STIFF EQUATIONS

A problem is stiff if $f_y(x, Y(x))$ is negative and of large magnitude, recalling that $f_y(x, y)$ plays the role of the λ of the model equation. For systems, we consider the eigenvalues $\lambda_j \equiv \lambda_j(x)$ of $f_y(x, Y(x))$, and we assume they all satisfy

$$\text{real}(\lambda_j) \leq 0$$

The differential equation problem is called stiff if some or all of these eigenvalues have a real part that is negative and of large magnitude.

There are also problems in which the eigenvalues have $\text{imag}(\lambda_j)$ of large magnitude, and these must usually be treated by other types of methods. Stiff problems often have $\text{real}(\lambda_j)$ of greatly varying magnitude, which adds to the difficulty of their solution.
Example. Consider the model equation

\[y' = \lambda y + g(x), \quad y(x_0) = Y_0 \]

For example, consider the example problem from the text (p. 405):

\[y' = \lambda y + (1 - \lambda) \cos x - (1 + \lambda) \sin x, \quad y(0) = 1 \]

with true solution \(Y(x) = \sin x + \cos x \). Now consider the perturbed problem

\[y' = \lambda y + (1 - \lambda) \cos x - (1 + \lambda) \sin x, \quad y(0) = 1 + \epsilon \]

with true solution

\[Y_\epsilon(x) = Y(x) + \epsilon e^{\lambda x} \]
\[Y_{\epsilon}(x) = Y(x) + \epsilon e^{\lambda x} \]

If we have \(\lambda < 0 \) of large magnitude, then \(Y_{\epsilon}(x) \) is essentially the same as \(Y(x) \) after a very small change in \(x \). For example, consider \(\lambda = -10,000 \). This seems a desirable property from a mathematical and physical perspective; but it proves troublesome for the behaviour of numerical methods. For the Euler method of numerical solution, we would need to have

\[
-2 < h\lambda < 0 \\
0 < h < .0002
\]
SOLVING THE BACKWARD EULER METHOD

Recall the backward Euler method for solving

\[y' = f(x, y) \]

is given by

\[y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), \quad n \geq 0 \quad (1) \]

How do we solve for \(y_{n+1} \)? Consider using ordinary fixed point iteration,

\[y_{n+1}^{(k+1)} = y_n + hf(x_{n+1}, y_{n+1}^{(k)}), \quad k = 0, 1, \ldots \quad (2) \]

To analyze the convergence,

\[
y_{n+1} - y_{n+1}^{(k+1)} = h \left[f(x_{n+1}, y_{n+1}) - f(x_{n+1}, y_{n+1}^{(k)}) \right]
\]

\[
= h \frac{\partial f(x_{n+1}, y_{n+1})}{\partial y} \left[y_{n+1} - y_{n+1}^{(k)} \right]
\]
If the problem is stiff, then $f_y(x_{n+1}, y_{n+1})$ is likely to be negative and of very large magnitude. Therefore, to have convergence in (2) will require a very small value of h. That would negate the value of using an A-stable method.

For stiff differential equations, the nonlinear equation (1) will need to be solved by other techniques. For a single equation, we might use Newton’s method or the secant method, say with an initial guess of $y_{n+1}^{(0)} = y_n$ or something better.

With a system of m differential equations,

$$y' = f_y(x, y), \quad y(x_0) = Y_0$$

this becomes more of a problem. Now we want to solve

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), \quad n \geq 0$$

for the vector y_{n+1}. When m becomes large, solving this at every step is a major cost and must be done very carefully; and much time is devoted to deciding how to do this. Newton’s method is described in the text, on pages 413-414.
Recall the tools on interpolation we used in deriving the Adams families of multistep methods. Let $P_p(x)$ interpolate $Y(x)$ at the node points $x_{n+1}, x_n, \ldots, x_{n-p+1}$

These are exactly the node points used in defining the Adams-Moulton method of order $p+1$. We can write this polynomial in its Lagrange form:

$$P_p(x) = \sum_{j=-1}^{p-1} Y(x_{n-j}) \ell_j(x)$$

$$\ell_j(x) = \prod_{\substack{i=-1 \atop i \neq j}}^{p-1} \left(\frac{x-x_{n-i}}{x_{n-j}-x_{n-i}} \right)$$
With this definition, \(\text{deg}(\ell_j) = p \) and
\[
\ell_j(x_{n-i}) \equiv \delta_{i,j} = \begin{cases}
1, & i = j \\
0, & i \neq j
\end{cases}
\]

We have
\[
Y(x) \approx P_p(x)
\]

For example, with \(p = 1 \):
\[
P_1(x) = \left(\frac{x - x_{n+1}}{x_n - x_{n+1}} \right) Y(x_n) + \left(\frac{x - x_n}{x_{n+1} - x_n} \right) Y(x_{n+1})
\]

