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The collocation method for solving linear and norlinear integral equations results
in many integrals which must be evaluated numerically. In this paper, we give a
general framework for discrete collocation methods, in which all integrals are
replaced by numerical integrals. In some cases, the collocation method leads to
solutions which are superconvergent at the collocation node points. We consider
generalizations of these results, to obtain similar results for discrete collocation
solutions. Lastly, we consider a variant due to Kumar and Stoan for the
collocation solution of Hammerstein integral equations. -

1. Introduction

This paper presents and discusses a framework for analyzing discrete collocation
methods for solving nonlinear integral equations. As a prototype equation,
consider the Urysohn integral equatton

x(s)=£) K(s, t, x(t))dt seD (1.1)

In this equation, D is a closed bounded set in R™, some m =1, and the function
K(s, t, u) is such that the nonlinear integral operator in (1.1) is a completely
continuous operator on some open domain 2 < C(D) into C(D). The framework
presented here will apply to more general nonlinear integral equations, but our
work here will be for equations of the form (1.1).

Collocation is a popular numerical method for solving nonlinear integral
equations, and there is a relatively large literature on its error analysis and
implementation. For example, see Atkinson (1973), Kaneko, Noren, and Xu
(1990), Krasnoselskii (1964), Krasnoselskii et al. (1972), Kumar (1987), (1983),
Kumar and Sloan (1987), Moore (1966), (1968), Vainikko and Karma (1974), and
Weiss {(1974). The principal difficulty with this theory is that there are integrals
which must usually be evaluated numerically, resulting in what we call the discrete
collocation method. A few error analyses have been given for discrete collocation
methods, ¢.g. see Ganesh and Joshi (1989) and Kumar (1988); but these have
generally treated the discrete collocation method as a perturbation of the
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coliocation method, or they have restricted their interest to particular collocation
methods. In this paper, we give a direct and general treatment of the discrete
collocation method, obtaining stronger results than seem possible with earlier

types of analyses.
In Section 2, we review the collocation and discrete collocation method for

linear integral equations. The framework for the discrete collocation method for
linear integral equations is based on results from Flores (1990); but a similar
framework was also given in Golberg (1990). Section 3 discusses the collocation
and discrete collocation methods for nonlinear integral equations; and Section 4
gives some results on superconvergence at the collocation nodes of the discrete
collocation solution. Section 5 considers the special case of Hammerstein

nonlinear integral equations.

2. The discrete collocation method: linear equations

Consider the linear integral equation
x(s) —J’ K(s, Dx(tydt = y(s) seD 2.1)
D

We write this as
x—Hx=y, yeC(D) (2.2)

with C(D) the Banach space of continuous functions on 2, with the uniform
norm. The integral operator is denoted by ¥, and it is a compact linear operator
from C(D) into C(D). We assume that 1 is not an eigenvalue of ¥, so that / - %

has a bounded inverse on C{D).

Let &, be a finite dimensional subspace of C(D) with basis {¢1 ., - - ., Punls
where d=d, is the dimension of &,. Let {f,,,...,;.} be a set of distinct
collocation node points from D, and assume

det [¢;(1)]1#0 (2.3)
For given x € C(D), define
o
Bx(s) = 2, vi,(s) (2.4)
i=1
with ¥ =[yy, . - ., Ya|" chosen by solving the linear system

[qb](rl)]}’ = {x(tl)J LIRS | x(td)}T
In operator notation, the collocation method for solving (2.1) amounts to solving
x,—PHx,=F.y (2.5)

for n sufficiently large.
The general theory of projection methods applies to collocation methods, and

we refer the reader to Atkinson (1976, pp. 54-58). If we assume
Limit ||x — Px|[.=0, all xeC(D) (2.6)

=0
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then it can be shown that

H-P)H}|—0 as n—w 2.7)
This is discussed further in Atkinson (1976, pp. 53—-54). Using (2.7), it can then
be shown that for sufficiently large n, say n=N, ({ - P.H Y7t exists and is
uniformly bounded,

(- R i=M=cU-H)"I, na=N (2.8)
with ¢ a suitable constant. [We will use ¢ as a generic constant throughout this
paper.] In addition, for suitable positive constants c, and ¢,

el — Puxlln = flx — xolle ez llx = Poxllo,  n=N (2.9)

This says that the order of convergence of x, to x is exactly that of the

interpolation error x — P,x.
An important variant on the collocation method (and more generally, on

projection methods) is the Sloan iterate or iterated collocation solution:

£, =y + ¥Hx, (2.10)
By applying P, to both sides and using (2.5},
F.£, =x, (2.11)
Substituting into (2.10), £, satisfies the equation
R~ HPE, =y (2.12)

One of the main reasons for being interested in the iterated collocation solution
is that it often converges more rapidly than does the original solution x,. In

particular,
X — Zalle=c I = P)xlle n=N (2.13)

and in many cases, the right side converges to zero more rapidly than does
x—P.x.

