solve the equations in Problem 2. Estimate the error by using
Problem 3, and compare it to the true error.

IMPLICIT RUNGE–KUTTA METHODS 91

10. Implement the classical procedure (5.28), and apply it to the equation (5.1).
Solve it with stepsizes ofh = 0.25 and0.125. Compare with the results in
Table 5.6, the fourth-order Fehlberg example.

Hint: Modify the Euler program of Chapter 2.

11. Use the program of Problem 10 to solve the equations in Problem 2.

12. Modify the Euler program of Chapter 3 to implement the Runge–Kutta method
given in (3.26). With this program, repeat Problems 5 and 6 ofChapter 3.

13. Consider the predator-prey model of (3.4), with the particular constantsA = 4,
B = 0.5, C = 3, andD = 1

3 . Also, recall Problem 8 in Chapter 3.

(a) Show that there is a solutionY1(t) = C1, Y2(t) = C2, with C1 andC2

nonzero constants. What would be the physical interpretation of such a
solutionY (t)?
Hint: What areY

′

1 (t) andY
′

2 (t) in this case?

(b) Solve this system (3.4) withY1(0) = 3, Y2(0) = 5, for 0 ≤ t ≤ 4, and
use the Runge–Kutta method of Problem 12 with stepsizes ofh = 0.01
and0.005. Examine and plot the values of the output in steps oft of 0.1.
In addition to these plots oft vs.Y1(t) andt vs.Y2(t), also plotY1 vs.Y2.

(c) Repeat (b) for the initial valuesY1(0) = 3, Y2(0) = 1, 1.5, 1.9 in succes-
sion. Comment on the relation of these solutions to one another and to
the solution of part (a).

14. Show that the implicit Runge–Kutta method (5.65) has a truncation error of size
O(h3). This can then be used to prove that the method has order of convergence
2.

15. Apply the implicit Runge–Kutta method (5.69) to the model problem

Y ′ = λY, t ≥ 0,

Y (0) = 1.

(a) Show that the solution can be written asyn = [R(λh)]
n with

R (z) =
1 + 1

2z + 1
12z

2

1 − 1
2z + 1

12z
2
.

(b) For any realz < 0 show that|R (z)| < 1. In fact, this bound is true for
any complexz with Real (z) < 0, and this implies that the method is
absolutely stable.

16. Solve the equations of Problem 2 with the built-inode45 function. Experiment
with several choices of error tolerances, including an absolute error tolerance
of AbsTol = 10−4 and ǫ = 10−6, along with a relative error tolerance of
RelTol = 10−8.

92 TAYLOR AND RUNGE–KUTTA METHODS

17. Solve the equations of Problem 2 with the built-inode23 function. Experiment
with several choices of error tolerances, including an absolute error tolerance
of AbsTol = 10−4 andǫ = 10−6, along with a relative error tolerance of
RelTol = 10−8.

18. Repeat Problem 13 usingode45.

19. Consider the motion of a particle of massm falling vertically under the earth’s
gravitational field, and suppose that the downward motion isopposed by a
frictional forcep(v) dependent on the velocityv(t) of the particle. Then the
velocity satisfies the equation

mv′(t) = −mg + p(v), t ≥ 0, v(0) given.

Letm = 1 kg,g = 9.8 m/s2, andv(0) = 0. Solve the differential equation for
0 ≤ t ≤ 20 and for the following choices ofp(v):

(a) p(v) = −0.1v, which is positive for a falling body.

(b) p(v) = 0.1v2.

Find answers to at least three digits of accuracy. Graph the functionsv(t).
Compare the solutions.

20. Consider solving the initial value problem

Y ′(t) = t− Y (t)2, Y (0) = 0

on the interval0 ≤ t ≤ 20. Create a Taylor series method of order2. Implement
it in MATLAB and use stepsizes ofh = 0.4, 0.2, and0.1 to solve for an
approximation toY . Estimate the error by using Problem 3. Graph the solution
that you obtain.

21. Repeat Problem 20 with various initial valuesY (0). In particular, useY (0) =
−0.2, −0.4, −0.6, −0.8. Comment on your results.

22. Repeat Problems 20 and 21, but use a second-order Runge–Kutta method.

23. Repeat Problems 20 and 21, but use the MATLAB codeode45. Do not attempt
to estimate the error since that is embedded inode113.

24. Consider the problem

Y ′ =
1

t+ 1
+ c · tan−1(Y (t)) − 1

2
, Y (0) = 0

with c a given constant. SinceY ′(0) = 1
2 , the solutionY (t) is initially increas-

ing ast increases, regardless of the value ofc. As best you can, show that there
is a value ofc, call it c∗, for which (1) if c > c∗, the solutionY (t) increases
indefinitely, and (2) ifc < c∗, thenY (t) increases initially, but then peaks and

IMPLICIT RUNGE–KUTTA METHODS 93

decreases. Usingode45, determinec∗ to within 0.00005, and then calculate
the associated solutionY (t) for 0 ≤ t ≤ 50.

25. (a) Using the Runge–Kutta method (5.20), solve

Y ′(t) = −Y (t) + t0.1(1.1 + t), Y (0) = 0,

whose solution isY (t) = t1.1. Solve the equation on[0, 5], print-
ing the solution and the errors att = 1, 2, 3, 4, 5. Use stepsizesh =
0.1, 0.05, 0.025, 0.0125, 0.00625. Calculate the ratios by which the errors
decrease whenh is halved. How does this compare with the theoretical
rate of convergence ofO(h2). Explain your results as best you can.

(b) What difficulty arises in attempting to use a Taylor method of order≥ 2
to solve the equation of part (a)? What does it tell us about the solution?

26. Consider the three-stage Runge–Kutta formula

z1 = yn,

z2 = yn + ha2,1f(tn, z1),

z3 = yn + h [a3,1f(tn, z1) + a3,2f(tn + c2h, z2)] ,

yn+1 = yn + h [b1f(tn, z1) + b2f(tn + c2h, z2) + b3f(tn + c3h, z3)] .

Generalize the argument used in (5.14)–(5.19) for determining the two-stage
Runge–Kutta formulas of order 2. Determine the set of equations that the
coefficients{bj, cj, aij} must satisfy if the formula given above is to be of
order3. Find a particular solution to these equations.

CHAPTER 6

MULTISTEP METHODS

Taylor methods and Runge–Kutta (RK) methods are known assingle-steporone-step
methods,since at a typical stepyn+1 is determined solely fromyn. In this chapter,
we consider multistep methods in which the computation of the numerical solution
yn+1 uses the solution values at several previous nodes. We derive here two families
of the most widely used multistep methods.

Reformulate the differential equation

Y ′(t) = f(t, Y (t))

by integrating it over the interval[tn, tn+1], obtaining

∫ tn+1

tn

Y ′(t) dt =

∫ tn+1

tn

f(t, Y (t)) dt,

Y (tn+1) = Y (tn) +

∫ tn+1

tn

f(t, Y (t)) dt. (6.1)

We will develop numerical methods to compute the solutionY (t) by approximating
the integral in (6.1). There are many such methods,and we will consider only the most

95

96 MULTISTEP METHODS

popular of them, the Adams–Bashforth (AB) and Adams–Moulton (AM) methods.
These methods are the basis of some of the most widely used computer codes for
solving the initial value problem. They are generally more efficient than the RK
methods, especially if one wishes to find the solution with a high degree of accuracy
or if the derivative functionf(t, y) is expensive to evaluate.

To evaluate the integral

∫ tn+1

tn

g(t) dt, g(t) = Y ′(t) = f(t, Y (t)), (6.2)

we approximateg(t) by using polynomial interpolation and then integrate the inter-
polating polynomial. For a given nonnegative integerq, the AB methods use interpo-
lation polynomial of degreeq at the points{tn, tn−1, . . . , tn−q}, and AM methods
use interpolation polynomial of degreeq at the points{tn+1, tn, tn−1, . . . , tn−q+1}.

6.1 ADAMS–BASHFORTH METHODS

We begin with the AB method based on linear interpolation (q = 1). The linear
polynomial interpolatingg(t) at{tn, tn−1} is

p1(t) =
1

h
[(tn − t)g(tn−1) + (t− tn−1)g(tn)]. (6.3)

From the theory of polynomial interpolation (Theorem B.3 inAppendix B),

g(t) − p1(t) = 1
2 (t− tn) (t− tn−1) g

′′(ζn) (6.4)

for sometn−1 ≤ ζn ≤ tn+1. Integrating over[tn, tn+1], we obtain

∫ tn+1

tn

g(t) dt ≈
∫ tn+1

tn

p1(t) dt = 1
2h[3g(tn) − g(tn−1)].

In fact, we can obtain the more complete result

∫ tn+1

tn

g(t) dt = 1
2h[3g(tn) − g(tn−1)] + 5

12h
3g′′(ξn) (6.5)

for sometn−1 ≤ ξn ≤ tn+1; see Problem 4 for a derivation of a related but somewhat
weaker result on the truncation error. Applying this to the relation (6.1) gives us

Y (tn+1) = Y (tn) + 1
2h[3f(tn, Y (tn)) − f(tn−1, Y (tn−1))]

+ 5
12h

3Y ′′′(ξn).
(6.6)

Dropping the final term, the truncation error, we obtain the numerical method

yn+1 = yn + 1
2h[3f(tn, yn) − f(tn−1, yn−1)]. (6.7)

ADAMS–BASHFORTH METHODS 97

Table 6.1 An example of the second order Adams-Bashforth method

t yh(t) Y (t) − y2h(t) Y (t) − yh(t) Ratio 1
3
[yh(t) − y2h(t)]

2 0.49259722 2.13e − 3 5.53e − 4 3.9 5.26e − 4
4 −1.41116963 2.98e − 3 7.24e − 4 4.1 7.52e − 4
6 0.68174279 −3.91e − 3 −9.88e − 4 4.0 −9.73e − 4
8 0.84373678 3.68e − 4 1.21e − 4 3.0 8.21e − 5

10 −1.38398254 3.61e − 3 8.90e − 4 4.1 9.08e − 4

With this method, note that it is necessary to haven ≥ 1. Both y0 andy1 are
needed in findingy2, andy1 cannot be found from (6.7). The value ofy1 must be
obtained by another method. The method (6.7) is an example ofa two step method,
since values attn−1 andtn are needed in finding the value attn+1. If we assume
y0 = Y0, and if we can determiney1 ≈ Y (t1) with an accuracyO(h2), then the AB
method (6.7) is of order2, that is, its global error is of sizeO(h2),

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ ch2. (6.8)

We must note that this result assumesf(t, y) andY (t) are sufficiently differen-
tiable, just as with all other similar convergence error bounds and asymptotic error
results stated in this book. In this particular case (6.8), we would assume thatY (t)
is 3 times continuously differentiable on[t0, b] and thatf(t, y) satisfies the Lipschitz
condition of (2.19) in Chapter 2. We usually omit the explicit statement as to the
order of differentiability onY (t) being assumed, although it is usually apparent from
the given error results.

Example 6.1 Use (6.7) to solve

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1 (6.9)

with the solutionY (t) = sin(t) + cos(t). For illustrative purposes only, we take
y1 = Y (t1). The numerical results are given in Table 6.1, usingh = 0.05. Note that
the errors decrease by a factor of approximately4whenh is halved,which is consistent
with the numerical method being of order2. The Richardson error estimate is also
included in the table, using the formula (5.13) for second-order methods. Where the
error is decreasing likeO(h2), the error estimate is quite accurate.

Adams methods are often considered to be “less expensive” than RK methods, and
the main reason can be seen by comparing (6.7) with the second-order RK method in
(5.20). The main task of both methods is to evaluate the derivative functionf(t, y).
With second-order RK methods, there are two evaluations off for each step fromtn
to tn+1. In contrast, the AB formula (6.7) uses only one evaluation per step, provided
that past values off are reused. Other factors affect the choice of a numerical method,
but the AB and AM methods are generally more efficient in the number of evaluations
of f that are needed for a given amount of accuracy.

98 MULTISTEP METHODS

A problem with multistep methods is the need to generate someof the initial values
of the solution by using another method. For the second-order AB method in (6.7),
we must obtainy1; and since the global error inyh(tn) is to beO(h2), we must
ensure thatY (t1) − yh(t1) is alsoO(h2). There are two immediate possibilities,
using methods from preceding chapters.

Case (1) Use Euler’s method:
y1 = y0 + hf(t0, y0). (6.10)

Assumingy0 = Y0, this has an error of

Y (t1) − y1 = 1
2h

2Y ′′(ξ1)

based on (2.10) withn = 0. Thus (6.10) meets our error criteria fory1.
Globally, Euler’s method has onlyO(h) accuracy, but the error of a single step
isO(h2).

Case (2) Use a second-order RK method, such as (5.20). Since only one step int is
being used,Y (t1) − y1 will be O(h3), which is more than adequate.

Example 6.2 Combine (6.10) with (6.7) to solve the problem (6.9) from thelast
example. Forh = 0.05 andt = 10, the error in the numerical solution turns out to be

Y (10) − yh(10)
.
= 8.90 × 10−4,

the same as before for the results in Table 6.1.

Higher-order Adams–Bashforth methods are obtained by using higherdegree poly-
nomial interpolation in the approximation of the integrandin (6.2). (For an introduc-
tion to polynomial interpolation, see Appendix B.) The nexthigher-order example
following the linear interpolation of (6.3) uses quadraticinterpolation. Letp2(t)
denote the quadratic polynomial that interpolatesg(t) attn, tn−1, tn−2, and then use

∫ tn+1

tn

g(t) dt ≈
∫ tn+1

tn

p2(t) dt.

To be more explicit, we may write

p2(t) = g(tn)ℓ0(t) + g(tn−1)ℓ1(t) + g(tn−2)ℓ2(t) (6.11)

with

ℓ0(t) =
(t− tn−1)(t− tn−2)

2h2
,

ℓ1(t) = − (t− tn)(t− tn−2)

h2
,

ℓ2(t) =
(t− tn)(t− tn−1)

2h2
.





(6.12)

ADAMS–BASHFORTH METHODS 99

For the error, we have

g(t) − p2(t) = 1
6 (t− tn) (t− tn−1) (t− tn−2) g

′′′(ζn) (6.13)

for sometn−2 ≤ ζn ≤ tn+1.
It can be shown that
∫ tn+1

tn

g(t) dt = 1
12h[23g(tn) − 16g(tn−1) + 5g(tn−2)] +

3
8h

4g′′′(ξn)

for sometn−2 ≤ ξn ≤ tn+1. Applying this to (6.1), the integral formulation of the
differential equation, we obtain

Y (tn+1) = Y (tn) + 1
12h[23f(tn, Y (tn)) − 16f(tn−1, Y (tn−1))

+ 5f(tn−2, Y (tn−2))] + 3
8h

4Y (4)(ξn).

By dropping the last term, the truncation error, we obtain the third-order AB method

yn+1 = yn + 1
12h[23y′n − 16y′n−1 + 5y′n−2], n ≥ 2, (6.14)

wherey′k ≡ f(tk,yk), k ≥ 0. This is a three step method, requiringn ≥ 2. Thus
y1, y2 must be obtained separately by other methods. We leave the implementation
and illustration of (6.14) as Problem 2 for the reader.

In general, it can be shown that the AB method based on interpolation of degreeq
will be a (q + 1)-step method, and its truncation error will be of the form

Tn+1 = cqh
q+2Y (q+2)(ξn)

for sometn−q ≤ ξn ≤ tn+1. The initial valuesy1, . . . , yq will have to be generated
by other methods. If the errors in these initial values satisfy

Y (tn) − yh(tn) = O(hq+1), n = 1, 2, . . . , q, (6.15)

then the global error in the(q + 1)-step AB method will also beO(hq+1), provided
that the true solutionY is sufficiently differentiable. In addition, the global error will
satisfy an asymptotic error formula

Y (tn) − yh(tn) = D(tn)hq+1 + O(hq+2),

much as was true earlier for the Taylor and RK methods described in Chapter 5. Thus
Richardson’s extrapolation can be used to accelerate the convergence of the method
and to estimate the error.

To generate the initial valuesy1, . . . , yq for the (q + 1)-step AB method, and to
have their errors satisfy the requirement (6.15), it is sufficient to use a RK method
of orderq. However, in many instances, people prefer to use a RK methodof order
q + 1, the same order as that of the(q + 1)-step AB method. Other procedures are
used in the automatic computer programs for AB methods, and we discuss them later
in this chapter.

100 MULTISTEP METHODS

Table 6.2 Adams-Bashforth methods

q Order Method T. Error

0 1 yn+1 = yn + hy′

n
1
2
h2Y ′′(ξn)

1 2 yn+1 = yn + h
2
[3y′

n − y′

n−1]
5
12

h3Y ′′′(ξn)

2 3 yn+1 = yn + h

12
[23y′

n − 16y′

n−1 + 5y′

n−2]
3
8
h4Y (4)(ξn)

3 4 yn+1 = yn + h

24
[55y′

n − 59y′

n−1 + 37y′

n−2 − 9y′

n−3]
251
720

h5Y (5)(ξn)

Table 6.3 Example of fourth order Adams-Bashforth method

t yh(t) Y (t) − y2h(t) Y (t) − yh(t) Ratio 1
15

[yh(t) − y2h(t)]

2 0.49318680 −3.96e − 4 −3.62e − 5 10.9 −2.25e − 5
4 −1.41037698 −1.25e − 3 −6.91e − 5 18.1 −7.37e − 5
6 0.68067962 1.05e − 3 7.52e − 5 14.0 6.12e − 5
8 0.84385416 3.26e − 4 4.06e − 6 80.0 2.01e − 5

10 −1.38301376 −1.33e − 3 −7.89e − 5 16.9 −7.82e − 5

The AB methods of orders1 through4 are given in Table 6.2; the column heading
“T. Error” denotes “Truncation Error”. The order1 formula is simply Euler’s method.
In the table,y′k ≡ f(tk, yk).

Example 6.3 Solve the problem (6.9) by using the fourth-order AB method.Since
we are illustrating the AB method, we simply generate the initial valuesy1, y2, y3 by
using the true solution,

yi = Y (ti), i = 1, 2, 3.

The results forh = 0.125 and2h = 0.25 are given in Table 6.3. Richardson’s error
estimate for a fourth-order method is given in the last column. For a fourth-order
method, the error should decrease by a factor of approximately 16 whenh is halved.
In those cases where this is true, the Richardson’s error estimate is accurate. In no
case is the error badly underestimated.

Comparing these results with those in Table 5.6 for the fourth-order Fehlberg
method, we see that the present errors appear to be very large. But note that the
Fehlberg formula uses five evaluations off(t, y) for each step oftn to tn+1; whereas
the fourth-order AB method uses only one evaluation off per step, assuming that
previous evaluations are reused. If this AB method is used with anh that is only1

5
as large (for a comparable number of evaluations off), then the present errors will
decrease by a factor of approximately54 = 625. The AB errors will be mostly smaller
than those of the Fehlberg method in Table 5.6, and the work will be comparable
(measured by the number of evaluations off).

ADAMS–MOULTON METHODS 101

Table 6.4 Example of Adams-Moulton method of order 2

t Y (t) − y2h(t) Y (t) − yh(t) Ratio 1
3
[yh(t) − y2h(t)]

2 −4.59e − 4 −1.15e − 4 4.0 −1.15e − 4
4 −5.61e − 4 −1.40e − 4 4.0 −1.40e − 4
6 7.98e − 4 2.00e − 4 4.0 2.00e − 4
8 −1.21e − 4 −3.04e − 5 4.0 −3.03e − 4

10 −7.00e − 4 −1.75e − 4 4.0 −1.28e − 4

6.2 ADAMS–MOULTON METHODS

As with the AB methods, we begin our presentation of AM methods by considering
the method based on linear interpolation. Letp1(t) be the linear polynomial that
interpolatesg(t) at tn andtn+1,

p1(t) =
1

h
[(tn+1 − t)g(tn) + (t− tn)g(tn+1)].

Using this equation to approximate the integrand in (6.2), we obtain the trapezoidal
rule discussed in Chapter 4,

Y (tn+1) = Y (tn)+ 1
2h[f(tn, Y (tn))+f(tn+1, Y (tn+1))]− 1

12h
3Y ′′′(ξn). (6.16)

Dropping the last term, the truncation error, we obtain the AM method

yn+1 = yn + 1
2h[f(tn, yn) + f(tn+1, yn+1)], n ≥ 0. (6.17)

This is the trapezoidal method discussed in Section 4.2. It is a second-order method
and has a global error of sizeO(h2). Moreover, it is absolutely stable.

Example 6.4 Solve the earlier problem (6.9) by using the AM method (6.17)(the
trapezoidal method). The results are given in Table 6.4 forh = 0.05, 2h = 0.1, and
the Richardson error estimate for second-order methods is given in the last column.
In this case, theO(h2) error behavior is very apparent, and the error estimation is
very accurate.

Example 6.5 Repeat Example 6.4, but using the procedure described following
(4.28) in Chapter 4, with only one iterate being computed foreachn. Then, the
errors do not change significantly from those given in Table 6.4. For example, with
t = 10 andh = 0.05, the error is

Y (10) − yh(10)
.
= −2.02 × 10−4.

This is not very different from the value of−1.75 × 10−4 given in Table 6.4. The
use of the iteratey(1)

n+1 as the rootyn+1 will not affect significantly the accuracy of

102 MULTISTEP METHODS

Table 6.5 Adams-Moulton methods

q Order Method T. Error

0 1 yn+1 = yn + hy′

n+1 − 1
2
h2Y ′′(ξn)

1 2 yn+1 = yn + h
2
[y′

n+1 + y′

n] − 1
12

h3Y ′′′(ξn)

2 3 yn+1 = yn + h

12
[5y′

n+1 + 8y′

n − y′

n−1] − 1
24

h4Y (4)(ξn)

3 4 yn+1 = yn + h

24
[9y′

n+1 + 19y′

n − 5y′

n−1 + y′

n−2] − 19
720

h5Y (5)(ξn)

the solution for most differential equations. Stiff differential equations are a major
exception.

By integrating the polynomial of degreeq that interpolates on the set of the nodes
{tn+1, tn, . . . , tn−q+1} to the functiong(t) of (6.2), we obtain the AM method of
orderq+ 1. It will be an implicit method, but in other respects the theory is the same
as for the AB methods described previously. The AM methods oforders1 through4
are given in Table 6.5, wherey′k ≡ f(tk, yk). As in Table 6.2, the column heading
“T. Error” denotes “Truncation Error”. Note that the AM method of order 1 is the
backward Euler method, and the AM method of order 2 is the trapezoidal method.

The effective cost of an AM method is two evaluations of the derivative f(t, y)
per step in most cases and assuming that previous function values off are reused.
This includes one evaluation off to calculate an initial guessy(0)

n+1, and then one
evaluation off in the iteration formula for the AM method. For example, withthe
trapezoidal method this means using the calculation

y
(0)
n+1 = yn + 1

2
h [3f(tn, yn) − f(tn−1, yn−1)] ,

y
(1)
n+1 = yn + 1

2
h[f(tn, yn) + f(tn+1, y

(0)
n+1)],

(6.18)

or using some otherpredictor formula fory(0)
n+1 with an equivalent accuracy. With

this calculation, there is no significant gain in accuracy over the AB method of the
same order when comparing methods of equivalent cost.

Nonetheless, AM methods possess other properties that makethem desirable for
use in many types of differential equations. The desirable features relate to stability
characteristics of numerical methods. Recall from Chapter4, following (4.3), that
we study the behavior of a numerical method when applied to the model problem

Y ′(t) = λY (t), t > 0,
Y (0) = 1.

(6.19)

We always assume the constantλ < 0 or λ is complex withReal(λ) < 0. The true
solution of the problem (6.19) isY (t) = eλ t, which decays exponentially int since
the parameterλ has a negative real part. The kind of stability property thatwe would

ADAMS–MOULTON METHODS 103

like for a numerical method is that when it is applied to (6.19), the numerical solution
satisfies

yh(tn) → 0 as tn → ∞ (6.20)

for any choice of stepsizeh. With most numerical methods, this is not satisfied. The
set of valueshλ, considered as a subset of the complex plane, for whichyn → 0 as
n→ ∞, is called theregion of absolute stabilityof the numerical method.

As seen in Chapter 4, the AM methods of orders 1 and 2 are absolutely stable,
satisfying (6.20) for all values ofh. Such methods are particularly suitable for solving
stiff differential equations. In general, we prefer numerical methods with a larger
region of absolute stability; the larger is the region, the less restrictive the condition
on h in order to ensure satisfaction of (6.20) for the model problem (6.19). Thus a
method with a large region of absolute stability is generally preferred over a method
with a smaller region, provided that the accuracy of the two methods is similar. It can
be shown that for AB and AM methods of equal order, the AM method will have the
larger region of absolute stability; see Figures 8.1 and 8.2in Chapter 8. Consequently,
Adams–Moulton methods are generally preferred over Adams–Bashforth methods.

Example 6.6 Applying the AB method of order2 to equation (6.19) leads to the
finite difference equation

yn+1 = yn + 1
2hλ (3yn − yn−1) , n = 1, 2, . . . (6.21)

with y0 andy1 determined beforehand. Jumping ahead to (7.45) in Chapter 7, the
solution to this finite difference equation is given by

yh(tn) = γ0 [r0(hλ)]
n

+ γ1 [r1(hλ)]
n
, n ≥ 0 (6.22)

with r0(hλ) andr1(hλ) the roots of the quadratic polynomial

r2 = r + 1
2hλ (3r − 1) . (6.23)

Whenλ = 0, one of the roots equals 1, and we denote arbitrarily that root by r0(hλ)
in general:r0(0) = 1. The constantsγ0 andγ1 are determined fromy0 andy1. In
order to satisfy (6.22) for a given choice ofhλ and for any choice ofγ0 andγ1, it is
necessary to have

|r0(hλ)| < 1, |r1(hλ)| < 1. (6.24)

Solving this pair of inequalities for the case thatλ is real, and looking only at the case
thatλ < 0, we obtain

−1 < hλ < 0 (6.25)

as the region of absolute stability on the real axis. In contrast, the AM method of
order2 has−∞ < hλ < 0 on the real axis of its region of stability. There is no
stability restriction onh with this AM method.

104 MULTISTEP METHODS

6.3 COMPUTER CODES

Some of the most popular computer codes for solving the initial value problem are
based on using AM and AB methods in combination, as suggestedin the discussion
preceding (6.18). These codes control the truncation errorby varying both the stepsize
h and the order of the method. They are self-starting in terms of generating the initial
valuesy1, . . . , yq needed with higher-order methods of orderq+1. To generate these
values, they begin with first-order methods and a small stepsizeh and then increase
the order to generate the starting values needed with higher-order methods. The
possible order is allowed to be as large as12 or more; this results in a very efficient
numerical method when the solutionY (t) has several continuous derivatives and is
slowly varying. A comprehensive discussion of Adams’ methods and an example of
one such computer code is given in Shampine [72].

MATLAB R© program. To facilitate the illustrative programming of the methodsof
this chapter, we present a modification of the Euler program of Chapter 2. The
program implements the Adams–Bashforth formula of order2, given in (6.7); and
it uses Euler’s method to generate the first valuey1 as in (6.10). We defer to the
Problems section the experimental use of this program.

function [t,y] = AB2(t0,y0,t end,h,fcn)

%

% function [t,y]=AB2(t0,y0,t end,h,fcn)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use Adams-Bashforth formula of order 2 with

% a stepsize of h. Euler’s method is used for

% the value y1. The user must supply a program for

% the right side function defining the differential

% equation. For some name, say deriv, use a first

% line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=AB2(t0,z0,b,delta,’deriv’)

%

% Output:

% The routine AB2 will return two vectors, t and y.

% The vector t will contain the node points

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end-h, t(N)+h > t end-h

% The vector y will contain the estimates of the

% solution Y at the node points in t.

%

n = fix((t end-t0)/h)+1;

COMPUTER CODES 105

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6.1 The solution values to (6.26) obtained byode113 are indicated by the symbolo.
The curve line is obtained by interpolating these solution values fromode113 usingdeval.

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);

y(1) = y0;

ft1 = feval(fcn,t(1),y(1));

y(2) = y(1)+h*ft1;

for i = 3:n

ft2 = feval(fcn,t(i-1),y(i-1));

y(i) = y(i-1)+h*(3*ft2-ft1)/2;

ft1 = ft2;

end

6.3.1 MATLAB ODE codes

Built-in MATLAB programs based on multistep methods areode113 andode15s.
These programs implement explicit and implicit linear multistep methods of various
orders, respectively. The programode113 is used to solve nonstiff ordinary differen-
tial equations, using the Adams–Bashforth and Adams–Moulton methods presented
in this chapter. The codeode15s is for stiff ordinary differential equations, and it
is based on yet another variable order family of multistep methods, one that is dis-
cussed in Chapter 8. The programs are used in precisely the same manner as the
programode45 discussed in Section 5.5 of Chapter 5; and the entire suite ofMAT-

106 MULTISTEP METHODS

0 5 10 15 20
−4

−3

−2

−1

0

1

2
x 10

−4

Figure 6.2 The errors in the solution to (6.26) obtained usingode113. The errors at the
node points are indicated by the symbolo

LAB ode programs is discussed at length by Shampine and Reichelt [73]. Also, see
Shampine [72] for a thorough study of one-step and multistepmethods and of their
implementation in computer software.

Example 6.7 We modify the programtest ode45by replacingode45with ode113

throughout the code. The programode113 is recommended for medium- to high-
accuracy solutions, but we will illustrate its use with the same example as in Section
5.5 of Chapter 5 for the programode45. As before, we solve the test equation

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1 (6.26)

and we useAbsTol = 10−6,RelTol = 10−4. Figures 6.1 and 6.2 illustrate, respec-
tively, the interpolated numerical solution and the error contained therein. Compare
these results to those in Figures 5.2 and 5.3 of Chapter5. There are 229 derivative eval-
uations when usingode45 for this problem, whereasode113 uses 132 evaluations.
This is a typical example for comparison of the number of derivative evaluations.

PROBLEMS

1. Use the MATLAB program for the AB method of order two to solve the equa-
tions in Problem 2 of Chapter 5. Include the Richardson errorestimate for
yh(t) whenh = 0.1 and0.05.

COMPUTER CODES 107

2. Modify the MATLAB program of this chapter to use the third-order AB method.
To calculatey1 andy2, use one of the second-order RK methods from Chapter
5. Then repeat Problem 1.

3. Use the program from Problem 2 to solve the continuing example problem
(6.9).

4. To make the error term in (6.5) a bit more believable, prove

∫ h

0

γ(s) ds− 1
2h[3γ(0)− γ(−h)] = 5

12h
3γ′′(0) + O(h4)

with γ (s) a 3 times continuously differentiable function for−h ≤ s ≤ h.
Hint: Expandγ(s) as a quadratic Taylor polynomial about the origin, with
an error termR3(t). Substitute that Taylor expansion into the left side of the
equation above, and obtain the right side. For simplicity, we have changed the
interval in (6.5) from[tn, tn+1] to [0, h]. The result extends to (6.5) by means
of a simple change of variable in (6.5), namely,t = tn + s, 0 ≤ s ≤ h. Also
note that if−h ≤ ξ ≤ h, then

γ′′(ξ) = γ′′(0) + ξγ′′′(ζ), someζ between0 andξ

= γ′′(0) + O(h),
5
12h

3γ′′(ξ) = 5
12h

3γ′′(0) + O(h4),

since|ξ| ≤ h. This argument assumesγ (s) is 3 times continuously differen-
tiable.

5. Repeat the type of argument given in Problem 4, extending it to the Adams–
Bashforth method of order 3, given in Table 6.2.

6. Repeat the type of argument given in Problem 4, extending it to the Adams–
Moulton method of order 2, given in Table 6.5.

7. Repeat the type of argument given in Problem 4, extending it to the Adams–
Moulton method of order 3, given in Table 6.5.

8. Modify the MATLAB program of this chapter to use the AM method of order
2. For the predictor, use the AB method of order2; for the first stepy1, use the
Euler predictor. Iterate the formula (4.25) only once. Apply this to the solution
of the equations considered in Problem 1, and produce the Richardson error
estimate.

9. Use the MATLAB codeode113 to solve the equations in Problem 2 of Chapter
5. For error tolerances, use absolute error boundsAbsTol = 10−4 andǫ =
10−6, along with a relative error toleranceRelTol = 10−8. Keep track of
the number of evaluations off(t, y) that are used by the routine, and compare
it to the number used in your own programs for the Adams–Bashforth and
Adams–Moulton methods.

108 MULTISTEP METHODS

10. (a) Using the program of Problem 1 for the AB method of order 2, solve

Y ′(t) = −50Y (t) + 51 cos(t) + 49 sin(t), Y (0) = 1

for 0 ≤ t ≤ 10. The solution isY (t) = sin(t) + cos(t). Use stepsizes of
h = 0.1, 0.02, 0.01. In each case, print the errors as well as the answers.

(b) Using the program of Problem 8 for the AM method of order2, repeat
part (a). Check the condition of (4.26).

(c) When the AM method of order2 is applied to the equation in (a), the value
of yn+1 can be found directly. While doing so, repeat part (a). Compare
your results.

11. The Adams–Bashforth and Adams–Moulton methods are based on (6.1) to-
gether with the integration over[tn, tn+1] of a polynomial interpolating the
integrandY ′(t) = f(t, Y (t)). As an alternative, consider integration over
[tn−1, tn+1], obtaining

Y (tn+1) = Y (tn−1) +

∫ tn+1

tn−1

f(t, Y (t)) dt. (6.27)

We can replace the integrandf(t, Y (t)) with an approximation based on inter-
polation. The simplest example is to use a constant interpolant; in particular,

∫ tn+1

tn−1

f(t, Y (t)) dt ≈
∫ tn+1

tn−1

f(tn, Y (tn)) dt = 2hf(tn, Y (tn)).

This leads to the numerical method

yn+1 = yn−1 + 2hf (tn, yn) , n ≥ 1. (6.28)

This is called themidpoint method. As with the Adams–Bashforth method
(6.7) of order 2, the value ofy1 must be obtained by other means. Using the
type of argument given in Problem 4, show that

Y (tn+1) − [Y (tn−1) + 2hf(tn, Y (tn))] = − 1
3h

3Y ′′′ (tn) + O(h4).

Hint: ExpandY (t) as a quadratic Taylor polynomial abouttn, with an error
termR3(t). Substitute that Taylor expansion into the left side of the equation
above to obtain the right side.

12. Using the same arguments as in Problem 11, consider interpolatingY ′(t) =
f(t, Y (t)) with a quadratic polynomial. Have it interpolateY ′(t) = f (t, Y (t))
at the nodes{tn−1, tn, tn+1}. Use this to obtain the numerical method

yn+1 = yn−1 + 1
3 [hf (tn−1, yn−1)

+4f (tn, yn) + f (tn+1, yn+1)].
(6.29)

COMPUTER CODES 109

As with the Adams–Moulton methods, this is an implicit method and the value
of yn+1 must be calculated by a rootfinding method. Also, the value ofy1 must
be obtained by other means.

This isSimpson’s parabolic rulefor numerical integration, and when applied,
as here, to solving differential equations, it is one part ofMilne’s method, which
is mainly of historical interest, as the family of Adams methods have replaced
it in modern codes. We return to Simpson’s rule, however, when developing
numerical methods for solving Volterra integral equationsin Chapter 12.

13. As an alternative to (6.27), consider

Y (tn+1) = Y (tn−3) +

∫ tn+1

tn−3

f(t, Y (t)) dt.

Using the same arguments as in Problem 12, consider interpolatingY ′(t) =
f(t, Y (t)) with a quadratic polynomial, but have it interpolateY ′(t) at the
nodes{tn−2, tn−1, tn}. Use this to obtain the numerical method

yn+1 = yn−3 + 4
3h[2f (tn−2, yn−2)

−f (tn−1, yn−1) + 2f (tn, yn)].
(6.30)

This is an explicit method, and historically it has been usedto estimate an
initial valuey(0)

n+1 for the iterative solution of equation (6.29) in Problem 12,
thus forming the other half ofMilne’s method. The values ofy1, y2, y3 must
be obtained by other means.

14. Repeat Problems 20 and 21 of Chapter 5 using the MATLAB code ode113.
Do not attempt to estimate the error since that is embedded inode113.

15. Repeat Problem 24 of Chapter 5 using the MATLAB codeode113.

CHAPTER 7

GENERAL ERROR ANALYSIS FOR
MULTISTEP METHODS

We now present a general error analysis for multistep methods in solving the initial
value problem of a single first-order equation. In addition to explaining the underlying
behavior of the numerical methods, such a general error analysis allows us to design
better numerical procedures for various classes of problems. We begin by considering
the truncation error for multistep methods. Next, in Section 7.2, we look at a relatively
simple error analysis that is similar to that given for Euler’s method in Chapter 2; it is
an error analysis that works for many popular multistep methods. In Section 7.3 we
give a complete error analysis for all multistep methods, and we follow it with some
examples.

As before, leth > 0 and define the nodes bytn = t0 + nh, n ≥ 0. The general
form of the multistep methods to be considered is

yn+1 =

p∑

j=0

ajyn−j + h

p∑

j=−1

bjf(tn−j , yn−j), n ≥ p. (7.1)

The coefficientsa0, . . . , ap, b−1, b0, . . . , bp are constants andp ≥ 0. Assuming
that |ap| + |bp| 6= 0, we consider this method a(p+ 1)-step method, becausep+ 1
previous solution values are being used to computeyn+1. The valuesy1, . . . , yp must

111

112 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

be obtained by other means, as was illustrated in Chapter 6 with the Adams methods.
Euler’s method is an example of a one-step method withp = 0 and

a0 = 1, b0 = 1, b−1 = 0.

If b−1 = 0, thenyn+1 occurs on only the left side of equation (7.1). Such formulas
are calledexplicit methods. If b−1 6= 0, thenyn+1 is present on both sides of (7.1),
and the formula is called animplicit method. As was discussed following (4.12) in
Chapter 4 for the backward Euler method, the solutionyn+1 can be computed by
fixed point iteration,

y
(i+1)
n+1 =

p∑

j=0

ajyn−j +h

p∑

j=0

bjf(tn−j , yn−j)+hb−1f(tn+1, y
(i)
n+1), i = 0, 1, . . . ,

providedh is chosen sufficiently small.