Now use
\[
P_p'(x_{n+1}) \approx Y'(x_{n+1}) = f(x_{n+1}, Y_{n+1})
\]

Continuing the example with \(p = 1 \),
\[
\frac{Y(x_{n+1}) - Y(x_n)}{x_{n+1} - x_n} \approx f(x_{n+1}, Y_{n+1})
\]

Solving for \(Y(x_{n+1}) \), we have
\[
Y(x_{n+1}) \approx Y(x_n) + hf(x_{n+1}Y_{n+1})
\]

This is just the backward Euler method.
With $p = 2$, we write

$$
P_2(x) = \left(\frac{x - x_n}{x_{n+1} - x_n} \right) \left(\frac{x - x_{n-1}}{x_{n+1} - x_{n-1}} \right) Y_{n+1} + \left(\frac{x - x_{n+1}}{x_n - x_{n+1}} \right) \left(\frac{x - x_{n-1}}{x_n - x_{n-1}} \right) Y_n + \left(\frac{x - x_{n+1}}{x_{n-1} - x_{n+1}} \right) \left(\frac{x - x_n}{x_{n-1} - x_n} \right) Y_{n-1} = \frac{(x - x_n)(x - x_{n-1})}{2h^2} Y_{n+1} - \frac{(x - x_{n+1})(x - x_{n-1})}{h^2} Y_n + \frac{(x - x_{n+1})(x - x_n)}{2h^2} Y_{n-1}$$

$$
P_2'(x_{n+1}) = \frac{3}{2h} Y_{n+1} - \frac{2}{h} Y_n + \frac{1}{2h} Y_{n-1}$$
This leads to the approximation

\[\frac{3}{2h} Y_{n+1} - \frac{2}{h} Y_n + \frac{1}{2h} Y_{n-1} \approx Y'(x_{n+1}) = f(x_{n+1}, Y_{n+1}) \]

Solving for \(Y_{n+1} \), we have

\[Y_{n+1} \approx \frac{4}{3} Y_n - \frac{1}{3} Y_{n-1} + \frac{2h}{3} f(x_{n+1}, Y_{n+1}) \]

The numerical method is

\[y_{n+1} = \frac{4}{3} y_n - \frac{1}{3} y_{n-1} + \frac{2h}{3} f(x_{n+1}, y_{n+1}), \quad n \geq 1 \]

This is a two-step method of order 2, with

\[T_n(Y) = \frac{2}{9} h^3 Y'''(\xi_n) \]

This is also an A-stable method.
For general $p \geq 1$,

\[
Y(x) \approx P_p(x) = \sum_{j=-1}^{p-1} Y(x_{n-j})\ell_j(x)
\]

\[
Y'(x) \approx P'_p(x) = \sum_{j=-1}^{p-1} Y(x_{n-j})\ell'_j(x)
\]

\[
Y'(x_{n+1}) \approx P'_p(x_{n+1}) = \sum_{j=-1}^{p-1} Y(x_{n-j})\ell'_j(x_{n+1})
\]

Using $Y'(x_{n+1}) = f(x_{n+1}, Y_{n+1})$, we have

\[
\sum_{j=-1}^{p-1} Y(x_{n-j})\ell'_j(x_{n+1}) \approx f(x_{n+1}, Y(x_{n+1}))
\]
Solve for the term $Y(x_{n+1})$ on the left side, obtaining something of the form

$$Y_{n+1} \approx \alpha_0 Y_n + \ldots + \alpha_{p-1} Y_{n-p+1} + \beta h f(x_{n+1}, Y_{n+1})$$

Values of these coefficients for $1 \leq p \leq 6$ are given on p. 411. This leads to the multistep method

$$y_{n+1} = \alpha_0 y_n + \ldots + \alpha_{p-1} y_{n-p+1} + \beta h f(x_{n+1}, y_{n+1})$$

For $p \leq 6$, these are useful in solving stiff differential equations.

For all of these cases, the region of absolute stability contains the entire negative real axis, meaning that the interval

$$-\infty < h \lambda < 0$$

is contained in the region of absolute stability. Portions above and below this interval are also contained in the region of absolute stability.
Consider solving for a function $U(x,t)$ which satisfies the equations

$$U_t = c^2 U_{xx} + G(x,t), \quad 0 < x < 1, \quad t > 0 \quad (3)$$

$$U(0,t) = d_0(t)$$
$$U(1,t) = d_1(t) \quad t \geq 0 \quad (4)$$

$$U(x,0) = f(x), \quad 0 \leq x \leq 1 \quad (5)$$

The equation (3) is an example of a parabolic partial differential equation (a parabolic) or an equation of diffusion type; and it is also called the heat equation. The equations (4) give the boundary values of $U(x,t)$ at the boundaries of the region $[0,1]$ on which the function U is being sought, and the final equation (5) gives the initial value of U at time $t = 0$.
A PHYSICAL EXAMPLE