The discrete collocation method: linear equations To be more precise in our
discussion of the further discretization of the collocation method, we set up the
linear system that is used in solving the collocation equation (2.5). Since x,, € &,,

write
o

x.(5) = 2. a;p(s) (2.14)
i=1
The coefficients {a;} are obtained by solving
d

Safo-[ K os@a]=yw =14 @1
j=t o
The integrals in (2.15) must usually be evaluated numerically.
To approximate these integrals, we introduce a numerical integration scheme
R

Hx(s) = L K(s, )x(0) di~ %x(s) = 3 we(s)x(ze)  seD  (2.16)

k=1
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with arbitrary x € C(D). The integration nodes are {7,,, ..., Tr..} With R=R,
the number of integration node points associated with the index n. The weights
{w.(s)} are allowed to be general enough to include integration methods based
on product integration. It is assumed that

Limit ||#x — #x}}.=0, all xeC(D) (2.17)

Further assumptions on {J¥,} are given later.
The discrete collocation method is defined by the approximating equation

-z, — Pz, =Fy (2.18)
and the iterated discrete collocation solution is defined by
.=y + H,z, (2.19)
In analogy with the collocation method,
P:,. =2z, (2.20)
and 2, satisfies
2y HyPrty =y (2.21)

To see more precisely the effect of using (2.18), we let
d
z,(s) = 2 Bi9,(s) (2.22)
j=1

The coefficients {f,} are then obtained from solving

d R
S p[o0- 2 mwem)=ye) =14 @)
= =
This corresponds to the numerical integration of the integrals in (2.15) by using
the method in (2.16).

The standard means of analyzing the discrete collocation method is to regard
(2.23) as a perturbation of the earlier system (2.15); and then the solvability
theory for (2.15) is combined with perturbation theory to give an error analysis
for (2.23), and thence for (2.18). For example, see Joe {1985, p. 1172), in which
an error analysis is given for collocation with piecewise polynomial functions. In
contrast, the present framework gives a direct analysis of (2.18) and (2.21}, one
not using the convergence results for the collocation equations (2.5) and (2.12).
" The present approach was first given in Flores (1990) and Golberg (1990, pp.
113-115). We begin with the special case in which d, = R,..

THEOREM 1 Assume d, = R,,, and further assume that the collocation nodes {t;}
and the integration nodes {z;} are the same. Assume ([ — %,P,)"" exists. Then
the iterated discrete collocation solution Z, is the exact solution to the Nystrém

equation
z—X,z=y (2.24)




COLLOCATION METHOD FOR NONLINEAR INTEGRAL EQUATIONS 199

Proof. It is sufficient to note that
H . Pz=%¥,.z
for all z e C(D), from the above hypotheses. U

As a consequence of this theorem, the convergence of a number of well-known
cases follows from the error analysis for the Nystrom method. As an example of
such a result, see Joe (1985, p. 1174). One of the main results in this latter paper
analyzes the case with %, defined as piecewise polynomial functions that are
piecewise continuous, with the numerical integration a composite Gauss—
Legendre quadrature. [For an analysis of the Nystrtém method, see Anselone
(1971} or Atkinson (1976).] _

We consider now the more general case, in which R, # d,. The solvability of
(2.18) and (2.21) are closely related, as is also true of (2.5) and (2.12) for the
collocation method. If (/ — P,%,) ! exists, then

- ¥,P)" =I+%(l-PX,)'P, (2.25)

Conversely, if (I — %, P,)~" exists, then
(I-PH) '=1+P({—-%P) "%, (2.26)

With these results, we are free to choose to analyze either the discrete collocation
method or the iterated discrete collocation method, whichever is more con-

venient; and we choose the latter.

