
NUMERICAL METHODS FOR ODEs

Consider the initial value problem

y′ = f(x, y), x0 ≤ x0 ≤ b, y(x0) = Y0

and denote its solution by Y (x). Most numerical

methods solve this by finding values at a set of node points:

x0 < x1 < · · · < xN ≤ b
The approximating values are denoted in this book in

various ways. Most simply, we have

y1 ≈ Y (x1), · · · , yN ≈ Y (xN)
We also use

y(xi) ≡ yi, i = 0, 1, ...,N

To begin with, and for much of our work, we use a

fixed stepsize h, and we generate the node points by

xi = x0 + i h, i = 0, 1, ...,N

Then we also write

yh(xi) ≡ yi ≈ Y (xi), i = 0, 1, ..., N



EULER’S METHOD

Euler’s method is defined by

yn+1 = yn + h f(xn, yn), n = 0, 1, ..., N − 1
with y0 = Y0. Where does this method come from?

There are various perspectives from which we can de-

rive numerical methods for solving

y′ = f(x, y), x0 ≤ x0 ≤ b, y(x0) = Y0

and Euler’s method is simplest example of most such

perspectives. Moreover, the error analysis for Euler’s

method is introduction to the error analysis of most

more rapidly convergent (and more practical) numer-

ical methods.



A GEOMETRIC PERSPECTIVE

Look at the graph of y = Y (x), beginning at x =

x0. Approximate this graph by the line tangent at

(x0, Y (x0)):

y = Y (x0) + (x− x0)Y ′(x0)
= Y (x0) + (x− x0)f(x0, Y0)

Evaluate this tangent line at x1 and use this value

to approximate Y (x1). This yields Euler’s approxima-

tion.

We could generalize this by looking for more accurate

means of approximating a function, e.g. by using a

higher degree Taylor approximation.
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Euler’s method: A Geometric Perspective

Figure 1: A geometric perspective on Euler’s method



TAYLOR’S SERIES

Approximate Y (x) about x0 by a Taylor polynomial

approximation of some degree:

Y (x0 + h) ≈ Y (x0) + hY ′(x0) +
h2

2!
Y ′′(x0)

+ · · ·+ h
p

p!
Y (p)(x0)

Euler’s method is the case p = 1:

Y (x0 + h) ≈ Y (x0) + hY
′(x0)

= y0 + h f(x0, y0) ≡ y1
We have an error formula for Taylor polynomial ap-

proximations; and in this case,

Y (x1)− y1 =
h2

2
Y ′′(ξ0)

with some x0 ≤ ξ0 ≤ x1.



GENERAL ERROR FORMULA

In general,

yn+1 = yn + h f(xn, yn), n = 0, 1, ..., N − 1

Y (xn+1) = Y (xn) + hY ′(xn) +
h2

2
Y ′′(ξn)

= Y (xn) + h f(xn, Y (xn)) +
h2

2
Y ′′(ξn)

with some xn ≤ ξn ≤ xn+1.

We will use this as the starting point of our error

analyses of Euler’s method. In particular,

Y (xn+1)− yn+1 = Y (xn)− yn
+h [ f(xn, Y (xn))− f(xn, yn)]
+
h2

2
Y ′′(ξn)



NUMERICAL DIFFERENTIATION

From beginning calculus,

Y ′(xn) ≈ Y (xn + h)− Y (xn)
h

This leads to

Y (xn + h) ≈ Y (xn) + hY ′(xn)
= Y (xn) + h f(xn, Y (xn))

≈ yn + h f(xn, yn)

Most numerical differentiation approximations can be

used to obtain numerical methods for solving the ini-

tial value problem. However, a number of such formu-

las turn out to be poor methods for solving differential

equations, and we will see an example of this in the

one of the following sections of the book.



The left−hand rectangle quadrature rule

a a+h
x

y=g(x)

NUMERICAL INTEGRATION

Consider the numerical approximation∫ a+h
a

g(x) dx ≈ hg(a)
which is called the left-hand rectangle rule. It is the

area of the rectangle with base [a, a + h] and height

g(a).



