
STIFF EQUATIONS

A problem is stiff if fy(x, Y (x)) is negative and of

large magnitude, recalling that fy(x, y) plays the role

of the λ of the model equation. For systems, we con-

sider the eigenvalues λj ≡ λj(x) of fy(x,Y(x)), and

we assume they all satisfy

real(λj) ≤ 0

The differential equation problem is called stiff if some

or all of these eigenvalues have a real part that is

negative and of large magnitude.

There are also problems in which the eigenvalues have

imag(λj) of large magnitude, and these must usually

be treated by other types of methods. Stiff prob-

lems often have real(λj) of greatly varying magnitude,

which adds to the difficulty of their solution.



EXAMPLE. Consider the model equation

y′ = λy + g(x), y(x0) = Y0

For example, consider the example problem from the

text (p. 405):

y′ = λy + (1− λ) cosx− (1 + λ) sinx, y(0) = 1

with true solution Y (x) = sinx+cosx. Now consider

the perturbed problem

y′ = λy + (1− λ) cos x− (1 + λ) sinx, y(0) = 1 + ε

with true solution

Yε(x) = Y (x) + ε eλx



Yε(x) = Y (x) + ε eλx

If we have λ < 0 of large magnitude, then Yε(x) is es-

sentially the same as Y (x) after a very small change in

x. For example, consider λ = −10, 000. This seems

a desirable property from a mathematical and physi-

cal perspective; but it proves troublesome for the be-

haviour of numerical methods. For the Euler method

of numerical solution, we would need to have

−2 < hλ < 0
0 < h < .0002



SOLVING THE BACKWARD

EULER METHOD

Recall the backward Euler method for solving

y′ = f(x, y)

is given by

yn+1 = yn + hf(xn+1, yn+1), n ≥ 0 (1)

How do we solve for yn+1? Consider using ordinary

fixed point iteration,

y
(k+1)
n+1 = yn + hf(xn+1, y

(k)
n+1), k = 0, 1, ... (2)

To analyze the convergence,

yn+1 − y
(k+1)
n+1 = h

[
f(xn+1, yn+1)− f(xn+1, y

(k)
n+1)

]
.
= h

∂f(xn+1, yn+1)

∂y

[
yn+1 − y

(k)
n+1

]



If the problem is stiff, then fy(xn+1, yn+1) is likely to
be negative and of very large magnitude. Therefore,
to have convergence in (2) will require a very small
value of h. That would negate the value of using an
A-stable method.

For stiff differential equations, the nonlinear equation
(1) will need to be solved by other techniques. For a
single equation, we might use Newton’s method or the
secant method, say with an initial guess of y

(0)
n+1 = yn

or something better.

With a system of m differential equations,

y′ = fy(x,y), y(x0) = Y0

this becomes more of a problem. Now we want to
solve

yn+1 = yn + hf(xn+1,yn+1), n ≥ 0

for the vector yn+1. When m becomes large, solving
this at every step is a major cost and must be done
very carefully; and much time is devoted to deciding
how to do this. Newton’s method is described in the
text, on pages 413-414.



BACKWARD DIFFERENTIATION FORMULAS

Recall the tools on interpolation we used in deriving

the Adams families of multistep methods. Let Pp(x)

interpolate Y (x) at the node points

xn+1, xn, ..., xn−p+1

These are exactly the node points used in defining the

Adams-Moulton method of order p+1. We can write

this polynomial in its Lagrange form:

Pp(x) =
p−1∑
j=−1

Y (xn−j)�j(x)

�j(x) =
p−1∏
i=−1
i �=j

(
x− xn−i

xn−j − xn−i

)



With this definition, deg(�j) = p and

�j(xn−i) ≡ δi,j =

{
1, i = j
0, i �= j

We have

Y (x) ≈ Pp(x)

For example, with p = 1:

P1(x) =

(
x− xn+1

xn − xn+1

)
Y (xn) +

(
x− xn

xn+1 − xn

)
Y (xn+1)

Now use

P′
p(xn+1) ≈ Y ′(xn+1) = f(xn+1, Yn+1)

Continuing the example with p = 1,

Y (xn+1)− Y (xn)

xn+1 − xn
≈ f(xn+1, Yn+1)

Solving for Y (xn+1), we have

Y (xn+1) ≈ Y (xn) + hf(xn+1Yn+1)

This is just the backward Euler method.



