
SOLUTION BY MINIMIZATION

This is a part of a much larger subject, one taken up in

much more extended fashion in optimization theory.

To solve Ax = b, we reformulate it as a minimization

problem.

Assume A is a real symmetric positive definite matrix

of order ṅ. Define

f(x) =
1

2
xTAx− bTx, x∈R

n

The solution of

min
x∈Rn

f(x)

is x = x∗ ≡ A−1b. To see this, we introduce the

useful quantity

E(x) =
1

2
(x∗ − x)T A (x∗ − x) , x ∈ R

n

Sometimes this is referred to as the “energy” associ-

ated with x∗ − x, due to certain physical quantities

associated with A.



Claim:

f(x) = E(x)− 1

2
bTx∗, x ∈ R

n

Expanding,

E(x)− 1
2bTx∗ = 1

2 (x∗ − x)T A (x∗ − x)− 1
2bTx∗

= 1
2 (x∗)T Ax∗ − 1

2xTAx∗ − 1
2 (x∗)T Ax

+1
2xTAx− 1

2bTx∗

Simplifying,

−1

2
xTAx∗ − 1

2
(x∗)T Ax = −xTAx∗ = −xTb = −bTx

1

2
(x∗)T Ax∗ − 1

2
bTx∗ =

1

2

[
(x∗)T Ax∗ − (x∗)T b

]
= 0

Then

E(x)− 1

2
bTx∗ = −bTx +

1

2
xTAx = f(x)



Since A is symmetric and positive definite, let its

eigenvalues be denoted by

0 < λ1 ≤ · · · ≤ λn

From Exercise 15 of Chapter 7, we obtain directly that

λ1 ‖z‖22 ≤ zTAz ≤ λn ‖z‖22 , z ∈ R
n

Thus for the function E(x),

λ1 ‖x∗ − x‖22 ≤ E(x) ≤ λn ‖x∗ − x‖22 , x ∈ R
n

Thus

E(x) = 0 ⇔ x = x∗

Since

f(x) = E(x)− 1

2
bTx∗, x ∈ R

n

we have that f(x) is a minimum if and only if x = x∗;
and in that case,

f(x∗) = −1

2
bTx∗



HOW TO MINIMIZE f(x)?

We can choose a basis {p1, ..., pn} and then look in

succession at minimizing f(x) along each direction

p = pj:

min−∞<α<∞ f
(
x(0) + αp

)
= f

(
x(0) + α∗p

)

x(0) ← x(0) + α∗p

For example, one could choose the basis {p1, ..., pn}
to be the standard basis

{
e(1), ..., e(n)

}
. In fact, there

are much better choices.

In optimization theory, we often choose a basis {p1, ..., pn}
of conjugate directions. These are a basis for which

pT
j Api = 0, i, j = 1, ..., n, i 
= j

We say these are ‘A-conjugate’ or ‘A-orthogonal’. In-

troduce a new inner product and norm

(x, y)A = yTAx, ‖x‖A = sqrt ((x, x)A)



Then from Exercise 15 of Chapter 7, as before,

sqrt (λ1) ‖x‖2 ≤ ‖x‖A ≤ sqrt (λn) ‖x‖2 , x ∈ R
n

With this norm ‖x‖A, called the energy norm, we

have that a basis of conjugate directions is in fact

an orthogonal basis with respect to the inner product

(x, y)A. Also,

E(x) =
1

2
‖x∗ − x‖2A

Using the orthogonality, it is straightforward to obtain

x∗ = α1p1 + · · ·+ αnpn

αk =
pT
k b

pT
k Apk

, k = 1, ..., n

The main question is how to choose the conjugate

directions {pk}.



Recall

f(x) =
1

2
xTAx− bTx, x∈R

n

Introduce the partial solutions x0 = 0,

xk = α1p1 + · · ·+ αkpk, k = 1, ..., n

αj =
pT
j b

pT
j Apj

, j = 1, ..., k

rk = b− Axk = −∇f(xk)

Then r0 = b, and

xk = xk−1 + αkpk, rk = rk−1 − αkApk

For k = n, we will have xn = x∗, the true solution.

Often, we may have xk = x∗ with k < n; or xk

may nearly equal x∗, accurately enough for practical

purposes.



There are a number of properties with the use of the

conjugate directions in minimizing f(x), and these are

given in Lemmas 1 and 2 on page 565. For example,

rT
k pi = 0, i = 1, ..., k

and

min−∞<α<∞ f(xk−1 + αpk)

is solved uniquely with

α = αk ≡
pT
k b

pT
k Apk

Let Sk be the span of {p1, ..., pk}. Then

min
x∈Sk

f(x)

is solved uniquely by x = xk.



THE CONJUGATE GRADIENT METHOD

Given an initial guess, the direction of steepest descent

on the graph of z = f(x) is given by

−∇f(x0) = r0

and we choose this as our first conjugate direction p1.

In our case, we choose x0 = 0 for simplicity, and then

p1 = b

We construct the iterates xk and the conjugate direc-

tions pk simultaneously. Assume the iterates x1, ..., xk

and the conjugate directions p1, ..., pk have been gen-

erated. A new direction pk+1 must be generated, and

it must be A-conjugate to p1, ..., pk.



Assume xk 
= x∗, as otherwise we would be done.

Therefore, rk 
= 0. We set

pk+1 = rk + βk+1pk

Then the condition

pT
k Apk+1 = 0

implies

βk+1 = −pT
k Ark

pT
k Apk

Together with

xk+1 = xk + αk+1pk+1, αk+1 =
pT
k+1b

pT
k+1Apk+1

this defines the congugate gradient iteration method.