Return to the differential equation y′ = f(x, y) and
substitute the solution Y (x) for y:

Y ′(x) = f(x, Y (x))

Integrate this over the interval [xn, xn+1],∫ xn+1
xn

Y ′(x) dx =
∫ xn+1
xn

f(x, Y (x)) dx

Y (xn+1) = Y (xn) +
∫ xn+1
xn

f(x, Y (x)) dx

Integrate this with the left-hand rectangle rule,

Y (xn+1) ≈ Y (xn) + h f(xn, Y (xn))
Again this leads to Euler’s method.



EXAMPLE

Consider the problem

y′ = −y + 2 cosx, y(0) = 1

We solve this on the interval 0 ≤ x ≤ 5. Look at the
behaviour of the error

eh(x) = Y (x)− yh(x)
as a function of both h and x.

1. For a particular x, the error appears to be halved

when h is halved.

2. For a fixed h, the error varies with x, and it appears

to be oscillating in sign.

From this,

eh(x) ≈ c(x)h
seems accurate empirically, with c(x) an oscillating

function of x.
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Figure 2: Solution by Euler’s method
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ERROR ANALYSIS - SPECIAL CASES

We begin with a couple of special cases, to obtain

some additional intuition on the behaviour of the error

eh(x) = Y (x)− yh(x). Consider
y′ = 2x, y(0) = 0

This has the solution Y (x) = x2. Euler’s method

becomes

yn+1 = yn + 2xnh, y0 = 0

y1 = y0 + 2x0h = x1x0
y2 = y1 + 2x1h = x1x0 + 2x1h = x2x1
y3 = y2 + 2x2h = x2x1 + 2x2h = x3x2

By induction,

yn = xnxn−1, n ≥ 1
For the error,

Y (xn)− yn = x2n − xnxn−1 = xnh



Return to our error equation

Y (xn+1)− yn+1 = Y (xn)− yn
+h [ f(xn, Y (xn))− f(xn, yn)]
+
h2

2
Y ′′(ξn)

(1)

With the mean value theorem,

f(xn, Y (xn))− f(xn, yn) = ∂f(xn, ζn)
∂y

[Y (xn)− yn]

with ζn between Y (xn) and yn. Then we can write

eh(xn+1) =

[
1 + h

∂f(xn, ζn)

∂y

]
eh(xn) +

h2

2
Y ′′(ξn)

(2)

with eh(x0) = 0. We also will assume henceforth that

K ≡ max
x0≤x≤b−∞<y<∞

∣∣∣∣∣∂f(x, y)∂y

∣∣∣∣∣ <∞



Consider those differential equations with

∂f(x, y)

∂y
≤ 0, x0 ≤ x ≤ b, −∞ < y <∞

Then

−1 ≤ 1 + h∂f(xn, ζn)
∂y

≤ 1
provided h is chosen sufficiently small, i.e.

h ≤ 2

K

Using this in our error formula (2),

|eh(xn+1)| ≤ |eh(xn)|+
h2

2

∥∥∥Y ′′∥∥∥∞ , n ≥ 0 (3)

in which ∥∥∥Y ′′∥∥∥∞ = max
x0≤t≤b

∣∣∣Y ′′(t)
∣∣∣

Using induction with (3), we can prove

|eh(xn)| ≤
h

2
(xn − x0)

∥∥∥Y ′′∥∥∥∞
Again the error is bounded by something of the form

c(xn)h.