TueoreM 2 Let the integral equation (/- 3)x =y be uniquely solvable for
y e C(D). Assume {¥,} is a collectively compact family of the approximations to
9%, and assume it satisfies the pointwise convergence of (2.17). Assume {P,}isa
uniformly bounded and pointwise convergent family of projection operators on
C(D). Then for all sufficiently large n, say n=N, ({—%,P,) " exists and is
uniformly bounded. Moreover, if Z, is the solution to (2.21), then

I = Zlles I = L) N 1 Hx = K Poxlle,  nZ=N (2.27)

Proof. It is straightforward to show {¥,F.} is a collectively compact and
pointwise convergent family on C(D}; and then the theorem follows from known

results, e.g. Anselone (1971). U

3. The discrete collocation method: nonlinear equations

The nonlinear integral equation is written abstractly as
x = H{x) 3.1

It is assumed that ¥ : 2 < C(D)—> C(D) is a completely continuous operator
with € an open set. We will always take &= C(D), although this could be
generalized to subspaces of C(D) with norms that imply uniform conveigence.
With the notation of Section 2, the collocation method for (3.1) is defined as
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x,=P.H(x,) (3.2)
The iterated collocation method is defined by
£, = H(x,) (3.3)

The first general convergence results for the collocation method (3.2) seem to
have been given by M. A. Krasnoselskii around 1950 (see Krasnoselskii (1964)).
The analysis of the approximating equation was carried out using the Schauder-
Leray degree theory for completely continuous vector fields. Other analyses of
the collocation method (3.2) have since been given, including Kumar (1987),
Kumar-Sloan (1987), and Weiss (1974). For an analysis of the iterated
collocation method, see Atkinson—Potra (1987).

As with the linear case, let #(x} be approximated by a ‘numerical integration

operator’,
Hx)=H,(x) forallxe 2 3.4)

For the Urysohn integral operator of (1.1), this would'usually take the form of a
standard numerical integration. For example,
R

f K(s, 6, x(0)) dt = > wK(s, 7, (1)), xe® (3.5)
D j=1
with R=R,, as in Section 2. More general forms are possible, for example, to
compensate for singular integrands by using product integration. But it is always
assumed that J,(x} uses only the values {x(t),...,x{(7x)} in approximating

H(x) to obtain %, (x).
To see more explicitly the form of the collocation system that must be

approximated, let
d
x,(8)= 2, aby(s)
i=1

Substituting into the Urysohn equation (1.1) and collocating at the node points
{t, 1=i=d,} yields

E apt) = f ( a¢,(z)) i=1,...,d, (3.6)

The discrete collocation method replaces the integral with a numerical integral,

such as that in (3.5).
The discrete collocation method for solving (3.1) is defined by

z, = P, (2,) (3.7
The iterated discrete collocation solution is defined by
2, = H(z,) (3-8)

As in (2.20),
2, =P2Z, (3.9)




COLLOCATION METHOD FOR NONLINEAR INTEGRAL EQUATIONS 201

and thus z, and Z, agree at the collocation points {t;}. Using (3.9) in (3.8}, we
have that Z, satisfies

2, =, (P.1.) (3.10)

We give an analysis first for the iterated discrete collocation solution, and then
the convergence of {z,} will follow from

x—z, =[x — Bx]+ Plx — 4] (3.11)
Also, from (3.9)
Maximum |x(¢,) — z.(t)] < |x — Z.[l= (3.12)

i=i=d
The convergence analysis for (3.10} is based on Atkinson (1973); but Weiss
(1974) could also have been used. Following are hypotheses for the approximat-
ing operators {¥, |n=1}. These are satisfied by essentially all numerical
integration operators used in practice.
Hl. %, : Q< C(D)— C(D) are completely continuous operators. In addition,
%,(x) depends on x at only the node points {7; |1=i=R,}.
H2. {#,} is a collectively compact family on D: for every bounded set B  £2,
the set {¥,(B) | n =1} is precompact in C(D).
H3. For every x € 2, H,(x)— H(x) as n—>.
H4. At each x € @, {¥,} is an equicontinuous family.
H5. For a given fixed point x, of % and r >0, assume # and %, n =1, are
twice Frechet differentiable on B(x,, &) ={x | |[x — x.]| = &0} with

NIl NZRI =M, xeBlxy, &) n=1,
with M a positive constant.

