SOLUTION BY MINIMIZATION

This is a part of a much larger subject, one taken up in
much more extended fashion in optimization theory.
To solve Ax = b, we reformulate it as a minimization
problem.

Assume A is a real symmetric positive definite matrix
of order n. Define

1
f(z) = E:I:TA:I: —bl'z, zeR”
The solution of

min f(x)

rcR™

is z = 2 = A b, To see this, we introduce the
useful quantity

E(xz) = %(aj* —o)l A" —2), zeR”

Sometimes this is referred to as the “energy” associ-
ated with ™ — z, due to certain physical quantities
associated with A.



Claim:
1
f(z) = E(x) — EbTa:*, r e R"
Expanding,
E(x) — %bT:c* = %(:1:* — )l A(z* — ) — %bT:I:*
= %(aj*)T Az* — %ZBTAaﬁ* — %(ZB*)T Ax
—|—%ZBTA33 — %bTZB*

Simplifying,
1 1
—EZBTAa?* -5 (a:*)T Az = -zt Az* = —z'b = —blx
1 s\ 1 * 1 T x 1 s\ 1 * s\ 1
Then

1 1
E(z) — EbT *= _plp 4 §$TA$ = f(x)



Since A is symmetric and positive definite, let its
eigenvalues be denoted by

0< A <---< )
From Exercise 15 of Chapter 7, we obtain directly that
Mzl3 < 27 Az < dallzl3, 2 €R”
Thus for the function E(x),
Alla® — @l < E(z) < Anlla* —2ll3, = €R"

Thus

ES

E(z)=0 & z=x
Since
1
f(z) = E(x) — EbTa:*, r e R"

we have that f(x) is a minimum if and only if x = x*;
and in that case,

f(a®) = —5bTa"



HOW TO MINIMIZE #(z)?

We can choose a basis {p1,...,pn} and then look in
succession at minimizing f(x) along each direction

p = pj:

min f <:L'(O) + ap) = f (:L'(O) + a*p)

—oo<a<oo

20 20 4 o5y

For example, one could choose the basis {p1, ..., pn}
to be the standard basis {e(l), e e(”)}. In fact, there
are much better choices.

In optimization theory, we often choose a basis {p1, ..., pn}
of conjugate directions. These are a basis for which

pfyrApZ:(L 7’7.]: 17"'7”7 7’#]

We say these are ‘A-conjugate’ or ‘A-orthogonal’. In-
troduce a new inner product and norm

(z,y) 4 =y Az, ||z|| 4 = sqrt ((z,2) 4)



Then from Exercise 15 of Chapter 7, as before,

sart (A1) llzlly < l|ll 4 < sart () [lell, @ € R”

With this norm ||x|| 4, called the energy norm, we
have that a basis of conjugate directions is in fact
an orthogonal basis with respect to the inner product

(z,y) 4. Also,
1 2
B(w) = " — 2|}
Using the orthogonality, it is straightforward to obtain

" = aip1 + -+ anpn

The main question is how to choose the conjugate
directions {p.}.



Recall
1
f(x) = Ea:TAa: —bl'z, zeR”
Introduce the partial solutions xg = 0,

T =a1p1+ - +appr, k=1,...n

rg =b— Az = =V f(zy)
Then rg = b, and

Ty = Tp_1 + QPr, Tk = Th—1 — QpADE
For £k = n, we will have z,, = =™, the true solution.
Often, we may have x; = z* with £k < n; or xy

may nearly equal x*, accurately enough for practical
purposes.



There are a number of properties with the use of the
conjugate directions in minimizing f(x), and these are
given in Lemmas 1 and 2 on page 565. For example,

r,{pi =0, 2=1,...,k

and

min__ f(zg_1 + apy)

—o0o<a<o0

is solved uniquely with

A
Py Apy,
Let S;. be the span of {p1,...,pr}. Then

is solved uniquely by z = z;..



THE CONJUGATE GRADIENT METHOD

Given an initial guess, the direction of steepest descent
on the graph of z = f(x) is given by

—V f(zg) = 7o

and we choose this as our first conjugate direction py.
In our case, we choose g = 0 for simplicity, and then

p1 =70
We construct the iterates x;. and the conjugate direc-
tions pi. simultaneously. Assume the iterates x1, ..., x
and the conjugate directions pq, ..., pr. have been gen-
erated. A new direction pg 1 must be generated, and
it must be A-conjugate to pq, ..., pi.



Assume xj # x*, as otherwise we would be done.
Therefore, r;, # 0. We set

Pk+1 = Tk + Br+1Pk
Then the condition

T
Pi Apg4+1 =0
implies
Br+1 = P AT
+1 = —
P} Apy,
Together with
T
_ _ Dpyqb
Tl = T+ Ay 1Pk+1) gl = 7 P
Piy1Pk+1

this defines the congugate gradient iteration method.



