ROTATION MATRICES

\[A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

Note that

\[A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \]

This shows the vectors \(e^{(1)} \) and \(e^{(2)} \) are rotated counter-clockwise thru an angle of \(\theta \) radians. In particular,

\[Ae^{(2)} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \left(\theta + \frac{\pi}{2} \right) \\ \sin \left(\theta + \frac{\pi}{2} \right) \end{bmatrix} \]

Thus in general, the transformation \(x \to Ax \) corresponds to a rotation of \(x \) counter-clockwise thru an angle of \(\theta \) radians.

\(A^{-1} \) should correspond to a clockwise rotation thru \(-\theta \) radians; or replacing \(\theta \) by \(-\theta \) in the original formula for \(A \), we have

\[A^{-1} = \begin{bmatrix} \cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta) \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \]
We generalize this in a very simple way to \mathbb{R}^n. Let $1 \leq k < l \leq n$, and define the matrix $R_{k,l}$ to the following matrix:

$$
\begin{bmatrix}
1 & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \cdots & \cdots & \vdots \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & \cos \theta & 0 \\
0 & \cdots & 0 & -\sin \theta & 0 \\
0 & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \vdots & \vdots \\
0 & \cdots & 0 & \sin \theta & 0 \\
0 & \cdots & 0 & \cos \theta & 0 \\
0 & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
$$

In it, we have modified the identity matrix I, changing it in the four elements in positions (k,k), (k,l), (l,k), and (l,l).

The matrix $R_{k,l}$ will rotate the (k,l)-plane thru an angle of θ, while leaving unchanged the remainder of \mathbb{R}^n, that part perpendicular to (k,l)-plane.
HOUSEHOLDER MATRICES

Let \(w \in \mathbb{C}^n \) be a vector of Euclidean length 1,

\[w^* w = 1 \quad (w^T w = 1 \text{ for } w \in \mathbb{R}^n) \]

Define the matrix

\[H = I - 2ww^* \quad (I - 2ww^T \text{ for } w \in \mathbb{R}^n) \]

Then \(H \) is a Hermitian unitary matrix (orthogonal if \(w \in \mathbb{R}^n \)).

First,

\[
H^* = (I - 2ww^*)^* \\
= I - 2(ww^*)^* \\
= I - 2(w^*)^* w^* = H
\]

Also,

\[
H^* H = H^2 \\
= (I - 2ww^*)^2 \\
= I - 4ww^* + 4(ww^*)(ww^*)
\]
Note that

\[(ww^*)(ww^*) = w\underbrace{(w^*w)}w^* = ww^*
\]

Thus

\[H^*H = I - 4ww^* + 4(ww^*)(ww^*) = I\]

showing \(H\) is unitary.

What does \(H\) do in a geometric sense? First, note that

\[Hw = (I - 2ww^*)w = w - 2ww^*w = w - 2w = -w\]

Also, let \(v\) be any vector orthogonal to \(w\). Then

\[(ww^*)v = w(w^*v) = w(0) = 0\]

\[Hv = (I - 2ww^*)v = v - 2(ww^*)v = v\]

Thus \(H\) is a reflection of space thru the \((n - 1)\)-dimensional hyperplane perpendicular to \(w\).

The rotation matrices \(R_{k,l}\) and the Householder matrices \(H\) are the most commonly used orthogonal (or unitary) matrices used in numerical analysis.
EXAMPLES

For the \(n = 3 \) case, with \(w \in \mathbb{R}^3 \),

\[
H = \begin{bmatrix}
1 - 2w_1^2 & -2w_1w_2 & -2w_1w_3 \\
-2w_1w_2 & 1 - 2w_2^2 & -2w_2w_3 \\
-2w_1w_3 & -2w_2w_3 & 1 - 2w_3^2
\end{bmatrix}
\]

Then \(H^T = H \) and \(H^2 = I \).

For \(w = \begin{bmatrix} 1/3, 2/3, 2/3 \end{bmatrix}^T \),

\[
H = \begin{bmatrix}
7/9 & -4/9 & -4/9 \\
-4/9 & 1/9 & -8/9 \\
-4/9 & -8/9 & 1/9
\end{bmatrix}
\]

For \(w = \begin{bmatrix} 0, 3/5, 4/5 \end{bmatrix}^T \),

\[
H = \begin{bmatrix}
1 & 0 & 0 \\
0 & 7/25 & -24/25 \\
0 & -24/25 & -7/25
\end{bmatrix}
\]
REDUCTION OF A VECTOR

Given a vector $d \in \mathbb{R}^m$, we want to find $v \in \mathbb{R}^m$ with $\|v\|_2 = 1$ and

$$\begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\left(I - 2vv^T\right) d = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad (1)$$