Example 7.1

1. The midpoint method is defined by

yn+1 = yn−1 + 2hf(tn, yn), n ≥ 1 (7.2)

and it is an explicit two-step method. We discuss this methodin more detail
later in the chapter.

2. The Adams–Bashforth and Adams–Moulton methods are all special cases of
(7.1), with

a0 = 1, aj = 0 for j = 1, . . . , p.

Also, refer to the formulas for these methods in Tables 6.2 and 6.5 of Chapter
6.

7.1 TRUNCATION ERROR

For any differentiable functionY (t), define the truncation error for integratingY ′(t)
by

Tn(Y) = Y (tn+1) −




p∑

j=0

ajY (tn−j) + h

p∑

j=−1

bjY
′(tn−j)



 (7.3)

for n ≥ p. Define the functionτn(Y) by

τn(Y) =
1

h
Tn(Y). (7.4)

In order to prove the convergence of the approximate solution {yn : t0 ≤ tn ≤ b} of
(7.1) to the solutionY (t) of the initial value problem

Y ′(t) = f(t, Y (t)), t ≥ t0,
Y (t0) = Y0,

TRUNCATION ERROR 113

it is necessary to have

τ(h) ≡ max
tp≤tn≤b

|τn(Y)| → 0 ash→ 0. (7.5)

This is often called theconsistency conditionfor the method (7.1). The speed of
convergence of the solution{yn} to the true solutionY (t) is related to the speed of
convergence in (7.5), and thus we need to know the conditionsunder which

τ(h) = O(hm) (7.6)

for some desired choice ofm ≥ 1. We now examine the implications of (7.5) and
(7.6) for the coefficients in (7.1).

Theorem 7.2 Letm ≥ 1 be a given integer. For (7.5) to hold for all continuously dif-
ferentiable functionsY (t), that is, for the method (7.1) to be consistent, it is necessary
and sufficient that

p∑

j=0

aj = 1, (7.7)

−
p∑

j=0

jaj +

p∑

j=−1

bj = 1. (7.8)

Further, for (7.6) to be valid for all functionsY (t) that arem+1 times continuously
differentiable, it is necessary and sufficient that (7.7)–(7.8) hold and that

p∑

j=0

(−j)iaj + i

p∑

j=−1

(−j)i−1bj = 1, i = 2, . . . ,m. (7.9)

Proof. Note that
Tn(αY + βW) = αTn(Y) + βTn(W) (7.10)

for all constantsα, β and all differentiable functionsY,W . To examine the conse-
quences of (7.5) and (7.6), expandY (t) abouttn using Taylor’s theorem to obtain

Y (t) =
m∑

i=0

1

i!
(t− tn)iY (i)(tn) + Rm+1(t), (7.11)

Rm+1(t) =
1

m!

∫ t

tn

(t− s)mY (m+1)(s) ds

=
(t− tn)m+1

(m+ 1)!
Y (m+1)(ξn) (7.12)

with ξn betweent andtn (see (A.4)–(A.6) in Appendix A). We are assuming that
Y (t) ism+ 1 times continuously differentiable on the interval boundedby t andtn.
Substituting into (7.3) and using (7.10), we obtain

Tn(Y) =

m∑

i=0

1

i!
Y (i)(tn)Tn((t− tn)i) + Tn(Rm+1).

114 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

It is necessary to calculateTn((t− tn)i) for i ≥ 0.

• For i = 0,

Tn(1) = c0 ≡ 1 −
p∑

j=0

aj .

• For i ≥ 1,

Tn((t− tn)i) = (tn+1 − tn)i

−




p∑

j=0

aj(tn−j − tn)i + h

p∑

j=−1

bji(tn−j − tn)i−1




= cih
i

ci = 1 −




p∑

j=0

(−j)iaj + i

p∑

j=−1

(−j)i−1bj


 i ≥ 1. (7.13)

This gives

Tn(Y) =

m∑

i=0

ci
i!
hiY (i)(tn) + Tn(Rm+1). (7.14)

From (7.12) it is straightforward thatTn(Rm+1) = O
(
hm+1

)
. If Y ism+ 2 times

continuously differentiable, we may write the remainderRm+1(t) as

Rm+1(t) =
1

(m+ 1)!
(t− tn)m+1Y (m+1)(tn) + · · · ,

and then
Tn(Rm+1) =

cm+1

(m+ 1)!
hm+1Y (m+1)(tn) + O(hm+2). (7.15)

To obtain the consistency condition (7.5),assuming thatY is an arbitrary twice con-
tinuously differentiable function, we needτ(h) = O(h) and this requiresTn(Y) =
O(h2). Using (7.14) withm = 1, we must havec0 = c1 = 0, which gives the set of
equations (7.7)–(7.8). In some texts, these equations are referred to as theconsistency
conditions. It can be further shown that (7.7)–(7.8) are the necessary and sufficient
conditions for the consistency (7.5), even whenY is only assumed to be continuously
differentiable. To obtain (7.6) for somem ≥ 1, we must haveTn(Y) = O(hm+1).
From (7.14) and (7.13), this will be true if and only ifci = 0, i = 0, 1, . . . ,m. This
proves the conditions (7.9) and completes the proof.

The largest value ofm for which (7.6) holds is called theorder or order of con-
vergenceof the method (7.1).

CONVERGENCE 115

Example 7.3 Find all second-order two-step methods. Formula (7.1) is

yn+1 = a0yn + a1yn−1 + h [b−1f(tn+1, yn+1) + b0f(tn, yn)
+ b1f(tn−1, yn−1)] , n ≥ 1.

(7.16)

The coefficients must satisfy (7.7)–(7.9) withm = 2:

a0 + a1 = 1, −a1 + b−1 + b0 + b1 = 1, a1 + 2b−1 − 2b1 = 1.

Solving, we obtain

a1 = 1 − a0, b−1 = 1 − 1
4a0 − 1

2b0, b1 = 1 − 3
4a0 − 1

2b0 (7.17)

with a0, b0 indeterminate. The midpoint method is a special case in which a0 = 0,
b0 = 2. For the truncation error, we have

Tn(R3) = 1
6c3h

3Y (3)(tn) + O(h4), (7.18)

c3 = −4 + 2a0 + 3b0. (7.19)

The coefficientsa0, b0 can be chosen to improve the stability, give a small truncation
error, give an explicit formula,or some combination of these. The conditions to ensure
stability and convergence cannot be identified until the general theory for (7.1) has
been given in the remainder of this chapter.

7.2 CONVERGENCE

We now give a convergence result for the numerical method (7.1). Although the
theorem will not cover all the multistep methods that are convergent, it does include
many methods of current interest, including those of Chapters 2, 4, and 6. Moreover,
the proof is much easier than that of the more general Theorem7.6 given in Section
7.3.

Theorem 7.4 Consider solving the initial value problem

Y ′(t) = f(t, Y (t)), t ≥ t0,
Y (t0) = Y0

(7.20)

using the multistep method (7.1). Assume that the derivative functionf(t, y) is con-
tinuous and satisfies the Lipschitz condition

|f(t, y1) − f(t, y2)| ≤ K |y1 − y2| (7.21)

for all −∞ < y1, y2 <∞, t0 ≤ t ≤ b, and for some constantK > 0. Let the initial
errors satisfy

η(h) ≡ max
0≤i≤p

|Y (ti) − yh(ti)| → 0 ash→ 0. (7.22)

116 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

Assume that the solutionY (t) is continuously differentiable and the method is con-
sistent, that is, that it satisfies (7.5). Finally, assume that the coefficientsaj are all
nonnegative,

aj ≥ 0, j = 0, 1, . . . , p. (7.23)

Then the method (7.1) is convergent and

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ c1η(h) + c2τ(h) (7.24)

for suitable constantsc1, c2. If the solutionY (t) ism+1 times continously differen-
tiable, the method (7.1) is of orderm, and the initial errors satisfyη(h) = O(hm),
then the order of convergence of the method ism; that is, the error is of sizeO(hm).

Proof. Rewrite (7.3), and useY ′(t) = f(t, Y (t)) to get

Y (tn+1) =

p∑

j=0

ajY (tn−j) + h

p∑

j=−1

bjf(tn−j, Y (tn−j)) + hτn(Y).

Subtracting (7.1) from this equality and using the notationei = Y (ti)−yi, we obtain

en+1 =

p∑

j=0

ajen−j + h

p∑

j=−1

bj [f(tn−j , Yn−j) − f(tn−j , yn−j)] + hτn(Y).

Apply the Lipschitz condition (7.21) and the assumption (7.23) to obtain

|en+1| ≤
p∑

j=0

aj |en−j| + hK

p∑

j=−1

|bj| |en−j | + hτ(h).

Introduce the following error bounding function

fn = max
0≤i≤n

|ei| , n = 0, 1, . . . , N(h).

Using this function, we have

|en+1| ≤
p∑

j=0

ajfn + hK

p∑

j=−1

|bj| fn+1 + hτ(h),

and applying (7.7), we obtain

|en+1| ≤ fn + hcfn+1 + hτ(h), c = K

p∑

j=−1

|bj | .

The right side is trivially a bound forfn and thus

fn+1 ≤ fn + hcfn+1 + hτ(h).

A GENERAL ERROR ANALYSIS 117

Forhc ≤ 1
2 , which is true ash→ 0, we obtain

fn+1 ≤ fn

1 − hc
+

h

1 − hc
τ(h)

≤ (1 + 2hc)fn + 2hτ(h).

Noting thatfp = η(h), proceed as in the proof of Theorem 2.4 in Chapter 2, from
(2.25) onward. Then

fn ≤ e2c(b−t0)η(h) +

[
e2c(b−t0) − 1

c

]
τ(h), t0 ≤ tn ≤ b. (7.25)

This completes the proof.

To obtain a rate of convergence ofO(hm) for the method (7.1), it is necessary that
each step have an error

Tn(Y) = O(hm+1).

But the initial valuesy0, . . . , yp need to be computedwith an accuracyof onlyO(hm),
sinceη(h) = O(hm) is sufficient in (7.24).

The result (7.25) can be improved somewhat for particular cases, but the order
of convergence will remain the same. As with Euler’s method,a complete stability
analysis can be given, yielding a result of the form (2.49) inChapter 2. The analysis is
a straightforward modification of that described in Section2.4 of Chapter2. Similarly,
an asymptotic error analysis can also be given.

7.3 A GENERAL ERROR ANALYSIS

We begin with a few definitions. The concept ofstabilitywas introduced with Euler’s
method, and we now generalize it. Let{yn : 0 ≤ n ≤ N(h)} denote the solution
of (7.1) with initial valuesy0, y1, . . . , yp for some differential equationY ′(t) =
f(t, Y (t)) and for all sufficiently small values ofh, sayh ≤ h0. Recall thatN(h)
denotes the largest subscriptN for which tN ≤ b. For eachh ≤ h0, perturb the
initial valuesy0, . . . , yp to new valuesz0, . . . , zp with

max
0≤n≤p

|yn − zn| ≤ ǫ. (7.26)

Note that these initial values are allowed to depend onh. We say that the family of
discrete numerical solutions{yn : 0 ≤ n ≤ N(h)}, obtained from (7.1), isstableif
there is a constantc, independent ofh ≤ h0 and valid for all sufficiently smallǫ, for
which

max
0≤n≤N(h)

|yn − zn| ≤ cǫ, 0 < h ≤ h0. (7.27)

Consider all differential equation problems

Y ′(t) = f(t, Y (t)), t ≥ t0,
Y (t0) = Y0

(7.28)

118 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

with the derivative functionf(t, z) continuous and satisfying the Lipschitz condition
(7.21). Suppose further that the approximating solutions{yn} are all stable. Then
we say that (7.1) is astable numerical method.

To defineconvergencefor a given problem (7.28), suppose that the initial values
y0, . . . , yp satisfy

η(h) ≡ max
0≤n≤p

|Y (tn) − yn| → 0 ash→ 0. (7.29)

Then the solution{yn} is said to converge toY (t) if

max
t0≤tn≤b

|Y (tn) − yn| → 0 ash→ 0. (7.30)

If (7.1) is convergent for all problems (7.28) with the properties specified immediately
following (7.28), then it is called aconvergent numerical method. Convergence can
be shown to imply consistency; consequently, we consider only methods satisfying
(7.7)–(7.8). The necessity of the condition (7.7) follows from the assumption of
convergence of (7.1) for the problem

Y ′(t) ≡ 0, Y (0) = 1.

Just takey0 = · · · = yp = 1, and observe the consequences of the convergence of
yp+1 to Y (t) ≡ 1. We leave the proof of the necessity of (7.8) as Problem 8.

The convergence and stability of (7.1) are linked to the roots of the polynomial

ρ(r) = rp+1 −
p∑

j=0

ajr
p−j . (7.31)

Note thatρ(1) = 0 from the consistency condition (7.7). Letr0, . . . , rp denote the
roots ofρ(r), repeated according to their multiplicity, and letr0 = 1. The method
(7.1) satisfies theroot conditionif

(R1) |rj | ≤ 1, j = 0, 1, . . . , p, (7.32)

(R2) |rj | = 1 =⇒ ρ′(rj) 6= 0. (7.33)

The first condition requires all roots ofρ(r) to lie on the unit circle{z: |z| ≤ 1} in
the complex plane. Condition (7.33) states that all roots onthe boundary of the circle
are to be simple roots ofρ(r).

7.3.1 Stability theory

All of the numerical methods presented in the preceding chapters have been stable,
but we now give an example of a consistent unstable multistepmethod. This is to
motivate the need to develop a general theory of stability.

A GENERAL ERROR ANALYSIS 119

Example 7.5 Consider the two step method

yn+1 = 3yn − 2yn−1 + 1
2h [f(tn,yn) − 3f(tn−1, yn−1)] , n ≥ 1. (7.34)

It can be shown to have the truncation error

Tn(Y) = 7
12h

3Y (3)(ξn), tn−1 ≤ ξn ≤ tn+1

and therefore, it is a consistent method. Consider solving the problemY ′(t) ≡ 0,
Y (0) = 0, which has the solutionY (t) ≡ 0. Usingy0 = y1 = 0, the numerical
solution is clearlyyn = 0, n ≥ 0. Perturb the initial data toz0 = ǫ/2, z1 = ǫ, for
someǫ 6= 0. Then the corresponding numerical solution can be shown to be

zn = ǫ · 2n−1, n ≥ 0. (7.35)

The reader should check this assertion. To see the effect of the perturbation on the
original solution, let us assume that

max
t0≤tn≤b

|yn − zn| = max
0≤tn≤b

|ǫ| 2n−1 = |ǫ| 2N(h)−1.

SinceN(h) → ∞ ash → 0, the deviation of{zn} from {yn} increases ash → 0.
The method (7.34) is unstable, and it should never be used. Also, note that the root
condition is violated, sinceρ(r) = r2 − 3r + 2 has the rootsr0 = 1, r1 = 2.

To investigate the stability of (7.1), we consider only the special equation

Y ′(t) = λY (t), t ≥ 0,
Y (0) = 1

(7.36)

with the solutionY (t) = eλt; λ is allowed to be complex. This is the model problem
of (4.3), and its use was discussed in Chapter 4. The results obtained will transfer to
the study of stability for a general differential equation problem. An intuitive reason
for this is easily derived. ExpandY ′(t) = f(t, Y (t)) about(t0, Y0) to obtain

Y ′(t) ≈ f(t0, Y0) + ft(t0, Y0)(t− t0) + fy(t0, Y0)(Y (t) − Y0)

= λ(Y (t) − Y0) + g(t) (7.37)

with λ = fy(t0, Y0) and g(t) = f(t0, Y0) + ft(t0, Y0)(t − t0). This is a valid
approximation if|t− t0| is sufficiently small. IntroducingV (t) = Y (t) − Y0,

V ′(t) ≈ λV (t) + g(t). (7.38)

The inhomogeneous termg(t) will drop out of all derivations concerning numerical
stability, because we are concerned with differences of solutions of the equation.
Droppingg(t) in (7.38), we obtain the model equation (7.36).

120 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

In the case thatY′ = f(t,Y) represents a system ofm differential equations,
which is discussed in Chapter 3, the partial derivativefy(t,y) becomes a Jacobian
matrix,

[fy(t,y)]ij =
∂fi

∂yj
, 1 ≤ i, j ≤ m.

Thus the model equation becomes

y′ = Λy + g(t), (7.39)

a system ofm linear differential equations withΛ = fy(t0,Y0). It can be shown that
in many cases, this system reduces to an equivalent system

z′i = λizi + γi(t), 1 ≤ i ≤ m (7.40)

with λ1, . . . , λm the eigenvalues ofΛ (see Problem 6). With (7.40), we are back to
the simple model equation (7.36), provided we allowλ to be complex in order to
include all possible eigenvalues ofΛ.

Applying (7.1) to the model equation (7.36), we obtain

yn+1 =

p∑

j=0

ajyn−j + hλ

p∑

j=−1

bjyn−j , (7.41)

(1 − hλb−1)yn+1 −
p∑

j=0

(aj + hλbj)yn−j = 0, n ≥ p. (7.42)

This is ahomogeneous linear difference equationof orderp+ 1, and the theory for
its solvability is completely analogous to that of(p + 1)-order homogeneous linear
differential equations. As a general reference, see Henrici [45, pp. 210–215] or
Isaacson and Keller [47, pp. 405–417].

We attempt to find a general solution by first looking for solutions of the special
form

yn = rn, n ≥ 0.

If we can findp+1 linearly independent solutions,then an arbitrary linearcombination
will give the general solution of (7.42).

Substitutingyn = rn into (7.42) and cancelingrn−p, we obtain

(1 − hλb−1)r
p+1 −

p∑

j=0

(aj + hλbj)r
p−j = 0. (7.43)

This is called thecharacteristic equation, and the left-side is thecharacteristic
polynomial. The roots are calledcharacteristic roots. Define

σ(r) = b−1r
p+1 +

p∑

j=0

bjr
p−j ,

A GENERAL ERROR ANALYSIS 121

and recall the definition (7.31) ofρ(r). Then (7.43) becomes

ρ(r) − hλσ(r) = 0. (7.44)

Denote the characteristic roots by

r0(hλ), . . . , rp(hλ),

which can be shown to depend continuously on the value ofhλ. Whenhλ = 0,
equation (7.44) becomes simplyρ(r) = 0, and we haverj(0) = rj , j = 0, 1, . . . , p
for the earlier rootsrj of ρ(r) = 0. Sincer0 = 1 is a root ofρ(r), we letr0(hλ) be
the root of (7.44) for whichr0(0) = 1. The rootr0(hλ) is called theprincipal root
for reasons that will become apparent later. If the rootsrj(hλ) are all distinct, then
the general solution of (7.42) is

yn =

p∑

j=0

γj [rj(hλ)]
n , n ≥ 0. (7.45)

But if
rj(hλ) = rj+1(hλ) = · · · = rj+ν−1(hλ)

is a root of multiplicityν > 1, then the following areν linearly independent solutions
of (7.42):

{[rj(hλ)]n}, {n [rj(hλ)]
n}, . . . , {nν−1 [rj(hλ)]

n}.
Moreover, in the formula (7.45), the part

γj [rj(hλ)]
n

+ · · · + γj+ν−1 [rj+ν−1(hλ)]
n

needs to be replaced by

[rj(hλ)]
n (
γj + γj+1n+ · · · + γj+ν−1n

ν−1
)
. (7.46)

These can be used with the solution arising from the other roots to generate a general
solution for (7.42), comparable to (7.45).

In particular, for consistent methods it can be shown that

[r0(hλ)]
n

= eλtn + O(h) (7.47)

ash → 0. The remaining rootsr1(hλ), . . . , rp(hλ) are calledparasitic rootsof the
numerical method. The term

p∑

j=1

γj [rj(hλ)]
n (7.48)

is called aparasitic solution. It is a creation of the numerical method and does not
correspond to any solution of the original differential equation being solved.

Theorem 7.6 Assume the consistency conditions (7.7)–(7.8). Then the multistep
method (7.1) is stable if and only if the root condition (7.32)–(7.33) is satisfied.

The proof makes essential use of the general solution (7.45)in the case of distinct
roots{rj(hλ)}, or the variant of (7.45) modified according to (7.46) when multiple
roots are present. The reader is referred to [11, p. 398] for apartial proof and to [47,
pp. 405-417] for a more complete development.

122 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

7.3.2 Convergence theory

The following result generalizes Theorem 7.4 from earlier in this chapter, giving
necessary and sufficient conditions for the convergence of multistep methods.

Theorem 7.7 Assume the consistency conditions (7.7)–(7.8). Then the multistep
method (7.1) is convergent if and only if the root condition (7.32)–(7.33) is satisfied.

Again, we refer the reader to [11, p. 401] for a partial proof and to [47, pp. 405–417]
for a more complete development.

The following is a well-known result, and it is a trivial consequence of Theorems
7.6 and 7.7.

Corollary 7.8 Let (7.1) be a consistent multistep method. Then it is convergent if
and only if it is stable.

Example 7.9 Return to the two-step methods of order 2, developed in Example 7.3.
The polynomialρ(r) is given by

ρ(r) = r2 − a0r − a1, a0 + a1 = 1.

Then
ρ(r) = (r − 1) (r + 1 − a0) ,

and the roots are
r0 = 1, r1 = a0 − 1.

The root condition requires
−1 ≤ a0 − 1 < 1,

0 ≤ a0 < 2,

to ensure convergence and stability of the associated two step method in (7.16).

7.3.3 Relative stability and weak stability

Consider again the model equation (7.36) and its numerical solution (7.45). For a
convergent numerical method, it can be shown that in the general solution (7.45), we
obtain

γ0 → 1,
γj → 0, j = 1, . . . , p

ash → 0. The parasitic solution (7.48) converges to zero ash → 0, and the term
γ0 [r0(hλ)]

n converges toY (t) = eλt with tn = t fixed. However, for a fixedh with
increasingtn, we also would like the parasitic solution to remain small relative to the
principal part of the solutionγ0[r0(hλ)]

n. This will be true if the characteristic roots
satisfy

|rj(hλ)| ≤ r0(hλ), j = 1, 2, . . . , p (7.49)

A GENERAL ERROR ANALYSIS 123

for all sufficiently small values ofh. This leads us to the definition of relative stability.
We say that the method (7.1) isrelatively stableif the characteristic rootsrj(hλ)

satisfy (7.49) for all sufficiently small nonzero values of|hλ|. Further, the method is
said to satisfy thestrong root conditionif

|rj(0)| < 1, j = 1, 2, . . . , p. (7.50)

This condition is easy to check, and it implies relative stability. Just use the continuity
of the rootsrj(hλ) with respect tohλ to verify that (7.50) implies (7.49). Relative
stability does not imply the strong root condition, although they are equivalent for
most methods. If a multistep method is stable but not relatively stable, then it will be
calledweakly stable.

Example 7.10

(1) For the midpoint method, we obtain

r0(hλ) = 1 + hλ+ O(h2), r1(hλ) = −1 + hλ+ O(h2). (7.51)

Forλ < 0, we have
|r1(hλ)| > r0(hλ)

for all small values ofh > 0, and thus (7.49) is not satisfied. The midpoint
method is not relatively stable; it is only weakly stable. Weleave it as an exercise
to show experimentally that the midpoint method has undesirable stability when
λ < 0 for the model equation (7.28).

(2) The Adams–Bashforth and Adams–Moulton methods of Chapter 6 have the
same characteristic polynomial whenh = 0,

ρ(r) = rp+1 − rp. (7.52)

The roots arer0 = 1, rj = 0, j = 1, 2, . . . , p; thus the strong root condition is
satisfied and the Adams methods are relatively stable.

PROBLEMS

1. Consider the two-step method

yn+1 =
1

2
(yn + yn−1) +

h

4

[
4y′n+1 − y′n + 3y′n−1

]
, n ≥ 1

with y′n ≡ f(tn,yn). Show that it has order 2, and find the leading term in the
truncation error, written as in (7.15).

2. Recall the midpoint method

yn+1 = yn−1 + 2hf(tn, yn) , n ≥ 1

124 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

from Problem 11 in Chapter 6.

(a) Show that the midpoint method has order 2, as noted earlier following
(7.2).

(b) Show that the midpoint method is not relatively stable.

3. Write a program to solveY ′(t) = f(t, Y (t)), Y (t0) = Y0 using the midpoint
rule of Problem 2. Use a fixed stepsizeh. For the initial valuey1, use the Euler
method withy0 = Y0,

y1 = y0 + hf(t0, y0).

Using the program, solve the problem

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1.

The true solution isY (t) = cos(t) + sin(t). Solve this problem on the interval
[0, 10], and use stepsizes ofh = 0.2, 0.1, 0.05. Comment on your results.
Produce a graph of the error.

4. Show that the two-step method

yn+1 = −yn + 2yn−1 + h
[
5
2y

′
n + 1

2y
′
n−1

]
, n ≥ 1

is of order2 and unstable. Also, show directly that it need not converge when
solvingY ′(t) = f(t, Y (t)) by considering the special problem

Y ′(t) = 0, Y (0) = 0.

For the numerical method, consider using the initial values

y0 = h, y1 = −2h.

Hint: Use the general formula (7.45), and examine the numerical solution for
tn = nh = 1.

5. Consider the general formula for all explicit two-step methods,

yn+1 = a0yn + a1yn−1 + h [b0f(tn, yn) + b1f(tn−1, yn−1)] , n ≥ 1.

(a) Consider finding all such two-step methods that are of order 2. Show that
the coefficients must satisfy the equations

a0 + a1 = 1, −a1 + b0 + b1 = 1, a1 − 2b1 = 1.

Solve for{a1, b0, b1} in terms ofa0.

(b) Find a formula for the leading term in the truncation error, written as in
(7.15). It will depend ona0.

(c) What are the restrictions ona0 for this two-step method to be stable? To
be convergent?

A GENERAL ERROR ANALYSIS 125

6. Consider the model equation (7.39) withΛ,a square matrix of orderm. Assume
Λ = P−1DP with D a diagonal matrix with entriesλ1, . . . , λm. Introduce
the new unknown vector functionz = Py(t). Show that (7.39) converts to
the form given in (7.40), demonstrating the reduction to theone-dimensional
model equation.
Hint: In (7.39) replaceΛ with P−1DP , and then introduce the new unknowns
z = Py. Simplify to a differential equation forz.

7. For solvingY ′(t) = f(t, Y (t)), consider the numerical method

yn+1 = yn +
h

2

[
y′n + y′n+1

]
+
h2

12

[
y′′n − y′′n+1

]
, n ≥ 0.

Herey′n = f(tn, yn),

y′′n =
∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, y)

∂y

∣∣∣∣
z=yn

with this formula based on differentiatingY ′(t) = f(t, Y (t)).

(a) Show that this is a fourth-order method withTn(Y) = O(h5).
Hint: Use the Taylor approximation method used earlier in deriving the
results of Theorem 7.2, modifying this procedure as necessary for ana-
lyzing this case.

(b) Show that the region of absolute stability contains the entire negative real
axis of the complexhλ-plane.

8. Prove that (7.8) is necessary for the multistep numericalmethod (7.1) to be
consistent.
Hint: Apply (7.1) to the initial value problem

Y ′(t) = 1, Y (0) = 0

with exact initial conditions.

9. (a) Find all explicit fourth-order formulas of the form

yn+1 = a0yn + a1yn−1 + a2yn−2

+ h
[
b0y

′
n + b1y

′
n−1 + b2y

′
n−2

]
, n ≥ 2.

(b) Show that every such method is unstable.

10. (a) Consider methods of the form

yn+1 = yn−q + h

p∑

j=−1

bjf(xn−j , yn−j)

126 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

with q ≥ 1. Show that such methods do not satisfy the strong root
condition. As a consequence, most such methods are only weakly stable.

(b) Find an example withq = 1 that is relatively stable.

11. For the polynomialρ(r) = rp+1 −∑p
j=0 ajr

p−j , assumeaj ≥ 0, 0 ≤ j ≤ p,
and

∑p
j=0 aj = 1. Show that the roots ofρ(r) will satisfy the root conditions

(7.32) and (7.33). This shows directly that Theorem 7.4 is a corollary of
Theorem 7.7.

CHAPTER 8

STIFF DIFFERENTIAL EQUATIONS

The numerical solution of stiff differential equations is awidely studied subject.
Such equations (including systems of differential equations) appear in a wide variety
of applications, in subjects as diverse as chemical kinetics, mechanical systems, and
the numerical solution of partial differential equations.In this section, we sketch
some of the main ideas about this subject, and we show its relation to the numerical
solution of the simple heat equation from partial differential equations.

There are several definitions of the concept of stiff differential equation. The
most important common feature of these definitions is that when such equations are
being solved with standard numerical methods (e.g., the Adams–Bashforth methods
of Chapter 6), the stepsizehmust be extremely small in order to maintain stability —
far smaller than would appear to be necessary from a consideration of the truncation
error. A numerical illustration for Euler’s method is givenin Table 4.3 as a part of
Example 4.2 in Chapter 4.

Definitions and results related to the topic of stiff differential equations were in-
troduced in Chapter 4 (see (4.3)–(4.5) and (4.10)) and Chapter 6 (see the discussion
accompanying (6.19)–(6.20)). For convenience, we review those ideas here. As was
discussed preceding (4.3) in Chapter 4, the following modelproblem is used to test

127

128 STIFF DIFFERENTIAL EQUATIONS

the performance of numerical methods,

Y ′ = λY, t > 0,
Y (0) = 1.

(8.1)

Following (7.36) in Chapter 7, a derivation was given to showthat (8.1) is useful
in studying the stability of numerical methods for very general systems of nonlinear
differential equations; we review this in more detail in a later paragraph.

When the constantλ is real, we assumeλ < 0; or more generally, whenλ is
complex, we assumeReal(λ) < 0. This assumption aboutλ is generally associated
with stable differential equation problems (see Section 1.2). The true solution of the
model problem is

Y (t) = eλ t. (8.2)

From our assumption onλ, we have

Y (t) → 0 as t→ ∞. (8.3)

The kind of stability property we would prefer for a numerical method is that when
it is applied to (8.1), the numerical solution satisfies

yh(tn) → 0 as tn → ∞ (8.4)

for any choice of the stepsizeh. Such numerical methods are calledabsolutely stable
orA-stable. For an arbitrary numerical method, the set of valueshλ for which (8.4) is
satisfied, considered as a subset of the complex plane, is called theregion of absolute
stability of the numerical method. The dependence on the producthλ is based on
the general solution to the finite difference method for solving (8.1), given in (7.45)
of Chapter 7.

Example 8.1 We list here the region of absolute stability as derived inearlier chapters.
Again, we consider onlyλ satisfying our earlier assumption thatReal (λ) < 0.

• For Euler’s method, it was shown following (4.5) that (8.4) is satisfied if and
only if

|1 + hλ| = |hλ− (−1)| < 1. (8.5)

Thushλ is in the region of absolute stability if and only if it is within a distance
of 1 from the point−1 in the complex plane. The region of absolute stability
is a circle of unit radius with center at−1. For realλ, this requires

−2 < hλ < 0.

• For the backward Euler method of (4.9), it was shown in and following (4.10)
that (8.4) is satisfied forevery value ofhλ inwhichReal(λ) < 0. The backward
Euler method is A-stable.

• For the trapezoidal method of (4.22), it was left to Problem 2in Chapter 4 to
show that (8.4) is satisfied for every value ofhλ in whichReal (λ) < 0. The
trapezoidal method is A-stable.

129

• For the Adams–Bashforth method of order 2, namely

yn+1 = yn +
h

2
[3y′n − y′n−1], n ≥ 1 (8.6)

(see Table 6.2), it was stated in Example 6.6 that the real part of the region of
absolute stability is the interval

−1 < hλ < 0. (8.7)

Why is this of interest? If a method is absolutely stable, then there are no re-
strictions onh in order for the numerical method to be stable in the sense of (8.4).
However, consider what happens to the stepsizeh if a method has a region of absolute
stability that is bounded (and say, of moderate size). Suppose that the value ofλ has
a real part that is negative and of very large magnitude. Thenh must be correspond-
ingly small forhλ to belong to the region of absolute stability of the method. Even if
the truncation error is small, it is necessary thathλ belong to the region of absolute
stability to ensure that the error in the approximate solution{yn} is also small.

Example 8.2 Recall Example 4.2 in Chapter 4, which illustrated the computational
effects of regions of absolute stability for the Euler, backward Euler, and trapezoidal
methods when solving the problem

Y ′(t) = λY (t) + (1 − λ) cos(t) − (1 + λ) sin(t), Y (0) = 1. (8.8)

The true solution isY (t) = sin(t) + cos(t). We augment those earlier calculations
by giving results for the Adams–Bashforth method (8.6) whensolving (8.8). For
simplicity, we usey1 = Y (t1). Numerical results for several values ofλ are given in
Table 8.1. The values ofh are the same as those used in Table 4.3 for Euler’s method
in Example 4.2. The stability of the error in the numerical results are consistent with
the region of absolute stability given in (8.7).

Returning to the derivation following (7.36) in Chapter 7, we looked at the lin-
earization of the system

Y′ = f(t,Y) (8.9)

of m differential equations, resulting in the approximating linear system

Y′ = ΛY + g(t). (8.10)

In this,Λ = fy(t0,Y0) is them×m Jacobian matrix off evaluated at(t0,Y0). As
was explored in Problem 6 of Chapter 7, many such systems can be reduced to a set
of m independent scalar equations

Y ′
i = λiYi + gi(t), i = 1, . . . ,m.

130 STIFF DIFFERENTIAL EQUATIONS

Table 8.1 The Adams-Bashforth method (8.6) for solving (8.8)

λ t Error Error Error
h = 0.5 h = 0.1 h = 0.01

−1 1 −2.39e − 2 −7.58e − 4 −7.24e − 6
2 4.02e − 2 2.13e − 3 2.28e − 5
3 1.02e − 1 4.31e − 3 4.33e − 5
4 8.50e − 2 2.98e − 3 2.82e − 5
5 −3.50e − 3 −9.16e − 4 −1.13e − 5

−10 1 −2.39e − 2 −1.00e − 4 6.38e − 7
2 −1.10e + 0 3.75e − 4 5.25e − 6
3 −5.23e + 1 3.83e − 4 5.03e − 6
4 2.46e + 3 −8.32e − 5 1.91e − 7
5 −1.16e + 5 −5.96e − 4 −4.83e − 6

−50 1 −2.39e − 2 −1.57e + 3 2.21e − 7
2 −3.25e + 1 −3.64e + 11 1.09e − 6
3 4.41e + 4 −8.44e + 19 9.60e − 7
4 −5.98e + 7 −1.96e + 28 −5.54e − 8
5 −8.12e + 10 −4.55e + 36 −1.02e − 6

As was discussed following (7.36), this leads us back to the model equation (8.1) with
λ an eigenvalue of the Jacobian matrixfy(t0,Y0).

We say that the differential equationY′ = f(t,Y) is stiff if some of the eigen-
valuesλj of Λ, or more generally offy(t,Y), have a negative real part of very large
magnitude. The question may arise as to how large the eigenvalue should be to be
considered large? The magnitude of the eigenvalues might depend on the units of
measurement used, for example, which has no impact on the amount of computation
needed to accurately solve a particular problem. The crucial test is to consider the
eigenvalue(s) associated with the slowest rates of change,and compare them with the
eigenvalue(s) associated with the fastest rates of change.A simple test is to look at
the ratiomaxi |λi| /mini |λi|. If this number is large, then the problem is stiff. For
example, in the pendulum model (3.13), the two eigenvalues in the linearization have
the same or similar magnitudes. So it is not a stiff problem. Most problems that we
have seen so far are not stiff. Yet, stiff problems are commonin practice. In the next
section we see one very important example.

We study numerical methods for stiff equations by considering their effect on the
model equation (8.1). This approach has its limitations, some of which we indicate
later, but it does give us a means of rejecting unsatisfactory methods, and it suggests
some possibly satisfactory methods. Before giving some higher-order methods that
are suitable for solving stiff differential equations, we give an important practical
example.

THE METHOD OF LINES FOR A PARABOLIC EQUATION 131

8.1 THE METHOD OF LINES FOR A PARABOLIC EQUATION

Consider the following parabolic partial differential equation problem:

Ut = Uxx +G(x, t), 0 < x < 1, t > 0, (8.11)

U(0, t) = d0(t), U(1, t) = d1(t), t ≥ 0, (8.12)

U(x, 0) = f(x), 0 ≤ x ≤ 1. (8.13)

The unknown functionU(x, t) depends on the timetand a spatial variablex,andUt =
∂U/∂t, Uxx = ∂2U/∂x2. The conditions (8.12) are calledboundary conditions,
and (8.13) is called aninitial condition. The solutionU can be interpreted as the
temperature of an insulated rod of length1 withU(x, t), the temperature at positionx
and timet; thus (8.11) is often called theheat equation. The functionsG, d0, d1, and
f are assumed given and smooth. For a development of the theoryof (8.11)–(8.13),
see Widder [78] or any standard introduction to partial differential equations. We
give themethod of linesfor solving forU , a popular numerical method for solving
numerically linear and nonlinear partial differential equations of parabolic type. This
numerical method also leads to the necessity of solving a stiff system of ordinary
differential equations.

Letm > 0 be an integer, defineδ = 1/m, and define the spatial nodes

xj = jδ, j = 0, 1, . . . ,m.

We discretize (8.11) by approximating the spatial derivative Uxx in the equation.
Using a standard result in the theory of numerical diffentiation,

Uxx(xj , t) =
U(xj+1, t) − 2U(xj , t) + U(xj−1, t)

δ2
− δ2

12

∂4U(ξj , t)

∂x4
(8.14)

for j = 1, 2, . . . ,m − 1, where eachξj ≡ ξj(t) is some point betweenxj−1 and
xj+1. For a derivation of this formula, see [11, p. 318] or [12, p. 237]. Substituting
into (8.11), we obtain

Ut(xj , t) =
U(xj+1, t) − 2U(xj , t) + U(xj−1, t)

δ2
+G(xj , t)

− δ2

12

∂4U(ξj , t)

∂x4
, 1 ≤ j ≤ m− 1.