The method is guaranteed to converge after at most n
iterations, although it often gets there much sooner;
or an acceptably small error is obtained with some
xp. for some k much less than n. There are many
optimality properties to this iteration, and we give only
one here. Let

A1 1 B 1

A Al [A-1|, cond(A)z

C —

with A1 and )\, the smallest and largest eigenvalues
of A. Then

k
1 —sqrt (c) 12|
1+ sqrt(c) 4

The closer to 1 is cond(A)»y, the faster is the conver-

lo* — apll 4 < 2 [

gence.



NUMERICAL EXAMPLE

Consider solving a discretization of the integral equa-

tion
1
Ih@fiécmﬁwﬂﬂﬂﬁ:ﬂﬂ 0<s<1

Convert this to an approximating linear system by ap-
plying the midpoint numerical integration rule with
n = 100 subdivisions of [0,1]. Let h = 1/n, and let
t; be the midpoint of the it" subinterval of width h.
Then the linear system is

n
3Zi—hZCOS (ﬂ'titj) Zj = 1, 2=1,...,n
=1

|lz* —zplla | l2* — 2pllo
748E—1 | 7.11E-2
4.60E-3 | 7.60E—4
7.75E—7 | 1.46E—7
1.41E—12 | 2.83E—13
4.04E-15 | 6.11E—16

O OWDND RS




PRECONDITIONERS

Find a nonsingular matrix () and rewrite Ax = b as
(@140 T) (a74) =@M

T
with Q1 = (Q‘l) . Introduce

~

A=0140~ ", z=0%'z, b=0Q 1

Then solve A% = b by conjugate gradient iteration.

We try to choose () such that

cond(A)y < cond(A)s

and thus have the conjugate gradient iteration con-
verge more rapidly. In applying this technique, the
matrix A is never produced explicitly.

There is an “industry” that develops such precondi-

tioners.



KRYLOV SUBSPACE METHODS

Look at the formulas for py 1 and zg 1:

Pk+1 = Tk + Br+1Pk

Thyl = T + Oy 1Pk+1
with p1 = b, g =0, 19 = b. Then
r1 = o1p1, T1=b—Ax

po = b — A:Bl + Bob = c1b + CQAb

for some ¢y, cp. In general, we can show

k—1 . k—1 .
DL — Z CjA]b, Ll — Z d]A]b

for some constants {cj} and {dj}.



Consider the subspace

S;. = span {b, Ab, A% ... Ak_lb}

This is called the Krylov subspace of order k; and
we are seeking our solution xj from this subspace.
There are methods other than the conjugate gradient
method which seek solutions from &;.. When A is
no longer symmetric, one such method is called GM-
RES, and it is quite popular for such purposes. For a
reference for such methods, see

R. Freund, G. Golub, and N. Nachtigal (1992) Itera-
tive solution of linear systems, in Acta Numerica 1992,
Cambridge University Press, pp. 57-100.



OPTIMALITY OF CG METHOD

Theorem. The iterates {x;.} of the CG method satisfy

xt —x — min ||lz¥ —qg(A)b
o~ ala =, min_ 12" = a(A)bl.

From this many convergence results can be obtained,
including one given earlier using the condition number

of A.

Let A1, ..., A\, be the eigenvalues of A, with orthonor-
mal eigenvectors eq, ...,€,. Then

q(A)e; = q(Aj)e;
Write

Then



This leads to
mn
" —aglla= min S & [1+Aan)]]
deg(q)<k =

As an example of the use of this, suppose that A has
only 4 distinct eigenvalues, say A1,...,A\4. Then let ¢
be a degree 3 polynomial for which

1+ )\]q()\]) =0, 7=123,4

The above expression will then be zero and x4 = x™.
What happens when the eigenvalues cluster around a
few points?



CONJUGATE GRADIENT THEOREM

Assume xj # x*, and therefore r, = b — Az # 0.
Then:

(a) span{rg,r1,...,7L} = span {b, Ab, A%, ...Akb}
(b) span{p1,...,pE11} = span {b, Ab, A®b, ...Akb}

(c) p£+1pi =0,i1=1,....k




A NONLINEAR GENERALIZATION

Consider solving

min f(x

min f()
for a general scalar nonlinear function f(x) defined on
R™. Following is the Fletcher-Reeves generalization of
the conjugate gradient iteration.

A. Given xg, define rg = p1 = —V f(xg).
B. For k=1, ..n:

Set v, = x1._1 + appr with ap the minimizer of

f(z_1 + apg)
Set r}, = —Vf(:r;k)
For k < n, set py11 = 7 + Bk11pE with
r%rk

Br+1 =
T
Tp—_1Tk—1

C. Set xg := xn, and return to Step A.