GENERAL ERROR ANALYSIS

Return to

eh(xn+1) =

[
1 + h

∂f(xn, ζn)

∂y

]
eh(xn) +

h2

2
Y ′′(ξn)

For comparison with other numerical methods, we in-
troduce

τn =
h

2
Y ′′(ξn)

τ(h) =
h

2

∥∥∥Y ′′∥∥∥∞
Our error equation becomes

eh(xn+1) =

[
1 + h

∂f(xn, ζn)

∂y

]
eh(xn) + hτn (4)

Take bounds to obtain

|eh(xn+1)| ≤ (1 + hK) |eh(xn)|+ h |τn|
≤ (1 + hK) |eh(xn)|+ hτ(h)

By induction, we can show this implies

|eh(xn)| ≤ (1 + hK)n |eh(x0)|
+

{
1 + (1 + hK) + ...+ (1 + hK)n−1

}
hτ(h)



This leads to

|eh(xn)| ≤ (1 + hK)n |eh(x0)|+
(1 + hK)n − 1

K
τ(h)

(5)

We need the following:

(1 + t)n ≤ ent, n ≥ 0, −1 ≤ t <∞
Then (5) leads to

|eh(xn)| ≤ enhK |eh(x0)|+
enhK − 1
K

τ(h)

Since nh = xn − x0, we have

|eh(xn)| ≤ e(xn−x0)K |eh(x0)|+
e(xn−x0)K − 1

K
τ(h)

For eh(x0) = 0, we have that the error has the general

form

|eh(xn)| ≤ c(xn)h



STABILITY ANALYSIS

We have

yn+1 = yn + h f(xn, yn), y0 = Y0

Now consider perturbing this to

zn+1 = zn + h [ f(xn, zn) + δ(xn)] , z0 = Y0 + ε

In which δ(x) is a bounded function on [x0, b].

Let en = zn − yn. Subtracting above,
en+1 = en + h [f(xn, zn)− f(xn, yn)] + hδ(xn)

with e0 = ε. Using the type of analysis used above,

we have

|en+1| ≤ (1 + hK) |en|+ h ‖δ‖∞ , n ≥ 0



This yields

|en| ≤ e(xn−x0)K |ε|+ e
(xn−x0)K − 1

K
‖δ‖∞

Thus we have a type of stability, in which the change

in the numerical solution is bounded by a constant

times the change in the data of the initial value prob-

lem, independent of h.

In the case our differential equation satisfies

∂f(x, y)

∂y
≤ 0, x0 ≤ x ≤ b, −∞ < y <∞

and the stepsize satisfies hK ≤ 1, we can show the

much better result

|en| ≤ |ε|+ (xn − x0) ‖δ‖∞ , n ≥ 0



EFFECT OF ROUNDING ERROR

Again consider the Euler method

yn+1 = yn + h f(xn, yn), y0 = Y0

Now consider that rounding errors occur in the calcu-

lation of yn+1 from yn. Let ỹn denote the numerical

values actually computed. Then we have

ỹn+1 ≈ ỹn + h f(xn, ỹn), ỹ0 ≈ Y0
To have an equation, write

ỹn+1 = ỹn + h f(xn, ỹn) + ρn, ỹ0 ≈ Y0 (6)

with ρn the rounding error. Usually, ρn is proportional

to the unit round u of the computer, and

|ρn| ≤ k u |Y (xn)| or k u |yn| (7)

For single precision in IEEE arithmetic, u = 5.96 ×
10−8.



Now recall the equation satisfied by the true solution

Y (x):

Y (xn+1) = Y (xn) + h f(xn, Y (xn)) +
h2

2
Y ′′(ξn)

Let ẽn = Y (xn) − ỹn. Subtract (6) from this equa-

tion and proceed as before in the derivation of error

formulas. This yields

ẽh(xn+1) =

[
1 + h

∂f(xn, ζn)

∂y

]
ẽh(xn)

+
h2

2
Y ′′(ξn)− ρn

Write the last two terms as

h

[
h

2
Y ′′(ξn)− ρn

h

]
and identify this with hτn in the earlier error analysis.



Using the earlier error analysis, together with (7) for

ρn, we get

|ẽh(xn)| ≤ e(xn−x0)K |Y0 − ỹ0|

+
e(xn−x0)K − 1

K

[
h

2

∥∥Y ′′∥∥∞ +
k u ‖Y ‖∞

h

]
This says that as h decreases, the error will initially

be proportional to h, what we denote by O(h). But

eventually, the error will begin to increase again as h

decreases. An example of this is shown in the text-

book (page 351). That example also shows that the

error is much worse with chopped arithmetic than with

rounded arithmetic.



