The ODE initial value problem being solved is y' = y cos(x), y(0) = 1 The true solution is Y(x) = exp(sin x) Stepsize h=0.1 x Y(x) Error Error Error Order 2 Order 3 Order 4 .000 1.00000000 .000E+00 .000E+00 .000E+00 2.000 2.48257773 -.595E-02 .248E-04 .482E-05 4.000 .46916419 -.431E-03 -.602E-04 .187E-05 6.000 .75622563 -.739E-04 -.878E-05 .166E-05 8.000 2.68950792 -.746E-02 -.163E-03 .110E-04 10.000 .58040966 -.142E-03 -.998E-04 .209E-05 12.000 .58474880 -.253E-03 -.244E-04 .230E-05 14.000 2.69286951 -.709E-02 -.379E-03 .117E-04 16.000 .74983409 .244E-03 -.148E-03 .182E-05 18.000 .47190044 -.398E-03 -.407E-04 .237E-05 20.000 2.49165027 -.503E-02 -.513E-03 .733E-05 Stepsize h=0.05 x Y(x) Error Error Error Order 2 Order 3 Order 4 .000 1.00000000 .000E+00 .000E+00 .000E+00 2.000 2.48257773 -.151E-02 .276E-05 .304E-06 4.000 .46916419 -.124E-03 -.730E-05 .119E-06 6.000 .75622563 -.268E-04 -.854E-06 .967E-07 8.000 2.68950792 -.193E-02 -.200E-04 .660E-06 10.000 .58040966 -.653E-04 -.122E-04 .127E-06 12.000 .58474880 -.783E-04 -.273E-05 .133E-06 14.000 2.69286951 -.189E-02 -.467E-04 .685E-06 16.000 .74983409 .119E-04 -.182E-04 .103E-06 18.000 .47190044 -.119E-03 -.477E-05 .134E-06 20.000 2.49165027 -.141E-02 -.638E-04 .389E-06 Stepsize h=0.025 x Y(x) Error Error Error Order 2 Order 3 Order 4 .000 1.00000000 .000E+00 .000E+00 .000E+00 2.000 2.48257773 -.382E-03 .324E-06 .191E-07 4.000 .46916419 -.329E-04 -.899E-06 .747E-08 6.000 .75622563 -.768E-05 -.930E-07 .583E-08 8.000 2.68950792 -.492E-03 -.249E-05 .405E-07 10.000 .58040966 -.200E-04 -.150E-05 .780E-08 12.000 .58474880 -.214E-04 -.323E-06 .799E-08 14.000 2.69286951 -.488E-03 -.581E-05 .415E-07 16.000 .74983409 -.308E-05 -.226E-05 .607E-08 18.000 .47190044 -.323E-04 -.580E-06 .797E-08 20.000 2.49165027 -.371E-03 -.797E-05 .222E-07