TuEorEM 3 Assume ¥ : Q < C(D)— C(D) is a completely continuous operator
with €2 an open set; and in addition, let x. be an isolated fixed point of % of
nonzero (Schauder—Leray) index. Assume {9, {n=1} satisfies the above
hypotheses H1--H4. Finally, assume that d,=R,and {#,} = {%..}, foralln=1
Then
(a) The itesated discrete collocation method coincides with the Nystrém
method z = ¥,(z). From this it follows that
(b) there is a radius &> 0 such that for any 0 < £ < g, there is an N, >0, for
which n = N, implies the function 7, has no fixed point in the neighbour-
hood {x | & = {jx — x,{| < &}; and
(c) For any given radius £ >0, there is an N. >0, such that for all n= N, the
function ¥, has at least one fixed point Z, within £ of x,.
Consequently, the fixed points of the approximating equation approximate x,
within some fixed neighbourhood {x | Ilx — x4 = &} of x,. If in addition, HS5 is
satisfied and 1 is not an eigenvatue of #'(x,), then

(d) For &, sufficiently small, and for N sufficiently large, the fixed points Z, of
%, within B{x,, &) exist and are unique, for n=N; and for some constant
c >0,

”x*_fn”SC ”%(x*)ﬁ‘y{n(x*)llx HEN (3'13)
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Proof. For any x, #,(P.x}= X,{x). This follows from HI and the definition of
P.x, that
P.x(r) =x(t;), i=1...,d,

The remainder of the theorem is then a simple restatement of Theorems 3 and 4
of Atkinson (1973). O

This is an important resuit, since in much of the literature for discrete
collocation methods for nonlinear equations, &, =R, and {f,,}={7%.}. By a
direct analysis of the right side of (3.13), improved error results can be obtained,

as in Atkinson (1973) and Weiss (1974).
For the discrete collocation method with d,#+ R,, the result is only slightly

more complex.

THEOREM 4 Assume the hypotheses of Theorem 3, including H1-H4. In
addition, assume (2.6), that {P,} is pointwise convergent to { on C(D); and
assume that P,{Q2}= @, n = 1. Then the conclusions (b) and {c) of Theorem 3 are
stifl valid. If HS is also assumed, then (c) of Theorem 3 is also valid, with

llxs = 2.0l = c | (xs) = K (Px ), n=N (3.14)
Proof. First show that the family {%, | n =1}
#(x)=H,(Px), xe

satisfies the hypotheses H1-H4 given above, with %, replaced by %,; and then
the remainder of the proof follows from Atkinsen (1973). As the proof H1-H4

for {3} is straightforward, we omit it. O

4. Applications and superconvergence

It is well-known that for some choices of approximating subspaces &, and
interpolation nodes {#,,}, n =1, the collocation solution x, is superconvergent at

the node points. To be more precise, let

E, = Max |x(1) — x,(t)| (4.1)

1=i=d,
Then superconvergence at the nodes ocours if
E,
Limit ————=10 : (4.2
1w ﬂx - anm

We wish to consider whether superconvergence results for collocation methods
will extend to similar results for discrete coliocation methods.
We begin by considering numerical methods for the linear integral equation

x(s}= r K{s, t)x(¢) dr = y(s)}, ass<b (4.3)

with the standard assumptions that & = Cla, b] and the integral operator ¥ is
compact on & into Z. For the numerical method, let r >0, n >0, h =(b —a)/n,
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T.=a+khfork=0,...,n and
%, ={geL™(a, b)|g(t) is a polynomial of degree <'r on each
subinterval (7,_,, T;), k=1,...,n} (4.4)
Let
0<g,<---<q,<1 (4.5)

denote the Gauss—Legendre zeros of order 7 on [0, 1}, and define the collocation
nodes by

L= T + qih, i=1,...,r, k=1,...,n (4.6)
Assuming sufficient differentiability for x and K(s, ¢),
1% = xallo= O}, |lx = £all. = O(A™) (4.7)

For the linear case, see Chatelin and Lebbar (1984); and for the nonlinear case,
see Atkinson and Potra (1987). We show that this carries over to suitably defined

discrete collocation methods.
Using the error formula (2.27) for the iterated discrete coltocation method for

the linear case, we analyze the error || ¥x — ¥, F.xl|l.; and we use the
decomposition
| Hx = H P || < | Hx = Hoxlfeo + 1| (x = X )l (4.8)
The integration scheme should be so chosen that
|%x ~ % x}t. = O(R™) (4.9)
in agreement with the error for £, in (4.7). This will be true with a composite
integration rule based on a standard quadrature method applied to each

subinterval [T, _,, Ti] and having degree of precision of 2r — 1 or larger.
Next we want to have the basic quadrature rule used in defining the composite

method integrate exactly the identities
1
fr’(t—ql)---(t-q,)drzo, O0=i=r—1 (4.10)
0

for reasons given below. The result (4.10) also follows from the quadrature rule
having a degree of precision of at least 2r — 1. Using (4.10}, we give an analysis

of the error || %, (x — Pox}|»-
Using a composite integration rule with p quadrature nodes per subinterval