(8.15)

Equation (8.11) is to be approximated at each interior node pointxj .
We drop the final term in (8.15), the truncation error in the numerical differentia-

tion. Forcing equality in the resulting approximate equation, we obtain

u′j(t) =
1

δ2
[uj+1(t) − 2uj(t) + uj−1(t)] +G(xj , t) (8.16)

for j = 1, 2, . . . ,m − 1. The functionsuj(t) are intended as approximations of
U(xj , t), 1 ≤ j ≤ m − 1. This is themethod of linesapproximation to (8.11), and

132 STIFF DIFFERENTIAL EQUATIONS

it is a system ofm − 1 ordinary differential equations. Note thatu0(t) andum(t),
which are needed in (8.16) forj = 1 andj = m− 1, are given using (8.12):

u0(t) = d0(t), um(t) = d1(t). (8.17)

The initial condition for (8.16) is given by (8.13):

uj(0) = f(xj), 1 ≤ j ≤ m− 1. (8.18)

The termmethod of linescomes from solving forU(x, t) along the lines(xj , t), t ≥ 0,
1 ≤ j ≤ m− 1 in the(x, t) plane.

Under suitable assumptions on the functionsd0, d1,G, andf , it can be shown that

max
0≤j≤m

0≤t≤T

|U(xj , t) − uj(t)| ≤ CT δ
2. (8.19)

Thus to complete the solution process, we need only solve thesystem (8.16).
It is convenient to write (8.16) in matrix form. Introduce

u(t) = [u1(t), . . . , um−1(t)]
T
, u0 = [f(x1), . . . , f(xm−1)]

T
,

g(t) =

[
d0(t)

δ2
+G(x1, t), G(x2, t), . . . , G(xm−2, t),

d1(t)

δ2
+G(xm−1, t)

]T

,

Λ =
1

δ2




−2 1 0 · · · 0
1 −2 1 0

. . .
...

... 1 −2 1
0 · · · 0 1 −2



.

The matrixΛ is of orderm − 1. In the definitions ofu andg, the superscriptT
indicates matrix transpose, so thatu andg are column vectors of lengthm−1. Using
these matrices, equations (8.16)–(8.18) can be rewritten as

u′(t) = Λu(t) + g(t), u(0) = u0. (8.20)

If Euler’s method is applied, we have the numerical method

Vn+1 = Vn + h [ΛVn + g(tn)] , V0 = u0 (8.21)

with tn = nh andVn ≈ u(tn). This is a well-known numerical method for the heat
equation, called thesimple explicit method. We analyze the stability of (8.21) and
some other methods for solving (8.20).

Equation (8.20) is in the form of the model equation, (8.10),and therefore we need
the eigenvalues ofΛ to examine the stiffness of the system. These eigenvalues are all
real and are given by

λj = − 4

δ2
sin2

(
jπ

2m

)
, 1 ≤ j ≤ m− 1. (8.22)

THE METHOD OF LINES FOR A PARABOLIC EQUATION 133

A proof (which we omit here) can be obtained by showing a relationship between
the characteristic polynomial forΛ and Chebyshev polynomials. Directly examining
(8.22), we have

λm−1 ≤ λj ≤ λ1, (8.23)

with

λm−1 =
−4

δ2
sin2

(
(m− 1)π

2m

)
≈ −4

δ2
,

λ1 =
−4

δ2
sin2

(π

2m

)
≈ −π2

with the approximations valid for largerm. As λm−1/λ1 ≈ 4/(πδ)2, it can be seen
that (8.20) is a stiff system ifδ is small.

Applying (8.23) and (8.5) to the analysis of stability in (8.21), we must have

|1 + hλj | < 1, j = 1, . . . ,m− 1.

Using (8.22), this leads to the equivalent statement

0 <
4h

δ2
sin2

(
jπ

2m

)
< 2, 1 ≤ j ≤ m− 1.

This will be satisfied if4h/δ2 ≤ 2 or

h ≤ 1
2δ

2. (8.24)

If δ is at all small, sayδ = 0.01, then the timesteph must be quite small to ensure
stability.

In contrast to the restriction (8.24) with Euler’s method,the backward Eulermethod
has no such restriction since it is A-stable. Applying the backward Euler method, our
approximation to (8.20) is

Vn+1 = Vn + h [ΛVn+1 + g(tn+1)] , V0 = u0. (8.25)

This is called thesimple implicit methodfor solving the heat equation. To solve this
linear problem forVn+1, we rewrite the equation as

(I − hΛ)Vn+1 = Vn + hg(tn+1). (8.26)

Solving forVn+1 gives

Vn+1 = (I − hΛ)−1 [Vn + hg(tn+1)] . (8.27)

Since all the eigenvaluesλi of Λ are negative, the eigenvalues of(I − hΛ)−1 are
1/(1 − hλi), which are all bounded by one. Because of this, the implicit Euler
method for this problem is always stable; there is no limitation on the stepsizeh,
unlike the case for the explicit Euler method. Also, the linear system to be solved

134 STIFF DIFFERENTIAL EQUATIONS

Table 8.2 The method of lines: Euler’s method (h = 1
2
δ2)

Error Error Error
t m = 4 Ratio m = 8 Ratio m = 16

1.0 4.85e − 2 4.096 1.18e − 2 4.024 2.94e − 3

2.0 4.39e − 2 4.096 1.07e − 2 4.024 2.66e − 3

3.0 3.97e − 2 4.096 9.69e − 3 4.024 2.41e − 3

4.0 3.59e − 2 4.096 8.77e − 3 4.024 2.18e − 3

5.0 3.25e − 2 4.096 7.93e − 3 4.024 1.97e − 3

Table 8.3 The method of lines: Backward Euler method (h = 0.1)

Error Error Error
t m = 4 m = 8 m = 16

1.0 4.85e − 2 1.19e − 2 2.99e − 3

2.0 4.39e − 2 1.08e − 2 2.70e − 3

3.0 3.98e − 2 9.73e − 3 2.45e − 3

4.0 3.60e − 2 8.81e − 3 2.21e − 3

5.0 3.25e − 2 7.97e − 3 2.00e − 3

is a tridiagonal system, and there is a well-developed numerical analysis for such
linear systems (e.g. see [11, p. 527] or [12, p. 287]). It can be solved very rapidly
with approximately5m arithmetic operations per timestep, excluding the cost of
computing the right side in (8.26). The cost of solving the Euler method (8.21) is
almost as large, and thus the solution of (8.26) is not especially time-consuming.

Example 8.3 Solve the partial differential equation problem (8.11)–(8.13) with the
functionsG, d0, d1, andf , determined from the known solution

U = e−.1t sin(πx), 0 ≤ x ≤ 1, t ≥ 0. (8.28)

Results for Euler’s method (8.21) are given in Table 8.2, andresults for the backward
Euler method (8.25) are given in Table 8.3.

For Euler’s method, we takem = 4, 8, 16, and to maintain stability, we takeh =
1
2δ

2 from (8.24). This leads to the respective timesteps ofh
.
= 0.031, 0.0078, 0.0020.

From (8.19) and the error formula for Euler’s method, we would expect the error to
be proportional toδ2, sinceh = 1

2δ
2. This implies that the error should decrease by

a factor of4 whenm is doubled, and the results in Table 8.2 agree. In the table, the
column “Error” denotes the maximum error at the node points(xj,t), 0 ≤ j ≤ n, for
the given value oft.

For the solution of (8.20) by the backward Euler method, there need no longer be
any connection between the spatial stepsizeδ and the timesteph. By observing the

THE METHOD OF LINES FOR A PARABOLIC EQUATION 135

error formula (8.19) for the method of lines and the truncation error formula (8.33)
(usep = 1) for the backward Euler method, we see that the error in solving the
problem (8.11)–(8.13) will be proportional toh + δ2. For the unknown functionU
of (8.26), there is a slow variation witht. Thus, for the truncation error associated
with the time integration, we should be able to use a relatively large timesteph as
compared to the spatial stepsizeδ, for the two sources of error be relatively equal in
size. In Table 8.3, we useh = 0.1 andm = 4, 8, 16. Note that this timestep is much
larger than that used in Table 8.2 for Euler’s method, and thus the backward Euler
method is much more efficient for this example.

For more discussion of the method of lines, see Aiken [1, pp. 124–148] and
Schiesser [71].

8.1.1 MATLAB R© programs for the method of lines

We give MATLAB programs for both the Euler method (8.21) and the backward Euler
method (8.27).

Euler method code:

function [x,t,u] = MOL Euler(d0,d1,f,G,T,h,m)

%

% function [x,t,u] = MOL Euler(d0,d1,f,G,T,h,m)

%

% Use the method of lines to solve

% u t = u xx + G(x,t), 0 < x < 1, 0 < t < T

% with boundary conditions

% u(0,t) = d0(t), u(1,t) = d1(t)

% and initial condition

% u(x,0) = f(x).

% Use Euler’s method to solve the system of ODEs.

% For the discretization, use a spatial stepsize of

% delta=1/m and a timestep of h.

%

% For numerical stability, use a timestep of

% h = 1/(2*m^2) or smaller.

x = linspace(0,1,m+1)’; delta = 1/m; delta sqr = delta^2;

t = (0:h:T)’; N = length(t);

% Initialize u.

u = zeros(m+1,N);

u(:,1) = f(x);

u(1,:) = d0(t); u(m+1,:) = d1(t);

136 STIFF DIFFERENTIAL EQUATIONS

% Solve for u using Euler’s method.

for n=1:N-1

g = G(x(2:m),t(n));

u(2:m,n+1) = u(2:m,n) + (h/delta sqr)*(u(1:(m-1),n) ...

- 2*u(2:m,n) + u(3:(m+1),n)) + h*g;

end

u = u’;

end % MOL Euler

Test of Euler method code:

function [x,t,u,error] = Test MOL Euler(index u,t max,h,m)

% Try this test program with

% [x,t,u,error] = Test MOL Euler(2,5,1/128,8);

[x,t,u] = MOL Euler(@d0,@d1,@f,@G,t max,h,m);

% Graph numerical solution

[X,T] = meshgrid(x,t);

figure; mesh(X,T,u); shading interp

xlabel(’x’); ylabel(’t’);

title([’Numerical solution u: index of u = ’,...

num2str(index u)])

disp(’Press any key to continue.’); pause

% Graph error in numerical solution

true u = true soln(X,T); error = true u - u;

disp([’Maximum error = ’,num2str(max(max(abs(error))))])

figure; mesh(X,T,error); shading interp

xlabel(’x’); ylabel(’t’);

title([’Error in numerical solution u: index of u = ’,...

num2str(index u)])

disp(’Press any key to continue.’); pause

% Produce maximum errors over x as t varies.

maxerr in x = max(abs(error’));

figure; plot(t,maxerr in x); text(1.02*t max,0,’t’)

title(’Maximum error for x in [0,1], as a function of t’)

function true u = true soln(z,s)

switch index u

case 1

true u = s.^2 + z.^4;

THE METHOD OF LINES FOR A PARABOLIC EQUATION 137

case 2

true u = exp(-0.1*s).*sin(pi*z);

end

end % true u

function answer = G(z,s)

% This routine assumes s is a scalar, while z can be a vector.

switch index u

case 1

answer = 2*s - 12*z.^2;

case 2

answer = (pi^2 - 0.1)*exp(-0.1*s).*sin(pi*z);

end

end % G

function answer = d0(s)

z = zeros(size(s));

answer = true soln(z,s);

end % d0

function answer = d1(s)

z = ones(size(s));

answer = true soln(z,s);

end % d1

function answer = f(z)

s = zeros(size(z));

answer = true soln(z,s);

end % f

end % Test MOL Euler

Backward Euler method code:

function [x,t,u] = MOL BEuler(d0,d1,f,G,T,h,m)

%

% function [x,t,u] = MOL BEuler(d0,d1,f,G,T,h,m)

%

% Use the method of lines to solve

% u t = u xx + G(x,t), 0 < x < 1, 0 < t < T

% with boundary conditions

% u(0,t) = d0(t), u(1,t) = d1(t)

% and initial condition

% u(x,0) = f(x).

% Use the backward Euler’s method to solve the system of

138 STIFF DIFFERENTIAL EQUATIONS

% ODEs. For the discretization, use a spatial stepsize of

% delta=1/m and a timestep of h.

x = linspace(0,1,m+1)’; delta = 1/m; delta sqr = delta^2;

t = (0:h:T)’; N = length(t);

% Initialize u.

u = zeros(m+1,N);

u(:,1) = f(x);

u(1,:) = d0(t); u(m+1,:) = d1(t);

% Create tridiagonal coefficient matrix.

a = -(h/delta sqr)*ones(m-1,1); c = a;

b = (1+2*h/delta sqr)*ones(m-1,1);

a(1) = 0; c(m-1) = 0; option = 0;

% Solve for u using the backward Euler’s method.

for n=2:N

g = G(x(2:m),t(n));

g(1) = g(1) + (1/delta sqr)*u(1,n);

g(m-1) = g(m-1) + (1/delta sqr)*u(m+1,n);

f = u(2:m,n-1) + h*g;

switch option

case 0 % first time: factorize matrix

[v,alpha,beta,message] = tridiag(a,b,c,f,m-1,option);

option = 1;

case 1 % other times: use available factorization

v = tridiag(alpha,beta,c,f,m-1,option);

end

u(2:m,n) = v;

end

u = u’;

end % MOL BEuler

function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% Solve a tridiagonal linear system M*x=f

%

% INPUT:

% The order of the linear system is given as n.

% The subdiagonal, diagonal, and superdiagonal of M are given

% by the arrays a,b,c, respectively. More precisely,

THE METHOD OF LINES FOR A PARABOLIC EQUATION 139

% M(i,i-1) = a(i), i=2,...,n

% M(i,i) = b(i), i=1,...,n

% M(i,i+1) = c(i), i=1,...,n-1

% option=0 means that the original matrix M is given as

% specified above. We factorize M.

% option=1 means that the LU factorization of M is already

% known and is stored in a,b,c. This will have been

% accomplished by a previous call to this routine. In

% that case, the vectors alpha and beta should have

% been substituted for a and b in the calling sequence.

% All input values are unchanged on exit from the routine.

%

% OUTPUT:

% Upon exit, the LU factorization of M is already known and

% is stored in alpha,beta,c. The solution x is given as well.

% message=0 means the program was completed satisfactorily.

% message=1 means that a zero pivot element was encountered

% and the solution process was abandoned. This case

% happens only when option=0.

if option == 0

alpha = a; beta = b;

alpha(1) = 0;

% Compute LU factorization of matrix M.

for j=2:n

if beta(j-1) == 0

message = 1; return

end

alpha(j) = alpha(j)/beta(j-1);

beta(j) = beta(j) - alpha(j)*c(j-1);

end

if beta(n) == 0

message = 1; return

end

end

% Compute solution x to M*x = f using LU factorization of M.

% Do forward substitution to solve lower triangular system.

if option == 1

alpha = a; beta = b;

end

x = f; message = 0;

140 STIFF DIFFERENTIAL EQUATIONS

for j=2:n

x(j) = x(j) - alpha(j)*x(j-1);

end

% Do backward substitution to solve upper triangular system.

x(n) = x(n)/beta(n);

for j=n-1:-1:1

x(j) = (x(j) - c(j)*x(j+1))/beta(j);

end

end % tridiag

The test code forMOL BEuler is essentially the same as that forMOL Euler. In
Test MOL Euler, simply replace the phraseMOL Euler with MOL BEuler through-
out the code.

8.2 BACKWARD DIFFERENTIATION FORMULAS

The concept of a region of absolute stability is the initial tool used in studying the
stability of a numerical method for solving stiff differential equations. We seek
methods whose stability region each contains the entire negative real axis and as
much of the left half of the complex plane as possible. There are a number of ways to
develop such methods, but we discuss only one of them in this chapter — obtaining
thebackward differentiation formulas(BDFs).

LetPp(t) denote the polynomial of degree≤ p that interpolatesY (t) at the points
tn+1, tn, . . . , tn−p+1 for somep ≥ 1,

Pp(t) =

p−1∑

j=−1

Y (tn−j)lj,n(t), (8.29)

where{lj,n(t) : j = −1, . . . , p − 1} are the Lagrange interpolation basis functions
for the nodestn+1, . . . , tn−p+1 (see (B.4) in Appendix B). Use

P ′
p(tn+1) ≈ Y ′(tn+1) = f(tn+1, Y (tn+1)). (8.30)

Combining (8.30) with (8.29) and solving forY (tn+1), we obtain

Y (tn+1) ≈
p−1∑

j=0

αjY (tn−j) + hβf (tn+1, Y (tn+1)) . (8.31)

Thep-step BDF method is given by

yn+1 =

p−1∑

j=0

αjyn−j + hβf(tn+1, yn+1). (8.32)

STABILITY REGIONS FOR MULTISTEP METHODS 141

Table 8.4 Coefficients of BDF method (8.32)

p β α0 α1 α2 α3 α4 α5

1 1 1

2 2
3

4
3

− 1
3

3 6
11

18
11

− 9
11

2
11

4 12
25

48
25

− 36
25

16
25

− 3
25

5 60
137

300
137

− 300
137

200
137

− 75
137

12
137

6 60
147

360
147

− 450
147

400
147

− 225
147

72
147

− 10
147

The coefficients for the cases ofp = 1, . . . , 6 are given in Table 8.4. The casep = 1
is simply the backward Euler method of (4.9) in Chapter 4. Thetruncation error for
(8.32) can be obtained from the error formulas for numericaldifferentiation (e.g. see
[11, (5.7.5)]),

Tn(Y) = − β

p+ 1
hp+1Y (p+1)(ξn) (8.33)

for sometn−p+1 ≤ ξn ≤ tn+1.
The regions of absolute stability for the formulas of Table 8.4 are given in Figure

8.3. To create these regions, we must find all valueshλ for which

|rj(hλ)| < 1, j = 0, 1, . . . , p, (8.34)

where the characteristic rootsrj(hλ) are the solutions of

rp =

p−1∑

j=0

αjr
p−1−j + hλβrp. (8.35)

It can be shown that forp = 1 andp = 2, the BDF’s are A-stable, and that for
3 ≤ p ≤ 6, the region of absolute stability becomes smaller asp increases, although
containing the entire negative real axis in each case. Forp ≥ 7, the regions of absolute
stability are not acceptable for the solution of stiff problems. This is discussed in
greater detail in the following section.

8.3 STABILITY REGIONS FOR MULTISTEP METHODS

Recalling (7.1), all general multistep methods, includingAB, AM, and BDF (and
other) methods, can be represented as follows:

yn+1 =

p∑

j=0

aj yn−j + h

p∑

j=−1

bj f(tn−j, yn−j). (8.36)

142 STIFF DIFFERENTIAL EQUATIONS

−2 −1.5 −1 −0.5 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

AB1

AB2

AB3

AB4

Re(hλ)

Im
(h

λ)

Figure 8.1 Stability regions for Adams–Bashforth methods. Note that AB1 is Euler’s method

For the test equationdY/dt = λY , we havef(t, Y) = λY ; and recalling (7.42), the
characteristic polynomial for (8.36) is

0 = (1 − hλb−1) r
p+1 −

p∑

j=0

(aj + hλbj) r
p−j . (8.37)

Theboundaryof the stability region is where all roots of this characteristic equation
have magnitude 1 or less, and at least one root with magnitude1. We can find all the
values ofhλwhere one of the roots has magnitude 1. All roots with magnitude 1 can
be represented asr = eiθ with i =

√
−1. So we can find allhλ where (8.37) holds

with r = eiθ. Separating outhλ gives

rp+1 −
p∑

j=0

aj r
p−j = hλ

p∑

j=−1

bjr
p−j ,

hλ =



rp+1 −
p∑

j=0

aj r
p−j



÷




p∑

j=−1

bjr
p−j



 ,

wherer = eiθ for 0 ≤ θ ≤ 2π gives a set that includes the boundary of the stability
region. With a little more care, we can identify which of the regions separated by this
curve form the true stability region.
Remark. From Section 7.3 of Chapter 7, the root condition (7.32)–(7.33) is nec-
essary for convergence and stability of a multistep method.This form of stability

ADDITIONAL SOURCES OF DIFFICULTY 143

−6 −5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

Re(hλ)

Im
(h

λ)

AM1

(outside circle)

AM2

(left of line)AM3

AM4

Figure 8.2 Stability regions for Adams–Moulton methods. Note that AM1is the implicit
Euler method, and AM2 is the trapezoidal method. Note the different scale on the axes as
compared to Figure 8.1

is sometimes also calledweak stability, as we ordinarily require additional stability
conditions for a practical numerical method. Without the root condition, the method
cannot be expected to produce numerical solutions that approach the true solution as
h → 0, regardless of the value ofλ. The root condition sometimes fails for certain
consistent multistep methods, but almost no one discusses those methods because
they are useless except to explain the importance of stability! As a simple example
of such a method, recall Example 7.34 from Section 7.3.

8.4 ADDITIONAL SOURCES OF DIFFICULTY

8.4.1 A-stability and L-stability

There are still problems with the BDF methods and with other methods that are chosen
solely on the basis of their region of absolute stability. First, with the model equation
Y ′ = λY , if Real(λ) is of large magnitude and negative, then the solutionY (t)
goes to the zero very rapidly, and asReal(λ) → −∞, the convergence to zero of
Y (t) becomes more rapid. We would like the same behavior to hold for the numerical
solution of the model equation{yn}. To illustrate this idea, we show that theA-stable
trapezoidal rule does not maintain this behavior.

144 STIFF DIFFERENTIAL EQUATIONS

−6 −4 −2 0 2
−4

−3

−2

−1

0

1

2

3

4

Re(hλ)

Im
(h

λ)
BDF1

BDF2

BDF3
BDF4

BDF5

BDF6

Figure 8.3 Stability regions for backward difference formula methods. Note that BDF1
is again the implicit Euler method. The labels are inside thestability region for the labeled
method.

Apply the trapezoidal method (4.22) to the model equation (8.1). Doing so leads
to the numerical approximation

yn =

[
1 + 1

2hλ

1 − 1
2hλ

]n

, n ≥ 0. (8.38)

If |Real(λ)| is large, then the fraction inside the brackets is less than 1in magnitude,
but is nearly equal to−1; and thusyn decreases to0 quite slowly. This suggests that
the trapezoidal method may not be a completely satisfactorychoice for stiff problems.

In comparison, the A-stable backward Euler method has the desired behavior.
From (4.10) in Chapter 4, the solution of the model problem is

yn =

[
1

1 − hλ

]n

, n ≥ 0.

As |λ| increases, the sequence{yn} goes to zero more rapidly. Thus the backward
Euler solution better reflects the behavior of the true solution of the model equation.
An A-stable numerical method is calledL-stableif at each fixedt = tn, the numerical
solutionyn at tn satisfiesyn → 0 asReal (λ) → −∞. The trapezoidal rule is not
L-stable, whereas the backward Euler method is L-stable. This material was explored
earlier in Problems 14 and 15 of Chapter 4.

SOLVING THE FINITE-DIFFERENCE METHOD 145

8.4.2 Time-varying problems and stability

A second problem with the use of stability regions to determine methods for stiff
problems is that it is based on using constantλ and linear problems. The linearization
(8.10) is often valid, but not always. For example, considerthe second-order linear
problem

y′′ + ay′ + (1 + b · cos(2πy))y = g(t), t ≥ 0, (8.39)

in which one coefficient is not constant. Convert it to the equivalent system

y′1 = y2,

y′2 = −(1 + b · cos(2πt))y1 − ay2 + g(t).
(8.40)

We assumea > 0, |b| < 1. The eigenvalues of the Jacobian matrix for this system
are

λ =
−a±

√
a2 − 4 [1 + b · cos(2πt)]

2
. (8.41)

These are either negative real numbers or complex numbers with negative real parts.
On the basis of the stability theory for the constant coefficient (or constantΛ) case,
we might be led to assume that the effect of all perturbationsin the initial data for
(8.40) would die away ast → ∞. But in fact, the homogeneous part of (8.39) will
have unbounded solutions. Thus there will be perturbationsof the initial values that
will lead to unbounded perturbed solutions in (8.39). This calls into question the
validity of the use of the model equationy′ = λy + g(t). Using the model equation
(8.1) suggests methods that we may want to study further; butby itself, this approach
is not sufficient to encompass the vast variety of linear and nonlinear problems. The
example (8.39) is taken from Aiken [1, p. 269].

8.5 SOLVING THE FINITE-DIFFERENCE METHOD

We illustrate the difficulty in solving the finite differenceequations by considering
the backward Euler method,

yn+1 = yn + hf(tn+1, yn+1), n ≥ 0 (8.42)

first for a single equation and then for a system of equations.For a single equation,
we summarize the discussion involving (4.12)–(4.16) of Chapter 4. If the ordinary
iteration formula

y
(j+1)
n+1 = yn + hf(tn+1, y

(j)
n+1), j ≥ 0 (8.43)

is used, then

yn+1 − y
(j+1)
n+1 ≈ h

∂f(tn+1, yn+1)

∂y

[
yn+1 − y

(j)
n+1

]
.

For convergence, we would need to have
∣∣∣∣h
∂f(tn+1, yn+1)

∂y

∣∣∣∣ < 1. (8.44)

146 STIFF DIFFERENTIAL EQUATIONS

But with stiff equations, this would again forceh to be very small, which we are
trying to avoid. Thus another rootfinding method must be usedto solve foryn+1 in
(8.42).

The most popular methods for solving (8.42) are based on Newton’s method and
variants of it. For a single differential equation, Newton’s method for findingyn+1 is

y
(j+1)
n+1 = y

(j)
n+1 −

[
1 − hfy(tn+1, y

(j)
n+1)

]−1

×
[
y
(j)
n+1 − yn − hf(tn+1, y

(j)
n+1)

] (8.45)

for j ≥ 0. A crude initial guess isy(0)
n+1 = yn, although generally this can be improved

on.
With a system ofm differential equations, as in (8.9), Newton’s method is

[
I − hfy(tn+1,y

(j)
n+1)

]
δ
(j)
n = y

(j)
n+1 − yn − hf(tn+1,y

(j)
n+1),

y
(j+1)
n+1 = y

(j)
n+1 − δ

(j)
n , j ≥ 0.

(8.46)

This is a system ofm linear simultaneous equations for the vectorδ
(j)
n ∈ R

m, and such
a linear system must be solved repeatedly at each steptn. The matrix of coefficients
changes with each iteratey(j)

n+1 and with each steptn. This rootfinding procedure is
usually costly to implement; consequently, we seek variants of Newton’s method that
require less computation time.

As one approach to decreasing the cost of (8.46), the matrix approximation

I − hfy(tn+1, z) ≈ I − hfy(tn+1,y
(j)
n+1), somez ≈ yn (8.47)

is used for allj and for a number of successive stepstn. Thus Newton’s method
(8.46) is approximated by

[I − hfy(tn+1, z)] δ
(j)
n = y

(j)
n+1 − yn − hf

(
tn+1,y

(j)
n+1

)
,

y
(j+1)
n+1 = y

(j)
n+1 − δ

(j)
n , j ≥ 0.

(8.48)

This amounts to solving a number of linear systems with the same coefficient matrix.
This can be done much more cheaply than when the matrix is being modified with
each iteration and each new steptn. The matrix in (8.47) will have to be updated
periodically, but the savings will still be very significantwhen compared to an exact
Newton method. For a further discussion of this topic, see Aiken [1, p. 7].

8.6 COMPUTER CODES

The MATLAB programode15s is used to solve stiff ordinary differential equations.
It is based on a modification of the variable order family of BDF methods discussed
earlier in the chapter. Details of the actual methods and their implementation can

COMPUTER CODES 147

be found in Shampine and Reichelt [73, Section 2]. The nonlinear finite difference
system (see (8.42) for the backward Euler method) at each timesteptn is solved by
a variant of the modified Newton method of (8.47)–(8.48). Theprogramode15s is
used in precisely the same manner as the programode45 discussed in Chapter 5 and
the programode113 of Chapter 6; and the entire suite of MATLAB ODE programs
is discussed at length in [73], [74].

A package of programs calledSundials[46] includes state-of-the-art programs
for solving initial value problems for ordinary differential equations, including stiff
equations, and differential algebraic equations. Included is an interface for use with
MATLAB. The Sundialspackage is the latest in a sequence of excellent programs
from the national energy laboratories (especially Lawrence-Livermore Laboratory
and Sandia Laboratory) in the USA, for use in solving ordinary differential equations
and developed over more than 30 years.

A general presentation of the method of lines is given in Schiesser [71]. For
some older “method of lines codes” to solve systems of nonlinear parabolic partial
differential equations in one and two space variables, see Sincovec and Madsen [75]
and Melgaard and Sincovec [63]. For use with MATLAB, the Partial Differential
Equations Toolbox solves partial differential equations,and it contains a \method of
lines codes" code to solve parabolic equations. It also makes use of the MATLAB
suite of programs for solving ordinary differential equations.

Example 8.4 We modify the programtest ode45of Section 5.5 by replacingode45
with ode15s throughout the code. We illustrate the use ofode15s with the earlier
example (8.8), solving it on[0, 20] and usingAbsTol = 10−6, RelTol = 10−4.
We chooseλ to be negative, but allow it to have a large magnitude, as in Example
8.2 for the Adams–Bashforth method of order 2 (see Table 8.1). As a comparison
to ode15s, we also give the results obtained usingode45 andode113. We give the
number of needed derivative evaluations with the three programs, and we also give
the maximum error in the computed solution over[0, 20]. This maximum error is for
the interpolated solution at the points defined in the test programtest ode15s. The
results, shown in Table 8.5, indicate clearly that as the stiffness increases (or as|λ|
increases), the efficiencies ofode45 andode113 decreases. In comparison, the code
ode15s is relatively unaffected by the increasing magnitude of|λ|.

PROBLEMS

1. Derive the BDF method of order 2.

2. Consider the BDF method of order 2. Show that its region of absolute stability
contains the negative real axis,−∞ < hλ < 0.

3. Using the BDF method of order 2, repeat the calculations inExample 8.2.
Comment on your results.
Hint: Note that the linearity of the test equation (8.8) allows the implicit BDF
equation foryn+1 to be solved explicitly; iteration is unnecessary.

148 STIFF DIFFERENTIAL EQUATIONS

Table 8.5 Comparison ofode15s, ode45, andode113 for the stiff equation (8.8)

ode15s ode45 ode113

λ = −1

Maximum error 5.44e − 4 1.43e − 4 3.40e − 4
Function evaluations 235 229 132

λ = −10

Maximum error 1.54e − 4 4.51e − 5 9.05e − 4
Function evaluations 273 979 337

λ = −50

Maximum error 8.43e − 5 4.24e − 5 1.41e − 3
Function evaluations 301 2797 1399

λ = −500

Maximum error 4.67e − 5 1.23e − 4 3.44e − 3
Function evaluations 309 19663 13297

4. Implement MOL Euler. Use it to experiment with various choices ofδ andh
with the true solutionU = e−0.1t sin(πx). Use some values ofδ andh that
satisfy (8.24) and others not satisfying it. Comment on yourresults.

5. ImplementMOL Euler andMOL BEuler. Experiment as in Example 8.3. Use
various values ofh andδ. Do so for the following true solutionsU (note that
the functionsd0, d1, f, andG are determined from the known test caseU):

(a) U = x4 + t2.

(b) U = (1 − e−t) cos (πx).

(c) U = exp (1/ (t+ 1)) cos (πx).

CHAPTER 9

IMPLICIT RK METHODS FOR STIFF
DIFFERENTIAL EQUATIONS

Runge–Kutta methods were introduced in Chapter 5, and we nowwant to consider
them as a means of solving stiff differential equations. When working with multistep
methods in Chapter 8, we needed to use implicit methods in order to solve stiff
equations; the same is true with Runge–Kutta methods. Also,as with multistep
methods, we need to develop the appropriate stability theory and carefully analyze
what happens when we apply these methods to stiff equations.

9.1 FAMILIES OF IMPLICIT RUNGE–KUTTA METHODS

Runge–Kutta methods can be used for stiff differential equations. However, we need
implicit Runge–Kutta methods, which were introduced in Section 5.6 of Chapter 5.

149

150 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

The general forms of these equations, for a method withs stages, are as follows:

zn,i = yn + h
s∑

j=1

ai,jf(tn + cjh, zn,j) , i = 1, . . . , s, (9.1)

yn+1 = yn + h
s∑

j=1

bjf(tn + cjh, zn,j) . (9.2)

Note that the equation forzn,i involvesall thezn,j values. So for implicit Runge–
Kutta methods we need to solve an extended system of equations. If eachyn is a real
number, then we have a system ofs equations ins unknowns for each timestep. If
eachyn is a vector of dimensionN then we have a system ofNs equations inNs
unknowns. As in Chapter 5, we can represent implicit Runge–Kutta methods in terms
of Butcher tableaus (see (5.26)),

c1 a1,1 a1,2 · · · a1,s−1 a1,s

c2 a2,1 a2,1 · · · a2,s−1 a2,s

c3 a3,1 a3,2 · · · a3,s−1 a3,s

...
...

...
. . .

...
...

cs as,1 as,2 · · · as,s−1 as,s

b1 b2 · · · bs−1 bs

or
c A

b
T

(9.3)

Some implicit methods we have already seen are actually implicit Runge–Kutta
methods, namely, the backward Euler method and the trapezoidal rule. Their Butcher
tableaus are shown in Tables 9.1 and 9.2.

Table 9.1 Butcher tableau - backward Euler method
1 1

1

Table 9.2 Butcher tableau - trapezoidal method

0 0 0
1 1/2 1/2

1/2 1/2

These methods are also BDF methods. However, higher-order BDF methods require
yn−1 to computeyn+1 and so they are not Runge–Kutta methods.

Higher-order Runge–Kutta methods have been developed, although the conditions
that need to be satisfied for such Runge–Kutta methods to haveorderp become very
complex for largep. Nevertheless, a few families of Runge–Kutta methods with
arbitrarily high-order accuracy have been created. One such family is the set of

FAMILIES OF IMPLICIT RUNGE–KUTTA METHODS 151

Gauss methods given in (5.63)–(5.64)of Chapter 5; they are closely related to Gauss–
Legendre quadrature for approximating integrals. These have the property that theci
values are the roots of the Legendre polynomial

ds

dxs
[xs (1 − x)

s
] .

The other coefficients of these methods can be determined from the ci values by
means of the so-calledsimplifying assumptionsof Butcher [23]:

B(p) :

s∑

i=1

bic
k−1
i =

1

k
, k = 1, 2, . . . , p, (9.4)

C(q) :
s∑

j=1

aijc
k−1
j =

cki
k
, k = 1, 2, . . . , q, i = 1, 2, . . . , s, (9.5)

D(r) :

s∑

i=1

bic
k−1
i aij =

bj
k

(
1 − ckk

)
,

k = 1, 2, . . . , r, j = 1, 2, . . . , s. (9.6)

ConditionB(p) says that the quadrature formula

∫ t+h

t

f(s) ds ≈ h

s∑

i=1

bi f(t+ cjh)

is exact for all polynomials of degree< p. If this condition is satisfied, we say
that the Runge–Kutta method hasquadrature orderp . ConditionC(q) says that the
corresponding quadrature formulas on[t, t+ cih], namely

∫ t+cih

t

f(s) ds ≈ h

s∑

j=1

aij f(t+ cjh)

are exact for all polynomials of degree< q. If this condition is satisfied, we say that
the Runge–Kutta method hasstage orderq . The importance of these assumptions is
demonstrated in the following theorem of Butcher [23, Thm. 7].

Theorem 9.1 If a Runge–Kutta method satisfies conditionsB(p), C(q), andD(r)
with p ≤ q + r + 1 andp ≤ 2q + 2, its order of accuracy isp.

We can use this theorem to construct the Gauss methods. Firstwe choose{ci}, the
quadrature points of the Gaussian quadrature. This can be done by looking up tables of
these numbers, and then scaling and shifting them from the interval[−1, +1] to [0, 1].
Alternatively, they can be computed as zeros of appropriateLegendre polynomials
[11, Section 5.3]. We then choose the quadrature weightsbi to makeB(p) true for
as large a value ofp as possible. For the Gaussian quadrature points, this isp = 2s.
Note that if conditionB(p) fails, then the methodcannothave orderp.

152 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

This leaves us with thes2 coefficientsaij to find. These can be determined by
applying conditionsC(q) andD(r) with sufficiently largeq and r. Fortunately,
there are some additional relationships between these conditions. It turns out that if
B(q + r) andC(q) hold, thenD(r) holds as well. Also ifB(q + r) andD(r) hold,
then so doesC(q) [23, Thms. 3, 4, 5 & 6].

So we just need to satisfyC(s) in addition. ThenB(2s) andC(s) together imply
D(s); settingq = r = s andp = 2s in Theorem 9.1 gives us a method of order
2s. Imposing conditionC(s) gives us exactlys2 linear equations for theaij values,
which can be easily solved. Thus the order of thes-stage Gauss method is2s.

Some Gauss methods are shown in Tables 9.3–9.5. For the derivation of these
formulas, refer back to Section 5.6 in Chapter 5.2. The two-point Gauss method was
given in (5.70)-(5.71) of Section 5.6.1.

Table 9.3 Butcher tableau for Gauss method of order 2
1/2 1/2

1

Table 9.4 Butcher tableau for Gauss method of order 4`
3 −

√
3

´
/6 1/4

`
3 − 2

√
3

´
/12`

3 +
√

3
´
/6

`
3 + 2

√
3

´
/12 1/4

1/2 1/2

Table 9.5 Butcher tableau for Gauss method of order 6`
5 −

√
15

´
/10 5/36 2/9 −

√
15/5 5/36 −

√
15/30

1/2 5/36 +
√

15/24 2/9 5/36 −
√

15/24`
5 +

√
15

´
/10 5/36 +

√
15/30 2/9 +

√
15/5 5/36

5/18 4/9 5/18

There are some issues that Gauss methods do not address, and so a number of
closely related methods have been developed. The most important of these are the
Radau methods, particularly the Radau IIA methods. For the Radau IIA methods the
ci terms are roots of the polynomial

ds−1

dxs−1

[
xs−1 (1 − x)

s]
.

In particular, we havecs = 1, as we can see in Tables 9.6 and 9.7, which show
the lower-order Radau IIA methods. The simplifying assumptions satisfied by the
Radau IIA methods areB(2s−1),C(s), andD(s−1), so that the order of a Radau IIA
method is2s− 1. The order 1 Radau IIA method is just the implicit Euler method,
given in Table 9.1. The derivation of these formulas is similar to that for the Gauss

FAMILIES OF IMPLICIT RUNGE–KUTTA METHODS 153

formulas, only now we are using Radau quadrature rules rather than Gauss–Legendre
quadrature rules; see Section 5.6.