As a physical example for which this is the mathematical model, imagine a metal rod of length 1; and assume it is well insulated along its length so that the heat that escapes does so only at its ends (at $x = 0$ and $x = 1$). The function $U(x, t)$ represents the temperature of the rod at position x at time t. The equation (3) gives the governing law for the movement of heat in the rod; and $G(x, t)$ is a source term. The initial condition (5) gives the initial temperature of the rod; and (4) gives the forced temperatures at the ends of the rod.

The constant $c > 0$ depends on the physical characteristics of the rod. For simplicity, we assume $c = 1$.
THE METHOD OF LINES

Introduce a mesh on $0 \leq x \leq 1$. For an integer $m > 0$, define $\delta = 1/m$, and

$$x_j = j\delta, \quad j = 0, 1, ..., m$$

We give a method which solves for approximations to $U(x, t)$ at the node points $x_1, ..., x_{m-1}$. If you look at the domain of the function $U(x, t)$, namely

$$\{(x, t) \mid 0 \leq x \leq 1, \ t \geq 0\}$$

then we are solving for estimates of $U(x, t)$ along the lines

$$\{(x_j, t) \mid t \geq 0\}, \quad j = 1, 2, ..., m - 1$$

We approximate the PDE at the points on these lines.

We begin by approximating the term $U_{xx}(x_j, t)$. To do so, we return to a numerical differentiation formula
from Chapter 5. For a function $g(x)$,
\[
g''(x) = \frac{g(x + \delta) - 2g(x) + g(x - \delta)}{\delta^2} - \frac{\delta^2}{12} g^{(4)}(\xi)
\]
with some $x - \delta \leq \xi \leq x + \delta$ (cf. p. 318). Then
\[
U_{xx}(x_j, t) = \frac{U(x_{j+1}, t) - 2U(x_j, t) + U(x_{j-1}, t)}{\delta^2} - \frac{\delta^2}{12} \frac{\partial^4 U(\xi_j, t)}{\partial x^4}
\]
with $x_{j-1} \leq \xi_j \leq x_{j+1}$, for $j = 1, 2, \ldots, m - 1$. We will substitute this into our PDE (3), at the point (x_j, t). This yields
\[
U_t(x_j, t) = \frac{U(x_{j+1}, t) - 2U(x_j, t) + U(x_{j-1}, t)}{\delta^2} - \frac{\delta^2}{12} \frac{\partial^4 U(\xi_j, t)}{\partial x^4} + G(x_j, t)
\]
(6)
We drop the truncation error to obtain our numerical method.
Introduce the functions $u_j(t)$ as the approximation we will compute for $U(x_j, t)$, for $j = 0, \ldots, m$. In fact, we take

$$u_0(t) = d_0(t), \quad u_m(t) = d_1(t)$$ (7)

Then our numerical approximation of (6) is given by

$$u_j'(t) = \frac{u_{j+1}(t) - 2u_j(t) + u_{j-1}(t)}{\delta^2} + G(x_j, t)$$ (8)

for $j = 1, \ldots, m - 1$. In addition, the initial condition (5) implies we should use

$$u_j(0) = f(x_j), \quad j = 1, \ldots, m - 1$$ (9)

The equations (7)-(9) form an initial value problem for a linear system of $m - 1$ ordinary differential equations for the unknown functions u_1, \ldots, u_{m-1}.

Under suitable assumptions on u, G, d_0, d_1, f, it can be proven that

$$\max_{0 \leq x_j \leq 1} \max_{0 \leq t \leq T} \left| U(x_j, t) - u_j(t) \right| \leq c_T \delta^2$$ (10)
Introduce

\[\Lambda = \frac{1}{\delta^2} \begin{bmatrix} -2 & 1 & 0 & \cdots \\ 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & 1 \\ \vdots & & \ddots & \ddots \\ 0 & \cdots & 0 & 1 & -2 \end{bmatrix} \]

\[u(t) = [u_1(t), \ldots, u_{m-1}(t)]^T \]

\[u_0 = [f(x_1), \ldots, f(x_{m-1})]^T \]

\[g(t) = [G(x_1, t), \ldots, G(x_{m-1}, t)]^T + \frac{1}{\delta^2} [d_0(t), 0, \ldots, 0, d_1(t)]^T \]

Then our numerical method (7)-(9) can be written as the initial value problem

\[u'(t) = \Lambda u(t) + g(t), \quad u(0) = u_0 \quad (11) \]

How do we solve this problem?
Euler’s method (with stepsize h in the time variable t):

$$V_{n+1} = V_n + h [\Lambda V_n + g(t_n)], \quad n \geq 0$$

with $V_0 = u_0$. We have introduced $V_n \approx u(t_n)$.