[Tes, Ti], define

() =h S 5 wK(s, 1)2(s) 7€ Cla, b] @.11)

k=1i=1
If this has a degree of precision of at least 2r —1, and if K(s, () is 2r-times

continuously differentiable, then (4.9) follows easily.
For the final term || %, (x — P.x)i. in {(4.8), write

H,(I—P)x(s)=h i i w;K (s, Te)[x(T) — Pox{T)] (4.12)

k=] =1
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Recall the following standard error formula for polynomial interpolation of
degree r. For te{T,_,, T,]:

x(t) — Bx () = b y((t — T )i)xlter, - s b T) (4.13)
using the Newton divided difference of x of order r and
wr)=(r—qi) - (t—q) (4.14)
Define
8sx(8) = K (s, Ox[ter, - - -5 tirs 1]

for T, , <t <T,ass=b. Using (4.12),
n o

Ho(I— Pyx(s)=r+1 E 2 wie k(T )W ({(Twi — Tem1)/R) (4.15)
k=1i=1

If x € C¥{a, b] and K(s, t) is r-times continuously differentiable with respect to ¢,
uniformly in s, then we can expand g, ,(7) about T;_:

r—1

8.(7)= 2 (o T g SUTi) + O(R) (4.16)

Using {4.10), it follows that
(| #x — Bax Yl = O(R™) (4.17)
Recalling (2.27), and using (4.8), (4.9), and (4.17), we complete the proof that
I — 2,4 = O(R™) (4.18)

Note that in the case that %, in (4.11} is defined by using Gauss—Legendre
quadrature with p=r, we have that 7, £, = %, and Theorem 1 applies. Thus
there is no real need to use a more accurate integration formula, aithough that is

done in some cases.
To generalize these results to the nonlinear Urysohn integral equation

x(s)=[b K(s, t,x(t))dt, a=<s=b (4.19)

consider the error formula (3.14}. Write
HH(x) = T (Pox )l = 1 H(x0) = o)l + 17,004 ) = Ha(Pax)ll= - (4.20)
The term {|¥(x,) — ¥, (x.)ll= is treated in much the same way as for the hnear
case. For the final term in (4.19), write
H(k4) = Ho Pk i) = ()0~ Bxi) + Olls — Boxal?) - (4:21)

The last term is known and leads to an error of size O(h”") for x € C'[a, b}.
For the first term on the right side of (4.21}, (3.5) yields

R

Ko )y — an*)(s) = z wK.(s, T, x*{r,-))[x*(r,-) - an*(ri)} (4-22)

i=1
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This can now be treated in the same way as that of the linear integral operator
term in (4.17). In this way, the convergence results for the iterated discrete
collocation solution %, and the superconvergence results for z, generalize easily
from the case of linear integral equations to the nonlinear Urysohn equation
(1.1).

The above derivation extends to other well-known collocation methods. For
example, the use of continuous piecewise quadratic interpolation to define F,

leads to
llx — %1l = OR?), llx — £l = O(h*) (4.23)

If the quadrature method for the approximating operator #, s defined with a
composite rule with degree of precision three on each subinterval [T, _,, T;], then
the results in (4.23) carry across to the discrete solutions z, and Z,.
Multivariable integral equations. Consider the solution of multivariable integrat
equations (1.1) and (2.1) with D =« R™, m > 1. The theory of collocation methods
for such equations is not as well developed as for the one variable case with
D =]a, b]; and very few superconvergence results are known. Nonetheless, the
theory of muitivariable interpolation is weli-developed, and we can then say
something about the order needed for the numerical integration scheme in order
to preserve the order of convergence of [fx. — X, || As a particular example, we
consider the solution of integral equations over piecewise smooth surfaces in R
Let D be a surface in R?, which we decompose into smooth closed subsurfaces:

D=D,U---UD, (4.24)

If distinct subsurfaces D, and D, intersect, then the intersection is to be a portion
of the boundary of each one. Each D; is to be a smooth surface; or more
precisely, assume the existence of a smooth mapping

E:D,=bD i=1,...,J (4.25)
with D, a polygonal region in the plane R?. Later we are more precise about the
needed smoothness for each E. '