With p = 2, we write

P2(x) =

(
x− xn

xn+1 − xn

)(
x− xn−1

xn+1 − xn−1

)
Yn+1

+

(
x− xn+1

xn − xn+1

)(
x− xn−1

xn − xn−1

)
Yn

+

(
x− xn+1

xn−1 − xn+1

)(
x− xn

xn−1 − xn

)
Yn−1

=
(x− xn) (x− xn−1)

2h2
Yn+1

−(x− xn+1) (x− xn−1)

h2
Yn

+
(x− xn+1) (x− xn)

2h2
Yn−1

P′
2(xn+1) =

3

2h
Yn+1 −

2

h
Yn +

1

2h
Yn−1



This leads to the approximation

3

2h
Yn+1 −

2

h
Yn +

1

2h
Yn−1 ≈ Y ′(xn+1) = f(xn+1, Yn+1)

Solving for Yn+1, we have

Yn+1 ≈ 4

3
Yn − 1

3
Yn−1 +

2h

3
f(xn+1, Yn+1)

The numerical method is

yn+1 =
4

3
yn − 1

3
yn−1 +

2h

3
f(xn+1, yn+1), n ≥ 1

This is a two-step method of order 2, with

Tn(Y ) =
2

9
h3Y ′′′(ξn)

This is also an A-stable method.



For general p ≥ 1,

Y (x) ≈ Pp(x) =
p−1∑
j=−1

Y (xn−j)�j(x)

Y ′(x) ≈ P′
p(x) =

p−1∑
j=−1

Y (xn−j)�
′
j(x)

Y ′(xn+1) ≈ P′
p(xn+1) =

p−1∑
j=−1

Y (xn−j)�
′
j(xn+1)

Using Y ′(xn+1) = f(xn+1, Yn+1), we have

p−1∑
j=−1

Y (xn−j)�
′
j(xn+1) ≈ f(xn+1, Y (xn+1))



Solve for the term Y (xn+1) on the left side, obtaining

something of the form

Yn+1 ≈ α0Yn + ...+ αp−1Yn−p+1 + βhf(xn+1, Yn+1)

Values of these coefficients for 1 ≤ p ≤ 6 are given

on p. 411. This leads to the multistep method

yn+1 = α0yn + ...+ αp−1yn−p+1 + βhf(xn+1, yn+1)

For p ≤ 6, these are useful in solving stiff differential

equations.

For all of these cases, the region of absolute stability

contains the entire negative real axis, meaning that

the interval

−∞ < hλ < 0

is contained in the region of absolute stability. Por-

tions above and below this interval are also contained

in the region of absolute stability.



THE HEAT EQUATION

Consider solving for a function U(x, t) which satisfies

the equations

Ut = c2Uxx +G(x, t), 0 < x < 1, t > 0 (3)

U(0, t) = d0(t)
U(1, t) = d1(t)

t ≥ 0 (4)

U(x, 0) = f(x), 0 ≤ x ≤ 1 (5)

The equation (3) is an example of a parabolic partial

differential equation (a parabolic ) or an equation of

diffusion type; and it is also called the heat equation.

The equations (4) give the boundary values of U(x, t)

at the boundaries of the region [0, 1] on which the

function U is being sought, and the final equation (5)

gives the initial value of U at time t = 0.



A PHYSICAL EXAMPLE

As a physical example for which this is the mathe-

matical model, imagine a metal rod of length 1; and

assume it is well insulated along its length so that the

heat that escapes does so only at its ends (at x = 0

and x = 1). The function U(x, t) represents the tem-

perature of the rod at position x at time t. The equa-

tion (3) gives the governing law for the movement of

heat in the rod; and G(x, t) is a source term. The

initial condition (5) gives the initial temperature of

the rod; and (4) gives the forced temperatures at the

ends of the rod.

The constant c > 0 depends on the physical charac-

teristics of the rod. For simplicity, we assume c = 1.



THE METHOD OF LINES

Introduce a mesh on 0 ≤ x ≤ 1. For an integer

m > 0, define δ = 1/m, and

xj = jδ, j = 0, 1, ...,m

We give a method which solves for approximations to

U(x, t) at the node points x1, ..., xm−1. If you look

at the domain of the function U(x, t), namely

{(x, t) | 0 ≤ x ≤ 1, t ≥ 0}
then we are solving for estimates of U(x, t) along the

lines {
(xj, t) | t ≥ 0

}
, j = 1, 2, ...,m− 1

We approximate the PDE at the points on these lines.

We begin by approximating the term Uxx(xj, t). To

do so, we return to a numerical differentiation formula



from Chapter 5. For a function g(x),

g′′(x) = g(x+ δ)− 2g(x) + g(x− δ)

δ2
− δ2

12
g(4)(ξ)

with some x− δ ≤ ξ ≤ x+ δ (cf. p. 318). Then

Uxx(xj, t) =
U(xj+1, t)− 2U(xj, t) + U(xj−1, t)

δ2

−δ2

12

∂4U(ξj, t)

∂x4

with xj−1 ≤ ξj ≤ xj+1, for j = 1, 2, ...,m − 1. We

will substitute this into our PDE (3), at the point

(xj, t). This yields

Ut(xj, t) =
U(xj+1, t)− 2U(xj, t) + U(xj−1, t)

δ2

−δ2

12

∂4U(ξj, t)

∂x4
+G(xj, t)

(6)

We drop the truncation error to obtain our numerical

method.