Since $I - 2vv^T$ is orthogonal, the length of d is preserved in the transformation of d:

$$|\alpha| = \|d\|_2 \equiv S$$

and

$$\alpha = \pm S = \pm \sqrt{d_1^2 + \cdots + d_m^2}$$

with the sign to be determined later.
Introduce

\[p = v^T d \]

From (1),

\[d - 2pv = [\alpha, 0, ..., 0]^T \]

Multiply on the left by \(v^T \) to get

\[p - 2pv^Tv = v_1\alpha \]

\[p = -\alpha v_1 \]

Substitute this back into (2). Then look at the individual components, obtaining

\[d_1 + 2\alpha v_1^2 = \alpha \]

\[d_i - 2pv_i = 0, \quad i = 2, ..., m \] (3)

From the first equation,

\[v_1^2 = \frac{\alpha - d_1}{2\alpha} = \frac{1}{2} \left(1 - \frac{d_1}{\alpha} \right) \] (4)

Recall that we have not yet chosen the sign of \(\alpha \). Now choose the sign of \(\alpha \) according to

\[\text{sign} (\alpha) = -\text{sign} (d_1) \]
The subtraction in (4) is now actually an addition, so as to avoid a ‘loss of significance’ error. We can take the square root in (4) to find v_1, and there is no obvious choice of the sign here, although most people would choose $v_1 > 0$.

Return to $p = -\alpha v_1$ to obtain p. Then return to (3) to find $v_2, ..., v_m$:

$$v_i = \frac{d_i}{2p}, \quad i = 2, ..., m$$

This completes the construction of v and therefore the Householder matrix $I - 2vv^T$ based upon it. Again, we now have

$$(I - 2vv^T) d = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
EXAMPLE

Let

\[d = [2, 2, 1]^T \]

Then

\[\alpha = -\|d\|_2 = -3, \quad v_1 = \sqrt{\frac{5}{6}}, \quad p = \sqrt{\frac{15}{2}} \]

\[v_2 = \frac{2}{\sqrt{30}}, \quad v_3 = \frac{1}{\sqrt{30}} \]

Then

\[
H = \begin{bmatrix}
-\frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\
-\frac{2}{3} & \frac{11}{15} & -\frac{2}{15} \\
-\frac{1}{3} & -\frac{2}{15} & \frac{14}{15}
\end{bmatrix}
\]

In practice, one does not need \(H \) explicitly.
QR FACTORIZATION

Let A be a matrix that is $n \times n$. We want to factor it into the form

$$A = QR$$

with Q orthogonal and R upper triangular. We do this by working on each of the columns in succession.

For the first step, let

$$P_1 = I - 2w^{(1)}w^{(1)T}, \quad \|w^{(1)}\|_2 = 1$$

Let $A = [A_{*,1}, \ldots, A_{*,n}]$. Then

$$P_1A = [P_1A_{*,1}, \ldots, P_1A_{*,n}]$$

We choose P_1 so that

$$P_1A_{*,1} = [\alpha, 0, \ldots, 0]^T$$

We can of course do this by the construction already described above, with $d = A_{*,1}$.
With this choice of P_1, the matrix P_1A will have zeroes in the first column below the diagonal position. Next, we wish to do the same to the second column, but without changing the first column.

Define

$$P_2 = I - 2w^{(2)}w^{(2)T}, \quad \|w^{(2)}\|_2 = 1$$

But now require

$$w^{(2)} = \begin{bmatrix} 0 \\ v \end{bmatrix}, \quad v^Tv = 1, \quad v \in \mathbb{R}^{n-1}$$

Then

$$P_2 = \begin{bmatrix} 1 & 0 \\ 0 & I - 2vv^T \end{bmatrix}$$

Calculate P_2P_1A:

$$P_2P_1A = \begin{bmatrix} P_2P_1A_{*,1}, \ldots, P_2P_1A_{*,n} \end{bmatrix}$$
We know that
\[P_1 A_{*,1} = [\alpha, 0, \ldots, 0]^T \]
and therefore
\[P_2 P_1 A_{*,1} = \begin{bmatrix} 1 & 0 \\ 0 & I - 2vv^T \end{bmatrix} \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix} \]
Thus the first column of $P_2 P_1 A$ retains its zero structure below the diagonal. Now choose v so as to force the second column of $P_2 P_1 A$ to have zeroes below the diagonal position. Writing
\[P_1 A_{*,2} = \begin{bmatrix} c \\ d \end{bmatrix}, \quad d \in \mathbb{R}^{n-1} \]
we choose v by forcing
\[(I - 2vv^T) d = [\alpha_2, 0, \ldots, 0]^T \]
for a suitable value of α_2.
Continue in this manner, defining
\[P_i = I - 2w^{(i)}w^{(i)T}, \quad \|w^{(i)}\|_2 = 1 \]
with
\[w^{(i)} = \begin{bmatrix} 0 \\ v \end{bmatrix}, \quad v^Tv = 1, \quad v \in \mathbb{R}^{n-i+1} \]
and choosing \(v \) to force \(P_i \cdots P_1 A \) to have zeros below the diagonal in column \(i \). After \(n-1 \) steps, the matrix
\[P_{n-1} \cdots P_2 P_1 A \equiv R \]
is upper triangular. Note that the matrix \(P_{n-1} \cdots P_2 P_1 \) is orthogonal,
\[
(P_{n-1} \cdots P_2 P_1)^T (P_{n-1} \cdots P_2 P_1) \\
= P_1^T \cdots P_{n-1}^T P_{n-1} \cdots P_2 P_1 \\
= I
\]
We define
\[Q^T = P_{n-1} \cdots P_2 P_1 \]
Then
\[Q^T A = R \]
\[A = QR \]
An example for the matrix