Let {A, .} be a triangulation of D., and let A, , = F(A, ) define a correspond-
ing triangulation of D;. Collecting together these triangulations of each D;, we
have a triangulation J, = {A{, ..., AY} of D; and we usually dispense with
the superscript n, understanding it implicitly. We further assume a compatibility
of neighbouring triangles in D: if A{” and A{") come from distinct subsurfaces D,
and D;, tespectively, and if Al and A" have a nonempty intersection, then the
intersection is either (1) a single point, consisting of a vertex of both triangles, or
(2) a common edge of both triangles, lying in the common portion of the
boundary of D, and D;. In addition, the union of the vertices of the triangles in &,
is to contain all vertices of the original surface D; and the union of the edges of
the triangles in 7, is to contain all edges of D. For an additional discussion of the

triangulation of D, see Atkinson (1985a}, (1985b).
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Let r = 1, and consider a polynomial p(%£, ) of degree <r over some triangular
element A, ;. Then define a corresponding function p over A, by

PR PN =P(£,9), (£, F)e A, (4.26)

Given a piecewise polynomial function § (not necessarily continuous) of degree

=r over 1), with p polynomial over each A,,, we can define a corresponding

function p over D, by using (4.26); and given such ‘piecewise polynomial’ func-

tions p over each I);, we can define a corresponding piecewise polynomial

function p over D. Let &, denote the collection of all such piecewise polynomial
functions over D of degree <r. If there are no continuity requirements, then the

dimension of Z, is
d,=n(r+1(r+2)/2 (4.27)
With a triangulation of D and the use of piecewise polynomial functions such as
the above, the simplest way to define collocation is to use a uniform subdivision

of each triangle A, .. To introduce the collocation points, first consider the unit
simplex 0 = {(s, t) [0<s, #, s + 1 =< 1} in the plane. Let § = 1/r, and define a grid

for o by
T:{(S‘-, t‘,):(lﬁ, J'(S) IOES,-, tj, S,+tj$.1} (4.28)

For a triangle A<R? let {v,, v,, 3} denote its vertices; and then define

m:o—> A by

onio
mi(s, £) = uv + tv, + sU; u=1—-s—1¢ (4.29)

For collocation nodes in such a A, we choose the points {m(g,) |gre T} We
determine nodes over each D; in this manner, and thus over D as well. Denote
these node points by {1, |l <k =<d,}. Because these nodes are shared between
neighbouring triangles, the definition of the interpolation subspace should be

modified. We use
%, =%,NCD)

For a simple closed surface D, d,, = 3r’n + 2.

With this choice of collocation nodes, the interpolation projection P,x € C(D).
For the error in the interpolation function F,x, first assume each mapping
function F € C"*'(D,). Further assume xeC(D) and x|D,eC™*'(D), i=
1,...,J. Then

[[x =~ Poxll. = O(h"™") (4.30)
where .
h = Max diam (4,)

Aed,

where A, is the planar triangle corresponding to A, on D. This error formula is a
well-known result; for example, see Atkinson (1985a), where a proof is sketched

for the case r =2.




COLLOCATION METHOD FOR NONLINEAR INTEGRAL EQUATIONS 207

We now consider the collocation method for solving both the linear integral
equation (2.1) and the nonlinear integral equation (1.1). Use the preceding
definition of %, and nodes {t;}. With standard solvability assumptions for the
integral equation (as in Theorems 1 and 3), we obtain

llxs = xlt = O(llxe — Poxall<) (4.31)

with x, the unknown solution we are seeking and x, the collocation solution.
With sufficient differentiability for x,, (4.30) implies

[l = Xqll = OCR™T) (4.32)

For additional details in the case r = 2, see Atkinson (1985a, 1985b). '

The only superconvergence results of which we know are in Chien (1991), for
the case r =2, If the triangulation is refined in a special way, then superconver-
gence at the nodes will result. For each A€ J,, subdivide the corresponding
planar triangle A into four new triangles by connecting the midpoints of its sides.
This causes the number of triangles to increase by a factor of four with each
subdivision. With this method of refinement of the triangulation, Chien (1991)

shows the convergence result
Max x,(z;) = x, (%)} = O(k") (4.33)

Although the proof in Chien (1991) is given for only r=2, it appears to
generalize to all even values of r =2, and then the result is

Max x,(%;) — %a(7)| = O(h™") (4.34)

The resuits in Chien also include an analysis of the effects of the approximation
of the surface D with the same form of interpolation as is used for the collocation
the scheme; and he shows the order of convergence remains the same.