Table 9.6 Butcher tableau for Radau method of order 3
1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

Table 9.7 Butcher tableau for Radau method of order 5`
4 −

√
6

´
/10

`
88 − 7

√
6

´
/360

`
296 − 169

√
6

´
/1800

`
−2 + 3

√
6

´
/225`

4 +
√

6
´
/10

`
296 + 169

√
6

´
/1800

`
88 + 7

√
6

´
/360

`
−2 − 3

√
6

´
/225

1
`
16 −

√
6

´
/36

`
16 +

√
6

´
/36 1/9

`
16 −

√
6

´
/36

`
16 +

√
6

´
/36 1/9

A third family of Runge–Kutta methods worth considering arethe Lobatto IIIC
methods; thecj values are the roots of the polynomial

ds−2

dxs−2

[
xs−1(1 − x)s−1

]
,

and we use the simplifying conditionsB(2s − 2), C(s − 1), andD(s − 1). The
Lobatto IIIC methods havec1 = 0 andcs = 1. The order of thes-stage Lobatto IIIC
method is2s− 2.

Other Runge–Kutta methods have been developed to handle various other issues.
For example, while general implicit Runge–Kutta methods with s stages require
the solution of a system ofNs equations inNs unknowns, some implicit Runge–
Kutta methods require the solution of a sequence ofs systems ofN equations inN
unknowns. This is often simpler than solvingNs equations inNs unknowns. These
methods are known asdiagonally implicit Runge–Kutta methods(DIRK methods).
For these methods we takeai,j = 0 wheneveri < j. Two examples of DIRKs are
given in Table 9.8. The method of Alexander [2] is an order 3 method with three
stages. The method of Crouzeix and Raviart [31] is an order 4 method with three
stages. The constants in Alexander’s method are

α = the root of x3 − 3x2 + 3
2x− 1

6 in (1
6 ,

1
2),

τ2 = 1
2 (1 + α),

b1 = − 1
4 (6α2 − 16α+ 1),

b2 = 1
4 (6α2 − 20α+ 5).

154 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

The constants in Crouzeix and Raviart’s method are given by

γ =
1√
3

cos
(π

18

)
+

1

2
,

δ =
1

6 (2γ − 1)
2 .

There are a large number of DIRK methods, and some of them can be found, for
example, in Hairer and Wanner’s text [44].

Table 9.8 Butcher tableau for DIRK methods
α α
τ2 τ2 − α α
1 b1 b2 α

b1 b2 α

(a) Method of Alexander
γ γ

1/2 1/2 − γ γ
1 − γ 2γ 1 − 4γ γ

δ 1 − 2δ δ

(b) Method of Crouzeix & Raviart

9.2 STABILITY OF RUNGE–KUTTA METHODS

Implicit Runge–Kutta methods need the same kind of stability properties as found
in multistep methods if they are to be useful in solving stiffdifferential equations.
Fortunately, most of the stability aspects can be derived using some straightforward
linear algebra.

Consider the model differential equation

Y ′ = λY.

Following (9.1)–(9.2), denotezT
n = [zn,1, zn,2, . . . , zn,s]. Apply (9.1)–(9.2) to this

differential equation:

zn = yn e + hλA zn,

yn+1 = yn + hλbT zn.

HereeT = [1, 1, . . . , 1] is thes-dimensional vector of all ones. Some easy algebra
gives

yn+1 =
[
1 + hλbT (I − hλA)

−1
e
]
yn = R(hλ) yn.

The stability function is

R(η) = 1 + η bT (I − ηA)
−1

e. (9.7)

STABILITY OF RUNGE–KUTTA METHODS 155

As before, the Runge–Kutta method is A-stable if|R(η)| < 1 for all complexη with
Real η < 0.

All Gauss (Tables 9.3-9.5), Radau IIA (Tables 9.1, 9.6, 9.7), and some DIRK
methods (Table 9.8) are A-stable, which makes them stable for anyλwithRealλ < 0.
However, this does not necessarily make themaccurate. For more on this topic, see
the following section on order reduction.

For nonlinear problems, there is another form of stability that is very useful, called
B-stability. This is based on differential equations

Y ′ = f(t, Y), Y (t0) = Y0,

wheref(t, y) satisfies only aone-sided Lipschitz condition:

(y − z)T (f(t, y) − f(t, z)) ≤ µ ‖y − z‖2 .

If f(t, y) is Lipschitz iny with Lipschitz constantL (see (1.10) in Chapter 1), then
it automatically satisfies the one-sided Lipschitz condition with µ = L. However,
the reverse need not hold. For example, the system of differential equations (8.16)
obtained for the heat equation in Section 8.1 satisfies the one-sided Lipschitz condition
with µ = 0, no matter how fine the discretization. The ordinary Lipschitz constant,
however, is roughly proportional tom2, wherem is the number of grid points chosen
for the space discretization.

The importance of one-sided Lipschitz conditions is that they are closely related
to stability of the differential equation. In particular, if

Y ′ = f(t, Y), Y (t0) = Y0,

Z ′ = f(t, Z), Z(t0) = Z0,

andf(t, y) satisfies the one-sided Lipschitz condition with constantµ, then

‖Y (t) − Z(t)‖ ≤ eµ(t−t0) ‖Y0 − Z0‖ .

This can be seen by differentiating

m(t) = ‖Y (t) − Z(t)‖2
= (Y (t) − Z(t))

T
(Y (t) − Z(t))

as follows:

m′(t) = 2 (Y (t) − Z(t))
T

(Y ′(t) − Z ′(t))

= 2 (Y (t) − Z(t))
T

[f(t, Y (t)) − f(t, Z(t))]

≤ 2µ ‖Y (t) − Z(t)‖2
= 2µm(t).

Hence
m(t) ≤ e2µ(t−t0)m(t0),

and taking square roots gives

‖Y (t) − Z(t)‖ ≤ eµ(t−t0) ‖Y0 − Z0‖ .

156 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

The case where the one-sided Lipschitz constantµ is zero means that the dif-
ferential equation iscontractive; that is, different solutions cannot become further
apart or separated. If we require that the numerical solution be also contractive
(‖yn+1 − zn+1‖ ≤ ‖yn − zn‖ for any two numerical solutionsyk andzk) whenever
µ = 0, then the method is calledB-stable[24]. This condition seems very useful, but
rather difficult to check. Fortunately, a simple and easy condition to test was found
independently in [22] and [30]: namely, if

bi ≥ 0 for all i (9.8)

and
M = [biaij + bjaji − bibj]

s
i,j=1 is positive semidefinite (9.9)

(i.e., wTMw ≥ 0 for all vectorsw), then the Runge–Kutta method is B-stable.
Testing a matrixM for being positive semidefinite is actually quite easy. One test is
to compute the eigenvalues ofM if M is symmetric. If all eigenvalues are≥ 0, then
M is positive semidefinite. For a nonsymmetric matrixM , it is positive semidefinite
if all the eigenvalues of the matrix(M +MT)/2 are nonnegative.

If a method is B-stable, then it is A-stable. To see this, for aB-stable method we
can look at the differential equation

Y ′ =

[
α +β
−β α

]
Y,

which has the one-sided Lipschitz constantµ = 0 if α ≤ 0. The eigenvalues of this
2×2matrix areα±iβ, which are in the left half of the complex plane ifα < 0. So if a
method is B-stable, thenα ≤ 0 implies that the numerical solution is contractive, and
thus the stability region includes the left half-plane; that is, the method is A-stable.

This test for B-stability quickly leads to the realization that a number of important
families of implicit Runge–Kutta methods are B-stable, such as the Gauss methods,
the Radau IA, and the Radau IIA methods. The DIRK method in Table 9.8 (part
b) is, however, A-stable but not B-stable. What does this mean in practice? For
strongly nonlinear problems, A-stability may not suffice toensure good behavior of
the numerical method, especially if we consider integration for long time periods. It
also means that Gauss or Radau IIA methods are probably better than DIRK methods
despite the extra computational cost of the Gauss and Radau methods.

9.3 ORDER REDUCTION

Stability is clearly necessary, but it is not sufficient to obtain accurate solutions to
stiff systems of ordinary differential equations. A phenomenon that is commonly
observed is that when applied to stiff problems, many implicit methods do not seem
to achieve the order of accuracy that is expected for the method. This phenomenon
is calledorder reduction[44, pp. 225–228].

Order reduction occurs for certain Runge–Kutta methods, but not for BDF meth-
ods.

ORDER REDUCTION 157

10
0

10
1

10
2

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

10−1/n2

300/n4

2 u n1/2

number of steps (n)

er
ro

r a
t t

 =
 1

Figure 9.1 Error norms for the test equation (9.10)

Example 9.2 Consider, for example, the fourth-order Gauss method withs = 2 (see
Tables 9.3–9.5) . Figure 9.1 shows how the error behaves for atest equation

Y ′ = D (Y − g(t)) + g′(t), Y (0) = g(0). (9.10)

For this particular example,D is a100×100 diagonal matrix with negative diagonals
randomly generated in the range from−2−20 to−2+20 ≈ −106. The diagonal entries
are exponentials of uniformly distributed pseudo-random values. The functiong(t)
likewise involves pseudo-random numbers, but is a smooth function oft. The exact
solution isY (t) = g(t), so we can easily compute errors in the numerical solution.
For the functiong(t) we usedg(t) = cos(t) z1 − exp(−t) z2 with z1, z2 randomly
generated vectors using a normal distribution.

Note that the Gauss method withs = 2 is a fourth-ordermethod, so that we expect
the errors to beO(h4) as the stepsize becomes small. But this ignores two factors:
(1) the hidden constant in theO expression may be quite large because of the stiffness
of the differential equation, and (2) asymptotic results like this are true providedh is
“small enough”. How small is “small enough” depends on the problem, and for stiff
differential equations, this can depend on how stiff the equation is. Make the stiffness
go to infinity, and the limit for “small enough” may go to zero.If that happens, then
the standard convergence theory may be meaningless for practical stiff problems.

As can be seen from Figure 9.1, the error for larger values ofh seems to behave
more likeO(h2) thanO(h4). Also, for smaller values ofh we seeO(h4) error
behavior (as we might expect), but with a large value for the hidden constant inside

158 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

theO. For very smallh and many steps, we see that roundoff error from floating-point
arithmetic limits the accuracy possible with this method. (The quantityu in the graph
denotes the unit round of the floating-point arithmetic.) Ifwe increase the stiffness
of the problem as we reduce the size ofh, we might only see theO(h2) behavior of
the error. This is the effect oforder reduction.

Order reduction can be explained in terms of the following simple version of the
test differential equation (9.10),

Y ′(t) = λ (Y − g(t)) + g′(t), Y (t0) = g(t0). (9.11)

The exact solution isY (t) = g(t) for all t. However, the numerical solution of this
is not exact, particularly ifhλ is large. What we want to find out is the magnitude of
the error in terms ofh independently ofλh. This can be different from the order of
the error for fixedλ ash→ 0. The Runge–Kutta equations are

zn,i = yn + h

s∑

j=1

aij f(tn + cjh, zn,j), i = 1, 2, . . . , s.

From this formula, it seems that the intention is forzn,i ≈ Y (tn + cih). Consider
for a moment the even simpler test problem

dY

dt
= g′(t), Y (t0) = g(t0).

Thestage orderof a Runge–Kutta method comes from the order of the error in the
approximationzn,i ≈ g(tn + cih),

g(tn + cih) = g(tn) + h
s∑

j=1

aij g
′(tn + cjh) + O(hq+1)

for all i, indicating a stage order ofq. Thequadrature orderis the order of the final
formula for this very simple test equation; the result

g(tn + h) = g(tn) + h
s∑

j=1

bj g
′(tn + cjh) + O(hp+1)

means that the quadrature order isp. Usually the stage order is of no concern for non-
stiff differential equations, and only the quadrature order matters. This is important
for explicit methods, since the first step of an explicit method is essentially a step of
the explicit Euler method; this means that the stage order for explicit methods is one.
Nevertheless, for nonstiff differential equations, we have Runge–Kutta methods of
arbitrarily high-order.

ORDER REDUCTION 159

On the other hand, stiffness means that the stage order cannot be ignored. Going
back to the test equation (9.11), write

∆n,i = g(tn + cih) − g(tn) − h

s∑

j=1

aij g
′(tn + cjh),

∆̂n = g(tn + h) − g(tn) − h

s∑

j=1

bj g
′(tn + cjh).

Then, after some calculation, we find that

yn+1 − g(tn+1) = R(hλ) [yn − g(tn)] − hλbT (I − hλA)
−1

∆n − ∆̂n.

Clearly we still need|R(hλ)| ≤ 1 for stability. But we have to be careful about∆n

(the stage errors) as well aŝ∆n (the quadrature error). In other words, our accuracy
can be reduced by a low stage order as well as by a low quadrature order.

Many Runge–Kutta methods for stiff differential equationsarestiffly accurate.
This simply means that the last row ofA is bT ; that is,ais = bi for i = 1, 2, . . . , s.
An example is the trapezoidal rule:

yn+1 = yn + 1
2h [f(tn, yn) + f(tn+1, yn+1)] .

The quadrature order is 2 (∆̂n = O(h3)), which is the same order as the second stage
(∆n,2 = O(h3)). The order of the first stage is infinite:∆n,1 = 0, sincec1 = 0 and
g(tn + 0h) = g(tn) + 0. For the test equation (9.10), we have

yn+1 − g(tn+1) = R(hλ) [yn − g(tn)] − hλbT (I − hλA)
−1

∆n − ∆̂n

as before. For this method

−hλbT (I − hλA)
−1

∆n =
2hλ

hλ− 2

[
1

2
,

1

2

]



1 − 1

2
hλ 0

1

2
hλ 1



[

0
O(h3)

]

=
hλ

hλ− 2
O(h3).

So thestiff orderof the trapezoidal method is 2, the same as its “normal” order. This
is a desirable trait, but it is not shared by most higher-order methods.

Consider, for example, the Gauss methods. Thes-stage Gauss method has order
2s. However, its stiff order is onlys. A simple example is thes = 1 Gauss method,
which is also known as themidpoint method, as shown in Table 9.3. Then

−hλbT (I − hλA)−1 ∆n = − 2hλ

2 − hλ
O(h2).

So while the quadrature order of the midpoint rule is 2, its stiff order is 1. Further
analysis for the other Gauss methods can be found in [44].

160 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

DIRK methods of any number of stages have stage order≤ 2, and so the stiff order
(for arbitraryhλ) is≤ 2. Radau IIA methods withs stages have order2s− 1, but the
stiff order (for arbitraryhλ) is s+ 1. In fact, the global error for Radau IIA methods
is O(hs+1/(hλ)). If we consider only the casehλ → ∞ andh → 0, we find that,
because the Radau IIA methods are stiffly accurate, we again getO(h2s−1) global
errorin the limitashλ→ ∞. This turns out to be very useful for differential algebraic
equations, the topic discussed in Chapter 10. However, for solving problems such as
the heat equation (see Section 8.1), there are many eigenvaluesλ, some small and
some large. So we cannot assume thathλ→ ∞.

On the other hand, order reduction does not occur for BDF methods. While a
complete answer is beyond the scope of this book, consider the differential equation

Y ′ = λ (Y − g(t)) + g′(t) Y (t0) = g(t0).

The exact solution isY (t) = g(t) for all t. If we applied a BDF method to this
equation, we get

yn+1 =

p−1∑

j=0

ajyn−j + hβ [λ (yn+1 − g(tn+1)) + g′(tn+1)] .

If ek = yk − g(tk) were the error at timestepk, after some algebra we would get

(1 − hλ) en+1 −
p−1∑

j=0

ajen−j =

p−1∑

j=0

ajg(tn−j) + hβ g′(tn+1) − g(tn+1)

= O(hp+1),

since the BDF method has orderp. But forhλ in the stability region, this means that
en = O(hp); if |hλ| → ∞ along the negative real axis, thenen = O(hp/ |hλ|).

9.4 RUNGE–KUTTA METHODS FOR STIFF EQUATIONS IN PRACTICE

While a great many Runge–Kutta methods have been developed,for stiff differential
equations, the field narrows to a relatively small numberof methods, all of which have
the desirable characteristics of stability (especially B-stability) and accuracy (when
order reduction is taken into account). The Radau IIA methods score well on just
about every characteristic, as they are B-stable, are stiffly accurate and have a high
order, even after order reduction is taken into account.

The downside is that Radau methods, like Gauss methods, are expensive to im-
plement. For stiff differential equations, we cannot expect to solve the Runge–Kutta
equations by simple iteration. Some sort of nonlinear equation solver is needed.
Newton’s method is the most common method, but simplified versions of Newton’s
method are often used in practice, as discussed in Section 8.5 in Chapter 8. For large-
scale systems of differential equations, even implementing Newton’s method can be
difficult as large linear systems need to be solved. This can be done efficiently using

RUNGE–KUTTA METHODS FOR STIFF EQUATIONS IN PRACTICE 161

the tools of numerical linear algebra. This is an exciting and interesting area in itself,
but beyond the scope of this book.

Practical codes for a number of these methods, such as the three-stage, fifth-
order Radau IIA method, have been carefully designed, implemented, and tested. An
example is theRadauandRadau5 codes of Hairer. For more details see p. 183. These
codes are automatic methods that can adjust the stepsize to achieve a user-specified
error tolerance.

PROBLEMS

1. Show that the Gauss methods withs = 1 ands = 2 stages have stiff orders.

2. Consider the following iterative method for solving the Runge–Kutta equations

zn,i = yn + h
s∑

h=1

aij f(tn + cjh, zn,j), i = 1, 2, . . . , s.

We set

z
(k+1)
n,i = yn + h

s∑

j=1

aij f(tn + cjh, z
(k)
n,j), i = 1, 2, . . . , s,

for k = 0, 1, 2, Show that iff(t, x) is Lipschitz inx with Lipschitz
constantL, then this method is a contractive interation mapping provided

hL max
1≤i≤s

s∑

j=1

|aij | < 1.

Is this method useful for stiff problems?

3. Show that the Gauss methods withs = 1 ands = 2 are B-stable using the
algebraic condition (9.8)–(9.9).

4. Repeat Problem 4 for the Radau IIA methods fors = 1 ands = 2.

5. Show that the DIRK method in Table 9.8 isnot B-stable.

6. Show that

f(t, y) =

[
α +β
−β α

]
y

satisfies a one-sided Lipschitz condition withµ ≥ α. Use this to prove that
B-stability implies A-stability.
Hint: First show that the eigenvalues of the matrix definingf areα± iβ.

7. The one-stage Gauss method is

zn,1 = yn + 1
2h f(tn + 1

2h, zn,1),

yn+1 = yn + h f(tn + 1
2h, zn,1).

162 IMPLICIT RK METHODS FOR STIFF DIFFERENTIAL EQUATIONS

Find the Taylor series expansion of∆̂n,1 = g(tn+c1h)−g(tn)−h a11 g
′(tn+

c1h) (c1 = a11 = 1
2) to show that the stage order of this method is 1 while the

quadrature order of the method is 2.

8. Derive the coefficients for the Lobatto IIIC method with three stages (s = 3,
order= 2s− 2 = 4). The quadrature points arec1 = 0, c2 = 1

2 , andc3 = 1.
Use the simplifying conditionsB(2s − 2) to compute thebi values, and the
simplifying conditionsC(s − 1) and one of the conditions inD(s − 1) to
compute theaij matrix entries.

CHAPTER 10

DIFFERENTIAL ALGEBRAIC
EQUATIONS

In Chapter 3 we considered the motion of a pendulum consisting of a massm at the
end of a light rigid rod of lengthl; see Figure 3.1. Deriving the differential equation
for the angleθ involved computing the torque about the pivot point. In simple systems
like this, it is fairly easy to derive the differential equation from a good knowledge of
mechanics. But with more complex systems it can become difficult just to obtain the
differential equation to be solved.

Here we will consider a different way of handling this problem that makes it
much easier to derive a mathematical model, but at a computational cost. These
models contain not only differential equations but also “algebraic” equations. Here
“algebraic” does not signify that only the usual operationsof arithmetic (+,−,×, and
/) can appear; rather, it means that no derivatives or integrals of unknown quantities
can appear in the equation. Differential and algebraic equations are collectively
referred to asdifferential algebraic equationsor by the acronym DAE. A number of
texts deal specifically with DAEs, such as Ascher and Petzold[10] and Brenan et al.
[19].

In this new framework, the position of the mass is given by coordinates(x, y)
relative to the pivot for the pendulum. There is a constraintdue to the rigid rod:√
x2 + y2 = l. There are also two forces acting on the mass. One is gravitation,

163

164 DIFFERENTIAL ALGEBRAIC EQUATIONS

which acts downward with strength−mg. The other is the force that the rod exerts
on the mass to maintain the constraint. This force is in the direction of the rod; let its
magnitude beN , so that the force itself is(−Nx,−Ny)/

√
x2 + y2. This provides

a complete model for the pendulum:

m
d2x

dt2
= −N x√

x2 + y2
, (10.1)

m
d2y

dt2
= −N y√

x2 + y2
−mg, (10.2)

0 = l −
√
x2 + y2. (10.3)

This second-order system can be rewritten as a first-order system:

x′ = u, (10.4)

y′ = v, (10.5)

mu′ = −N x√
x2 + y2

, (10.6)

mv′ = −N y√
x2 + y2

−mg, (10.7)

0 = l −
√
x2 + y2. (10.8)

The unknowns are the coordinatesx(t), y(t), their velocitiesu(t) andv(t), and the
force exerted by the rod isN(t). All in all, there are five equations and five unknown
functions. However, only four of the equations are differential equations. The last is
an “algebraic” equation. Also, there is no equation withdN/dt in it, soN is called
analgebraic variable.

For simplicity, we will writeλ = N/(m
√
x2 + y2) so thatdu/dt = −λx and

dv/dt = −λy − g. Also, the constraint equation will be replaced by

0 = l2 − x2 − y2.

We can turn the differential algebraic equations into a puresystem of differential
equations. To do that, we need to differentiate the algebraic equation until we can
obtain an expression fordλ/dt. Differentiating the constraint three times gives first

0 =
d

dt

(
l2 − x2 − y2

)
= −2xu− 2yv, (10.9)

0 =
d2

dt2
(
l2 − x2 − y2

)
= −2(u2 + v2) + 2λ(x2 + y2) + 2yg, (10.10)

and then

0 =
d3

dt3
(
l2 − x2 − y2

)
= 2

dλ

dt

(
x2 + y2

)
+ 6gv. (10.11)

The number of times that the algebraic equations of a DAE needto be differentiated
in order to obtaindifferential equationsfor all of the algebraic variables is called the

INITIAL CONDITIONS AND DRIFT 165

indexof the DAE. Two differentiations allow us to findλ in terms ofx, y, u, andv.
But three differentiations are needed to computedλ/dt in terms of these quantities.
So our pendulum problem is an index 3 DAE.

Solving forλ from the second derivative of the constraint gives

λ =
u2 + v2 − yg

x2 + y2
=
u2 + v2 − yg

l2
. (10.12)

Substituting this expression gives a system of ordinary differential equations:

x′ = u, (10.13)

y′ = v, (10.14)

u′ = −u
2 + v2 − yg

l2
x, (10.15)

v′ = −u
2 + v2 − yg

l2
y − g. (10.16)

If, instead of substituting forλ, we differentiate the constraint a third time, we obtain
a differential equation forλ:

x′ = u, (10.17)

y′ = v, (10.18)

u′ = −λx, (10.19)

v′ = −λy − g, (10.20)

λ′ = −3gv

l2
. (10.21)

The general scheme for a system of differential algebraic equations is

Y ′ = f(t, Y, Z), Y (t0) = Y0, (10.22)

0 = g(t, Y, Z). (10.23)

TheY variables are the differential variables, while theZ variables are the algebraic
variables.

10.1 INITIAL CONDITIONS AND DRIFT

In the general scheme, the constraints0 = g(t, Y, Z) must hold at timet = t0, so that
g(t0, Y0, Z0) = 0, whereZ0 = Z(t0). So the algebraic variables must also have the
right initial values. But the conditions do not stop there. In addition, differentiating
the constraints once att = t0 gives

d

dt
g(t, Y, Z)|t=t0 = 0,

166 DIFFERENTIAL ALGEBRAIC EQUATIONS

and differentiating twice gives

d2

dt2
g(t, Y, Z)|t=t0 = 0,

and so on. This gives a whole sequence of extra initial conditions that must be
satisfied. Fortunately, the number of extra conditions is not infinite: the number of
differentiatons needed to obtain the needed extra conditions is one less than theindex
of the problem.

Consider, for example, the pendulum problem. Initially theposition of the mass is
constrained by the length of the rod:x(t0)2 + y(t0)

2 = l2. Differentiating the length
constraint (10.8) att = t0 gives

0 = x(t0)u(t0) + y(t0)v(t0);

that is, the initial velocity must be tangent to the circle that the pendulum sweeps out.
Finally, the initial forceN(t0) (or equivalentlyλ(t0)) must be set correctly in order
for the solution to follow the circlex2 + y2 = l2. This gives a total of three extra
conditions to satisfy for the initial conditions, coming from the constraint function
and its first and second derivatives.

Note that the constraint and the subsequent conditions holdnot only at the initial
time, but also at any instant. Thus the differential equations obtained that have the
algebraic constraint removed (such as (10.13)–(10.16) and(10.17)–(10.20)) must
satisfy these additional conditions at all times. Numerical methods do not necessarily
preserve these properties even though they are preserved inthe differential equations.
This is known asdrift . In theory, if a numerical method for a differential equation
or DAE is convergent, then as the stepsizeh goes to zero, the amount of drift will
also go to zero on any fixed time interval. In practice, however, instabilities that may
be introduced by the DAE or ODE formulation mean that extremely small stepsizes
may be needed to keep the drift sufficiently small for meaningful answers.

Figure 10.1 shows plots of the trajectories for the pendulumproblem using the
formulation (10.13)–(10.16) and the Euler and Heun methods(see (4.29)) for its
solution.

There are a number of ways of dealing with drift.

1. Project current solution back to the constraints, either atevery step, or oc-
casionally. For the pendulum example, this means projecting not only the
positions(x, y) back tox2 + y2 = l2, but also the velocities. Moreover, if
λ is computed via a differential equation, it, too, must be projected onto its
constraints. Care must be taken in doing this, particularlyfor multistep meth-
ods where projecting just the current solution vectorzn will introduce errors in
the approximate solution. Instead, all solution vectorszn−j for j = 0, 1, . . . , p
should be projected, wherep is the number of previous iterates used by the mul-
tistep method. Also, if the index is high, we should project not only the solution
vector, but also the derivative and (if the index is high enough) higher-order
derivatives as well onto the appropriate manifold.

INITIAL CONDITIONS AND DRIFT 167

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x(t)

y(
t)

(a) Euler’s method (h = 0.015)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−1.01

−1

−0.99

−0.98

−0.97

−0.96

−0.95

−0.94

−0.93

−0.92

−0.91

x(t)

y(
t)

x2+y2 = 1

(b) Heun’s method (h = 0.1)

Figure 10.1 Plots of trajectories for (10.13)–(10.16) showing drift for Euler and Heun’s
methods

168 DIFFERENTIAL ALGEBRAIC EQUATIONS

2. Modify the differential equation to make the constraint setstable, but otherwise
do not change the trajectories. This technique has been used in a number of
contexts, but it almost always has to be done separately for every new case.
An example of this technique is the method of Baumgarte [15] for equality-
constrained mechanical systems. This would replace the conditiong(t, Y, Z) =
0 with a differential equation, such as(d/dt)g(t, Y, Z)+αg(t, Y, Z) = 0 with
α > 0; that is

0 = gt(t, Y, Z) + gy(t, Y, Z) f(t, Y, Z) + gz(t, Y, Z)Z ′ + αg(t, Y, Z),

which can be solved to give a differential equation forZ. (Note thatgy(t, Y, Z)
is the Jacobian matrix ofg(t, Y, Z) with respect toY . See (10.3) below.)
For index 3 systems, such as those arising in mechanics, stable second-order
equations must be used such as

(
d2

dt2
+ α

d

dt
+ β

)
g(t, Y, Z) = 0

with suitable choices forα andβ. These modifications need to be done with
care to ensure that they really are stable, not just for the continuous problem but
also for the numerical discretization. Since these stabilization methods have
one or more free scaling parameter(s)α (andβ), these must be chosen with
care. For more information about dealing with these issues,see Ascher et al.
[5].

3. Use a numerical method that explicitly respects the constraints. These methods
treat the differential algebraic equationsasdifferential algebraic equations. In-
stead of necessitating one or more differentiations in order to find differential or
other equations for the “algebraic” variables, they are automatically computed
by the method itself. These have been developed for general low-index DAEs.
Petzold, who developed the first such methods, produced a package DASSL
(see [19], [21], [65]) based on backward differentiation formulas (BDFs) for
solving index 1 DAEs. Many other methods have been developed, but these
tend to be limited in terms of the index that they can handle. All such meth-
ods are implicit, and so require the solution of a linear or nonlinear system of
equations at each step.

To summarize: methods 1 and 2 for handling DAEs have some problems. The
projection method can work with some ODE methods. The Baumgarte stabilization
method can also be made to work, but requires “tuning” the stabilization parameters;
this method can run into trouble for stiff equations. Method3, designing numerical
methods that explicitly recognize the constraints, is the one that we focus on in the
remainder of the chapter.

10.2 DAES AS STIFF DIFFERENTIAL EQUATIONS

Differential algebraic equations can be treated as the limit of ordinary differential
equations. Note thatg(t, Y, Z) = 0 if and only ifBg(t, Y, Z) = 0 for any nonsingular

NUMERICAL ISSUES: HIGHER INDEX PROBLEMS 169

square matrixB. Then the DAE (10.22)–(10.23) can be treated as the limit asǫ→ 0
of

Y ′ = f(t, Y, Z), Y (t0) = Y0, (10.24)

ǫZ ′ = B(Y)g(t, Y, Z). (10.25)

The matrix functionB(Y) should be chosen to make the differential equation inZ
(10.25)stable, so that the solution for (10.25),Z(t), converges to the solutionZ = Z∗

whereg(t, Y, Z∗) = 0.
Forǫ small, these equations arestiff, so implicit methods are needed. Furthermore,

since the order obtained in practice for an implicit method can differ from the order of
the method for nonstiff problems, the order of an implicit method may deviate from
the usual order when it is applied to differential algebraicequations.

But how do we apply a numerical method for stiff ODEs to a DAE? The simplest
method to apply is the implicit Euler method. If we apply it tothe stiff approximation
(10.24)–(10.25) using step sizeh, we get

yn+1 = yn + h f(tn+1, yn+1, yn+1), (10.26)

ǫzn+1 = ǫzn + hB(yn+1)g(tn+1, yn+1, zn+1). (10.27)

Taking the limit asǫ→ 0 and recalling thatB(Y) is nonsingular, we get the equations

yn+1 = yn + h f(tn+1, yn+1, zn+1), (10.28)

0 = g(tn+1, yn+1, zn+1). (10.29)

This method will work for index 1 DAEs, but not in general for higher index DAEs.
An issue regarding accuracy is thestiff order of an ODE solver: the order of a

method for solving stiff ODEs may be lower than that for solving a nonstiff ODE, as
noted in Section 9.3. Since DAEs can be considered to be an extreme form of stiff
ODEs, this can also affect DAE solvers. With some methods, some components of
the solution (e.g., positions) can be computed more accurately than other components
(e.g., forces).

10.3 NUMERICAL ISSUES: HIGHER INDEX PROBLEMS

Consider index 1 problems in standard form:

Y ′ = f(t, Y, Z), Y (t0) = Y0,

0 = g(t, Y, Z).

HereY (t) is ann-dimensional vector andZ(t) is anm-dimensional vector. The
function

g(t, Y, Z) = [g1(t, T, Z), g2(t, Y, Z), . . . , gm(t, Y, Z)]
T

170 DIFFERENTIAL ALGEBRAIC EQUATIONS

must have values that arem-dimensional vectors. For an index 1 problem, the Jaco-
bian matrix ofg(t, Y, Z) with respect toZ, specifically

gz(t, Y, Z) =




∂g1/∂z1 ∂g1/∂z2 · · · ∂g1/∂zm

∂g2/∂z1 ∂g2/∂z2 · · · ∂g2/∂zm

...
...

. . .
...

∂gm/∂z1 ∂gm/∂z2 · · · ∂gm/∂zm




∣∣∣∣∣∣∣∣∣
(t,Y,Z)

is nonsingular. So we can apply the implicit function theorem to show that whenever
g(t0, y0, z0) = 0, there is locally a smooth solution functionz = ϕ(t, y), where
z0 = ϕ(t0, y0). With a numerical solution(yn, zn), n = 0, 1, 2, . . ., the error in
zn should be of the same order as the error inyn. This does not always happen,
but requires some special properties of the numerical method. As we will see for
Runge–Kutta methods, we need the method to be stiffly accurate. A method is stiffly
accurate when the last row of theA matrix in the Butcher tableau is the same as the
bottom rowbT of the Butcher tableau. Stiff accuracy is important for understanding
Runge–Kutta methods for stiff differential equations, as was noted in Section 9.3.

Index 2 problems have a standard form:

Y ′ = f(t, Y, Z), Y (t0) = Y0, (10.30)

0 = g(t, Y), (10.31)

where the product of Jacobian matrices ofgy(t, Y) fz(t, Y, Z) is nonsingular. But
now, to determineZ(t), we needdY/dt. Thus numerical methods applied to index
2 problems will need to perform some kind of “numerical differentiation” in order to
find Z(t). This may result in a reduction of the order of accuracy in thenumerical
approximationZ(t), which can feed back into the equation (10.30) forY (t).

Index 3 problems, such as our pendulum problem, require morespecialized treat-
ment. These problems are discussed in Subsection 10.6.1. However, the same com-
plication arises — different components of the solution canhave different orders of
convergence.

To illustrate this complication, consider the problem of the spherical pendulum.
This is just like the ordinary planar pendulum, except that the mass is not constrained
to a single vertical plane. This is sometimes called “Foucault’s pendulum”, and can
be used to demonstrate the rotation of the earth, although our model will not include
that effect. For this system, we useq = [x, y, z]T for the position of the massm,
which is subject to the constraint thatqTq = ℓ2 and a downward gravitational force
of strengthmg. Using the methods of Subsection 10.6.1, we obtain the following
index 3 DAE:

mv′ = −λq −mg k,

q′ = v,

0 =
1

2
(qT q − ℓ2),

NUMERICAL ISSUES: HIGHER INDEX PROBLEMS 171

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of steps (n)

er
ro

r
no

rm

position
velocity
force

Figure 10.2 Errors in solving the spherical pendulum problem using the three-stage Radau IIA
method with an index 1 DAE

wherek is the unit vector pointing upward. Note that the state vector for the DAE is
yT = [qT ,vT , λ].

By differentiating the constraints as we did for the planar pendulum, we can obtain
lower index DAEs. If we differentiate the constraint once, we obtain

0 = vT q

to give an index 2 DAE. If we differentiate again, we obtain

0 = vT v − λ

m
qT q− kT q g

to give an index 1 DAE.
Using the Radau IIA method with three stages (which is normally fifth-order),

we can solve each of these systems. Figures 10.2–10.4 show the numerical results
for each of these DAEs with indices 1, 2 and 3. The specific parameter values used
arem = 2 andℓ = 3

2 ; the initial time wast = 0, and the errors were computed
at t = 1. As can be clearly seen, for both index 2 and index 3 cases, theforces
are computed considerably less accurately than are the other components, and the
slope of the error line for the forces (λ) is substantially less than those for the other
components. This indicates a lower-order of convergence for the forces in the index
2 and index 3 versions of the problem. For the index 3 case, both the forces and
velocities (v) appear to have a lower-order of convergence than the positions (q).
However, the order of convergence of the positions does not seem to be affected by
the index of the DAE.

172 DIFFERENTIAL ALGEBRAIC EQUATIONS

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of steps (n)

er
ro

r
no

rm

position
velocity
force

Figure 10.3 Errors in solving the spherical pendulum problem using the three-stage Radau IIA
method with an index 2 DAE

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of steps (n)

er
ro

r
no

rm

position
velocity
force

Figure 10.4 Errors in solving the spherical pendulum problem using the three-stage Radau IIA
method with an index 3 DAE

BACKWARD DIFFERENTIATION METHODS FOR DAES 173

From these numerical results, the following question may arise: Why use high
index DAEs? As noted above, one reason is that using the high index formulation
can prevent drift in the main constraintg(q) = 0. Another reason is that the model
of the spherical pendulum is most naturally given as an index3 DAE. The lower
index DAEs are constructed by differentiating the constraint function. While this is
often the quickest approach for simple problems, for large problems this can become
difficult to do, and might not be possible in practice for functions defined by some
(complicated) piece of code.

10.4 BACKWARD DIFFERENTIATION METHODS FOR DAES

The first ODE methods to be applied to DAEs were the backward differentiation
formula (BDF) methods. These work well for index 1 DAEs, and are the basis of the
code DASSL [19], [65]. These implicit methods were introduced in Section 8.2 and
have the form

yn+1 =

p−1∑

j=0

an−j yn−j + hβ f(tn+1, yn+1).

The coefficientsaj andβ are chosen so that

y′(tn+1) =
1

β h


yn+1 −

p−1∑

j=0

ajyn−j


+ O(hp),

giving a method of orderp.
These methods, while not A-stable, are nevertheless very well behaved, at least for

nonoscillatory problems forp ≤ 6. If p ≥ 7, part of the negative real axis lies outside
the stability region, and the method can become unstable forλ < 0 large enough to
puthλ in the unstable region. For this reason, we restrictp ≤ 6 for BDF methods.

10.4.1 Index 1 problems

For DAEs of the form

Y ′ = f(Y, Z), Y (t0) = Y0, (10.32)

0 = g(Y, Z), (10.33)

the BDF method becomes

yn+1 =

p−1∑

j=0

ajyn−j + hβ f(yn+1, zn+1),

0 = g(yn+1, zn+1).