Introduce the functions uj(t) as the approximation we

will compute for U(xj, t), for j = 0, ...,m. In fact, we

take

u0(t) = d0(t), um(t) = d1(t) (7)

Then our numerical approximation of (6) is given by

u′j(t) =
uj+1(t)− 2uj(t) + uj−1(t)

δ2
+G(xj, t) (8)

for j = 1, ...,m− 1. In addition, the initial condition

(5) implies we should use

uj(0) = f(xj), j = 1, ...,m− 1 (9)

The equations (7)-(9) form an initial value problem for

a linear system ofm−1 ordinary differential equations

for the unknown functions u1, ..., um−1.

Under suitable assumptions on u,G, d0, d1, f , it can

be proven that

max
0≤xj≤1
0≤t≤T

∣∣∣U(xj, t)− uj(t)
∣∣∣ ≤ cT δ

2 (10)



Introduce

Λ =
1

δ2




−2 1 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1
... . . .
0 · · · 0 1 −2




u(t) = [u1(t), ..., um−1(t)]
T

u0 = [f(x1), ..., f(xm−1)]
T

g(t) = [G(x1, t), ..., G(xm−1, t)]
T

+ 1
δ2
[d0(t), 0, ..., 0, d1(t)]

T

Then our numerical method (7)-(9) can be written as

the initial value problem

u′(t) = Λu(t) + g(t), u(0) = u0 (11)

How do we solve this problem?



Euler’s method (with stepsize h in the time variable

t):

Vn+1 = Vn + h [ΛVn + g(tn)] , n ≥ 0

with V0 = u0. We have introduced Vn ≈ u(tn).

Backward Euler’s method :

Vn+1 = Vn + h [ΛVn+1 + g(tn+1)] , n ≥ 0

with V0 = u0.

Trapezoidal method :

Vn+1 = Vn +
h

2
[ΛVn + g(tn)

+ ΛVn+1 + g(tn+1)]



Before proceeding with these numerical methods, first

examine the system

u′(t) = Λu(t) + g(t), u(0) = u0

In this case, f(t,u) = Λu + g(t); and the Jacobian

matrix is

fu(t,u) = Λ

Thus we must examine the eigenvalues of Λ. This is

in fact a well-known matrix, and its eigenvalues are

λj = − 4

δ2
sin2

(
jπ

2m

)
, j = 1, ...,m− 1

Thus

λm−1 ≤ λj ≤ λ1

λm−1 ≈ − 4

δ2
, λ1 ≈ −π2 (12)

We see that for δ small, the eigenvalues of Λ can be

very large in size, while being real and negative. This

is a stiff system. For example, take m = 100, and

thus δ = 0.01.



EULER’S METHOD

Euler’s method is

Vn+1 = Vn + h [ΛVn + g(tn)] , n ≥ 0 (13)

For stability, it requires

−2 < hλj < 0

for all eigenvalues of Λ. Using the bounds on λj, this

requires

4h

δ2
< 2

h <
1

2
δ2 (14)

This is a well-known condition for stability of (13). In

the case m = 100, this requires the time step h to

satisfy

h < .00005

which is a severe restriction.



THE BACKWARD EULER’S METHOD

The method is

Vn+1 = Vn + h [ΛVn+1 + g(tn+1)] , n ≥ 0 (15)

With both this method and Euler’s method, it can be

shown that

max
0≤xj≤1
0≤t≤T

∣∣∣U(xj, t)− Vj,n
∣∣∣ ≤ cTδ

2 + c2h

But unlike Euler’s method, there is no longer any step-

size restriction on h.



To solve (15) for Vn+1, we rewrite it as

(I − hΛ)Vn+1 = Vn + hg(tn+1) (16)

The matrix I − hΛ is of tridiagonal form; and lin-

ear systems with such a form are quite easy to solve

with a very low order of arithmetic operations. In this

particular case, the linear system can be solved with

around 5m arithmetic operations for each value of n.

For the heat equation, the backward Euler method is

always preferable to the Euler method.



NUMERICAL EXAMPLE

We choose the true solution to be

U(x, t) = e−.1t sin(πx), 0 < x < 1, t > 0

The functionsG(x, t), d0(t), d1(t), f(x) are determined

accordingly.

For the Euler method, we choose m = 4, 8, 16; and

we choose h = 1
2δ

2. This means using

h = .031, .0078, .0020

For the backward Euler method, we again use m =

4, 8, 16; but now we use simply h = 0.1.



THE TRAPEZOIDAL METHOD

The trapezoidal method is given by

Vn+1 = Vn +
h

2
[ΛVn + g(tn)

+ ΛVn+1 + g(tn+1)]
(17)

It can be shown that

max
0≤xj≤1
0≤t≤T

∣∣∣U(xj, t)− Vj,n
∣∣∣ ≤ cT δ

2 + c2h
2

To solve the equation (17) for Vn+1, we have(
I − 1

2hΛ
)
Vn+1 =

(
I + 1

2hΛ
)
Vn

+h
2 [g(tn) + g(tn+1)]

The matrix I − 1
2hΛ is again tridiagonal, and we can

solve this system quite inexpensively. This is known

as the Crank-Nicolson method when used to solve

parabolic PDEs.