The method is guaranteed to converge after at most n

iterations, although it often gets there much sooner;

or an acceptably small error is obtained with some

xk for some k much less than n. There are many

optimality properties to this iteration, and we give only

one here. Let

c =
λ1

λn
=

1

‖A‖2
∥∥∥A−1

∥∥∥
2

=
1

cond(A)2

with λ1 and λn the smallest and largest eigenvalues

of A. Then

‖x∗ − xk‖A ≤ 2

[
1− sqrt (c)

1 + sqrt (c)

]k

‖x∗‖A
The closer to 1 is cond(A)2, the faster is the conver-

gence.



NUMERICAL EXAMPLE

Consider solving a discretization of the integral equa-

tion

3x(s)−
∫ 1

0
cos (πst) x(t) dt = 1, 0 ≤ s ≤ 1

Convert this to an approximating linear system by ap-

plying the midpoint numerical integration rule with

n = 100 subdivisions of [0, 1]. Let h = 1/n, and let

ti be the midpoint of the ith subinterval of width h.

Then the linear system is

3zi − h
n∑

j=1

cos
(
πtitj

)
zj = 1, i = 1, ..., n

k ‖x∗ − xk‖A ‖x∗ − xk‖∞
1 7.48E−1 7.11E−2
2 4.60E−3 7.60E−4
3 7.75E−7 1.46E−7
4 1.41E−12 2.83E−13
5 4.04E−15 6.11E−16



PRECONDITIONERS

Find a nonsingular matrix Q and rewrite Ax = b as(
Q−1AQ−T

) (
QTx

)
= Q−1b

with Q−T =
(
Q−1

)T
. Introduce

Ã = Q−1AQ−T , x̃ = QTx, b̃ = Q−1b

Then solve Ãx̃ = b̃ by conjugate gradient iteration.

We try to choose Q such that

cond(Ã)2 � cond(A)2

and thus have the conjugate gradient iteration con-

verge more rapidly. In applying this technique, the

matrix Ã is never produced explicitly.

There is an “industry” that develops such precondi-

tioners.



KRYLOV SUBSPACE METHODS

Look at the formulas for pk+1 and xk+1:

pk+1 = rk + βk+1pk

xk+1 = xk + αk+1pk+1

with p1 = b, x0 = 0, r0 = b. Then

x1 = α1p1, r1 = b−Ax1

p2 = b−Ax1 + β2b = c1b + c2Ab

for some c1, c2. In general, we can show

pk =
k−1∑
j=0

cjA
jb, xk =

k−1∑
j=0

djA
jb

for some constants
{
cj

}
and

{
dj

}
.



Consider the subspace

Sk = span
{
b, Ab, A2b, ..., Ak−1b

}
This is called the Krylov subspace of order k; and

we are seeking our solution xk from this subspace.

There are methods other than the conjugate gradient

method which seek solutions from Sk. When A is

no longer symmetric, one such method is called GM-

RES, and it is quite popular for such purposes. For a

reference for such methods, see

R. Freund, G. Golub, and N. Nachtigal (1992) Itera-

tive solution of linear systems, in Acta Numerica 1992,

Cambridge University Press, pp. 57-100.



OPTIMALITY OF CG METHOD

Theorem. The iterates {xk} of the CG method satisfy

‖x∗ − xk‖A = min
deg(q)<k

‖x∗ − q(A)b‖A
From this many convergence results can be obtained,

including one given earlier using the condition number

of A.

Let λ1, ..., λn be the eigenvalues of A, with orthonor-

mal eigenvectors e1, ..., en. Then

q(A)ej = q(λj)ej

Write

x∗ =
n∑

j=1

ξjej

Then

q(A) =
n∑

j=1

ξjq(λj)ej



This leads to

‖x∗ − xk‖A = min
deg(q)<k

n∑
j=1

ξ2
j λj

[
1 + λjq(λj)

]2
As an example of the use of this, suppose that A has

only 4 distinct eigenvalues, say λ1, ..., λ4. Then let q

be a degree 3 polynomial for which

1 + λjq(λj) = 0, j = 1, 2, 3, 4

The above expression will then be zero and x4 = x∗.
What happens when the eigenvalues cluster around a

few points?



CONJUGATE GRADIENT THEOREM

Assume xk 
= x∗, and therefore rk = b − Axk 
= 0.

Then:

(a) span {r0, r1, ..., rk} = span
{
b, Ab, A2b, ...Akb

}
(b) span

{
p1, ..., pk+1

}
= span

{
b, Ab, A2b, ...Akb

}
(c) pT

k+1pi = 0, i = 1, ..., k

(d) αk+1 =
rT
k rk

pT
k+1Apk+1

(e) βk+1 =
rT
k rk

rT
k−1rk−1



A NONLINEAR GENERALIZATION

Consider solving

min
x∈Rn

f(x)

for a general scalar nonlinear function f(x) defined on

Rn. Following is the Fletcher-Reeves generalization of

the conjugate gradient iteration.

A. Given x0, define r0 = p1 = −∇f(x0).

B. For k = 1, ..n:

Set xk = xk−1 + αkpk with αk the minimizer of

f(xk−1 + αpk)

Set rk = −∇f(xk)

For k < n, set pk+1 = rk + βk+1pk with

βk+1 =
rT
k rk

rT
k−1rk−1

C. Set x0 := xn and return to Step A.