174 DIFFERENTIAL ALGEBRAIC EQUATIONS

For index 1 DAEs, the equationg(y, z) = 0 givesz implicitly as a function ofy. If
we writez = ϕ(y) as this implicit function, the BDF method can be reduced to

yn+1 =

p∑

j=0

ajyn−j + hβ f(yn+1, ϕ(yn+1)),

which is the result of applying the BDF method to the reduced equation

Y ′ = f(y, ϕ(Y)).

Thus the BDF method gives a numerical solutionwith the expected rate of convergence
to the true solution.

10.4.2 Index 2 problems

BDF methods can be used for DAEs of index 2 as well as index 1, particularly for the
semi-explicit index 2 DAEs:

Y ′ = f(Y, Z), Y (t0) = y0, (10.34)

0 = g(Y). (10.35)

Recall thatg(Y) is anm-dimensional vector for eachY , so thatgy(Y) is anm× n
matrix. On the other hand,f(Y, Z) is ann-dimensional vector, so thatfz(Y, Z) is
ann×mmatrix. The productgy(Y) fz(Y, Z) is thus anm×mmatrix. We assume
thatgy(Y) fz(Y, Z) is nonsingular.

The DAE (10.34)–(10.35) is index 2 if we can (locally) solve forZ(t) from Y (t)
using only one differentiation of the “algebraic” equationg(Y) = 0. Differentiating
gives0 = gy(Y) dY/dt = gy(Y) f(Y, Z). So for an index 2 DAE, the function
Z 7→ gy(Y) f(Y, Z) needs to be invertible so that we can find a smooth implicit
functionY 7→ Z. The usual requirement needed is that the Jacobian matrix ofthe
mapZ 7→ gy(Y) f(Y, Z) be an invertible matrix on the exact solution. From the
usual rules of calculus, this comes down to requiring thatgy(Y (t)) fz(Y (t), Z(t))
is an invertible matrix for allt on the exact solution. Note that this implies that
gy(Y) fz(Y, Z) is invertible for any(Y, Z) sufficiently nearthe exact solution as
well.

Assuming thatgy(Y) fz(Y, Z) is nonsingular, we can show that thep-step BDF
method for DAEs,

yn+1 =

p−1∑

j=0

αj yn−j + hβ f(yn+1, zn+1),

0 = g(yn+1),

is convergent of orderp for p ≤ 6. Recall that forp ≥ 7, the stability region for the
p-step BDF methoddoes notinclude all of the negative real axis, making it unsuitable
for stiff ODEs or DAEs.

RUNGE–KUTTA METHODS FOR DAES 175

It should be noted that these methods are implicit,and therefore require the solution
of a nonlinear system of equations. We can use Newton’s method or any number of
variants thereof [55]. The system of equations to be solved hasn+m equations and
n+m unknowns.

For thep-step BDF method, we have

yn − Y (tn) = O(hp),

zn − Z(tn) = O(hp),

providedyj − Y (tj) = O(hp+1) for j = 0, 1, 2, . . . , p − 1 ([20], [40], [44], [60]).
Note that we need one order higher accuracy in theinitial values; this is necessary as
our estimates forzj, j = 0, 1, . . . , p − 1, are essentially obtained by differentiating
the data foryj , j = 0, 1, . . . , p− 1.

Note that it is particularly important to solve the equationsg(yn+1) = 0 accurately.
Noise in the solution of these equations will be amplified by afactor of order1/h to
produce errors inzn+1. This, in turn, will result in larger errors inyn over time.

10.5 RUNGE–KUTTA METHODS FOR DAES

As for stiff equations, the Runge–Kutta methods used for DAEs need to be implicit
methods. The way that a Runge–Kutta method is used for the index 1 DAE (10.32)–
(10.33),

Y ′ = f(Y, Z), Y (t0) = Y0, (10.36)

0 = g(Y, Z), (10.37)

is

yn,i = yn + h

s∑

j=1

aij f(yn,j, zn,j), (10.38)

0 =

s∑

j=1

aij g(yn,j , zn,j), (10.39)

yn+1 = yn + h

s∑

j=1

bj f(yn,j, zn,j), (10.40)

for i = 1, 2, . . . , s. Provided the matrixA is invertible, (10.39) is equivalent to

0 = g(yn,i, zn,i), i = 1, 2, . . . , s.

As for BDF methods, these are systems of nonlinear equations, and can be solved
by Newton’s method or its variants [55]. Unlike the BDF methods, the number of
equations to be solved ares(M +N) with s(M +N) unknowns whereY is a vector
with N components andZ hasM unknowns.

176 DIFFERENTIAL ALGEBRAIC EQUATIONS

Also, the analysis of error in stiff problems in Section 9.3 shows that the stage
order of the Runge–Kutta method essentially determines theorder of the Runge–
Kutta method for DAEs. For this to work well, we usually require that the method
be stiffly accurate(such as Radau IIA methods); that is,bT must be the bottom
row of A: bi = as,i for i = 1, 2, . . . , s. This means thatyn+1 = yn,s and setting
zn+1 = zn,s so thatg(yn+1, zn+1) = 0. As with stiff equations, the stability function
R(hλ) = 1 + hλbT (I − hλA)−1

e (see (9.7)) gives crucial information about the
behavior of the method. However, for DAEs, we are considering what happens as
hλ → −∞. SinceR(hλ) is a rational function ofhλ, the important quantity is
R(∞) = R(−∞) = 1 − bTA−1e for nonsingularA.

10.5.1 Index 1 problems

Consider index 1 problems of the form

Y ′ = f(Y, Z), Y (t0) = Y0,

0 = g(Y, Z).

Let us suppose that we have an implicit functionϕ for g, meaning that whenever
0 = g(y, z), thenz = ϕ(y). If we can do this, then the problem reduces to finding
the solution of

Y ′ = f(Y, ϕ(Y)), Y (t0) = Y0.

Note that if the Jacobian matrix∇zf(y∗, z∗) is nonsingular, then we can find alocal
implicit functionϕ so thatϕ(y∗) = z∗ andϕ is smooth nearby toy∗. Then in this
case,g(yn,i, zn,i) = 0 implies thatzn,i = ϕ(yn,i), and our Runge–Kutta equations
imply that

yn,i = yn + h

s∑

j=1

aij f(yn,j, zn,j)

= yn + h

s∑

j=1

aij f(yn,j, ϕ(yn,j)).

For a stiffly accurate method,yn+1 = yn,s andzn+1 = zn,s = ϕ(yn,s) = ϕ(yn+1).
This is exactly what the Runge–Kutta method would give when applied to the ordinary
differential equation

Y ′ = f(Y, ϕ(Y)), Y (t0) = Y0.

So the order of accuracy is exactly what we would expect for smooth ordinary differ-
ential equations.

The case where the method isnot stiffly accurate is a little more complex; the
argument for the accuracy ofyn ≈ Y (tn) is not changed, but the accuracy of the
computed valueszn ≈ Z(tn) is, and can depend on the value ofR(∞). Recall
that p is the quadrature order of the method, andq is the stage order. In terms of
the simplifying conditions (9.4)–(9.6), conditionsB(p) andC(q) hold. The error

RUNGE–KUTTA METHODS FOR DAES 177

zn − Z(tn) = O(hr), wherer = min(p, q + 1) if −1 ≤ R(∞) < 1 andr =
min(p−1, q) if R(∞) = 1; butzn−z(tn) diverges exponentially inn if |R(∞)| > 1.
We show this below.

Suppose our Runge–Kutta method has stage orderq and quadrature orderp, so
that for a smooth functionψ(·), we obtain

ψ(tn + cih) = ψ(tn) + h

s∑

j=1

aijψ
′(tn + cjh) + O(hq+1),

i = 1, . . . , s, (10.41)

ψ(tn+1) = ψ(tn) + h

s∑

i=1

biψ
′(tn + cjh) + O(hp+1). (10.42)

The global order of this method for DAEs can be determined from the stage and
quadrature orders depending on several cases: (1) the method is stiffly accurate, (2)
−1 ≤ R(∞) < 1, (3)R(∞) = 1, or (4) |R(∞)| > 1.

If the method is stiffly accurate, then (as we have seen) the accuracy for index 1
DAEs is the same as for smooth ordinary differential equations:Y (tn)−yn = O(hp),
providedtn − t0 is bounded.

If the method is not stiffly accurate, then the stage orderq becomes important. If
we write

Ψn = [ψ(tn + c1h), ψ(tn + c2h), . . . , ψ(tn + csh)]
T ,

Ψ′
n = [ψ′(tn + c1h), ψ

′(tn + c2h), . . . , ψ
′(tn + csh)]

T ,

then, from (10.41), we obtain

Ψn = ψ(tn)e + hAΨ′
n + O(hq+1),

so that for nonsingularA, we have

Ψ′
n = h−1A−1 (Ψn − eψ(tn)) + O(hq).

Substituting this into (10.42) gives

ψ(tn+1) =
(
1 − bTA−1e

)
ψ(tn) + bTA−1Ψn + O(hq+1) + O(hp+1).

But 1 − bTA−1e = R(∞). Thus

ψ(tn+1) = R(∞)ψ(tn) + bTA−1Ψn + O(hq+1) + O(hp+1).

In particular, we can takeψ(t) = Z(t) andψ(t) = Y (t), giving

Z(tn+1) = R(∞)Z(tn) + bTA−1Zn + O(hq+1) + O(hp+1), (10.43)

Y (tn+1) = R(∞)Y (tn) + bTA−1Yn + O(hq+1) + O(hp+1),

178 DIFFERENTIAL ALGEBRAIC EQUATIONS

with

Zn = [Z(tn + c1h), . . . , Z(tn + csh)]
T ,

Yn = [Y (tn + c1h), . . . , Y (tn + csh)]
T .

Now g(yn,i, zn,i) = 0 sozn,i = ϕ(yn,i) as noted above. Let

Ŷn = [yn,1, yn,2, . . . , yn,s]
T ,

Ẑn = [zn,1, zn,2, . . . , zn,s]
T .

Then the Runge–Kutta equations can be written (as we did withψ(t) above) as

zn+1 = R(∞) zn + bTA−1Ẑn. (10.44)

The error∆zn+1 = Z(tn+1) − zn+1 is given by subtracting the above equations
(10.43) and (10.44), yielding

∆zn+1 = R(∞)∆zn + bTA−1
(
Zn − Ẑn

)
+ O(hq+1) + O(hp+1).

Note thatzn,i = ϕ(yn,i) andZ(tn + cih) = ϕ(Y (tn + cih). The stage order isq, so
from the differential equation forY and the Runge–Kutta method,

yn,i − Y (tn + cih)

= yn − Y (tn)

+ h

s∑

j=1

aij (f(yn,j, ϕ(yn,j)) − f(Y (tn + cjh), ϕ(Y (tn + cjh)))) + O(hq+1).

Sinceyn = Y (tn) + O(hp), we get

yn,i = Y (tn + cih) + O(hmin(p,q+1)).

So
zn,i − Z(tn + cih) = ϕ(yn,i) − ϕ(Y (tn + cih)) = O(hmin(p,q+1)).

Therefore
∆zn+1 = R(∞)∆zn + O(hmin(p,q+1)).

If |R(∞)| < 1, then we obtain the expected global order ofzn. If R(∞) = 1 we
the errors can accumulate giving a convergence order of one less. If|R(∞)| > 1,
thenzn will grow exponentially inn. If R(∞) = −1, then we need to do some
more analysis to show that the hidden constant in the “O(hmin(p,q+1))” is actually a
smooth function oft. Then successive steps will cause cancellation of the error, and
the global error forzn is O(hmin(p,q+1)).

To illustrate these theoretical results, consider again the numerical results shown
in Figure 10.2 for the index 1 version of the spherical pendulum problem using the
3-stage 5th-order Radau IIA method. All components of the solution converge with

RUNGE–KUTTA METHODS FOR DAES 179

roughly the same order of accuracy. In fact, the slopes of thestraightest parts of the
the graphs in Figure 10.2 are≈ −5.10,−5.04, and−5.05 for the position, velocity,
and force components of the solution, respectively. This indicates that the index 1
DAE is being solved with the full order of accuracy that the three-stage Radau IIA
method can provide.

10.5.2 Index 2 problems

Here we consider index 2 problems of the form

Y ′ = f(Y, Z),

0 = g(Y).

As in Subsection 10.4.2, we assume thatgy(Y) fz(Y, Z) is a square nonsingular
matrix on the exact solution.

Index 2 problems are considerably harder to solve numerically than corresponding
index 1 problems. In the index 1 case where the “algebraic” equationsg(Y, Z) = 0
giveZ as a function ofY (Z = ϕ(Y)), the result of solving this system of equations
could be substituted intodY/dt = f(Y, Z) = f(Y, ϕ(Y)) to form a smooth ordinary
differential equation. This is not possible in the index 2 case. Indeed, the task of
determining whether initial values(y0, z0) are consistent (i.e.gy(y0) f(y0, z0) = 0)
is a non-trivial task.

Runge–Kutta methods for index 2 problems have the form

yn,i = yn + h

s∑

j=1

aij f(yn,j, zn,j), for i = 1, 2, . . . , s,

zn,i = zn + h

s∑

j=1

aij ℓn,j, for i = 1, 2, . . . , s,

yn+1 = yn + h

s∑

j=1

bj f(yn,j , zn,j),

zn+1 = zn + h

s∑

j=1

bj ℓn,j,

0 = g(yn,i), for i = 1, 2, . . . , s.

Note that we have extra variablesℓn,i that are needed to solve the equationsg(yn,i) =
0. If (yn, zn) is sufficiently close to being consistent, there exists(yn+1, zn+1) (as well
as theyn,j , zn,j , andℓn,j) satisfying the Runge–Kutta equations, and(yn+1, zn+1)
is also close to being consistent.

This non-linear system of equations can be solved using, forexample, Newton’s
method. Given currently computed valuesy(k)

n,j, z
(k)
n,j , ℓ(k)

n,j andyn,zn from the previous

step, we compute corrected valuesy(k+1)
n,j = y

(k)
n,j + ∆yn,j , z(k+1)

n,j = z
(k)
n,j + ∆zn,j ,

180 DIFFERENTIAL ALGEBRAIC EQUATIONS

Table 10.1 Order of accuracy for index 2 DAEs of the form (10.34)–(10.35) for
methods withs stages

Method y z

Gauss


s + 1, s odd

s, s even


s − 1, s odd
s − 2, s even

Radau IIA 2s − 1 s
Lobatto IIIC 2s − 2 s − 1

DIRK a 2 1

andℓ(k+1)
n,j = ℓ

(k)
n,j + ∆ℓn,j by solving the linear system

y
(k)
n,i + ∆yn,i = yn + h

s∑

j=1

aij

[
f(y

(k)
n,j, z

(k)
n,j) + fy(y

(k)
n,j, z

(k)
n,j)∆yn,j

+fz(y
(k)
n,j , z

(k)
n,j)∆zn,j

]
, for i = 1, 2, . . . , s,

z
(k)
n,i + ∆zn,i = zn + h

s∑

j=1

aij

[
ℓ
(k)
n,j + ∆ℓn,j

]
, for i = 1, 2, . . . , s,

0 = g(y
(k)
n,i) + gy(y

(k)
n,i)∆yn,i, for i = 1, 2, . . . , s.

There are several implications of the theory of these problems for numerical meth-
ods, such as Runge–Kutta methods, for index 2 DAEs.

1. The order of accuracy for the numerical solutionszn ≈ Z(tn) andyn ≈ Y (tn)
are often different.

2. The non-linear systems are generally harder to solve for index 2 systems than
for index 1 systems. More specifically, the condition numberof the linear
system for Newton’s method increases asO(1/h) as the step sizeh becomes
small [44,§ VII.4]. By comparison, the linear systems for Newton’s method
for index 1 DAEs have bounded condition numbers ash goes to zero.

3. Additional conditions are needed to obtain convergence of the numerical meth-
ods.

Development of the theory for the orderof convergenceof these methods is beyond
the scope of this book. However, we can present results for some families of Runge–
Kutta methods, which are summarized in Table 10.1 ([42]). Inthe table, the DIRK
method is taken from Table 9.8 (a) in Chapter 9 withs = 3.

Note that the Gauss methods suffer a strong loss of accuracy,obtaining only order
s + 1 at best fory (compared to2s − 1 for ordinary differential equations), while
Radau IIA methods keep the same order fory as for solving ordinary differential
equations. The order forz is less for all methods listed, often quite substantially
less. One reason for the good performance of Radau IIA methods is that it is stiffly

INDEX THREE PROBLEMS FROM MECHANICS 181

accurate, and has a high stage order (q) as well as having a good quadrature order (p).
The Lobatto IIIC method, which is stiffly accurate, also has agood order of accuracy.

One of the most popular methods for solving DAEs is the 5th-order, 3-stage
Radau IIA method (Table 9.7). This is the basis for some popular software for DAEs.
For more information, see p. 183. Numerical results for thismethod (with a fixed
stepsize) are shown in Figure 10.3 for the index 2 version of the spherical pendulum
problem. The slopes of the graphs are≈ −5.01,−4.98, and−2.85 for the position,
velocity, and force components, respectively. In this version, the force component
plays the role ofZ, while the position and velocity components play the role ofY .
These results seem roughly consistent with the expected fifth-order convergence of
yn to Y (t), and third-order convergence ofzn toZ(t).

Some other Runge–Kutta-type methods have been developed for index 2 DAEs,
such as that proposed by Jay [51], which uses separate methods for theY andZ
components of the solution.

10.6 INDEX THREE PROBLEMS FROM MECHANICS

Mechanics is a rich source of DAEs; the pendulum example of Figure 3.1 and (10.1)–
(10.3) is a common example. For general mechanical systems,we need a more
systematic way of deriving the equations of motion. There are two main ways of
doing this: Lagrangian mechanics and Hamiltonian mechanics. Although closely
related, they each have their own specific character. We willuse the Lagrangian
approach here.

For more information about this area, which is often calledanalytical mechanics,
see Fowles [38] for a traditional introduction, and Arnold [4] or Marsden and Ratiu
[61] for more mathematical treatments. A comprehensive approach can be found
in Fasano and Marmi [37], which includes extensions to statistical mechanics and
continuum mechanics as well as more traditional topics.

In the Lagrangian approach to mechanics, the main variablesare thegeneralized
coordinatesq = [q1, q2, . . . , qn]T and thegeneralized velocitiesv = dq/dt. Note
that in this sectionq is not the stage order. The generalized coordinates can be any
convenient system of coordinates for representing the configuration of the system.
For example, for a pendulum in the plane, we could use either the angle to the vertical
θ, or x andy coordinates for the center of mass. In the latter case we willneed to
include one (or more) constraints on the coordinates:g(q) = 0. Note that since the
generalized coordinates could include angles, the generalized velocity vector could
include angular velocities as well as ordinary velocities.

The function that defines the motion in Lagrangian mechanicsis the Lagrangian
functionL(q, v), a scalar function of the generalized coordinates and generalized
velocities. For a system with no constraints on the coordinates, we have

L(q, v) = T (q, v) − V (q),

182 DIFFERENTIAL ALGEBRAIC EQUATIONS

whereT (q, v) is the kinetic energy of the system andV (q) is the potential energy of
the system. Usually the kinetic energy is quadratic in the velocity:

T (q, v) = 1
2v

TM(q) v.

HereM(q) is the mass matrix, although sincev may contain quantities such as
angular as well as ordinary velocities, the entries inM(q) may include quantities
such as moments of inertia as well as ordinary masses. If we have constraints on the
coordinates1, g(q) = 0, then these constraints can be incorporated into the Lagrangian
function using Lagrange multipliers:

L(q, v, λ) = T (q, v) − V (q) − λT g(q).

The Lagrange multipliers can be regarded as generalized forces that ensure that the
constraints are satisfied. The equations of motion are obtained by means of the
Euler–Lagrange equations

0 =
d

dt
Lv(q, v) − Lq(q, v),

whereLv(q, v) is the gradient vector ofL(q, v) with respect tov, andLq(q, v) is the
gradient vector ofL(q, v) with respect toq. If we have constraintsg(q) = 0, the
Euler–Lagrange equations become

0 =
d

dt
Lv(q, v, λ) − Lq(q, v, λ), (10.45)

0 = g(q) = Lλ(q, v, λ). (10.46)

For the pendulum example, let us useq = [x, y]T as the position of the mass, and
v = dq/dt = [dx/dt, dy/dt]T is its velocity. The constraint is

g(q) =
1

2

(
x2 + y2 − ℓ2

)
= 0.

The kinetic energy is just the energy of a mass moving with velocity v:

T (q, v) =
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2
]
.

The potential energy is just the potential energy due to gravity: V (q) = mgy. The
Lagrangian is then

L(q, dq/dt, λ) =
m

2

((
dx

dt

)2

+

(
dy

dt

)2
)

−mgy − λ
1

2

(
x2 + y2 − ℓ2

)
.

1Here we have constraints on the generalized coordinatesalone: g(q) = 0. These are calledholonomic
constraints.

INDEX THREE PROBLEMS FROM MECHANICS 183

The Euler–Lagrange equations are then

0 =
d

dt


m



dx

dt
dy

dt





+

[
0
mg

]
+ λ

[
x
y

]
,

0 =
1

2

(
x2 + y2 − ℓ2

)
.

This is essentially the pendulum DAE (10.1)–(10.3) rearranged.
Not only does this DAE have index 3, but all problems of this type have index 3 (or

higher). In general, for mechanical systems, the Euler–Lagrange equations become

M(q)
dv

dt
= k(q, v) −∇V (q) −∇g(q)Tλ, (10.47)

dq

dt
= v, (10.48)

0 = g(q), (10.49)

where

ki(q, v) =
1

2

n∑

j,k=1

(
∂mjk

∂qi
− ∂mij

∂qk
− ∂mik

∂qj

)
vj vk, i = 1, 2, . . . , n.

Differentiatingg(q) = 0 gives∇g(q) dq/dt = ∇g(q) v = 0; differentiating again
gives

0 = ∇q (∇g(q) v) dq
dt

+ ∇g(q) dv
dt

= ∇q (∇g(q) v) v + ∇g(q)M(q)−1
[
k(q, v) −∇V (q) −∇g(q)Tλ

]
,

which can be solved forλ in terms ofq andv provided∇g(q)M(q)−1 ∇g(q)T is non-
singular. So, provided∇g(q)M(q)−1 ∇g(q)T is nonsingular, the system (10.47)–
(10.49) is an index 3 DAE. SinceM(q) can usually be taken to be symmetric positive
definite, all that is really needed is for∇g(q) to have full row rank (i.e., the rows of
∇g(q) should be linearly independent).

Note that we need initial conditions to be consistent; that is,g(q(t0)) = 0 and

(d/dt)g(q(t))|t=t0 = ∇g(q(t0)) v(t0) = 0.

Indeed, at every timet, we haveg(q(t)) = 0 and ∇g(q(t)) v(t) = 0 for the
true solution. We can obtain the consistency condition forλ by differentiating
∇g(q(t)) v(t) = 0 once again.

10.6.1 Runge–Kutta methods for mechanical index 3 systems

Apart from the index reduction techniques introduced at thestart of this chapter, we
can apply Runge–Kutta methods directly to the system (10.47)–(10.49). The Runge–
Kutta equations are even harder to solve than those for index2 problems (the condition

184 DIFFERENTIAL ALGEBRAIC EQUATIONS

Table 10.2 Proven order of accuracy for index 3 problems of types ≤ 3 for
(10.47)–(10.49)

Method q v λ

Radau IIA 2s − 1 s s − 1
Lobatto IIIC s + 1 s − 1 s − 2

number of the Jacobian matrix in Newton’s method grows likeO(h−2)), but this can
be done provided the computed generalized coordinatesqn and generalized velocities
vn are sufficiently close to being consistent (g(qn) ≈ 0 and∇g(qn) vn ≈ 0), and the
newly computed valuesqn+1 andvn+1 are also close to being consistent.

The order of accuracy is still not known in general for the Gauss, Radau IIA, and
Lobatto IIIC families of Runge–Kutta methods. However, forno more than three
stages, this is known for the Radau IIA and Lobatto IIIC methods, and is given in
Table 10.2 ([42], [49]).

Again, the order of accuracy of the different components (coordinates, velocities,
and constraint forces) are different — and again the winner seems to be the Radau IIA
methods (at least up to three stages). Indeed, the three-stage Radau IIA method has
been implemented as aFortran 77 code calledRadau5, which is available from

http://www.unige.ch/˜hairer/software.html

Also available from this website isRadau, anotherFortran 77 code for Radau IIA
methods that can switch between the methods of orders 5, 9, and 13 for DAEs and
stiff ODEs.

Numerical results for a fixed stepsize, three-stage Radau IIA method are shown
in Figure 10.4 for the index 3 version of the spherical pendulum problem. With
s = 3 we expect fifth-order convergence for positions, third-order convergence for
the velocities, and second-order convergence for the forces. Indeed, the slopes of the
graphs in Figure 10.4 are≈ −4.66, −3.04, and−2.05 for the positions, velocities,
and forces, respectively. This slight drop in the slope from5 to 4.66 for the posi-
tion errors is due mainly to the accuracy with which the Runge–Kutta equations are
solved, which limits the overall accuracy of the numerical solutions. Otherwise, the
theoretical expectations are confirmed by these numerical results.

Other approaches to Runge–Kutta methods for index 3 DAEs from mechanics can
be found in [50] for constrained Hamiltonian systems using apair of Runge–Kutta
methods. Essentially one Runge–Kutta method is used for themomentum variables
and another for the generalized coordinate variables. The optimal choice of methods
for this approach is a combination of Lobatto IIIA and Lobatto IIIB methods.

10.7 HIGHER INDEX DAES

The theory and practice of DAEs become harder as the index increases. Beyond index
3, the complexity of establishing the order of convergenceof a method (orif a method

HIGHER INDEX DAES 185

converges) becomes almost prohibitive for standard approaches such as Runge–Kutta
methods. Approaches to these problems can be developed by means of symbolic as
well as numerical computation. A survey of approaches to handling high-indexDAEs
can be found in [26]. Software techniques such asAutomatic Differentiation[29],
[69] can be used instead of symbolic computation (as carriedout byMathematicaTM,
MapleTM, MacsymaTM, etc.). These approaches take us well outside the scope of this
book, but may be useful in handling problems of this kind.

PROBLEMS

1. Obtain theRadau or Radau5 code, and use it to solve the pendulum DAE
(10.4)–(10.8) as a DAE.

2. Repeat Problem 1 with the reduced index DAE (10.4)–(10.7)with the constraint
0 = xu+ yv. This is an index 2 DAE. In particular, check the drift, or howfar
x2 + y2 − l2 is from zero.

3. Repeat Problem 1 with the ODE (10.13)–(10.16). As in Problem 3, check the
drift in bothx2 + y2 − l2 and inxu+ yv from zero.

4. Repeat Problem 3 using the MATLABR© routineode23t instead ofRadau or
Radau5.

5. Consider a system of chemical reactions

X + Y → Z,

Y + U ⇋ V.

Assuming that these aresimplereactions, the reaction rate of the first is pro-
portional to the products of the concentrations of X and Y; that is, for the first
reaction, we obtain

d[X]

dt
= −k1[X] [Y],

d[Z]

dt
= +k1[X] [Y].

However, the second reaction is reversible:

d[V]

dt
= +k2[Y] [U] − k3[V],

d[U]

dt
= −k2[Y] [U] + k3[V].

Chemical species Y participates in both reactions:

d[Y]

dt
= +k3[V] − k1[X] [Y].

186 DIFFERENTIAL ALGEBRAIC EQUATIONS

(x1 y1),

θ2

θ1

m2

(x2 y2),

m1

Figure 10.5 Compound pendulum

Suppose thatk2, k3 ≫ k1, enabling us to treat the second reaction as being
very nearly in equilibrium. (Mathematically, consider thelimit ask2, k3 → ∞
butk2/k3 → c.) Write down the resulting system of differential and algebraic
equations (perhaps involving the initial concentrations[Y]0, [U]0, [V]0, etc.).
Show that they form an index 1 DAE.

6. Derive the equations of motion of a compound pendulum as shown in Fig-
ure 10.5 as an index 3 DAE in terms of the coordinates of the centers of masses
(x1, y1) and(x2, y2). This will entail the use of two constraints:x2

1 + y2
1 = l21

and(x2 − x1)
2

+ (y2 − y1)
2

= l22. Compare this with the same derivation
instead using just two generalized coordinates,θ1 andθ2. (Usingθ1 andθ2
will give ugly expressions for the kinetic energy, but with fewer variables than
usingx1, y1, x2, andy2.)

CHAPTER 11

TWO-POINT BOUNDARY VALUE
PROBLEMS

In Chapter 3 we saw that the initial value problem for the second-order equation

Y ′′ = f(t, Y, Y ′) (11.1)

can be reformulated as an initial value problem for a system of first-order equations,
and that numerical methods for first-order initial value problems can then be applied
to this system. In this chapter, we consider the numerical solution of another type of
problem for the second-orderequation (11.1), one where conditions on the solutionY
are given at two distinctt values. Such a problem is called atwo-point boundary value
problem (or sometimes for brevity, a BVP). For simplicity, we begin our discussion
with the following BVP for a second-orderlinear equation:

Y ′′(t) = p(t)Y ′(t) + q(t)Y (t) + r(t), a < t < b, (11.2)

Y (a) = g1, Y (b) = g2. (11.3)

The conditionsY (a) = g1 and Y (b) = g2 are called theboundary conditions.
Boundary conditions involving the derivative of the unknown function are also

common in applications, and we discuss them later in the chapter.
We assume the given functionsp, q andr to be continuous on[a, b]. A standard

theoretical result states that ifq(t) > 0 for t ∈ [a, b], then the boundary value problem

187

188 TWO-POINT BOUNDARY VALUE PROBLEMS

(11.2)–(11.3) has a unique solution; see Keller [53, p. 11].We will assume that the
problem has a unique smooth solutionY .

We begin our discussion of the numerical solution of BVPs by introducing a
finite-difference approximation to (11.2). Later we look atmore general two-point
BVPs for the more general nonlinearsecond-orderequation (11.1), generalizingfinite-
difference approximations as well. We also introduce othernumerical methods for
these nonlinear BVPs.

11.1 A FINITE-DIFFERENCE METHOD

The main feature of the finite-difference method is to obtaindiscrete equations by
replacing derivatives with appropriate finite divided differences. We derive a finite-
difference system for the BVP (11.2)–(11.3) in three steps.

In the first step, we discretize the domain of the problem: theinterval [a, b]. Let
N be a positive integer, and divide the interval[a, b] intoN equal parts:

[a, b] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tN−1, tN],

wherea = t0 < t1 < · · · < tN−1 < tN = b are the grid (or node) points. Denote
h = (b − a)/N , called thestepsize. Then the node points are given by

ti = a+ i h, 0 ≤ i ≤ N. (11.4)

A nonuniform partition of the interval is also possible, andin fact this is preferable if
the solution of the boundary value problem (11.2)–(11.3) changes much more rapidly
in some parts of[a, b] as compared to other parts of the interval. We restrict our
presentation to the case of uniform partitions for the simplicity of exposition. We
use the notationpi = p(ti), qi = q(ti), ri = r(ti), 0 ≤ i ≤ N , and denoteyi,
0 ≤ i ≤ N , as numerical approximations of the true solution valuesYi = Y (ti),
0 ≤ i ≤ N .

In the second step, we discretize the differential equationat the interior node points
t1, . . . , tN−1. For this purpose, let us note the following difference approximation
formulas

Y ′(ti) =
Yi+1 − Yi−1

2 h
− h2

6
Y (3)(ηi), (11.5)

Y ′′(ti) =
Yi+1 − 2 Yi + Yi−1

h2
− h2

12
Y (4)(ξi) (11.6)

for someti−1 ≤ ξi, ηi ≤ ti+1, i = 1, . . . , N − 1. The errors can be obtained by
using Taylor polynomial approximations toY (t). We leave this as an exercise for the
reader; or see [11,§5.7], [12,§5.4]. Using these relations, the differential equation at
t = ti becomes

Yi+1 − 2 Yi + Yi−1

h2
= pi

Yi+1 − Yi−1

2 h
+ qiYi + ri + O(h2). (11.7)

A FINITE-DIFFERENCE METHOD 189

Dropping the remainder termO(h2) and replacingYi by yi, we obtain the difference
equations

yi+1 − 2 yi + yi−1

h2
= pi

yi+1 − yi−1

2 h
+ qiyi + ri, 1 ≤ i ≤ N − 1, (11.8)

which can be rewritten as

−
(
1 + 1

2hpi

)
yi−1 + (2 + h2qi)yi +

(
1
2hpi − 1

)
yi+1

= −h2ri, 1 ≤ i ≤ N − 1.
(11.9)

The third step is devoted to the treatment of the boundary conditions. The differ-
ence equations (11.9) consist ofN−1 equations forN+1 unknownsy0, y1, . . . , yN .
We need two more equations, and they come from discretization of the boundary
conditions. For the model problem (11.2)–(11.3), the discretization of the boundary
conditions is straightforward:

y0 = g1, yN = g2. (11.10)

Equations (11.9) and (11.10) together form a linear system.Since the values of
y0 andyN are explicitly given in (11.10), we can eliminatey0 andyN from the linear
system. Withy0 = g1, we can rewrite the equation in (11.9) withi = 1 as

(2 + h2q1)y1 +
(

1
2hp1 − 1

)
y2 = −h2r1 +

(
1 + 1

2hp1

)
g1. (11.11)

Similarly, from the equation in (11.9) withi = N − 1, we obtain

−
(
1 + 1

2hpN−1

)
yN−2 + (2 + h2qN−1) yN−1

= −h2rN−1 +
(
1 − 1

2hpN−1

)
g2.

(11.12)

So finally, the finite-difference system for the unknown numerical solution vector
y = [y1, · · · , yN−1]

T is
Ay = b, (11.13)

where

A =




2 + h2q1
1
2hp1 − 1

−
(
1 + 1

2hp2

)
2 + h2q2

1
2hp2 − 1

. . .
. . .

2 + h2qN−2
1
2hpN−2 − 1

−
(
1 + 1

2hpN−1

)
2 + h2qN−1




is the coefficient matrix and

bi =






−h2r1 +
(
1 + 1

2hp1

)
g1, i = 1

−h2ri, i = 2, . . . , N − 2

−h2rN−1 +
(
1 − 1

2hpN−1

)
g2, i = N − 1.

(11.14)

The linear system (11.13) istridiagonal, and the solution of tridiagonal linear
systems is a very well-studied problem. Examples of programs for the efficient
solution of tridiagonal linear systems can be found inLAPACK [3].

190 TWO-POINT BOUNDARY VALUE PROBLEMS

Table 11.1 Numerical errorsY (x) − yh(x) for solving (11.19)

t h = 1/20 h = 1/40 Ratio h = 1/80 Ratio h = 1/160 Ratio

0.1 5.10e − 5 1.27e − 5 4.00 3.18e − 6 4.00 7.96e − 7 4.00
0.2 7.84e − 5 1.96e − 5 4.00 4.90e − 6 4.00 1.22e − 6 4.00
0.3 8.64e − 5 2.16e − 5 4.00 5.40e − 6 4.00 1.35e − 6 4.00
0.4 8.08e − 5 2.02e − 5 4.00 5.05e − 6 4.00 1.26e − 6 4.00
0.5 6.73e − 5 1.68e − 5 4.00 4.21e − 6 4.00 1.05e − 6 4.00
0.6 5.08e − 5 1.27e − 5 4.00 3.17e − 6 4.00 7.94e − 7 4.00
0.7 3.44e − 5 8.60e − 6 4.00 2.15e − 6 4.00 5.38e − 7 4.00
0.8 2.00e − 5 5.01e − 6 4.00 1.25e − 6 4.00 3.13e − 7 4.00
0.9 8.50e − 6 2.13e − 6 4.00 5.32e − 7 4.00 1.33e − 7 4.00

11.1.1 Convergence

It can be shown that if the true solutionY (t) is sufficiently smooth, say, with con-
tinuous derivatives up to order 4, then the difference scheme (11.13)–(11.14) is a
second-order method,

max
0≤i≤N

|Y (ti) − yi| = O(h2). (11.15)

For a detailed discussion, see Ascher et al. [9, p. 189]. Moreover, if Y (t) has six
continuous derivatives, the following asymptotic error expansion holds:

Y (ti) − yh(ti) = h2D(ti) + O(h4), 0 ≤ i ≤ N (11.16)

for some functionD(t) independent ofh. The Richardson extrapolation formula for
this case is

ỹh(ti) = 1
3 [4 yh(ti) − y2h(ti)] , (11.17)

and we have
Y (ti) − ỹh(ti) = O(h4). (11.18)

11.1.2 A numerical example

We illustrate the finite-difference approximation (11.12), the error result (11.15), and
the Richardson extrapolation results (11.16)–(11.18). The MATLAB R© codes that we
use for our calculations are given following the example.

Example 11.1 Consider the boundary value problem





Y ′′ = − 2 t

1 + t2
Y ′ + Y +

2

1 + t2
− log(1 + t2), 0 < t < 1,

Y (0) = 0, Y (1) = log(2).

(11.19)

The true solution isY (t) = log(1+ t2). In Table 11.1, we report the finite-difference
solution errorsY − yh at selected node points for several values ofh. In Table 11.2,

A FINITE-DIFFERENCE METHOD 191

Table 11.2 Extrapolation errorsY (ti) − eyh(ti) for solving (11.19)

t h = 1/40 h = 1/80 Ratio h = 1/160 Ratio

0.1 −9.23e − 09 −5.76e − 10 16.01 −3.60e − 11 16.00
0.2 −1.04e − 08 −6.53e − 10 15.99 −4.08e − 11 15.99
0.3 −6.60e − 09 −4.14e − 10 15.96 −2.59e − 11 15.98
0.4 −1.18e − 09 −7.57e − 11 15.64 −4.78e − 12 15.85
0.5 3.31e − 09 2.05e − 10 16.14 1.28e − 11 16.06
0.6 5.76e − 09 3.59e − 10 16.07 2.24e − 11 16.04
0.7 6.12e − 09 3.81e − 10 16.04 2.38e − 11 16.03
0.8 4.88e − 09 3.04e − 10 16.03 1.90e − 11 16.03
0.9 2.67e − 09 1.67e − 10 16.02 1.04e − 11 16.03

we report the errors of the extrapolated solutionsY − 1
3 (4 yh − y2 h) at the same

node points and the associated ratios of the errors for different stepsizes. The column
marked “Ratio” next to the column of the solution errors for astepsizeh consists of
the ratios of the solution errors for the stepsize2h with those for the stepsizeh. We
clearly observe an error reduction of a factor of approximately 4 when the stepsize is
halved, indicating a second-order convergence of the method as asserted in (11.15).