The numerical integration of the collocation integrals in the above method uses
composite integration rules based on quadrature over planar triangles. In Table 1,
we reference some basic integration formulas over triangles from the paper
Lyness and Jespersen (1975), and we give some information about them. The

TapLe 1
Quadrature formulas over
triangles

p v v Type

2 3 1.5 [000100]
37 3 [111000]
4 9 5 [611100]
5 10 6 [111100]
6 13 10 [100210]
7 16 10-5 [110210]
8 16 16 [160301]
9 22 18 [111301]
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degree of precision of the formula 1s denoted by p. The column labelled v gives
the number of quadrature node points in the triangle; and ¥ gives the average
number of quadrature nodes per triangle when the rule is used in a composite
quadrature formula. The column labelled Type is the identifier for the quadrature
rule as given in Lyness and Jespersen (1975, 29-31).

Consider the numerical integration of the integral

n J
[s@as=3] s@1as=3 5 | b )IDFx DAy @35
D, and D, denote the partial derivatives with respect to x and y, respectively.
Apply a quadrature formula for triangles to the integrals on the right side, and
assume the quadrature rule has degree of precision p. Then it can be shown that
the error in the resulting quadrature is O(A°*"), provided g | D, e C**'(D,) and
EeC? D)), i=1,...,J This can be improved to Q(h”*?) when p is even and
the triangulation is refined in the manner described preceding (4.33); but we do

not discuss the details of such in this paper.

Using the above quadrature, we can define a discrete collocation method for
the collocation method described preceding (4.31). Theorems 2 and 4 imply that
in order to preserve the order of convergence 2™ in the collocation solution, we
must choose a quadrature formula for triangles with p=r. An appropriate
formula can be selected from Table 1. '

The results of the last paragraph can be improved in some cases. Chien (1991)
preserves the superconvergence result (4.33) for r = 2, and he uses the formula in
Tabile 1 with p = 2, which has a lower degree of precision than one would think is
necessary. Similar results are probably true for higher degree interpolation with

cvenr.

5. Hammerstein integral equations

Consider the Hammerstein integral equation
x()y=y(t)+ f L(t, s)e(s, x(s))ds  ¢eD (5.1)
o

This is written symbolically as
x=y+ FL4x) (5.2)

and to tie it in with earlier notation, we let ¥(x) =y + ¥%x). In this, we let &
denote the linear integral operator with kernel function L{¢, 5), and we assume
FZis compact on C{D} to C(D). We define 9(x)(r)=g(t, x(t}), for all x € £, for
some open domain £ < C(D). In addition, we often assume

¢: QN C™(D)->C™(D) (5.3)

for a given integer m >0, to obtain differentiability results for x{(z).

In using the collocation and Galerkin methods to solve (5.1), one must usually
solve a finite nonlinear system by some type of iteration method. In so doing,
there is 2 need to do repeated numerical integrations involving the iterates, and
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this causes a high operations cost. To reduce this cost significantly, Kumar and
Sloan (1987) introduced a variant procedure for solving (5.1).
In symbolic form, introduce

u=%(x) ' (5.4)

Then x and u satisfy
u=%y + %Lu) (5.52)
x=y+ Lu (5.5b)

Galerkin and collocation methods can be applied to (5.5a), and this leads to a
nonlinear system which is less costly to solve by iteration, because far fewer
numerical integrations are needed.

Let P, denote the interpolation projection associated with collocation. Equ-

ations (5.5) are approximated by
u, = Pn(g(y + :fu") (563)
x, =y +Zfu, (5.6b)

The standard convergence analyses for the collocation method, of the type used
in Theorems 1 and 2, can be applied to this approximation scheme.

We make the following assumptions regarding the equations (5.2) and (5.5).
Let x, denote an isolated fixed point of 7; and say it is isolated within B(x,, g4).
the ball of radius g, about x,. Assuming g(¢, v) is differentiable, introduce the

Frechet derivatives

@G (x)w(t) 593—055—@) wit} teD, weC(D)

12
G(x)w, z)(t) = ig%@_)z w()z(t) teD, w,ze(C(D)
Assume %'(x) and ¥'(x) are bounded linear operators on C(D) and C(D)x
C(D), respectively, uniformly for x € B (X, £0)-

Further assume that [[ — 3" (x,)]”', exists as a bounded operator on C(D) to
C(D), with ¥'(x,) = £%(x.). This implies that x, has nonzero Schauder-Leray
index. Moreover, it follows that (5.5a) has solution u,(r) = g(t, x.(t)) of nonzero
index, with x, isolated within some ball B(u., &,); and it can be shown that
[ - %' (x.)%] " exists as a bounded operator on C(D), thus implying u, also has
nonzero Schauder—Leray index.