\[
A = \begin{bmatrix}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{bmatrix}
\]

is given on page 613 in the text. The result is \(A = QR\) with

\[
R = \begin{bmatrix}
-4.24264 & -2.12132 & -2.12132 \\
0 & -3.67423 & -1.22475 \\
0 & 0 & 3.46410
\end{bmatrix}
\]

\[
Q = P_1P_2 = \begin{bmatrix}
-0.94281 & 0.27217 & -0.19245 \\
-0.23570 & -0.95258 & -0.19245 \\
-0.23570 & -0.13608 & 0.96225
\end{bmatrix}
\]

This factorization can also be accomplished using the Matlab instruction \(qr\):

\[
\begin{bmatrix} Q & R \end{bmatrix} = qr(A)
\]
Consider multiplying a Householder matrix H times another matrix:

$$HA = \left(I - 2ww^T\right)A = A - \left(2ww^T\right)A = A - 2w\left(w^TA\right)$$

The quantity w^TA is a vector, and it can be produced with approximately $2n^2$ operations if w has all nonzero components. Then calculating $2w\left(w^TA\right)$ will cost a further n^2 multiplications, approximately, and $A - 2w\left(w^TA\right)$ will cost n^2 subtractions. Thus the total operations cost to produce HA will be around $4n^2$ operations, rather than the $2n^3$ one would usually expect with multiplying two $n \times n$ matrices.

This also shows why we generally do not produce $Q = P_1 \cdots P_{n-1}$ explicitly, as it is cheaper to carry out matrix multiplications when Q is in factored form.
REDUCTION OF SYMMETRIC MATRICES

Let A be a symmetric matrix. We want to use a similarity transformation to reduce it to symmetric tridiagonal form.

Assume A is $n \times n$. We will perform a sequence of similarity transformations, using Householder matrices, to reduce A to tridiagonal form. We begin by using a similarity transformation to put zeros into the first column of the matrix, in the positions below the $(2,1)$ position.

$$P_1^T A P_1 = A_2 = \begin{bmatrix} a_{1,1} & \hat{a}_{2,1} & 0 & \cdots & 0 \\ \hat{a}_{2,1} & \hat{a}_{2,2} & \cdots & \hat{a}_{n,2} \\ 0 & \vdots & \ddots & \vdots \\ 0 & \hat{a}_{n,2} & \cdots & \hat{a}_{n,n} \end{bmatrix}$$

We use the Householder matrix

$$P_1 = I - 2w^{(2)}w^{(2)T}, \quad \|w^{(2)}\|_2 = 1$$

with

$$w^{(2)} = [0, v_1, \ldots, v_m]^T, \quad m = n - 1$$
Then

\[P_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\ \vdots & \vdots & \ddots & \vdots \\ 0 & -2v_1v_m & \cdots & 1 - 2v_m^2 \end{bmatrix} \]

Let \(A = [A_{*,1}, \ldots, A_{*,n}] \). Then

\[P_1A = [P_1A_{*,1}, \ldots, P_1A_{*,n}] \]

The first column looks like

\[\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\ \vdots & \vdots & \ddots & \vdots \\ 0 & -2v_1v_m & \cdots & 1 - 2v_m^2 \end{bmatrix} \begin{bmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{n,1} \end{bmatrix} = \begin{bmatrix} a_{1,1} \\ \hat{a}_{2,1} \\ 0 \\ \vdots \end{bmatrix} \]

With reference to our earlier work on reducing a vector \(d \) to a simpler form with only a single nonzero component, we use that algorithm with

\[d = [a_{2,1}, \ldots, a_{n,1}]^T \]