There is a dramatic improvement in the solution accuracy through extrapolation.
The extrapolated solutioñyh with h = 1/40 is much more accurate than the solution
yh with h = 1/160. Note that the cost of obtaining̃yh with h = 1/40 is substantially
smaller than that foryh with h = 1/160. Also observe that for the extrapolated solu-
tion ỹh, the error decreases by a factor of approximately 16 whenh is halved. Indeed,
it can be shown that if the true solutionY (t) is 8 times continuously differentiable,
then we can improve the asymptotic error expansion (11.16) to

Y (ti) − yh(ti) = h2D1(ti) + h4D2(ti) + O(h6). (11.20)

Then (11.17) is replaced by

Y (ti) − ỹh(ti) = −4 h4D2(ti) + O(h6). (11.21)

Therefore, we can also perform an extrapolation procedure on ỹh to get an even more
accurate numerical solution through the following formula:

Y (ti) − 1
15 [16 ỹh(ti) − ỹ2h(ti)] = O(h6). (11.22)

As an example, atti = 0.5, with h = 1/80, the doubly extrapolated solution has an
error approximately equal to−1.88×10−12.

MATLAB program. The following MATLAB codeODEBVP implements the differ-
ence method (11.13) for solving the problem (11.2)–(11.3).

function z = ODEBVP(p,q,r,a,b,ga,gb,N)

%

192 TWO-POINT BOUNDARY VALUE PROBLEMS

% function z = ODEBVP(p,q,r,a,b,ga,gb,N)

%

% A program to solve the two point boundary

% value problem

% y"=p(t)y’+q(t)y+r(t), a<t<b
% y(a)=g1, y(b)=g2

% Input

% p, q, r: coefficient functions

% a, b: the end-points of the interval

% ga, gb: the prescribed function values

% at the end-points

% N: number of sub-intervals

% Output

% z = [tt yy]: tt is an (N+1) column vector

% of the node points

% yy is an (N+1) column vector of

% the solution values

% A sample call would be

% z=ODEBVP(’p’,’q’,’r’,a,b,ga,gb,100)

% The user must provide m-files to define the

% functions p, q, and r.

%

% The user must also supply a MATLAB program, called

% tridiag.m, for solving tridiagonal linear systems.

%

% Initialization

N1 = N+1;

h = (b-a)/N;

h2 = h*h;

tt = linspace(a,b,N1)’;

yy = zeros(N1,1);

yy(1) = ga;

yy(N1) = gb;

% Define the sub-diagonal avec, main diagonal bvec,

% superdiagonal cvec

pp(2:N) = feval(p,tt(2:N));

avec(2:N-1) = -1-(h/2)*pp(3:N);

bvec(1:N-1) = 2+h2*feval(q,tt(2:N));

cvec(1:N-2) = -1+(h/2)*pp(2:N-1);

% Define the right hand side vector fvec

fvec(1:N-1) = -h2*feval(r,tt(2:N));

fvec(1) = fvec(1)+(1+h*pp(2)/2)*ga;

fvec(N-1) = fvec(N-1)+(1-h*pp(N)/2)*gb;

% Solve the tridiagonal system

yy(2:N) = tridiag(avec,bvec,cvec,fvec,N-1,0);

A FINITE-DIFFERENCE METHOD 193

z = [tt’; yy’]’;

The following MATLAB codetridiag solves tridiagonal linear systems.

function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% Solve a tridiagonal linear system M*x=f

%

% INPUT:

% The order of the linear system is given as n.

% The subdiagonal, diagonal, and superdiagonal of M are given

% by the arrays a,b,c, respectively. More precisely,

% M(i,i-1) = a(i), i=2,...,n

% M(i,i) = b(i), i=1,...,n

% M(i,i+1) = c(i), i=1,...,n-1

% option=0 means that the original matrix M is given as

% specified above.

% option=1 means that the LU factorization of M is already

% known and is stored in a,b,c. This will have been

% accomplished by a previous call to this routine. In

% that case, the vectors alpha and beta should have

% been substituted for a and b in the calling sequence.

% All input values are unchanged on exit from the routine.

%

% OUTPUT:

% Upon exit, the LU factorization of M is already known and

% is stored in alpha,beta,c. The solution x is given as well.

% message=0 means the program was completed satisfactorily.

% message=1 means that a zero pivot element was encountered

% and the solution process was abandoned. This case

% happens only when option=0.

if option == 0

alpha = a; beta = b;

alpha(1) = 0;

% Compute LU factorization of matrix M.

for j=2:n

if beta(j-1) == 0

message = 1; return

end

alpha(j) = alpha(j)/beta(j-1);

beta(j) = beta(j) - alpha(j)*c(j-1);

end

194 TWO-POINT BOUNDARY VALUE PROBLEMS

if beta(n) == 0

message = 1; return

end

end

% Compute solution x to M*x = f using LU factorization of M.

% Do forward substitution to solve lower triangular system.

if option == 1

alpha = a; beta = b;

end

x = f; message = 0;

for j=2:n

x(j) = x(j) - alpha(j)*x(j-1);

end

% Do backward substitution to solve upper triangular system.

x(n) = x(n)/beta(n);

for j=n-1:-1:1

x(j) = (x(j) - c(j)*x(j+1))/beta(j);

end

end % tridiag

11.1.3 Boundary conditions involving the derivative

The treatment of boundary conditions involving the derivative of the unknownY (t)
is somewhat involved. Assume that the boundary condition att = b is

Y ′(b) + k Y (b) = g2. (11.23)

One obvious discretization is to approximateY ′(b) by (YN − YN−1)/h. However,

Y ′(b) − YN − YN−1

h
= O(h), (11.24)

and the accuracy of this approximation is one order lower than the remainder term
O(h2) in (11.7). As a result, the corresponding difference solution with the following
discrete boundary condition

yN − yN−1

h
+ k yN = g2 (11.25)

will have an accuracy ofO(h) only. To retain the second-order convergence of the
difference solution, we need to approximate the boundary condition (11.23) more
accurately. One such treatment is based on the formula

Y ′(b) =
3 YN − 4 YN−1 + YN−2

2 h
+ O(h2). (11.26)

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 195

Then the boundary condition (11.23) is approximated by

3 yN − 4 yN−1 + yN−2

2 h
+ k yN = g2. (11.27)

It can be shown that the resulting difference scheme is againsecond-order accurate.
A similar treatment can be given for more general boundaryconditions that involve

the derivativesY ′(a) andY ′(b). For a comprehensive introduction to this and to the
general subject of the numerical solution of two-point boundary value problems, see
Keller [53], Ascher et al [9], or Ascher and Petzold [10, Chap. 6].

11.2 NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

Consider the two-point boundary value problem

Y ′′ = f(t, Y, Y ′), a < t < b,

A

[
Y (a)
Y ′(a)

]
+B

[
Y (b)
Y ′(b)

]
=

[
γ1

γ2

]
.

(11.28)

The termsA andB denote given square matrices of order2 × 2, andγ1 andγ2 are
given constants. The theory for BVPs such as this one is more complex than that for
the initial value problem.

The theory for the nonlinear problem (11.28) is more complicated than that for the
linear problem (11.2). We give an introduction to that theory for the following more
limited problem:

Y ′′ = f(t, Y, Y ′), a < t < b, (11.29)

a0y(a) − a1y
′(a) = g1, b0y(b) + b1y

′(b) = g2 (11.30)

with {a0, a1, b0, b1, g1, g2} as given constants. The functionf is assumed to satisfy
the following Lipschitz condition,

|f(t, u1, v) − f(t, u2, v)| ≤ K |u1 − u2| ,
|f(t, u, v1) − f(t, u, v2)| ≤ K |v1 − v2|

(11.31)

for all points(t, ui, v), (t, u, vi), i = 1, 2, in the region

R = {(t, u, v) | a ≤ t ≤ b, −∞ < u, v <∞} .
This is far stronger than needed, but it simplifies the statement of the following
theorem; and although we do not give it here, it also simplifies the error analysis of
numerical methods for (11.29)–(11.30).

Theorem 11.2 For the problem (11.29)–(11.30), assumef(x, u, v) to be continuous
on the regionR and that it satisfies the Lipschitz condition (11.31). In addition,
assume that onR, f satisfies

∂f(x, u, v)

∂u
> 0,

∣∣∣∣
∂f(x, u, v)

∂v

∣∣∣∣ ≤M (11.32)

196 TWO-POINT BOUNDARY VALUE PROBLEMS

for some constantM > 0. For the boundary conditions of (11.30), assume

a0a1 ≥ 0, b0b1 ≥ 0, (11.33)

|a0| + |a1| 6= 0, |b0| + |b1| 6= 0, |a0| + |b0| 6= 0.

Then the BVP (11.29)–(11.30) has a unique solution.

For a proof, see Keller [53, p. 9].
Although this theorem gives conditions for the BVP (11.29)–(11.30) to be uniquely

solvable, in fact nonlinear BVPs may be nonuniquely solvable with only a finite
number of solutions. This is in contrast to the situation forlinear problems such
as (11.2)–(11.3) in which nonuniqueness always implies an infinity of solutions.
An example of such nonunique solvability for a nonlinear BVPis the second-order
problem

d

dt

[
I(t)

dY

dt

]
+ λ sin(Y) = 0, 0 < t < 1,

Y ′(0) = Y ′(1) = 0, |Y (t)| < π,

(11.34)

which arises in studying the buckling of a vertical column when a vertical force
is applied. The unknownY (t) is related to the displacement of the column in the
radial direction from its centerline. In the equationI(t) is a given function related
to physical properties of the column; and the parameterλ is proportional to the load
on the column. Whenλ exceeds a certain size, there is a solution to the problem
(11.34) other than the zero solution. Asλ continues to increase, the BVP (11.34) has
an increasing number of nonzero solutions, only one of whichis the correct physical
solution. For a detailed discussion of this problem, see Keller and Antman [54, p. 43].

As with the earlier material on initial value problems in Chapter 3, all boundary
value problems for higher-order equations can be reformulated as problems for sys-
tems of first-order equations. The general form of a two-point BVP for a system of
first-order equations is

Y′ = f(t,Y), a < t < b,

AY(a) +BY(b) = g.
(11.35)

This represents a system ofm first-order equations. The quantitiesY(t), f(t,Y),
andg are vectors withm components, andA andB are matrices of orderm ×m.
There is a theory for such BVPs, analogous to that for the two-point problem (11.28),
but we omit it here because of space limitations.

In the remainder of this section, we describe briefly the principal numerical meth-
ods for solving the two-point BVP (11.28). These methods generalize to first-order
systems such as (11.35),but again, because of space limitations,we omit those results.
Much of our presentation follows Keller [53], and a theory for first-order systems is
given there. Unlike the situation with initial value problems, it is often advantageous
to directly treat higher-order BVPs rather than to numerically solve their reformula-
tion as a first-order system. The numerical methods for the two-point boundary value

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 197

problem (11.28) are also less complicated to present, and therefore we have opted to
discuss the second-order problem (11.28) rather than the system (11.35).

11.2.1 Finite difference methods

We consider the two-point BVP:

Y ′′ = f(t, Y, Y ′), a < t < b,

Y (a) = g1, Y (b) = g2.
(11.36)

with the true solution denoted byY (t). The boundary conditions are of the same
form as used with our earlier finite-difference approximation for the linear problem
(11.2)–(11.3). As before, in (11.4), introduce an equally spaced subdivision

a = t0 < t1 < · · · < tN = b

At each interior node pointti, 0 < i < N , we approximateY ′′(ti) andY ′(ti)
as in (11.5)–(11.6). Dropping the final error terms in (11.5)–(11.6) and using these
approximations in the differential equation, we are led to the approximating nonlinear
system:

yi+1 − 2yi + yi−1

h2
= f

(
ti, yi,

yi+1 − yi−1

2h

)
, i = 1, . . . , N − 1. (11.37)

This is a system ofN − 1 nonlinear equations in theN − 1 unknownsy1, . . . , yN−1;
compare with the system (11.8). The valuesy0 = g1 andyN = g2 are known from
the boundary conditions.

The analysis of the error in{yi} as compared to{Y (ti)} is too complicated to
be given here, because it requires methods for analyzing thesolvability of systems
of nonlinear equations. In essence, ifY (t) is 4 times differentiable, if the problem
(11.36) is uniquely solvable for some region about the graphon [a, b] of Y (t), and
if f(t, u, v) is sufficiently differentiable, then there is a solution to (11.37), and it
satisfies

max
0≤i≤N

|Y (ti) − yi| = O(h2). (11.38)

For an analysis, see Keller [52, Sec. 3.2] or [53, Sec. 3.2]. Moreover, with additional
assumptions onf and the smoothness ofY , it can be shown that

Y (ti) − yi = D(ti)h
2 + O(h4) (11.39)

with D(t) independent ofh. This can be used to justify Richardson extrapolation to
obtain results that converge more rapidly, just as earlier in (11.16)–(11.18). (There
are other methods for improving the convergence, based on correcting for the error
in the central difference approximations of (11.5)–(11.6); e.g., see [27], [77].)

The system (11.37) can be solved in a variety of ways, some of which are simple
modifications of Newton’s method for solving systems of nonlinear equations. We
describe here the application of the standard Newton method.

198 TWO-POINT BOUNDARY VALUE PROBLEMS

In matrix form, we have

1

h2




−2 1 0 · · · 0

1 −2 1
...

...
. . .

1 −2 1
0 · · · 0 1 −2







y1
y2
...

yN−1




=




f

(
t1, y1,

1

2h
(y2 − g1)

)

f

(
t2, y2,

1

2h
(y3 − y1)

)

...

f

(
tN−1, yN−1,

1

2h
(g2 − yN−2)

)




−




g1
h2

0
...
g2
h2



,

which we denote by

1

h2
Ty = f̂(y) + g. (11.40)

The matrixT is both tridiagonal and nonsingular (see Problem 14). As wasdiscussed
earlier for the solution of (11.13) for the linear BVP (11.2)–(11.3), tridiagonal linear
systemsTz = b are easily solvable. This can be used to show that (11.40) is solvable
for all sufficiently small values ofh; moreover, the solution is unique in a region of
R

N−1 corresponding to some neighborhood of the graph of the solutionY (t) for the
original BVP (11.36). Newton’s method (see [11,§2.11]) for solving (11.40) is given
by

y(m+1) = y(m) −
[

1

h2
T − F (y(m))

]−1 [
1

h2
Ty(m) − f̂ (y(m)) − g

]
(11.41)

with F the Jacobian matrix for̂f ,

F (y) =

[
∂f̂i

∂yj

]

i,j=1,...,N−1

This matrix simplifies considerably because of the special form of f̂ (y),

[F (y)]ij =
∂

∂yj
f

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
.

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 199

This is zero unlessj = i− 1, i, or i+ 1:

[F (y)]ii = f2

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
, 1 ≤ i ≤ N − 1,

[F (y)]i,i−1 =
−1

2h
f3

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
, 2 ≤ i ≤ N − 1,

[F (y)]i,i+1 =
1

2h
f3

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
, 1 ≤ i ≤ N − 2

with f2(t, u, v) andf3(t, u, v) denoting partial derivatives off with respect tou and
v, respectively. Thus the matrix being inverted in (11.41) istridiagonal. Letting

Bm =
1

h2
T − F (y(m)), (11.42)

we can rewrite (11.41) as

y(m+1) = y(m) − δ
(m),

Bmδ
(m) =

1

h2
Ty(m) − f(y(m)) − g.

(11.43)

This linear system is easily and rapidly solvable, for example, using the MATLAB
code of Subsection 11.1.2. The number of multiplications and divisions can be shown
to equal approximately5N ,a relatively small number of operations for solving a linear
system ofN − 1 equations. Additional savings can be made by not varyingBm or
by changing it only after several iterations of (11.43). Foran extensive survey and
discussion of the solution of nonlinear systems that arise in connection with solving
BVPs, see Deuflhard [32].

Example 11.3 Consider the two-point BVP:

Y ′′ = −y +
2(Y ′)2

Y
, −1 < x < 1,

Y (−1) = Y (1) = (e+ e−1)−1 .
= 0.324027137.

(11.44)

The true solution isY (t) = (et + e−t)−1. We applied the preceding finite-difference
procedure (11.37) to the solution of this BVP. The results are given in Table 11.3 for
successive doublings ofN = 2/h. The nonlinear system in (11.37) was solved using
Newton’s method, as described in (11.43). The initial guesswas

y
(0)
h (xi) = (e+ e−1)−1, i = 0, 1, . . . , N,

based on connecting the boundary values by a straight line. The quantity

dh = max
0≤i≤N

∣∣∣y(m+1)
i − y

(m)
i

∣∣∣

200 TWO-POINT BOUNDARY VALUE PROBLEMS

Table 11.3 Finite difference method for solving (11.44)

N = 2/h Eh Ratio

4 2.63e − 2

8 5.87e − 3 4.48

16 1.43e − 3 4.11

32 3.55e − 4 4.03

64 8.86e − 5 4.01

was computed for each iterate, and when the condition

dh ≤ 10−10

was satisfied, the iteration was terminated. In all cases, the number of iterates com-
puted was5 or 6. For the error, let

Eh = max
0≤i≤N

|Y (xi) − yh(xi)|

with yh the solution of (11.37) obtained with Newton’s method. According to (11.38)
and (11.39), we should expect the valuesEh to decrease by a factor of approximately
4 whenh is halved, and that is what we observe in the table.

Higher-order methods can be obtained in several ways.

1. Using higher-orderapproximations to the derivatives, improving (11.5)–(11.6).

2. Using Richardson extrapolation based on (11.39), as was done in Subsection
11.1.1 for the linear BVP (11.2)–(11.3). Richardson extrapolation can be used
repeatedly to obtain methods of increasingly higher-order. This was discussed
in Subsection 11.1.2, yielding the formulas (11.20)–(11.22) for extrapolating
twice.

3. The truncation errors in (11.5)–(11.6) can be approximated with higher-order
differences using the calculated values ofyh. Using these values as corrections
in (11.37), we can obtain a new, more accurate approximationto the differential
equation in (11.36), leading to a more accurate solution. This is sometimes
called themethod of deferred corrections; for more recent work, see [27], [77].

All of these techniques have been used, and some have been implemented as quite
sophisticated computer codes.

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 201

11.2.2 Shooting methods

Another popular approach to solving a two-point BVP is to reduce it to a problem
in which a program for solving initial value problems can be used. We now develop
such a method for the BVP (11.29)–(11.30).

Consider the initial value problem

Y ′′ = f(t, Y, Y ′), a < t < b,

Y (a) = a1s− c1g1 Y ′(a) = a0s− c0g1,
(11.45)

depending on the parameters, wherec0 andc1 are arbitrary (user chosen) constants
satisfying

a1c0 − a0c1 = 1.

Denote the solution of (11.45) byY (t; s). Then it is a straightforward calculation
using the initial condition in (11.45) to show that

a0Y (a; s) − a1Y
′(a; s) = g1

for all s for which Y exists. This shows thatY (t; s) satisfies the first boundary
condition in (11.30).

SinceY is a solution of (11.29), all that is needed for it to be a solution of the
BVP (11.29)–(11.30) is to have it satisfy the remaining boundary condition atb. This
means thatY (t; s) must satisfy

ϕ(s) ≡ b0Y (b; s) + b1Y
′(b; s) − g2 = 0. (11.46)

This is a nonlinear equation fors. If s∗ is a root ofϕ(s), thenY (t; s∗) will satisfy the
BVP (11.29)–(11.30). It can be shown that under suitable assumptions onf and its
boundary conditions, equation (11.46) will have a unique solution s∗; see Keller [53,
p. 9]. We can use a rootfinding method for nonlinear equationsto solve fors∗. This
way of finding a solution to a BVP is called ashooting method. The name comes
from ballistics, in which one attempts to determine the needed initial conditions at
t = a in order to obtain a certain value att = b.

Most rootfinding methods can be applied to solvingϕ(s) = 0. Each evaluation
of ϕ(s) involves the solution of the initial value problem (11.45) over [a, b], and
consequently, we want to minimize the number of such evaluations. As a specific
example of an important and rapidly convergent method,we look at Newton’s method:

sm+1 = sm − ϕ(sm)

ϕ′(sm)
, m = 0, 1, (11.47)

To calculateϕ′(s), differentiate the definition (11.46) to obtain

ϕ′(s) = b0ξs(b) + b1ξ
′
s(b), (11.48)

where

ξs(t) =
∂Y (t; s)

∂s
. (11.49)

202 TWO-POINT BOUNDARY VALUE PROBLEMS

To find ξs(t), differentiate the equation

Y ′′(t; s) = f(t, Y (t; s), Y ′(t; s))

with respect tos. Thenξs satisfies the initial value problem

ξ′′s (t) = f2(t, Y (t; s), Y ′(t; s))ξs(t) + f3(t, Y (t; s), Y ′(t; s))ξ′s(t), (11.50)

ξs(a) = a1, ξ′s(a) = a0.

The functionsf2 andf3 denote the partial derivatives off(t, u, v) with respect tou
andv, respectively. The initial values are obtained from those in (11.45) and from
the definition ofξs.

In practice, we convert the problems (11.45) and (11.50) to asystem of four
first-order equations with the unknownsY , Y ′, ξs, andξ′s. This system is solved
numerically, say, with a method of orderp and stepsizeh. Let yh(t; s) denote the
approximation toY (t; s) with a similar notation for the remaining unknowns. From
earlier results for solving initial valueproblems, it canbeshown that these approximate
solutions will be in error byO(hp). With suitable assumptions on the original problem
(11.29)–(11.30), it can then be shown that the roots∗h obtained will also be in error
byO(hp) and similarly for the approximate solutionyh(t; s∗h) when compared to the
solutionY (t; s∗) of the boundary value problem. For details of this analysis,see
Keller [53, pp. 47–54].

Example 11.4 We apply the preceding shooting method to the solution of theBVP
(11.45), used earlier to illustrate the finite-difference method. The initial value prob-
lem (11.35) for the shooting method is

Y ′′ = −Y +
2(Y ′)2

Y
, −1 < x ≤ 1,

Y (−1) = (e+ e−1)−1, Y ′(−1) = s.
(11.51)

The associated problem (11.50) forξs(x) is

ξ
′′

s =

[
−1 − 2

(
Y ′

Y

)2
]
ξs + 4

Y ′

Y
ξ′s,

ξs(−1) = 0, ξ′s(−1) = 1.

(11.52)

The equation forξ′′s uses the solutionY (x; s) of (11.51). The functionϕ(s) for
computings∗ is given by

ϕ(s) ≡ Y (1; s) − (e+ e−1)−1.

For use in defining Newton’s method, we have

ϕ′(s) = ξs(1).

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 203

Table 11.4 Shooting method for solving (11.44)

n = 2/h s∗ − s∗h Ratio Eh Ratio

4 4.01e − 3 2.83e − 2

8 1.52e − 3 2.64 7.30e − 3 3.88

16 4.64e − 4 3.28 1.82e − 3 4.01

32 1.27e − 4 3.64 4.54e − 4 4.01

64 3.34e − 5 3.82 1.14e − 4 4.00

From the true solutionY of (11.44) and the conditiony′(−1) = s in (11.51), the
desired roots∗ of ϕ(s) is simply

s∗ = Y ′(−1) =
e− e−1

(e+ e−1)2
.
= 0.245777174.

To solve the initial value problem (11.51)–(11.52), we use asecond-order Runge–
Kutta method, such as (5.21), with a stepsize ofh = 2/n. The results for several
values ofn are given in Table 11.4. The solution of (11.52) is denoted byyh(t; s),
and the resulting root for

ϕh(s) ≡ yh(1; s) − (e+ e−1)−1 = 0

is denoted bys∗h. For the error inyh(t; s∗h), let

Eh = max
0≤i≤n

|Y (ti) − yh(ti; s
∗
h)| ,

where{ti} are the node points used in solving the initial value problem. The columns
labeled “Ratio” give the factors by which the errors decreased whennwas doubled (or
h was halved). Theoretically these factors should approach4 since the Runge–Kutta
method has an error ofO(h2). Empirically, the factors approach4.0, as expected.
For the Newton iteration (11.47),s0 = 0.2 was used in each case. The iteration was
terminated when the test

|sm+1 − sm| ≤ 10−10

was satisfied. With these choices, the Newton method needed six iterations in each
case, except that ofn = 4 (when seven iterations were needed). However, ifs0 = 0
was used, then25 iterations were needed for then = 4 case, showing the importance
of a good choice of the initial guesss0.

A number of problems can arise with the shooting method. First, there is no general
guesss0 for the Newton iteration, and with a poor choice, the iteration may diverge.
For this reason, a modified Newton method may be needed to force convergence. A
second problem is that the choice ofyh(t; s) may be very sensitive toh, s, and other
characteristics of the boundary value problem. For example, if the linearization of

204 TWO-POINT BOUNDARY VALUE PROBLEMS

the initial value problem (11.45) has large positive eigenvalues, then the choice of
Y (t; s) is likely to be sensitive to variations ins. For a thorough discussion of these
and other problems, see Keller [53, Chap. 2], Ascher et al. [9], or Ascher and Petzold
[10, Chap. 7]. Some of these problems are more easily examined for linear BVPs, as
is done in Keller [53, Chap. 2].

11.2.3 Collocation methods

To simplify the presentation, we again consider only the differential equation

Y ′′ = f(t, Y, Y ′), a < t < b. (11.53)

Furthersimplifying the BVP, we consideronly the homogeneousboundaryconditions

Y (a) = 0, Y (b) = 0. (11.54)

It is straightforward to modify the nonhomogeneous boundary conditions of (11.36)
to obtain a modified BVP having homogeneousboundary conditions; see Problem 16.
The collocation methods are much more general than indicated by solving (11.53)–
(11.54), but the essential ideas are more easily understoodin this context.

We assume that the solutionY (t) of (11.53)–(11.54) is approximable by a linear
combination ofn given functionsψ1(t), . . . , ψn(t),

Y (x) ≈ yn(x) =

n∑

j=1

cjψj(t), a ≤ x ≤ b. (11.55)

The functionsψj(t) are all assumed to satisfy the boundary conditions

ψj(a) = ψj(b) = 0, j = 1, . . . , n, (11.56)

and thus any linear combination (11.55) will also satisfy the boundary conditions. The
coefficientsc1, . . . , cn are determined by requiring the differential equation (11.53)
to be satisfied exactly atn preselected points in(a, b),

y′′n(ξi) = f(ξi, yn(ξi), y
′
n(ξi)) , i = 1, . . . , n (11.57)

with given points
a < ξ1 < ξ2 < · · · < ξn < b. (11.58)

The procedure of definingyn(t) implicitly through (11.57) is known ascollocation,
and the points{ξi} are calledcollocation points.

Substituting from (11.55) into (11.57), we obtain

n∑

j=1

cjψ
′′
j (ξi) = f


ξi,

n∑

j=1

cjψj(ξi),

n∑

j=1

cjψ
′
j(ξi)


 , (11.59)

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 205

for i = 1, . . . , n. This is a system ofn nonlinear equations in then unknowns
c1, . . . , cn. In general, this system must be solved numerically, as is done with the
finite-difference approximation (11.37) discussed earlier in Section 11.2.1.

In choosing a collocation method, we must do the following.

1. Choose the family of approximating functions{ψ1(t), . . . , ψn(t)}, including
the requirement (11.56) for the endpoint boundary conditions.

2. Choose the collocation node points{ξi} of (11.58).

3. Choose a way to solve the nonlinearsystem (11.59). Included in this is choosing
an initial guess for the method of solving the nonlinear system, and this may
be difficult to find.

For a general survey of this area, see the text by Ascher et al.[9]; for collocation
software, see [6], [7].

We describe briefly a particular collocation method that hasbeen implemented as
a high quality computer code. Letm > 0, h = (b− a) /m, and define breakpoints
{tj} by

tj = a+ jh, j = 0, 1, . . . ,m.

Consider all functionsp(t) that satisfy the following conditions:

• p(t) is continuously differentiable fora ≤ t ≤ b.

• p(a) = p(b) = 0.

• On each subinterval[tj−1, tj], p(t) is a polynomial of degree≤ 3.

We use these functions as our approximationsyn(t) in (11.57). There are a number of
ways to writeyn(t) in the form of (11.55), withn = km. A good way to choose the
functions{ψj(t)} is to use the standard basis functions for cubic Hermite interpolation
on each subinterval[tj−1, tj]; see [11, p. 162].

For the collocation points, letρ1 = −1/
√

3, ρ2 = 1/
√

3, which are the zeros of
the Legendre polynomial of degree 2 on[−1, 1]. Using these, define

ξi,j = 1
2 (ti−1 + ti) + 1

2hρj , j = 1, 2, i = 1, . . . ,m.

This definesn = 2m pointsξi,j , and these will be the collocation points used in
(11.57).

With this choice foryn(t) and{ξi,j}, and assuming sufficient differentiability and
stability in the solvability of the BVP (11.53)–(11.54), itcan be shown thatyn(t)
satisfies the following:

max
a≤t≤b

|Y (t) − yn(t)| = O
(
h4
)
.

An extensive discussion and generalizations of this methodare given in [9].

206 TWO-POINT BOUNDARY VALUE PROBLEMS

11.2.4 Other methods and problems

Yet another approach to solving a boundary value problem is to solve an equiva-
lent reformulation as an integral equation. There is much less development of such
numerical methods, although they can be very effective in some situations. For an
introduction to this approach, see Keller [53, Chap. 4].

There are also many other types of boundary value problems, some containing
certain types of singular behavior, that we have not discussed here. An excellent
general reference is the book by Ascher, Mattheij, and Russell [9]. In addition, see
the research papers in the proceedings of Ascher and Russell[8], Aziz [13], Childs
et al. [28], and Gladwell and Sayers [41]; see also Keller [52, Chap. 4] for singular
problems. For discussions of software, see Childs et al. [28], Gladwell and Sayers
[41], and Enright [35].

PROBLEMS

1. In general, study of existence and uniqueness of a solution for boundary value
problems is more complicated. Consider the boundary value problem

{
Y ′′(t) = 0, 0 < t < 1,
Y ′(0) = g1, Y

′(1) = g2.

Show that the problem has no solution ifg1 6= g2, and infinitely many solutions
wheng1 = g2.

Hint: For the caseg1 6= g2, integrate the differential equation over[0, 1].

2. As another example of solution non-uniqueness, verify that for any constantc,
Y (t) = c sin(t) solves the boundary value problem

{
Y ′′(t) + Y (t) = 0, 0 < t < π,
Y (0) = Y (π) = 0.

3. Verify that any function of the formY (t) = c1e
t + c2e

−t satisfies the equation

Y ′′(t) − Y (t) = 0.

Determinec1 andc2 for the functionY (t) to satisfy the following boundary
conditions:

(a) Y (0) = 1, Y (1) = 0.

(b) Y (0) = 1, Y ′(1) = 0.

(c) Y ′(0) = 1, Y (1) = 0.

(d) Y ′(0) = 1, Y ′(1) = 0.

4. Assume thatY is 3 times continuously differentiable. Use Taylor’s theorem to
prove the formula (11.26).

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 207

5. Prove the formula (11.18) by using the asymptotic expansion (11.16).

6. Use the asymptotic error formula (11.16) withD(t) twice continuously differ-
entiable to show

Y ′′(ti) −
1

h2
[yh(ti+1) − 2yh(ti) + yh(ti−1)] = O

(
h2
)
, 1 ≤ i ≤ N − 1.

In other words, the second-order centered divided difference of the numerical
solution is a second-order approximation of the second derivative of the true
solution at any interior node point.

7. Verify that any function of the formY (t) = c1
√
t+ c2t

4 satisfies the equation

t2Y ′′(t) − 7
2 tY

′(t) + 2Y (t) = 0.

Determine the solution of the equation with the boundary conditions

Y (1) = 1, Y (4) = 2.

Use the MATLAB programODEBVP to solve the boundary value problem for
h = 0.1, 0.05, 0.025, and print the errors of the numerical solutions att = 1.2,
1.4, 1.6, 1.8. Comment on how errors decrease whenh is halved. Do the same
for the extrapolated solutions.

8. The general solution of the equation

t2Y ′′ − t (t+ 2)Y ′ + (t+ 2)Y = 0

isY (t) = c1t+c2te
t. Determine the solution of the equation with the boundary

conditions
Y (1) = e, Y (2) = 2 e2.

Use the MATLAB programODEBVP to solve the boundary value problem for
h = 0.1, 0.05, 0.025, print the errors of the numerical solutions att = 1.2, 1.4,
1.6 and1.8. Comment on how errors decrease whenh is halved. Do the same
for the extrapolated solutions.

9. The general solution of the equation

t Y ′′ − (2 t+ 1)Y ′ + (t+ 1)Y = 0

is Y (t) = c1e
t + c2t

2et. Find the solution of the equation with the boundary
conditions

Y ′(1) = 0, Y (2) = e2.

Write down a formula for a discrete approximation of the boundary condition
Y ′(1) = 0 similar to (11.27), which has an accuracyO(h2). Implement the
method by modifying the programODEBVP, and solve the problem withh= 0.1,
0.05, 0.025. Print the errors of the numerical solutions att = 1, 1.2, 1.4, 1.6,

208 TWO-POINT BOUNDARY VALUE PROBLEMS

1.8, and comment on how errors decrease whenh is halved. Do the same for
the extrapolated solutions.

10. Consider the boundary value problem (11.2) withp, q, andr constant. Modify
the MATLAB program so that the commandfeval does not appear. Use the
modified program to solve the following boundary value problem.

(a)
Y ′′ = −Y, 0 < t < π

2 ,

Y (0) = Y
(

1
2π
)

= 1.

The true solution isY (t) = sin t+ cos t.

(b)
Y ′′ + Y = sin t, 0 < t < π

2 ,

Y (0) = Y
(

1
2π
)

= 0.

The true solution isY (t) = − 1
2 t cos t.

11. Give a second-order scheme for the following boundary value problem.

Y ′′ = sin (tY ′) + 1, 0 < t < 1,

Y (0) = 0, Y (1) = 1.

12. Consider modifying the material of Section 11.1 to solvethe BVP

Y ′′(t) = p(t)Y ′(t) + q(t)Y (t) + r(t), a < t < b,

Y (a) = g1, Y ′(b) + k Y (b) = g2.

Do so with the first-order approximation given in (11.25). Give the analogs of
the results (11.8)–(11.14).

13. Continuing with the preceding problem, modifyODEBVP to handle this new
boundary condition. Apply it to the boundary value problem





Y ′′ = − 2 t

1 + t2
Y ′ + Y +

2

1 + t2
− log(1 + t2), 0 < t < 1,

Y (0) = 0, Y ′(1) + Y (1) = 1 + log(2).

The true solution isY (t) = log(1+t2), just as with the earlier example (11.19).
Repeat the calculations leading to Table 11.1. Check the assertion on the order
of convergence given in Section 11.1.3 in the sentence containing (11.25).

14. Consider showing that the tridiagonal matrixT of (11.40) is nonsingular. For
simplicity, denote its order bym × m. To show thatT is nonsingular, it is
sufficient to show that the only solutionx ∈ R

m of the homogeneous linear
systemTx = 0 is the zero solutionx = 0. Let c = max1≤j≤m |xj |. We want

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 209

to showc = 0. Begin by assuming the contrary, namely thatc > 0. Write the
individual equations in the systemTx = 0. In particular, consider an equation
corresponding to a component ofx that has magnitudec (of which there must
be at least one), and denote its index byk. Assume initially that1 < k < m.
Show from equationk thatxk+1 andxk−1 must also have magnitudec. By
induction, show that all components must have magnitudec; and then show
from the first or last equation that this leads to a contradiction.

15. For each of the following BVPs for a second-order differential equation, con-
sider converting it to an equivalent BVP for a system of first-order equations,
as in (11.35). What are the matricesA andB of (11.35)?

(a) The linear BVP (11.2)–(11.3).

(b) The nonlinear BVP of (11.44).

(c) The nonlinear BVP (11.29)–(11.30).

(d) The following system of second-order equations: for0 < t < 1,

mx′′(t) =
cx(t)

(x(t)2 + y(t)2)
3/2

, my′′(t) =
cy(t)

(x(t)2 + y(t)2)
3/2

,

with the boundary conditions

x(0) = x(1), y(0) = y(1),
x′(0) = x′(1), y′(0) = y′(1).

16. Consider convertingnonzero boundaryconditions to zero boundaryconditions.

(a) Consider the two-point boundary value problem (11.36).To convert this
to an equivalent problem with zero boundary conditions, write Y (x) =
z(x) +w(x) with w(x) a straight line satisfying the following boundary
conditions: w(a) = γ1, w(b) = γ2. Derive a new boundary value
problem forz(x).

(b) Generalize this procedure to problem (11.29). Obtain a new problem with
zero boundary conditions. What assumptions, if any, are needed for the
coefficientsa0, a1, b0, andb1?

17. Using the shooting method of Subsection 11.2.2, solve the following boundary-
value problems. Study the convergence rate ash is varied.

(a) Y ′′ = − 2

x
Y Y ′, 1 < x < 2; Y (1) = 1

2 , Y (2) = 2
3 .

True solution:Y (x) = x/(1 + x).

(b) Y ′′ = 2Y Y ′, 0 < x < 1
4π; Y (0) = 0, Y

(
1
4π
)

= 1.

True solution:Y (x) = tan(x).

CHAPTER 12

VOLTERRA INTEGRAL EQUATIONS

In earlier chapters the initial value problem

Y ′(s) = f(s, Y (s)), t0 ≤ s ≤ b,

Y (t0) = Y0

was reformulated using integration. In particular, by integrating over the interval
[t0, t], we obtain

Y (t) = Y0 +

∫ t

t0

f(s, Y (s)) ds, t0 ≤ t ≤ b.