We assume that the collocation projection operators F, are pointwise conver-
gent on C(D), as in (2.8), although this can be weakened. Then the use of
Krasnoselskii (1964) shows that for some N >0, (5.6a) has a unique solution
u, € B(us, &), n=N, and u,—>u, as n— . For the analysis of the rates of

convergence, we can show that
et — sl = O(fltts — Brte]loc) (5.7)

with u, the desired solution for (5.5a). This has been improved by Kumar and
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Sloan, who show that
[y = Xoll < € §E (s — Put)|l + Oty = Poa|I2) (5.8)

where x, is the desired solution of the original equation (5.2} and u, = %(u,).
With many interpolation schemes, || #(u, — P,u.}||.. can be shown to converge to
zero move rapidly than {{u, — P,u.||., thus giving a faster rate of convergence than
would be expected from the error result (5.7) for u, — u,. For example, the ideas
of Chatelin and Lebbar (1984) would appiy in this situation. For further
discussion of this and discrete analogues, see Kumar (1987), (1988), Ganesh and
Joshi (1989), (1991). -

Discrete collocation for Hammerstein equations. With any scheme for discrete
collocation, we want to be able to retain the various resuits described above for
the collocation method. Define the numerical integration operation %, by

R

Lu(t)= D w L{t, t)u(t,)  ueC(D) (5.9)

k=1

in analogy with the operator J,, of (2.16).
Define the discrete collocation method for (5.5) by

v, = P&y + £v,) (5.102)
=y +Zu, (5.10B)

For the actual implementation of (5.10a), we take
o
UL (1) = Z 7,(t) teD (5.11a)
=1
with {y;} determined by solving

o o R
2, 1,9i(0) — gt v} + 27 2 mL, Wen))  i=1....d. (5.11b)

The error analysis for (5.10a) is the same as for the earlier discrete collocation
method of Section 3. We use the assumptions following (5.6); and then we
proceed as in Theorem 4. The errors in v, and z, satisfy

ty — v, = [ — P4 (x,) L] {( — B)us
+ PG (x NE — L, + Ol Luy — Fov, )Py (5.12)

Yo —Za =Py — L, =(F— L, + F(u,~v,) {5.13)
As part of the convergence proof of Theorem 4, it is shown that
I - PG x) L | sc<w, n=N (5.14)

for some N. As a consequence, we have
iiu*‘vnllxgc “(I_Prr)u* +P.rz(gr(;c=i<)(‘“r£_gn)u*”:'C HBN (515)

This involves the same type of errors as were encountered in Section 3 and
Section 4, namely the interpolation error (I — P,)u, and the numerical integration

error (¥ —%,)u,.
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To consider possible superconvergence of z, to x,, we note from (5.13) that the
critical quantity to be considered is %, (¢, — v,). Using the identity

[[ - PG x)L] =1+ - G (x )L ] PG ()L,
and combining it with (5.12), we obtain
Sty = v2) = { + Ll = BG )L PG ()L — Py
+O(II(F — L)) + O = Pjusll?)
Combined with earlier results, including (5.13}, we have

X4 = Zalle = QUL — Pouslle) + O(I(L = £ )uille) + O — Pr)usllZ)
: (5.16)

The error ||£, (I — P,)u,li.. can be studied for superconvergence, just as was done
in Section 4 for the numerical integral operator %, [e.g. sec (4.15) and following).
For the types of interpolation and numerical integration methods analyzed in
the first half of Section 4, those results are the same for our situation with
[|£.({ — P)u,l. and x, — 2, and we do not repeat them here.

In the special case that d, = R, and that the interpolation nodes {4} are the
same as the integration nodes {7}, we have that the iterated method

0, =Gy + Zu.)
is the solution of the Nystrém method
0, =9y + £.0,)
Consequently, from the theory in Atkinson (1973) or Weiss (1974),
llts = Dalle < cll(£ = L)uslle. n=N

Since v, and ¥, coincide at the nodes, we have
R
Zn(t) =)’(f) + z W,-L(!, ti)vrt(tr') = y(f) + gni}n([i)
i=1

From this and some simple manipulations, we have
s — zale = OCI(E — £ )it l-)

Thus the case with d, = R, is much simpler than the general case with the error
(5.16).
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Added in proof: For work related to section 5, on the Hammerstein equation, see
H. Brunner, “On implicitly linear and iterated collocation methods for Ham-
merstein integral equations”, Journal of Integral Equations and Applications 3

(1991).