With that algorithm, we can find \(v \in \mathbb{R}^m \) with

\[(I - 2vv^T) d = [\hat{a}_{2,1}, 0, \ldots, 0]^T \]
In fact,
\[\hat{a}_{2,1} = -\text{sign} \left(a_{2,1} \right) \sqrt{a_{2,1}^2 + \cdots + a_{n,1}^2} \]

Now look at \(P_1A \) and \(P_1AP_1 \):

\[
P_1A = \begin{bmatrix}
 a_{1,1} & * & \cdots & * \\
 \hat{a}_{2,1} & * & \cdots & * \\
 0 & * & \cdots & * \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & * & \cdots & *
\end{bmatrix}
\]

\(P_1AP_1 \) is given by

\[
\begin{bmatrix}
 a_{1,1} & * & \cdots & * \\
 \hat{a}_{2,1} & * & \cdots & * \\
 0 & * & \cdots & * \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & * & \cdots & *
\end{bmatrix} \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & -2v_1v_m & \cdots & 1 - 2v_m^2
\end{bmatrix} = \begin{bmatrix}
 a_{1,1} & * & \cdots & * \\
 \hat{a}_{2,1} & * & \cdots & * \\
 0 & * & \cdots & * \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & * & \cdots & *
\end{bmatrix}
\]
In addition, the matrix P_1AP_1 is symmetric:

$$(P_1AP_1)^T = P_1^T A^T P_1^T = P_1AP_1$$

Therefore, P_1AP_1 must look like

$$A_2 = P_1AP_1 = \begin{bmatrix}
a_{1,1} & \hat{a}_{2,1} & 0 & \cdots & 0 \\
\hat{a}_{2,1} & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \cdots & *
\end{bmatrix}$$

We continue this process by now reducing the second column by a similar operation. We use the Householder matrix

$$P_2 = I - 2w^{(3)}w^{(3)T}, \quad \|w^{(3)}\|_2 = 1$$

$$w^{(3)} = [0, 0, v_1, \ldots, v_m]^T, \quad m = n - 2$$

Then

$$P_2 = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & -2v_1vm & \cdots & 1 - 2v_m^2
\end{bmatrix}$$
We choose $v \in \mathbb{R}^{n-2}$ such that

$$(I - 2vv^T) d = [\hat{a}_{3,2}, 0, ..., 0]^T$$

with d the elements in positions 3 thru n of column 2 of the matrix A_2. Note that the form of P_2 is such that $P_2A_2P_2$ will have the same first column and row as in A_2. For example, consider calculating first P_2A_2:

\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & & 0 \\
0 & 0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & -2v_1v_m & \cdots & 1 - 2v_m^2 \\
\end{bmatrix}
\begin{bmatrix}
a_{1,1} & \hat{a}_{2,1} & 0 & \cdots & 0 \\
\hat{a}_{2,1} & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \cdots & * \\
\end{bmatrix}
\]

We continue in this way, obtaining finally

$$P_{n-2} \cdots P_1AP_1 \cdots P_{n-2} = T$$

with T a symmetric tridiagonal matrix. Define

$$Q = P_1 \cdots P_{n-2}$$

It is orthogonal, and

$$Q^T A Q = T$$
Therefore the eigenvalues of A and T are the same. For the eigenvectors, let

$$Tx = \lambda x, \quad x \neq 0$$

Then

$$Q^T A Q x = \lambda x$$
$$A(Qx) = \lambda(Qx)$$

Thus Qx is the eigenvector of A corresponding to the eigenvector x for T.

EXAMPLE: (From page 617)

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}, \quad w^{(2)} = \begin{bmatrix} 0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \end{bmatrix}$$

$$P_1 = I - 2w^{(2)}w^{(2)^T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{3}{5} & -\frac{4}{5} \\ 0 & -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$T = A_2 = \begin{bmatrix} 1 & -5 & 0 \\ -5 & \frac{73}{25} & -\frac{14}{25} \\ 0 & \frac{14}{25} & -\frac{23}{25} \end{bmatrix}$$
When the rounding errors inherent in producing T from A are taken into account, how do the eigenvalues of T and A compare. This is given in the text as Theorem 9.4 (page 617). It is assume that the arithmetic being used is t-digit binary arithmetic with rounding; and moreover, it is assumed that all inner products

$$
\sum_{j=1}^{m} a_j b_j
$$

are accumulated in a higher precision and then rounded back to t digits at the completion of the summation process. With this, we obtain for the eigenvalues $\{\lambda_j\}$ and $\{\tau_j\}$ of A and T respectively, that

$$
\left[\sum_{j=1}^{n} (\tau_j - \lambda_j)^2 \right]^{\frac{1}{2}} \leq c_n 2^{-t}
$$

$$
c_n = 25 (n - 1) \left[1 + (12.36) 2^{-t} \right]^{2n-4} \cong 25 (n - 1)
$$