This is an integral equation of Volterra type. Motivated in part by this reformulation,
we consider now the integral equation

Y (t) = g(t) +

∫ t

0

K(t, s, Y (s)) ds, 0 ≤ t ≤ T. (12.1)

In this equation, the functionsK(t, s, u) andg(t) are given; the functionY (t) is
unknown and is to be determined on the interval0 ≤ t ≤ T . This equation is called

211

212 VOLTERRA INTEGRAL EQUATIONS

a Volterra integral equation of the second kind. Such integral equations occur in
a variety of physical applications, and few of them can be reformulated easily as
differential equation initial value problems. However, the numerical methods for
such equations are linked to those for the initial value problem, and we consider such
methods in this chapter.

12.1 SOLVABILITY THEORY

We begin by discussing some of the theory behind such equations, beginning with
the linear equation

Y (t) = g(t) +

∫ t

0

K(t, s)Y (s) ds, 0 ≤ t ≤ T. (12.2)

The functionK(t, s) is called the “kernel function” of the integral operator, orsimply
the “kernel”. An important theoretical tool for studying this equation is the use of
“successive approximations” or “Picard iteration”.

As an initial estimate of the solution, chooseY0(t) ≡ g(t). Then define a sequence
of iterates{Yℓ(t)} by

Yℓ+1(t) = g(t) +

∫ t

0

K(t, s)Yℓ(s) ds, 0 ≤ t ≤ T

for ℓ = 0, 1, . . . To develop some intuition, we calculateY2(t):

Y2(t) = g(t) +

∫ t

0

K(t, s)Y1(s) ds

= g(t) +

∫ t

0

K(t, s)

[
g(s) +

∫ s

0

K(s, v) g(v) dv

]
ds

= g(t) +

∫ t

0

K(t, s) g(s) ds

+

∫ t

0

K(t, s)

∫ s

0

K(s, v) g(v) dv ds. (12.3)

We then introduce a change in the order of integration,

∫ t

0

∫ s

0

K(t, s)K(s, v) g(v) dv ds

=

∫ t

0

g(v)

∫ t

v

K(t, s)K(s, v) ds dv.

(12.4)

and define

K2(t, v) =

∫ t

v

K(t, s)K(s, v) ds, 0 ≤ v ≤ t ≤ T.

SOLVABILITY THEORY 213

Then (12.3) becomes

Y2(t) = g(t) +

∫ t

0

K(t, s) g(s) ds+

∫ t

0

K2(t, v) g(v) dv.

This can be continued inductively to give

Yℓ(t) = g(t) +

ℓ∑

j=1

∫ t

0

Kj(t, s) g(s) ds (12.5)

for ℓ = 1, 2, . . . The kernel functionsKj are defined by

K1(t, s) = K(t, s) ,

Kj(t, s) =

∫ t

s

K(t, u)Kj−1(u, s) du, j = 2, 3, (12.6)

Much of the theory of solvability of the integral equation (12.2) can be developed by
looking at the limit of (12.5) asℓ→ ∞. This, in turn, requires an examination of the
kernel functions{Kj(t, s)}∞j=1. Doing so yields the following theorem.

Theorem 12.1 Assume thatK(t, s) is continuous for0 ≤ s ≤ t ≤ T , and thatg(t)
is continuous on[0, T]. Then (12.2) has a unique continuous solutionY (t) on [0, T],
and

|Y (t)| ≤ eBt max
0≤s≤t

|g(s)| , (12.7)

whereB = max0≤s≤t≤T |K(t, s)|.

Some details of the proof are taken up in the problems.
A related approach can be used to prove the following theoremfor the fully non-

linear equation (12.1). The Picard iteration is now

Yℓ+1(t) = g(t) +

∫ t

0

K(t, s, Yℓ(s)) ds, 0 ≤ t ≤ T

for ℓ = 0, 1, . . .

Theorem 12.2 Assume that the functionK(t, s, u) satisfies the following two condi-
tions:
(a)K(t, s, u) is continuous for0 ≤ s ≤ t ≤ T and−∞ < u <∞.
(b)K(t, s, u) satisfies a Lipschitz condition,

|K(t, s, u1) −K(t, s, u2)| ≤ c |u1 − u2| , 0 ≤ s ≤ t ≤ T

for all −∞ < u1, u2 <∞, with somec > 0.
Assume further thatg(t) is continuous on[0, T]. Then equation (12.1) has a unique
continuous solutionY (t) on the interval[0, T]. In addition,

|Y (t)| ≤ ect max
0≤s≤t

|g(s)| . (12.8)

214 VOLTERRA INTEGRAL EQUATIONS

For a proof, see Linz [59, Chap. 4].
As with differential equations, it is important to examine the stability of the solution

Y (t) with respect to changes in the data of the equation,K andg. We consider only
the perturbation of the linear equation (12.2) by changingg(t) to g(t) + ε(t). Let
Y (t; ε) denote the solution of the perturbed equation,

Y (t; ε) = g(t) + ε(t) +

∫ t

0

K(t, s)Y (s; ε) ds, 0 ≤ t ≤ T. (12.9)

Subtracting (12.2), we have

Y (t; ε) − Y (t) = ε(t)

+

∫ t

0

K(t, s) [Y (s; ε) − Y (s)] ds, 0 ≤ t ≤ T.
(12.10)

Applying (12.7) from Theorem 12.1, we have

|Y (t; ε) − Y (t)| ≤ eBt max
0≤s≤t

|ε(s)| . (12.11)

This shows stability of the solution with respect to perturbations in the functiong
in (12.2). This is a conservative estimate because the multiplying factoreBt increases
very rapidly witht. The analysis of stability can be improved by examining (12.10)
in greater detail, just as was done for differential equations in (1.16) of Section 1.2.
We can also generalize these results to the nonlinear equation (12.1); see [59], [64].

12.1.1 Special equations

A model equation for studying the numerical solution of (12.1) is the simple linear
equation

Y (t) = g(t) + λ

∫ t

0

Y (s) ds, t ≥ 0. (12.12)

This can be reformulated as the initial value problem

Y ′(t) = λY (t) + g′(t), t ≥ 0, (12.13)

Y (0) = g(0),

which is the model equation used in earlier chapters for studying numerical methods
for solving the initial value problem for ordinary differential equations. Using the
solution of this simple linear initial value problem leads to

Y (t) = g(t) + λ

∫ t

0

eλ(t−s)g(s) ds, t ≥ 0. (12.14)

Recall from (1.20) of Section 1.2 that, usually, (12.13) is considered stable forλ < 0
and is considered unstable forλ > 0. Thus the same is true of the Volterra equation
(12.12).

NUMERICAL METHODS 215

As another model Volterra integral equation, consider

Y (t) = g(t) + λ

∫ t

0

eβ(t−s)Y (s) ds, t ≥ 0. (12.15)

This can be reduced to the form of (12.12), and this leads to the solution

Y (t) = g(t) + λ

∫ t

0

e(λ+β)(t−s)g(s) ds, t ≥ 0. (12.16)

Equations of the form

Y (t) = g(t) + λ

∫ t

0

K(t− s)Y (s) ds, t ≥ 0 (12.17)

are said to be of ‘convolution type’, and theLaplace transformcan often be used to
obtain a solution. Discussion of the Laplace transform and its application in solving
differential equations can be found in most undergraduate textbooks on ordinary
differential equations; for example, see [16]. LetK̂(τ) denote the Laplace transform
of K(t), and letL(t;λ) denote the inverse Laplace transform of

K̂(τ)

1 − λK̂(τ)
.

The solution of (12.17) is given by

Y (t) = g(t) + λ

∫ t

0

L(t− s;λ) g(s) ds, t ≥ 0. (12.18)

Both (12.12) and (12.15) are special cases of (12.17).

12.2 NUMERICAL METHODS

Numerical methods for solving the Volterra integral equation

Y (t) = g(t) +

∫ t

0

K(t, s, Y (s)) ds, 0 ≤ t ≤ T (12.19)

are similar to numerical methods for the initial value problem for ordinary differential
equations. A set of grid points{ti : i = 0, 1, . . . } is chosen, and an approximation to
{Y (ti) : i = 0, 1, . . .} is computed in a step-by-step procedure. For simplicity, we
use an equally spaced grid,

ti = ih, i = 0, 1, . . . , Nh,

wherehNh ≤ T andh (Nh + 1) > T . To aid in developing some intuition for
this topic, we begin with an important special case, thetrapezoidal method. Later
a general scheme is given for the numerical approximation of(12.19). As with
numerical methods for ordinary differential equations, let yn denote an approximation
of Y (tn). From (12.19), takey0 = Y (0) = g(0).

216 VOLTERRA INTEGRAL EQUATIONS

12.2.1 The trapezoidal method

Forn > 0, write

Y (tn) = g(tn) +

∫ tn

0

K(tn, s, Y (s)) ds.

Using the trapezoidal numerical integration rule, we obtain

∫ tn

0

K(tn, s, Y (s)) ds ≈ h

n∑

j=0

′′

K(tn, tj , Y (tj)) . (12.20)

In this formula, the double-prime superscript indicates that the first and last terms
should be halved before being summed. Using this approximation leads to the nu-
merical formula

Y (tn) ≈ g(tn) + h

n∑

j=0

′′

K(tn, tj , Y (tj)) ,

yn = g(tn) + h

n∑

j=0

′′

K(tn, tj , yj) , n = 1, 2, . . . , Nh. (12.21)

This equation definesyn implicitly, as earlier with the trapezoidal rule (4.22) of
Section 4.2 for the initial value problem. Also, as before, whenh is sufficiently small,
this can be solved foryn by simple fixed point iteration,

y
(k+1)
n = g(t) +

h

2
K(tn, t0, y0)

+h
n−1∑

j=1

K(tn, tj , yj) +
h

2
K
(
tn, tn, y

(k)
n

)
, k = 0, 1, . . .

(12.22)

with some giveny(0)
n . Newton’s method and other rootfinding methods can also be

used. A MATLAB R© program implementing (12.21)–(12.22) is given at the end of
the section.

Example 12.3 Consider solving the equation

Y (t) = cos t−
∫ t

0

Y (s) ds, t ≥ 0 (12.23)

with the true solution

Y (t) =
1

2

(
cos t− sin t+ e−t

)
, t ≥ 0.

Equation (12.23) is the model equation (12.12) withλ = −1 andg(t) = cos t.
Numerical results for the use of (12.21) are shown in Table 12.1 for varying stepsizes
h. It can be seen that the error at each value oft is of sizeO

(
h2
)
.

NUMERICAL METHODS 217

Table 12.1 Numerical results for solving (12.23) using the trapezoidal method (12.21)

Error
t h = 0.2 Ratio h = 0.1 Ratio h = 0.05

0.8 1.85e − 4 4.03 4.66e − 5 4.01 1.17e − 5
1.6 9.22e − 4 4.03 2.31e − 4 4.01 5.77e − 5
2.4 1.74e − 3 4.03 4.36e − 4 4.01 1.09e − 4
3.2 1.95e − 3 4.03 4.88e − 4 4.01 1.22e − 4
4.0 1.25e − 3 4.04 3.11e − 4 4.01 7.76e − 5

12.2.2 Error for the trapezoidal method

To build some intuition for the behaviour of (12.21), we consider first the linear case
(12.2),

yn = g(tn) + h

n∑

j=0

′′

K(tn, tj) yj , n = 1, 2, . . . , Nh. (12.24)

Rewrite the original equation (12.2) using the trapezoidalnumerical integration rule
with its error formula,

Y (tn) = g(tn) + h

n∑

j=0

′′

K(tn, tj)Y (tj) +Qh(tn) , (12.25)

for n = 1, 2, . . . , Nh. The error term can be written in various forms:

Qh(tn) = −
n∑

j=1

h3

12

∂2

∂s2
[K(tn, s)Y (s)]

∣∣∣∣
s=τn,j

(12.26)

= −h
2tn
12

∂2

∂s2
[K(tn, s)Y (s)]

∣∣∣∣
s=τn

(12.27)

≈ −h
2

12

∂

∂s
[K(tn, s)Y (s)]

∣∣∣∣
tn

s=0

. (12.28)

In (12.26),τn,j is some unknown point in[tj−1, tj]; and in (12.27),τn is an unknown
point in [0, tn]. These are standard error formulas for the trapezoidal quadrature rule;
e.g. see [12,§5.2]. Subtract (12.24) from (12.25), obtaining

Eh(tn) = h

n∑

j=0

′′

K(tn, tj)Eh(tj) +Qh(tn) (12.29)

in whichEh(tn) = Y (tn) − yn.

Example 12.4 As a simple particular case of (12.24), chooseK(t, s) ≡ λ and
Y (s) = s2. We are solving the equation (12.12) with a suitable choice of g(t).

218 VOLTERRA INTEGRAL EQUATIONS

Using (12.27) and noting thatEh(t0) = Eh(0) = 0, (12.29) becomes

Eh(tn) =

n−1∑

j=1

hλEh(tj) +
hλ

2
Eh(tn) − h2tn

12
Y ′′(τn).

BecauseY ′′(s) ≡ 2, this simplifies further to

Eh(tn) =

n−1∑

j=1

hλEh(tj) + 1
2hλEh(tn) − 1

6h
2tn, (12.30)

for n = 1, . . . , Nh. This complicated expression can be solved explicitly.
Write the same formula withn− 1 replacingn, and then subtract it from (12.30).

This yields

Eh(tn) − Eh(tn−1) = hλEh(tn−1) + 1
2hλEh(tn) − 1

2hλEh(tn−1)

− 1
6h

2 (tn − tn−1) .

Solving forEh(tn), we obtain

Eh(tn) =

(
1 + 1

2hλ

1 − 1
2hλ

)
Eh(tn−1) −

1

1 − 1
2hλ

h3

6
, n ≥ 0.

Using induction, this has the solution

Eh(tn) =

(
1 + 1

2hλ

1 − 1
2hλ

)n

Eh(t0) −




n−1∑

j=0

(
1 + 1

2hλ

1 − 1
2hλ

)j


 1

1 − 1
2 hλ

h3

6
. (12.31)

The first term equals zero sinceEh(t0) = 0; and the second term involves a geometric
series which sums to

(
1 + 1

2hλ

1 − 1
2hλ

)n

− 1

(
1 + 1

2hλ

1 − 1
2hλ

)
− 1

=
2 − hλ

2hλ

{[
1 +

hλ

1 − 1
2hλ

]n

− 1

}
.

Using this in (12.31),

Eh(tn) = −h
2

6λ

{[
1 +

hλ

1 − 1
2 hλ

]n

− 1

}
.

For a fixedt = tn = nh, ash→ 0, this can be manipulated to obtain the asymptotic
formula

Eh(tn) ≈ −h
2

6λ

(
eλ tn − 1

)
.

NUMERICAL METHODS 219

For this special case, the numerical solution of (12.12) using the trapezoidal method
has an error of sizeO(h2). This is of the same order inh as the discretization error for
the trapezoidal rule approximation in (12.20). Although this result has been shown
for only a special solution, it turns out to be true in generalfor the trapezoidal method
of (12.21). This is discussed in greater detail in Section 12.3, including a general
convergence theorem that includes the trapezoidal rule being applied to the fully
nonlinear equation (12.19).

12.2.3 General schema for numerical methods

As a general approach to the numerical solution of the integral equation (12.19),
consider replacing the integral term with an approximationbased on numerical inte-
gration. Introduce the numerical integration

∫ tn

0

K(tn, s, Y (s)) ds ≈ h

n∑

j=0

wn,jK(tn, tj , Y (tj)) . (12.32)

The quadrature weightshwn,j are allowed to vary with the grid pointtn, in contrast
to the trapezoidal method. Equation (12.19) is approximated by

yn = g(tn) + h

n∑

j=0

wn,jK(tn, tj , yj) , n = 1, 2, . . . , Nh. (12.33)

As with the earlier trapezoidal method, ifwn,n 6= 0, then (12.33) must be solved for
yn by some rootfinding method. For example, simple iteration has the form

y
(k+1)
n = g(tn) + h

n−1∑

j=0

wn,jK(tn, tj , yj)

+hwn,nK
(
tn, tn, y

(k)
n

)
, k = 0, 1, . . .

(12.34)

for some given initial estimatey(0)
n . Also, many such methods (12.33) requiren ≥

p + 1 for some small integerp; the valuesy1, . . . , yp must be determined by some
other “starting method”.

There are many possible such schemes (12.33), and we investigate only one pair of
such formulas, both based on Simpson’s numerical integration formula. The simple
Simpson rule has the form

∫ α+2h

α

F (s) ds ≈ h

3
[F (α) + 4F (α+ h) + F (α+ 2h)] .

This classical quadrature formula is very popular, well-studied, and well-understood;
e.g., see [12, Sections 5.1–5.2]. In producing the approximation of (12.32), consider

220 VOLTERRA INTEGRAL EQUATIONS

first the case wheren is even. Then define

∫ tn

0

K(tn, s, Y (s)) ds =

n/2∑

j=1

∫ t2j

t2j−2

K(tn, s, Y (s)) ds

≈ h

3

n/2∑

j=1

[
K(tn, t2j−2, Y (t2j−2)) + 4K(tn, t2j−1, Y (t2j−1))

+K(tn, t2j , Y (t2j))
]

.

(12.35)

This has an error of sizeO
(
h4
)
.

Consider next the case thatnwhere odd andn ≥ 3. Then the interval[0, tn] cannot
be divided into a union of subintervals[t2j−2, t2j]; and thus Simpson’s integration
rule cannot be applied in the manner of (12.35). To maintain the accuracy implicit
in using Simpson’s rule, we use Newton’s3

8 ’s rule over one subinterval of length3h,

∫ α+3h

α

F (s) ds ≈ 3h

8
[F (α) + 3F (α+ h) + 3F (α+ 2h) + F (a+ 3h)] .

We then use Simpson’s rule over the remaining subintervals of length2h. The interval
[0, tn] can be subdivided in two convenient ways,

Scheme 1: [0, tn] = [0, t3] ∪ [t3, t5] ∪ · · · ∪ [tn−2, tn] ; (12.36)

Scheme 2: [0, tn] = [0, t2] ∪ · · · ∪ [tn−5, tn−3] ∪ [tn−3, tn] . (12.37)

With the first scheme, we apply Newton’s38 ’s rule over[0, t3] and apply Simpson’s
rule over the subintervals[t3, t5] , . . . , [tn−2, tn]. With the second scheme, we apply
Newton’s3

8 ’s rule over[tn−3, tn] and Simpson’s rule over the remaining subintervals
[0, t2], . . . , [tn−5, tn−3].

To be more precise, with the second scheme we begin by writing

∫ tn

0

K(tn, s, Y (s)) ds =

(n−3)/2∑

j=1

∫ t2j

t2j−2

K(tn, s, Y (s)) ds

+

∫ tn

tn−3

K(tn, s, Y (s)) ds.

Approximating the integrals as described above, we obtain

∫ tn

0

K(tn, s, Y (s)) ds ≈ 1

3
h

n/2∑

j=1

{K(tn, t2j−2, Y (t2j−2))

+4K(tn, t2j−1, Y (t2j−1)) +K(tn, t2j , Y (t2j))]

+
3

8
h {K(tn, tn−3, Y (tn−3)) + 3K(tn, tn−2, Y (tn−2))

+3K(tn, tn−1, Y (tn−1)) +K(tn, tn, Y (tn))} .

(12.38)

NUMERICAL METHODS 221

Using (12.36) leads to a similar formula, but with Newton’s3
8 ’s rule applied over

[0, t3].
We denote by “Simpson method 2” the combination of (12.35) and (12.38); and

we denote as “Simpson method 1” the combination of (12.35) and the analog of
(12.38) for the subdivision of (12.36). Both methods require that the initial valuey1
be calculated by another method.

Both approximations have discretization errors of sizeO(h4), but method 2 turns
out to be much superior to method 1 when solving (12.19). These methods are
discussed and illustrated in Section 12.3.

MATLAB program. The following MATLAB program implements the trapezoidal
method (12.21)–(12.22).

function soln = vie trap(N h,T,fcn g,fcn k)

%

% function soln = vie trap(N h,T,fcn g,fcn k)

%

% This solves the integral equation

% t

% Y(t) = g(t) + Int k(t,s,Y(s))ds

% 0

% ==INPUT==

% N h: The number of subdivisions of [0,T].

% T: [0,T] is the interval for the solution function.

% fcn g: The handle of the driver function g(t).

% fcn k: The handle of the kernel function k(t,s,u).

% ==OUTPUT==

% soln: A structure with the following components.

% soln.t: The grid points at which the solution Y(t) is

% approximated.

% soln.y: The approximation of Y(t) at the grid points.

% The implicit trapezoidal equation is solved by simple fixed

% point iteration at each grid point in t. For simplicity,

% the program uses a crude means of controlling the iteration.

% The iteration is executed a fixed number of times, controlled

% by ’loop’.

loop = 10; % This is much more than is usually needed.

h = T/N h; t = linspace(0,T,N h+1);

g vec = fcn g(t);

g vec = zeros(size(t)); y vec(1) = g vec(1);

for n=1:N h

y vec(n+1) = y vec(n); % Initial estimate for the iteration.

k vec = fcn k(t(n+1),t(1:n+1),y vec(1:n+1));

222 VOLTERRA INTEGRAL EQUATIONS

for j=1:loop

y vec(n+1) = g vec(n+1) + h*(sum(k vec(2:n)) ...

+ (k vec(1) + k vec(n+1))/2);

k vec(n+1) = fcn k(t(n+1),t(n+1),y vec(n+1));

end

end

soln.t = t;

soln.y = y vec;

end % vie trap

The following program is a test program for the abovevie trap.

function test vie trap(lambda,N h,T,output step)

%

% function test vie trap(lambda,N h,T,output step)

%

% ==INPUT==

% lambda: Used in defining the integral equation.

% N h: The number of subdivisions of [0,T].

% T: [0,T] is the interval for the solution function.

% output step: The solution is output at the indices

% v = 1:output step:N h+1

soln = vie trap(N h,T,@g driver,@kernel);

t = soln.t; y = soln.y;

true = true soln(t);

error = true - y;

format short e

v = 1:output step:N h+1;

disp([t(v)’ y(v)’ error(v)’])

%==

function ans g = g driver(s)

ans g = (1-lambda)*sin(t) + (1+lambda)*cos(t) - lambda;

end % g driver

function ans true = true soln(s)

ans true = cos(s) + sin(s);

end % true soln

function ans k = kernel(tau,s,u)

% tau is a scalar, s and u vectors of the same dimension.

ans k = lambda*u;

end % kernel

%==

end % test vie trap

NUMERICAL METHODS: THEORY 223

12.3 NUMERICAL METHODS: THEORY

We begin by considering the convergence of methods

yn = g(tn) + h

n∑

j=0

wn,jK(tn, tj , yj) , n = p+ 1, . . . , Nh (12.39)

with y0 = g(0) and withy1, . . . , yp determined by another method. For example, the
trapezoidal method hasp = 0, and the two Simpson methods discussed in and fol-
lowing (12.35) havep = 1. Later we discuss the error requirements when computing
such initial valuesy1, . . . , yp.

To analyze the error in using (12.39) to solve

Y (t) = g(t) +

∫ t

0

K(t, s, Y (s)) ds, 0 ≤ t ≤ T, (12.40)

we proceed in analogy with the error equation (12.29) for thetrapezoidal method. As
in Section 12.1, we assume thatK(t, s, u) is continuous for0 ≤ s ≤ t ≤ T ; further,
we assume thatK(t, s, u) satisfies the Lipschitz condition

|K(t, s, u1) −K(t, s, u2)| ≤ c |u1 − u2| , 0 ≤ s ≤ t ≤ T (12.41)

for −∞ < u1, u2 <∞. These are the assumptions used in Theorem 12.2.
Rewrite (12.40) using numerical integration and the associated error,

Y (tn) = g(tn) + h

n∑

j=0

wn,jK(tn, tj , Y (tj))

+Qh(tn) , n = p+ 1, . . . , Nh.

(12.42)

The quantityQh(tn) denotes the error in the quadrature approximation to the integral
in (12.40). As an example of the quadrature error, recall (12.25)–(12.28) for the
trapezoidal method.

Subtract (12.39) from (12.42), obtaining

Eh(tn) = h
n∑

j=0

wn,j [K(tn, tj , Y (tj)) −K(tn, tj , yj)] +Qh(tn) (12.43)

forn = p+1, . . . , Nh, withEh(tn) = Y (tn)−yn. Applying the Lipschitz condition
(12.41) to (12.43), we have

|Eh(tn)| ≤ hc

n∑

j=0

|wn,j | |Eh(tj)| +Qh(tn) , n = p+ 1, . . . , Nh. (12.44)

If we assume thath is small enough thathc |wn,n| < 1, then we can bound|Eh(tn)|
in terms of preceding errors:

|Eh(tn)| ≤ hc

1 − hc |wn,n|

n−1∑

j=0

|wn,j | |Eh(tj)| +
Qh(tn)

1 − hc |wn,n|
, (12.45)

224 VOLTERRA INTEGRAL EQUATIONS

for n = p+ 1, . . . , Nh.
To further simplify this, we assume

max
0≤i≤n≤Nn

|wn,i| ≤ γ <∞ (12.46)

for all 0 < h ≤ h0 for some small value ofh0. Without any loss of generality when
analyzing convergence ash→ 0, (12.46) permits the assumption that

hc |wn,n| ≤ 1
2 (12.47)

is true for allh andn of interest. With (12.46) and (12.47), the inequality (12.45)
becomes

|Eh(tn)| ≤ 2γch

n−1∑

j=0

|Eh(tj)| + 2Qh(tn) , n = p+ 1, . . . , Nh. (12.48)

This can be solved to give a useful convergence result.

Theorem 12.5 In the Volterra integral equation (12.40), assume that the function
K(t, s, u) is continuous for0 ≤ s ≤ t ≤ T , −∞ < u < ∞, and further that it
satisfies the Lipschitz condition (12.41). Assume thatg(t) is continuous on[0, T]. In
the numerical approximation (12.39), assume (12.46). Introduce

η(h) ≡
p∑

j=0

|Eh(tj)| , (12.49)

δ(tn;h) ≡ max
p+1≤j≤n

|Qh(tj)| .

Then

|Eh(tn)| ≤ e2γctn [2γchη(h) + δ(tn;h)] , n = p+ 1, . . . , Nh. (12.50)

Proof. This bound is a consequence of (12.48), the following lemma,and the bound

(1 + 2γch)
n−p−1 ≤ e2γc(tn−tp+1) ≤ e2γctn, n ≥ p+ 1.

To show this bound, recall Lemma 2.3 from Section 2.2. A more complete proof is
given in [59, Section 7.3].

Lemma 12.6 Let the sequence{ε0, ε1, . . . } satisfy

|εn| ≤ α

n−1∑

j=0

|εj | + βn, n = p+ 1, (12.51)

Then

|εn| ≤ (1 + α)
n−p−1


α

p∑

j=0

|εj | + max
p+1≤j≤n

|βj |


 . (12.52)

NUMERICAL METHODS: THEORY 225

Proof. This can be proved using mathematical inductions, and we leave it as an
exercise for the reader.

The bound (12.50)assures us of convergenceprovidedhη (h) → 0 andδ(tn;h) →
0 ash→ 0.

Example 12.7 Recall the trapezoidal method of (12.21). Thenp = 0 andη(h) =
|Y (0) − y0|. For the purpose of analyzing convergence, we takey0 = Y (0) and
η(h) = 0. Also, from (12.27), we can take

δ(tn;h) = −h
2tn
12

max
0≤s≤tn

∣∣∣∣
∂2

∂s2
[K(tn, s)Y (s)]

∣∣∣∣ . (12.53)

From (12.50), we obtain

|Eh(tn)| ≤ e2γctnδ (tn;h) ,

and this is of sizeO
(
h2
)

on each finite interval0 ≤ tn ≤ T . Thus the trapezoidal
method is convergent; and we say it is of order 2.

Example 12.8 Recall Simpson method 2 from (12.35), (12.38), and the associated
Simpson method 1. Both methods requirep = 1, and

η (h) = |Eh(t0)| + |Eh(t1)| .

Again, we take|Eh(t0)| = 0. The quadrature errorδ(tn;h) can be shown to be of
sizeO(h4) on each finite interval[0, tn]. If we also havehη(h) = O(h4), then the
overall error in both Simpson methods is of sizeO(h4) on each finite interval[0, T].

If we use the simple trapezoidal method to generatey1, then it can be shown that
η(h) = O

(
h3
)

for this special case of a fixed finite number of errors (in particular,
Eh(t1)); this is sufficient to yieldhη(h) = O

(
h4
)
. We illustrate this using Simpson

method 2 to solve

Y (t) = cos t−
∫ t

0

Y (s) ds, t ≥ 0 (12.54)

with the true solution

Y (t) = 1
2

(
cos t− sin t+ e−t

)
, t ≥ 0, (12.55)

the same test equation as in example 12.3. The numerical results with varying values
of h are given in Table 12.2. The values in the columns labeled“Ratio” approach 16
ash decreases, and this is consistent with a convergence rate ofO

(
h4
)
.

12.3.1 Numerical stability

In addition to being convergent, a numerical method must also be numerically stable.
As with numerical methods for the initial value problem for differential equations,

226 VOLTERRA INTEGRAL EQUATIONS

Table 12.2 Numerical results for solving (12.54) using the Simpson method 2

Error
t h = 0.2 Ratio h = 0.1 Ratio h = 0.05 Ratio h = 0.025

0.8 1.24e − 6 10.2 1.23e − 7 13.4 9.15e − 9 14.8 6.16e − 10
1.6 −5.56e − 7 −71.0 7.84e − 9 6.4 1.23e − 9 13.5 3.09e − 11
2.4 −1.90e − 6 14.2 −1.34e − 7 14.3 −9.37e − 9 15.1 −6.22e − 10
3.2 −1.95e − 6 10.4 −1.87e − 7 13.6 −1.38e − 8 14.9 −9.24e − 10
4.0 −7.10e − 7 6.2 −1.15e − 7 12.9 −8.95e − 9 14.7 −6.07e − 10

various meanings are given to the concept of “numerically stable”. We begin with
stability as discussed in (12.9)-(12.11) for the linearequation (12.2). This is in analogy
with stability as discussed in Section 7.3 of Chapter 7 for multistep methods for the
initial value problem for differential equations.

In the numerical method

yn = g(tn) + h

n∑

j=0

wn,jK(tn, tj , yj) , n = p+ 1, . . . , Nh. (12.56)

consider perturbing the initial valuesy0, . . . , yp, say, by changing them toyj + ηh,j,
j = 0, . . . , p. Also, perturbg(tn) to g(tn) + εh,n for n ≥ p + 1. We are inter-
ested in knowing how the perturbations{ηh,j} and{εh,n} affect the solution{yn},
particularly for small perturbations and small values ofh.

Let {ỹn : 0 ≤ n ≤ Nh} denote the numerical solution in this perturbed case,

ỹn = g(tn) + εh,n + h

n∑

j=0

wn,jK(tn, tj , ỹj) , n = p+ 1, . . . , Nh,

ỹn = yn + ηh,j , j = 0, . . . , p.

(12.57)

Subtracting (12.56) from (12.57), using the Lipschitz condition (12.41) and the bound
(12.46) for the weights, we obtain

|ỹn − yn| ≤ |εh,n| + hcγ

n∑

j=0

|ỹj − yj | , p+ 1 ≤ n ≤ Nh,

ỹn − yn = ηh,j , j = 0, . . . , p.

With assumption (12.47) and Lemma 12.6, we obtain

|ỹn − yn| ≤ e2γctn


2hγc

p∑

j=0

|ηh,j | + max
p+1≤j≤n

|εh,j|


 .

This simplifies as

|ỹn − yn| ≤ Cδ, p+ 1 ≤ n ≤ Nh, 0 < h ≤ h0, (12.58)

NUMERICAL METHODS: THEORY 227

whereC is a constant independent ofh and

δ = max
0<h≤h0

{
h max

0≤j≤p
|ηh,j | , max

p+1≤j≤Nh

|εh,j |
}
.

The upper boundh0 onh is to be chosen so that for alln,

h0c |wn,n| ≤ 1
2 .

The bound (12.58) says that the numerical solution{yn : p+ 1 ≤ n ≤ Nh} varies
continuously with the initial starting values{y0, . . . , yp} and the functiong(t). This
is true in a uniform sense for all sufficiently small values ofh. The bound (12.58) is
the numerical analogue of the stability result (12.11) for the linear equation (12.2).

The result (12.58) says that virtually all convergent quadrature schemes lead to
numerical methods (12.56) that are numerically stable. In practice,however, a number
of such methods remain very sensitive to perturbations in the starting values. In
particular, experimental results imply that Simpson method 2 is numerically stable,
whereas Simpson method 1 has practical stability problems.What is the explanation
for this?

12.3.2 Practical numerical stability

In discussing practical stability difficulties when using numerical methods (12.39),
we follow Linz [59,§7.4]. We consider only the linear equation

Y (t) = g(t) +

∫ t

0

K(t, s)Y (s) ds, 0 ≤ t ≤ T, (12.59)

although the results generalize to the fully nonlinear equation (12.40). The type
of stability that is considered is related to the concept of “relative stability” from
Subsection 7.3.3.

Consider the numerical method (12.39) as applied to (12.59),

yn = g(tn) + h
n∑

j=0

wn,jK(tn, tj) yj , n = p+ 1, . . . , Nh (12.60)

with y0 = g(0) and withy1, . . . , yp obtained by other means. The true solutionY (t)
satisfies

Y (tn) = g(tn) + h

n∑

j=0

wn,jK(tn, tj)Y (tj) +Qh(tn) , (12.61)

for n = p+ 1, . . . , Nh. Subtracting (12.60) from (12.61), we obtain

Eh(tn) = h

n∑

j=0

wn,jK(tn, tj)Eh (tj) +Qh(tn) , (12.62)

228 VOLTERRA INTEGRAL EQUATIONS

for n = p+ 1, . . . , Nh.
To aid in understanding the behavior ofEh(tn) astn increases, the error is de-

composed into two parts. First, let
{
EQ

h (tn)
}

denote the solution of

EQ
h (tn) = h

n∑

j=0

wn,jK(tn, tj)E
Q
h (tj) +Qh(tn) , n = p+ 1, . . . , Nh,

EQ
h (tj) = 0, j = 0, . . . , p.

(12.63)
This error is due entirely to the quadrature errors{Qh(tn) : n ≥ p+ 1} that occur
in discretizing the integral equation (12.59); it assumes that there is no error in the
initial valuesy0, . . . , yp. Second, consider the errorsES

h (tn) obtained by solving

ES
h (tn) = h

n∑

j=0

wn,jK(tn, tj)E
S
h (tj) , n = p+ 1, . . . , Nh, (12.64)

ES
h (tj) = ηj , j = 0, . . . , p. (12.65)

The quantities{η0, . . . , ηp} are the errors in the starting values{y0, . . . , yp} when
using (12.60). The original errorEh(tn) is given by

Eh(tn) = EQ
h (tn) + ES

h (tn), n = 0, 1, . . . , Nh.

Returning to (12.63), assume that the quadrature error has an expansion of the
form

Qh(tn) = a(tn)hm + O
(
hm+1

)

for some integerm ≥ 1. For example, the trapezoidal method has

Qh(tn) = a(t)h2 + O
(
h3
)
,

a(t) = − 1

12

∂

∂s
[K(t, s)Y (s)]

∣∣∣∣
t

s=0

(see (12.28)). Then it can be shown thatEQ
h (tn) has the asymptotic formula

EQ
h (tn) = b(tn)hm + O

(
hm+1

)
(12.66)

with the functionb the solution of the integral equation

b(t) = −a(t) +

∫ t

0

K(t, s) b(s) ds, 0 ≤ t ≤ T.

For a derivation of this, see [59, Theorem 7.3]. The asymptotic formula (12.66)
applies to virtually all quadrature schemes that are likelyto be used in setting up the
numerical scheme (12.56), and it forms the basis for numerical extrapolation schemes
for error estimation.

NUMERICAL METHODS: THEORY 229

The second error,ES
h (tn), is more subtle to understand. To begin, consider the

weights{wn,j} for the two Simpson methods.

• Simpson method 1:

n even: 1
3 ,

4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 ;

n odd: 3
8 ,

9
8 ,

9
8 ,

3
8 + 1

3 ,
4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 .

(12.67)

all being multiplied byh. The weights satisfy

wn+ρ,i = wn,i, i = 4, . . . , n

with ρ = 2, but not withρ = 1. We say the weights have arepetition factorof
2.

• Simpson method 2:

n even: 1
3 ,

4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 ;

n odd: 1
3 ,

4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 + 3

8 ,
9
8 ,

9
8 ,

3
8 .

(12.68)

The weights satisfy

wn+1,i = wn,i, i = 0, 1, . . . , n− 4.

and again, all being multiplied byh. These weights have a repetition factor of
1.

Both of these methods have an asymptotic formula forES
h (tn); see [59, Theorem

7.4].
In particular, for Simpson method 2 assume that the startingvalues{y0, y1} satisfy

Y (ti) − yi = δih
3 + O(h4). (12.69)

Then
ES

h (tn) = h4 [δ0C0(tn) + δ1C1(tn)] + O
(
h5
)

(12.70)

with Ci(t) satisfying

Ci(t) = ViK(t, ti) +

∫ t

0

K(t, s)Ci(s) ds, i = 0, 1, 2.

The constantsVi are derived as a part of the proof in [59, Theorem 7.4]. The functions
C0(t) andC1(t) can be shown to be well behaved, and consequently, the same istrue
of the error in (12.70).

For Simpson method 1, there is an asymptotic formula forES
h (tn), but it is not as

well behaved as is (12.70) for Simpson method 2. For Simpson method 1, it can be
shown that

ES
h (t2n) = hx(t2n) + O

(
h2
)
, (12.71)

ES
h (t2n+1) = hy(t2n+1) + O

(
h2
)

(12.72)

230 VOLTERRA INTEGRAL EQUATIONS

with (x(t), y(t)) the solution of a system of two Volterra integral equations.The
functionsx(t) andy(t) can be written in the form

x(t) = 1
2 (z1(t) + z2(t)) ,

y(t) = 1
2 (z1(t) − z2(t))

(12.73)

with z1(t) andz2(t) the solutions of the Volterra integral equation

zi(t) = gi(t) +

∫ t

0

K(t, s) zi(s) ds, 0 ≤ t ≤ T

for particular values ofgi(t) that depend on bothK(t, s) and the constants{δ0, δ1}
of (12.69).