Backward Euler’s method:

$$V_{n+1} = V_n + h [\Lambda V_{n+1} + g(t_{n+1})], \quad n \geq 0$$

with $V_0 = u_0$.

Trapezoidal method:

$$V_{n+1} = V_n + \frac{h}{2} [\Lambda V_n + g(t_n)
+ \Lambda V_{n+1} + g(t_{n+1})]$$
Before proceeding with these numerical methods, first examine the system

\[u'(t) = \Lambda u(t) + g(t), \quad u(0) = u_0 \]

In this case, \(f(t, u) = \Lambda u + g(t) \); and the Jacobian matrix is

\[f_u(t, u) = \Lambda \]

Thus we must examine the eigenvalues of \(\Lambda \). This is in fact a well-known matrix, and its eigenvalues are

\[\lambda_j = -\frac{4}{\delta^2} \sin^2 \left(\frac{j\pi}{2m} \right), \quad j = 1, \ldots, m - 1 \]

Thus

\[\lambda_{m-1} \leq \lambda_j \leq \lambda_1 \]

\[\lambda_{m-1} \approx -\frac{4}{\delta^2}, \quad \lambda_1 \approx -\pi^2 \quad (12) \]

We see that for \(\delta \) small, the eigenvalues of \(\Lambda \) can be very large in size, while being real and negative. This is a stiff system. For example, take \(m = 100 \), and thus \(\delta = 0.01 \).
EULER’S METHOD

Euler’s method is

\[V_{n+1} = V_n + h [\Lambda V_n + g(t_n)], \quad n \geq 0 \] (13)

For stability, it requires

\[-2 < h \lambda_j < 0 \]

for all eigenvalues of \(\Lambda \). Using the bounds on \(\lambda_j \), this requires

\[\frac{4h}{\delta^2} < 2 \]

\[h < \frac{1}{2} \delta^2 \] (14)

This is a well-known condition for stability of (13). In the case \(m = 100 \), this requires the time step \(h \) to satisfy

\[h < .00005 \]

which is a severe restriction.
THE BACKWARD EULER’S METHOD

The method is

\[V_{n+1} = V_n + h [\Lambda V_{n+1} + g(t_{n+1})] , \quad n \geq 0 \quad (15) \]

With both this method and Euler’s method, it can be shown that

\[\max_{0 \leq x_j \leq 1, 0 \leq t \leq T} | U(x_j, t) - V_j,n | \leq c_T \delta^2 + c_2 h \]

But unlike Euler’s method, there is no longer any step-size restriction on \(h \).
To solve (15) for V_{n+1}, we rewrite it as

$$(I - h\Lambda) V_{n+1} = V_n + h g(t_{n+1})$$

(16)

The matrix $I - h\Lambda$ is of tridiagonal form; and linear systems with such a form are quite easy to solve with a very low order of arithmetic operations. In this particular case, the linear system can be solved with around $5m$ arithmetic operations for each value of n. For the heat equation, the backward Euler method is always preferable to the Euler method.
NUMERICAL EXAMPLE

We choose the true solution to be

\[U(x, t) = e^{-1.1t} \sin(\pi x), \quad 0 < x < 1, \quad t > 0 \]

The functions \(G(x, t), d_0(t), d_1(t), f(x)\) are determined accordingly.

For the Euler method, we choose \(m = 4, 8, 16;\) and we choose \(h = \frac{1}{2} \delta^2.\) This means using

\[h = .031, .0078, .0020 \]

For the backward Euler method, we again use \(m = 4, 8, 16;\) but now we use simply \(h = 0.1.\)
THE TRAPEZOIDAL METHOD

The trapezoidal method is given by

\[V_{n+1} = V_n + \frac{h}{2} \left[\Lambda V_n + g(t_n) + \Lambda V_{n+1} + g(t_{n+1}) \right] \] \hspace{1cm} (17)

It can be shown that

\[\max_{0 \leq t \leq T} \left| U(x_j, t) - V_{j,n} \right| \leq c_T \delta^2 + c_2 h^2 \]

To solve the equation (17) for \(V_{n+1} \), we have

\[\left(I - \frac{1}{2} h \Lambda \right) V_{n+1} = \left(I + \frac{1}{2} h \Lambda \right) V_n + \frac{h}{2} [g(t_n) + g(t_{n+1})] \]

The matrix \(I - \frac{1}{2} h \Lambda \) is again tridiagonal, and we can solve this system quite inexpensively. This is known as the Crank-Nicolson method when used to solve parabolic PDEs.