To develop some intuition from this, consider the special caseK(t, s) ≡ λ. Then
z1(t) andz2(t) have the forms

z1(t) = A1(t) +B1(t)e
λt,

z2(t) = A2(t) +B2(t)e
−λt/3.

Recalling the special formulas of (12.12)–(12.14), the caseλ < 0 is associated with
stability in the Volterra integral equation andλ > 0 is associated with instability.

Considering only the case whereλ < 0, the functionz1(t) behaves “properly” as
t increases. In contrast, the functionz2(t) is exponentially increasing ast increases.
Applying this to (12.73), we have thatx(t) andy(t) will also increase exponen-
tially, although with opposite signs depending on whether the index fortn is even or
odd. Using this in (12.71)-(12.72), we find that the errorsES

h (tn) should increase
exponentially for larger values ofn, and that there should be an oscillation in sign.

Example 12.9 Recall Example 12.8 in which we examined Simpson method 2 forthe
linear integral equation (12.54). We solve it again, now with both Simpson methods 1
and 2, doing so on[0, 10]withh = 0.1.A plot of the errorwhen using Simpson method
1 is given in Figure 12.1, and that for Simpson method 2 is given in Figure 12.2. The
error with Simpson method 1 is as predicted from the above discussion: it increases
rapidly with increasingt, and it is oscillatory in sign. With Simpson method 2 there is
a much more regular and better behavior in the error, in this case of sinusoidal form,
reflecting the sinusoidal form of the true solutionY (t) = 1

2 (cos t− sin t+ e−t).
There are also some oscillations, but they are more minor andare imposed on the
dominant form of the error.

A very good introduction to the topic of numerical stabilityfor solving Volterra
integral equations is given by Linz [59, Section 7.4]. It also is a very good introduction
to the general subject of the numerical solution of Volterraintegral equations. An
excellent, more recent, and more specialized treatment is given by Brunner [17].

NUMERICAL METHODS: THEORY 231

0 2 4 6 8 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−6

Figure 12.1 The error in solving (12.54) using Simpson method 1

PROBLEMS

1. For the following Volterra integral equations of the second kind, show that the
given functionY (t) is the solution of the given equation.

(a)

Y (t) = cos (t) −
∫ t

0

(t− s) cos (t− s)Y (s) ds,

Y (t) = 2
3 cos(

√
3 t) + 1

3 .

(b)

Y (t) = t+

∫ t

0

sin (t− s)Y (s) ds,

Y (t) = t+ 1
6 t

3.

(c)

Y (t) = sinh (t) −
∫ t

0

cosh(t− s)Y (s) ds,

Y (t) =
2√
5

sinh

(√
5

2
t

)
e−t/2.

232 VOLTERRA INTEGRAL EQUATIONS

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4
x 10

−7

Figure 12.2 The error in solving (12.54) using Simpson method 2

2. Reduce equation (12.15) to (12.12) by introducing the newunknown function
Z(t) = e−λtY (t). Use this transformation to obtain (12.16) from (12.14).

3. Demonstrate formula (12.4).

4. Using mathematical induction, show that the kernelsKj(t, s) of (12.6) satisfy

|Kj(t, s)| ≤
(t− s)j−1

(j − 1)!
Bj , j ≥ 1.

From this, show that

∣∣∣∣
∫ t

0

Kj(t, s) g(s) ds

∣∣∣∣ ≤
(tB)

j

j!
max
0≤s≤t

|g(s)| .

5. Using the result of Problem 4, and motivated by (12.5), show that the series

g(t) +

∞∑

j=1

∫ t

0

Kj(t, s) g(s) ds

is absolutely convergent. Note that it still remains necessary to show that this
function satisfies (12.2). We refer to Linz [59, p. 30] for a proof, along with a
proof of the uniquess of the solution.

NUMERICAL METHODS: THEORY 233

6. Assume that it has been shown, based on (12.5), that

Y (t) = g(t) +

∞∑

j=1

∫ t

0

Kj(t, s) g(s) ds

is an absolutely convergent series. Combine this with Problem 4 to show that
Y (t) satisfies (12.7).

7. LetY (t) be the continuous solution of (12.2).

(a) Assume thatK(t, s) is differentiable with respect totand that∂K(t, s)/∂t
is continuous for0 ≤ s ≤ t ≤ T . Assume further thatg(t) is continously
differentiable on[0, T]. Show thatY (t) is differentiable and that

Y ′(t) = g′(t) +K(t, t)Y (t) +

∫ t

0

∂K(t, s)

∂t
Y (t) dt.

(b) Give a corresponding result that guarantees thatY (t) is twice continu-
ously differentiable on[0, T].

8. Using the MATLAB programvie trap, solve (12.23) on[0, 12]. Do so for
stepsizesh = 0.2, 0.1, 0.05; then graph the errors over the full interval.

9. Apply the MATLAB programvie trap to the equation

Y (t) = g(t) + λ

∫ t

0

Y (s) ds, t ≥ 0,

g(t) = (1 − λ) sin t+ (1 + λ) cos t− λ

over the interval[0, 2π]. The true solution isY (t) = cos t + sin t. Do so for
stepsizes ofh = 0.5, 0.25, 0.125 andλ = −1, 1. Observe the decrease in the
error ash is halved. Comment on any differences observed between the cases
of λ = −1 andλ = 1.

10. Using mathematical induction onn, prove Lemma 12.6.

11. In Example 12.8 it is asserted thatY (t1) − y1 = O(h3). Explain why this is
true.

12. Write MATLAB programs for both Simpson methods 1 and 2. Generatey1
using the trapezoidal method. After writing the program, use it to solve the
linear integral equation (12.54), say on[0, 10]. Use a stepsize ofh = 0.2 and
graph the errors using MATLAB.

13. Using the programs of Problem 12, solve the equation given in Problem 9. Do
so with both Simpson methods. Do so with bothλ = −1 andλ = 1. Use
h = 0.2, 0.1 and solve the equation on[0, 10].

14. In analogy with the formulas (12.26)–(12.28) for the quadrature error for the
trapezoidal rule, give the corresponding formulas for Simpson method 2. Note
that this includes the Newton38 ’s rule.

APPENDIX A

TAYLOR’S THEOREM

For a function with a number of derivatives at a specific point, Taylor’s theorem
provides a polynomial that is close to the function in a neighborhood of the point
and an error formula for the difference between the functionand the polynomial.
Taylor’s theorem is an important tool in developing numerical methods and deriving
error bounds. We start with a review of the mean value theorem.

Theorem A.1 (Mean value theorem) Assume thatf(x) is continuous on[a, b] and is
differentiable on(a, b). Then there is a pointc ∈ (a, b) such that

f(b) − f(a) = f ′(c) (b− a). (A.1)

The numberc in (A.1) is usually unknown. There is an analogous form of the
theorem for integrals. Assume thatf(x) is continuous on[a, b],w(x) is nonnegative
and integrable on[a, b]. Then there existsc ∈ (a, b) for which

∫ b

a

f(x)w(x) dx = f(c)

∫ b

a

w(x) dx. (A.2)

235

236 APPENDIX A. TAYLOR’S THEOREM

Theorem A.2 (Taylor’s theorem for functions of one real variable) Assume thatf(x)
hasn+ 1 continuous derivatives fora ≤ x ≤ b, and letx0 ∈ [a, b]. Then

f(x) = pn(x) +Rn(x), a ≤ x ≤ b, (A.3)

where

pn(x) = f(x0) + (x − x0)f
′(x0)

+
(x− x0)

2

2!
f ′′(x0) + · · · + (x− x0)

n

n!
f (n)(x0)

=

n∑

j=0

(x− x0)
j

j!
f (j)(x0) (A.4)

is the Taylor polynomial of degreen for the functionf(x) and the point of approx-
imationx0, andRn(x) is the remainder in approximatingf(x) by pn(x). We have

Rn(x) =
1

n!

∫ x

x0

(x− t)nf (n+1)(t) dt (A.5)

=
(x− x0)

n+1

(n+ 1)!
f (n+1)(cx) (A.6)

with cx an unknown point betweenx0 andx.

The Taylor polynomial is constructed by requiring

p(j)
n (x0) = f (j)(x0), j = 0, 1, . . . , n.

Thus, we expectpn(x) is close tof(x), at least forx close tox0. Two forms of the
remainderRn(x) are given in the theorem. The form (A.6) is derived from (A.5)by
an application of the integral form of the mean value theorem, (A.2). The remainder
formula (A.5) does not involve an unknown point, and it is useful where precise error
bound is needed. In most contexts, the remainder formula (A.6) is sufficient.

Taylor’s theorem can be proved by repeated application of the formula

g(x) = g(x0) +

∫ x

x0

g′(t) dt (A.7)

for a continuously differentiable functiong. Evidently, this formula corresponds to
Taylor’s theorem withn = 0. As an example, we illustrate the derivation of (A.3)
with n = 1; the derivation of (A.3) forn > 1 can be done similarly through an
inductive argument. We apply (A.7) forg = f ′:

f ′(t) = f ′(x0) +

∫ t

x0

f ′′(s) ds.

APPENDIX A. TAYLOR’S THEOREM 237

Thus,

f(x) = f(x0) +

∫ x

x0

f ′(t) dt

= f(x0) +

∫ x

x0

[
f ′(x0) +

∫ t

x0

f ′′(s) ds

]
dt

= f(x0) + f ′(x0) (x− x0) +

∫ x

x0

∫ t

x0

f ′′(s) ds dt.

Interchanging the order of integration, we can rewrite the last term as
∫ x

x0

∫ x

s

f ′′(s) dt ds =

∫ x

x0

(x− s) f ′′(s) ds.

Changings into t, we have thus shown Taylor’s theorem withn = 1.
In applying Taylor’s theorem, we often need to choose a valuefor the nonneg-

ative integern. If we want to have a linear approximation of twice continuously
differentiable functionf(x) nearx = x0, then we taken = 1 and write

f(x) = f(x0) + (x− x0) f
′(x0) + 1

2 (x− x0)
2 f ′′(c)

for somec betweenx andx0. To show that(f(x + h) − f(x))/h (h > 0, usually
small) is a first-order approximation off ′(x), we choosen = 1,

f(x+ h) = f(x) + h f ′(x) + 1
2h

2 f ′′(c),

and so
f(x+ h) − f(x)

h
= f ′(x) + 1

2h f
′′(c).

As a further example, let us show that(f(x + h) − f(x))/h is a second-order ap-
proximation off ′(x+ h/2). We choosen = 2, and write (herex0 = x+ 1

2h)

f(x+ h) = f
(
x+ 1

2h
)

+ 1
2h f

′(x+ 1
2h) + 1

2

(
1
2h
)2
f ′′
(
x+ 1

2h
)

+ 1
6

(
1
2h
)3
f ′′′(c1),

f(x) = f(x+ 1
2h) − 1

2h f
′(x+ h/2) + 1

2

(
1
2h
)2
f ′′(x+ h/2)

− 1
6

(
1
2h
)3
f ′′′(c2)

for somec1 ∈ (x+ 1
2h, x+ h) andc2 ∈ (x, x + 1

2h). Thus,

f(x+ h) − f(x)

h
= f ′

(
x+ 1

2h
)

+ 1
48h

2 [f ′′′(c1) + f ′′′(c2)]

showing(f(x+ h)− f(x))/h is a second-order approximation off ′(x+ 1
2h). This

result is usually expressed by saying that(f(x + h) − f(x− h))/(2h) is a second-
order approximation tof ′(x). Of course, in these preceding examples, we assume
the functionf(x) has the required number of derivatives.

238 APPENDIX A. TAYLOR’S THEOREM

Sample formulas resulted from Taylor’s theorem are

ex = 1 + x+
x2

2!
+ · · · + xn

n!
+

xn+1

(n+ 1)!
ec,

sin(x) = x− x3

3!
+
x5

5!
− · · · + (−1)n−1 x2n−1

(2n− 1)!
+ (−1)n x2n+1

(2n+ 1)!
cos(c),

cos(x) = 1 − x2

2!
+
x4

4!
− · · · + (−1)n x2n

(2n)!
+ (−1)n+1 x2n+2

(2n+ 2)!
cos(c),

log(1 − x) = −
(
x+

1

2
x2 + · · · + 1

n+ 1
xn+1

)
−
(

1

1 − c

)
xn+2

n+ 2
, −1 ≤ x < 1,

wherec is betweenx0 = 0 andx. The first three formulas are valid for any−∞ <
x <∞.

Theorem A.3 (Taylor’s theorem for functions of two real variables) Assume that
f(x, y) has continuous partial derivatives up to ordern + 1 for a ≤ x ≤ b and
c ≤ y ≤ d, and letx0 ∈ [a, b], y0 ∈ [c, d]. Then

f(x, y) = pn(x, y) +Rn(x, y), a ≤ x ≤ b, c ≤ y ≤ d, (A.8)

where

pn(x, y) = f(x0, y0)

+

n∑

j=1

1

j!

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]j

f(x0, y0), (A.9)

Rn(x, y) =
1

(n+ 1)!

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]n+1

× f(x0 + θ (x− x0), y0 + θ (y − y0)) (A.10)

with an unknown numberθ ∈ (0, 1).

In (A.9) and (A.10), the expression

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]j

f(x0, y0)

=

j∑

i=0

j!

i!(j − i)!
(x − x0)

i(y − y0)
j−i ∂j

∂xi∂yj−i
f(x0, y0)

is defined formally through the binomial expansion for numbers:

(a+ b)j =

j∑

i=0

j!

i!(j − i)!
aibj−i.

APPENDIX A. TAYLOR’S THEOREM 239

For example, withj = 2, we obtain

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]2
f(x0, y0)

= (x − x0)
2 ∂

2

∂x2
f(x0, y0) + 2 (x− x0) (y − y0)

∂2

∂x∂y
f(x0, y0)

+ (y − y0)
2 ∂

2

∂y2
f(x0, y0).

Formula (A.8) with (A.9)–(A.10) can be proved by applying Taylor’s theorem for
one real variable as follows. Define a function of one real variable

F (t) = f(x0 + t (x− x0), y0 + t (y − y0)).

Note thatF (0) = f(x0, y0), F (1) = f(x, y). Applying formula (A.3) with (A.4)
and (A.6), we obtain

F (1) = F (0) +

n∑

j=1

1

j!
F (j)(0) +

1

(n+ 1)!
F (n+1)(θ)

for some unknown numberθ ∈ (0, 1). Using the chain rule, we can verify that

F (j)(0) =

[
(x − x0)

∂

∂x
+ (y − y0)

∂

∂y

]j

f(x0, y0).

This argument is also valid when the function hasm (m > 2) real variables,
leading to Taylor’s theorem for functions ofm real variables.

APPENDIX B

POLYNOMIAL INTERPOLATION

The problem of polynomial interpolation is the selection ofa particular polynomial
p(x) from a given class of polynomials in such a way that the graph of y = p(x)
passes through a finite set of given data points. Polynomial interpolation theory has
many important uses, but in this text we are interested in it primarily as a tool for
developing numerical methods for solving ordinary differential equations.

Let x0, x1, . . . , xn be distinct real or complex numbers, and lety0, y1, . . . , yn be
associated function values. We now study the problem of finding a polynomialp(x)
that interpolates the given data:

p(xi) = yi, i = 0, 1, . . . , n. (B.1)

Does such a polynomial exist, and if so, what is its degree? Isit unique? What
formula can we use to for producep(x) from the given data?

By writing
p(x) = a0 + a1x+ · · · + amx

m

for a general polynomial of degreem, we see that there arem + 1 independent
parametersa0, a1, . . . , am. Since (B.1) imposesn + 1 conditions onp(x), it is
reasonable to first consider the case whenm= n. Then we want to finda0, a1, . . . , an

241

242 APPENDIX B. POLYNOMIAL INTERPOLATION

such that

a0 + a1x0 + a2x
2
0 + · · · + anx

n
0 = y0,

...

a0 + a1xn + a2x
2
n + · · · + anx

n
n = yn. (B.2)

This is a system ofn + 1 linear equations inn + 1 unknowns, and solving it is
completely equivalent to solving the polynomial interpolation problem. In vector–
matrix notation, the system is

Xa = y

with

X =




1 x0 x2
0 · · · xn

0

...
...

1 xn−1 x2
n−1 · · · xn

n−1

1 xn x2
n · · · xn

n



, (B.3)

a = [a0, a1, . . . , an]T , y = [y0, . . . , yn]T .

The matrixX is called aVandermonde matrix, and its determinant is given by

det(X) =
∏

0≤j<i≤n

(xi − xj).

Theorem B.1 Givenn+1 distinct pointsx0, . . . , xn andn+1 ordinatesy0, . . . , yn,
there is a polynomialp(x) of degree≤ n that interpolatesyi at xi, i = 0, 1, . . . , n.
This polynomialp(x) is unique in the set of all polynomials of degree≤ n.

Proof. There are a number of different proofs of this important result. We give a
constructive proof that exhibits explicitly the interpolating polynomialp(x) in a form
useful for the applications in this text.

To begin, consider the special interpolation problem in which

yi = 1, yj = 0 for j 6= i

for somei, 0 ≤ i ≤ n. We want a polynomial of degree≤ n with then zerosxj ,
j 6= i. Then

p(x) = c(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x − xn)

for some constantc. The conditionp(xi) = 1 implies

c = [(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)]−1.

This special polynomial is written as

li(x) =
∏

j 6=i

(
x− xj

xi − xj

)
, i = 0, 1, . . . , n. (B.4)

APPENDIX B. POLYNOMIAL INTERPOLATION 243

To solve the general interpolation problem (B.1), we can write

p(x) = y0l0(x) + y1l1(x) + · · · + ynln(x).

With the special properties of the polynomialsli(x), it is easy to show thatp(x)
satisfies (B.1). Also, degreep(x) ≤ n since allli(x) have degreen.

To prove uniqueness, suppose thatq(x) is another polynomial of degree≤ n that
satisfies (B.1). Define

r(x) = p(x) − q(x).

Then degreer(x) ≤ n and

r(xi) = p(xi) − q(xi) = yi − yi = 0, i = 0, 1, . . . , n.

Sincer(x) hasn+ 1 zeros, we must haver(x) ≡ 0. This provesp(x) ≡ q(x).

The formula

pn(x) =

n∑

i=0

yili(x) (B.5)

is calledLagrange’s formulafor the interpolating polynomial.

Example B.2

p1(x) =
x− x1

x0 − x1
y0 +

x− x0

x1 − x0
y1 =

(x1 − x)y0 + (x− x0)y1
x1 − x0

,

p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
y0 +

(x− x0)(x − x2)

(x1 − x0)(x1 − x2)
y1 +

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
y2.

The polynomial of degree≤ 2 that passes through the three points(0, 1), (−1, 2),
and(1, 3) is

p2(x) =
(x + 1)(x− 1)

(0 + 1)(0 − 1)
· 1 +

(x− 0)(x− 1)

(−1 − 0)(−1 − 1)
· 2 +

(x − 0)(x+ 1)

(1 − 0)(1 + 1)
· 3

= 1 + 1
2x+ 3

2x
2.

If a functionf(x) is given, then we can form an approximation to it using the
interpolating polynomial

pn(x; f) ≡ pn(x) =

n∑

i=0

f(xi)li(x). (B.6)

This interpolatesf(x) at x0, . . . , xn. This polynomial formula is used at several
points in this text.

The basic result used in analyzing the error of interpolation is the following theo-
rem. As a notation,H{a, b, c, . . .} denotes the smallest interval containing all of the
real numbersa, b, c,

244 APPENDIX B. POLYNOMIAL INTERPOLATION

Theorem B.3 Letx0, x1, . . . , xn be distinct real numbers, and letf be a real valued
function withn + 1 continuous derivatives on the intervalIt = H{t, x0, . . . , xn}
with t some given real number.

Then there existsξ ∈ It with

f(t) −
n∑

j=0

f(xj)lj(t) =
(t− x0) · · · (t− xn)

(n+ 1)!
f (n+1)(ξ). (B.7)

A proof of this result can be found in many numerical analysistextbooks; e.g., see
[11, p. 135]. The theory and practice of polynomial interpolation represent a very
large subject. Again, most numerical analysis textbooks contain a basic introduction,
and we refer the interested reader to them.

REFERENCES

1. R. Aiken (editor).Stiff Computation,Oxford University Press, Oxford, 1985.

2. R. Alexander. “Diagonally implicit Runge-Kutta methodsfor stiff ODE’s”, SIAM Journal
on Numerical Analysis14 (1977), pp. 1006–1021.

3. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorenson.LAPACK Users’ Guide,
SIAM Pub., Philadelphia, 1992.

4. V. Arnold. Mathematical Methods of Classical Mechanics, Springer–Verlag, New York,
1974.

5. U. Ascher, H. Chin, and S. Reich. “Stabilization of DAEs and invariant manifolds”,Nu-
merische Mathematik67 (1994), pp. 131–149.

6. U. Ascher, J. Christiansen, and R. Russell. “Collocationsoftware for boundary-value
ODEs”,ACM Trans. Math. Soft.7 (1981), pp. 209–222.

7. U. Ascher, J. Christiansen, and R. Russell. “COLSYS: Collocation software for boundary-
value ODEs”,ACM Trans. Math. Soft.7 (1981), pp. 223–229.

8. U. Ascher and R. Russell, eds.Numerical Boundary Value ODEs, Birkhäuser, Boston,
MA, 1985.

9. U. Ascher, R. Mattheij, and R. Russell.Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

10. U. Ascher and L. Petzold.Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

245

246 REFERENCES

11. K. Atkinson.An Introduction to Numerical Analysis, 2nd ed., John Wiley, New York, 1989.

12. K. Atkinson and W. Han.Elementary Numerical Analysis, 3rd ed., John Wiley, New York,
2004.

13. A. Aziz.Numerical Solutions of Boundary Value Problems for Ordinary Differential Equa-
tions, Academic Press, New York, 1975.

14. C. Baker.The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, 1977.

15. J. Baumgarte. “Stabilization of constraints and integrals of motion in dynamical systems”,
Computer Methods in Applied Mechanics and Engineering1 (1972), pp. 1–16.

16. W. Boyce and R. DiPrima.Elementary Differential Equations, 7th edition, John Wiley &
Sons, 2003.

17. H. Brunner.Collocation Methods for Volterra Integral and Related Functional Equations,
Cambridge Univ. Press, 2004.

18. P. Bogacki and L. Shampine. “A3(2) pair of Runge-Kutta formulas”,Appl. Math. Lett. 2
(1989), pp. 321–325.

19. K.E. Brenan, S.L. Campbell and L.R. Petzold.Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations, Number 14 in Classics in Applied Mathematics.
SIAM Publ., Philadelphia, PA, 1996. Originally published by North Holland, 1989.

20. K.E. Brenan and B.E. Engquist. “Backward differentiation approximations of nonlinear
differential/algebraic systems”,Mathematics of Computation51 (1988), pp. 659–676.

21. P.N. Brown, A.C. Hindmarsh, and L.R. Petzold. “Using Krylov methods in the solution
of large-scale differential-algebraic systems”,SIAM J. Scientific Computing15 (1994),
pp. 1467–1488.

22. K. Burrage and J.C. Butcher. “Stability criteria for implicit Runge-Kutta methods”,SIAM
J. Numer. Anal.16 (1979), pp. 46–57.

23. J.C. Butcher. “Implicit Runge-Kutta processes”,Math. Comp.18 (1964), pp. 50–64.

24. J.C. Butcher. “A stability property of implicit Runge–Kutta methods”,BIT 15 (1975), pp.
358–361.

25. J.C. Butcher. “General linear methods”,Acta Numerica15 (2006), Cambridge University
Press.

26. S.L. Campbell, R. Hollenbeck, K. Yeomans and Y. Zhong. “Mixed symbolic-numerical
computations with general DAEs. I. System properties”,Numerical Algorithms19 (1998),
pp. 73–83.

27. J. Cash. “On the numerical integration of nonlinear two-point boundary value problems
using iterated deferred corrections. II. The development and analysis of highly stable
deferred correction formulae”,SIAM J. Numer. Anal.25 (1988), pp. 862–882.

28. B. Childs, E. Denman, M. Scott, P. Nelson, and J. Daniel, eds.Codes for Boundary-Value
Problems in Ordinary Differential Equations, Lec. Notes in Comp. Sci.76, Springer-
Verlag, New York, 1979.

29. G.F. Corliss,A. Griewank, P. Henneberger, G. Kirlinger, F.A. Potra, and H.J. Stetter. “High-
order stiff ODE solvers via automatic differentiation and rational prediction”, inNumerical
Analysis and its Applications(Rousse, 1996), Lecture Notes in Computer Science1196,
pp. 114–125. Springer–Verlag, Berlin, 1997.

REFERENCES 247

30. M. Crouzeix. “Sur laB-stabilité des méthodes de Runge-Kutta”.Numer. Math.32 (1979),
pp. 75–82.

31. M. Crouzeix and P.A. Raviart. “Approximation des probl`emes d’évolution”, unpublished
lecture notes, Université de Rennes, 1980.

32. P. Deuflhard. “Nonlinear equation solvers in boundary value problem codes”, inCodes
for Boundary-Value Problems in Ordinary Differential Equations, B. Childs, M. Scott, J.
Daniel, E. Denman, and P. Nelson, eds., Lec. Notes in Comp. Sci. 76, Springer-Verlag,
New York, 1979, pp. 40–66.

33. P. Deuflhard and F. Bornemann.Scientific Computing with Ordinary Differential Equa-
tions, Springer-Verlag, 2002.

34. J. Dormand and P. Prince.“A family of embedded Runge-Kutta formulae”,J. Comp. Appl.
Math.6 (1980), pp. 19–26.

35. W. Enright. “Improving the performance of numerical methods for two-point boundary
value problems”, inNumerical Boundary Value ODEs, U. Ascher and R. Russell, eds.,
Birkhäuser, Boston, MA, 1985, pp. 107–119.

36. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. “Introduction to adaptive methods for
differential equations”,Acta Numerica5 (1995), Cambridge University Press.

37. A. Fasano and S. Marmi.Analytical Mechanics: An Introduction. Oxford University Press,
Oxford, 2006.

38. G.R. Fowles.Analytical Mechanics, Holt, Rinehart and Winston, 1962.

39. C. W. Gear.Numerical Initial Value Problems in Ordinary DifferentialEquations, Prentice-
Hall, Englewood Cliffs, NJ, 1971.

40. C.W. Gear, B. Leimkuhler, and G.K. Gupta. “Automatic integration of Euler–Lagrange
equations with constraints”, inProceedings of the International Conference on Computa-
tional and Applied Mathematics(Leuven, 1984), Vol.12/13 (1985), pp. 77–90.

41. I. Gladwell and D. Sayers.Computational Techniques for Ordinary Differential Equations,
Academic Press, New York, 1980.

42. E. Hairer, C. Lubich, and M. Roche.The Numerical Solution of Differential-Algebraic
Systems by Runge–Kutta Methods. Lecture Notes in Mathematics1409 (1989), Springer–
Verlag, Berlin.

43. E. Hairer, C. Lubich, and G. Wanner. “Geometric numerical integration illustrated by the
Störmer-Verlet method”,Acta Numerica12 (2003), Cambridge University Press.

44. E. Hairer and G. Wanner.Solving Ordinary Differential Equations. II. Stiff and Differential-
Algebraic Problems,2nd ed., Springer-Verlag, Berlin, 1996.

45. P. Henrici.Discrete Variable Methods in Ordinary Differential Equations, John Wiley,
1962.

46. A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Wood-
ward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers,ACM
Transactions on Mathematical Software31 (2005), pp. 363–396. Also, go to the URL
https://computation.llnl.gov/casc/sundials/

47. E. Isaacson and H. Keller.Analysis of Numerical Methods, John Wiley, New York, 1966.

48. A. Iserles.A First Course in the Numerical Analysis of Differential Equations, Cambridge
University Press, Cambridge, United Kingdom, 1996.

248 REFERENCES

49. L. Jay. “Convergence of Runge-Kutta methods for differential-algebraic systems of index
3”, Applied Numerical Mathematics17 (1995), pp. 97–118.

50. L. Jay. “Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian sys-
tems”,SIAM Journal on Numerical Analysis33 (1996), pp. 368–387.

51. L. Jay. “Specialized Runge-Kutta methods for index 2 differential-algebraic equations”,
Mathematics of Computation75 (2006), pp. 641–654.

52. H. Keller.Numerical Solution of Two-Point Boundary Value Problems, Regional Conf.
Series in Appl. Maths.24, SIAM Pub., Philadelphia, PA, 1976.

53. H. Keller.Numerical Methods for Two-Point Boundary Value Problems,Dover, New York,
1992 (corrected reprint of the 1968 edition, Blaisdell, Waltham, MA).

54. H. Keller and S. Antman, eds.Bifurcation Theory and Nonlinear Eigenvalue Problems,
Benjamin, New York, 1969.

55. C.T. Kelley.Solving Nonlinear Equations with Newton’s Method, SIAM Pub., Philadel-
phia, 2003.

56. W. Kelley and A. Peterson.Difference Equations, 2nd ed., Academic Press, Burlington,
Massachusetts, 2001.

57. R. Kress.Numerical Analysis, Springer-Verlag, New York, 1998.

58. J. Lambert.Computational Methods in Ordinary Differential Equations, John Wiley, New
York, 1973.

59. P. Linz.Analytical and Numerical Methods for Volterra Equations, SIAM Pub., 1985.

60. P. Lötstedt and L. Petzold. “Numerical solution of nonlinear differential equations with
algebraic constraints. I. Convergence results for backward differentiation formulas”,Math-
ematics of Computation46 (1986), pp. 491–516.

61. J. Marsden and T. Ratiu.Introduction to Mechanics and Symmetry, Springer-Verlag, New
York, 1999.

62. R. März. “Numerical methods for differential algebraic equations”,Acta Numerica 1992,
Cambridge University Press, 1992.

63. D. Melgaard and R. Sincovec. “Algorithm 565: PDETWO/PSETM/GEARB: Solution of
systems of two-dimensional nonlinear partial differential equations”,ACM Trans. Math.
Software7 (1981), pp. 126–135.

64. R. Miller.Nonlinear Volterra Integral Equations, Benjamin Pub., 1971.

65. L.R. Petzold. “A description of DASSL: A differential-algebraic system solver”, in R. S.
Stepleman, editor,Scientific Computing, pp. 65–68. North-Holland, Amsterdam, 1983.

66. L. Petzold, L. Jay, and J. Yen. “Numerical solution of highly oscillatory ordinary differ-
ential equations”,Acta Numerica6 (1997), Cambridge University Press.

67. E. Platen. “An introduction to numerical methods for stochastic differential equations”,
Acta Numerica8 (1999), Cambridge University Press.

68. A. Quarteroni, R. Sacco, and F. Saleri.Numerical Mathematics, Springer-Verlag, New
York, 2000.

69. L.B. Rall and G.F. Corliss. “An introduction to automatic differentiation”, inComputa-
tional Differentiation(Santa Fe, NM, 1996), pp. 1–18. SIAM, Philadelphia, PA, 1996.

REFERENCES 249

70. J. Sanz-Serna. “Symplectic integrators for Hamiltonian problems: an overview”,Acta
Numerica 1992, Cambridge University Press, 1992.

71. W. Schiesser.The Numerical Method of Lines, Academic Press, San Diego, 1991.

72. L. Shampine.Numerical Solution of Ordinary Differential Equations, Chapman & Hall,
New York, 1994.

73. L. Shampine and M. Reichelt. “The MATLAB ODE Suite”,SIAM Journal on Scientific
Computing18 (1997), pp. 1–22.

74. L. Shampine, I. Gladwell, and S. Thompson.Solving ODEs with MATLAB, Cambridge
University Press, 2003.

75. R. Sincovec and N. Madsen. “Software for nonlinear partial differential equations”,ACM
Trans. Math. Software1 (1975), pp. 232–260.

76. A. Stuart. “Numerical analysis of dynamical systems”,Acta Numerica 1994, Cambridge
University Press, 1994.

77. T. Van Hecke and M. Van Daele. “High-order convergent deferred correction schemes
based on parameterized Runge-Kutta-Nyström methods for second-order boundary value
problems. Advanced numerical methods for mathematical modelling”, J. Comput. Appl.
Math.132 (2001), pp. 107–125.

78. D. Widder.The Heat Equation, Academic Press, New York, 1975.

INDEX

A-stability, 143, 173
absolutely stable, 51, 128
Adams-Bashforth methods, 96

asymptotic error formula, 99
convergence, 99
higher order, 99
MATLAB program, 104
order three, 99
order two, 96
predictor formula, 102
region of absolute stability, 103
truncation error, 99

Adams-Moulton methods, 101
order two, 101
trapezoidal method, 56, 101

B-stability, 155, 156
backward differentiation formulas, 140, 160

characteristic equation, 141
definition, 140
stability regions, 141

backward Euler method, 49, 51, 150
definition, 52
MATLAB program, 54

Baumgarte stabilization, 168
BDF methods, 140, 168, 173

boundary conditions, 187
derivative approximations, 194

boundary value problem, 187
finite difference method

convergence, 190
boundary value problem, linear, 187

discretization, 189
existence theory, 188
finite difference method, 188

MATLAB program, 191
Richardson extrapolation, 190

boundary value problem, nonlinear, 195
collocation

Newton’s method, 204
existence theorem, 195
finite difference method, 197

asymptotic error formula, 197
convergence, 197
discretization, 197
Newton’s method, 198

shooting method, 201
Newton’s method, 201

Butcher tableau, 74, 150
Butcher’s simplifying assumptions, 151

characteristic equation, 120

250

INDEX 251

characteristic polynomial, 120
characteristic roots, 120
collocation

boundary value problems, 204
implicit Runge-Kutta methods, 87

Two-point collocation, 87
consistency condition, 113
contractive iteration mapping, 156

DASSL, 168, 173
diagonally implicit Runge–Kutta methods, 153,

155, 160
differential algebraic equations, 160, 163
direction field, 11
DIRK methods, 153, 155, 160
drift, 165, 166

energy
potential, 182

error per unit stepsize, 79
Euler’s method, 15, 166

asymptotic error formula, 26
convergence theorem, 23
definition, 16
error analysis, 21
error bound, 23
MATLAB program, 19, 43
Richardson extrapolation, 28
rounding errors effect, 30
stability, 29
systems, 42
truncation error, 21

Euler-Lagrange equations, 182, 183
explicit method, 53, 112

fixed-point iteration, 54

Gauss implicit Runge-Kutta method, 88, 151,
155, 157, 159, 180

global error, 79

heat equation, 131, 155
discretization, 131
simple explicit method, 132
simple implicit method, 133

Heun’s method, 58, 166
higher order differential equations, 39
homogeneous linear difference equation, 120

ill-conditioned, 9
implicit method, 53, 112

solution of implicit equation, 145
implicit Runge-Kutta methods, 86, 149

B-stability, 155
collocation, 87

DIRK methods, 153
Gauss methods, 151
Lobatto IIIC methods, 153
midpoint method, 159
Radau IIA methods, 152

index, 165, 166, 169
higher, 184
one, 169, 173, 176
three, 170, 181, 183
two, 170, 174, 179

initial value problem, 5
solvability theory, 7
stability, 8

kinetic energy, 182

L-stability, 143
Lagrangian, 181, 182
Lipschitz condition, 7, 76

one-sided, 155
Lobatto IIIC methods, 153, 181, 184
local error, 79
local solution, 79

machine epsilon, 30
mass matrix, 182
MATLAB ODE codes, 82, 105, 146
mean value theorem, 235
mechanics

Lagrangian, 181
method of lines, 131

MATLAB program, 135
midpoint method, 112

implicit Runge-Kutta, 159
weak stability, 123

model problem, 50
multistep methods, 95

characteristic equation, 120
convergence, 115
convergence theory, 122
general error analysis, 111
nonconvergent example, 118
order conditions, 113
parasitic solution, 121
relative stability, 123
root condition, 118
stability, 117, 118
stability theory, 121

Newton’s method, 146, 184
numerical stability, 29

absolute stability, 51

ode113, 106, 147
ode15s, 147

252 INDEX

ode45, 83, 147
one-step methods

Runge-Kutta methods, 70
Taylor series methods, 68

order of convergence, 24
order reduction, 156, 158

parasitic root, 121
parasitic solution, 121
pendulum, 166

spherical, 170
pendulum equation, 40, 163, 165, 183
polynomial interpolation, 241

error formula, 244
Lagrange’s formula, 243
solvability theorem, 242

predictor formula, 54
projection, 166

quadrature order, 151, 158, 177

Radau IIA methods, 152, 155, 160, 180, 184
Radau5 (software), 184
region of absolute stability, 51, 103, 128
relative stability, 123
repetition factor, 229
Richardson extrapolation, 78
root condition, 118
rounding error, 30
Runge-Kutta methods, 70

asymptotic formula, 77
Butcher tableau, 74
classical fourth order method, 74
consistency, 76
convergence, 75
DAEs, 175
error prediction, 78
Fehlberg methods, 80
general framework, 73
implicit methods, 86
MATLAB program, 83
order 2, 70, 72
two-point Gauss method, 88

stability
initial value problem, 8

stable numerical method, 118
stage order, 151, 158, 177
stiff differential equation, 61, 127
stiff order, 159, 169
stiffly accurate, 159, 176, 177
Sundials, 147
systems of differential equations, 37

Euler’s method, 42

Taylor series methods, 68
asymptotic error formula, 70
convergence, 69

Tayor’s theorem
one variable, 236

remainder formula, 236
special cases, 238

two variables, 238
trapezoidal method, 49, 56, 159

absolute stability, 58
definition, 57
Heun’s method, 58
MATLAB program, 59
numerical integration, 56
Volterra integral equation, 216

trapezoidal rule, 150
tridiagonal system, 134, 138, 189, 193
truncation error, 21, 57, 68, 112

multistep methods, 113
Runge-Kutta method, 71

two-point boundary value problem
linear, 187
nonlinear, 195

Volterra integral equation, 211
linear solvability theory, 213
nonlinear solvability theory, 213
numerical methods

convergence theorem, 224
general framework, 219
repetition factor, 229
stability, 225
theory, 223

Simpson methods, 221
stability, 229

solvability theory, 212
special cases, 214
trapezoidal method, 216

error estimate, 217
MATLAB program, 221

weak stability, 123
well-conditioned, 9