AN ASYMPTOTIC ERROR FORMULA

Recall the error formula

eh(xn+1) =

[
1 + h

∂f(xn, ζn)

∂y

]
eh(xn) +

h2

2
Y ′′(ξn)

for the error eh(xn) = Y (xn) − yn. In this, ζn is
between Y (xn) and yn; and ξn is between xn and

xn+1. We now replace ζn by Y (xn) and ξn by xn,

to try to find the dominant part of the error eh(xn).

This yields a new error formula

gn+1 =

[
1 + h

∂f(xn, Y (xn))

∂y

]
gn +

h2

2
Y ′′(xn) (8)

with gn ≈ en, and g0 = 0.



We expect gn to be proportional to h, and therefore

we write gn = hδn. Substituting this in (8), cancelling

h, and re-arranging the equation, we obtain

δn+1 = δn + h

[
∂f(xn, Y (xn))

∂y
δn +

1

2
Y ′′(xn)

]
with δ0 = 0. This is Euler’s method applied to the

differential equation

D′(x) = ∂f(x, Y (x))
∂y

D(x) +
1

2
Y ′′(x), D(x0) = 0

(9)

Thus

δn ≈ D(xn)
gn ≈ hD(xn)
en ≈ hD(xn)

In the book, it is shown that

en = hD(xn) +O(h
2) (10)

This is called an asymptotic error formula. It tells us

how the error behaves as h becomes small.



EXAMPLE

Consider

y′ = −y2, y(0) = 1

The true solution is Y (x) = 1/(1 + x). The equation

(9) becomes

D′(x) = −2
1 + x

D(x) +
1

(1 + x)3
, D(0) = 0

and its solution is

D(x) =
log(x+ 1)

(x+ 1)2

Thus

Y (xn)− yn = log(xn + 1)
(xn + 1)2

h+O(h2)



RICHARDSON EXTRAPOLATION

Since

Y (x)− yh(x) ≈ hD(x)
for any node point x, we also have

Y (x)− y2h(x) ≈ 2hD(x)
Combining these, we have

Y (x)− y2h(x) ≈ 2 [Y (x)− yh(x)]

Y (x) ≈ yh(x) + [yh(x)− y2h(x)] (11)

Y (x)− yh(x) ≈ yh(x)− y2h(x) (12)

The formula (11) is called “Richardson’s extrapola-

tion formula”; and (12) is called “Richardson’s error

estimate”.



SYSTEMS OF EQUATIONS

Consider a system of 2 first order equations:

y′1 = f1(x, y1, y2), y1(x0) = Y1,0
y′2 = f2(x, y1, y2), y2(x0) = Y2,0

We can apply to each equation the types of approxi-

mations used earlier with a single equation. This leads

to the numerical method

y1,n+1 = y1,n + hf1(xn, y1,n, y2,n), y1,0 = Y1,0
y2,n+1 = y2,n + hf2(xn, y1,n, y2,n), y2,0 = Y2,0

If we write the system in the vector form

y′ = f(x,y), y(x0) = Y0

then the numerical method can be written in the vec-

tor form

yn+1 = yn + hf(x,yn), y0 = Y0



MEAN-VALUE THEOREM

For the error analysis, we first need the following mul-

tivariable form of the mean-value theorem. For a func-

tion g(y1, ..., ym) of m variables, also write it as g(y)

with

y = [y1, ..., ym]
T

We look at what happens to the value of the function

when the variables are changed. In particular,

g(y)− g(z) = ∇g(ζ) · (y − z)

with ζ some point on the line segment joining y and

z. For two variables, this says

g(y1, y2)− g(z1, z2)
=
∂g(ζ)

∂y1
(y1 − z1) +

∂g(ζ)

∂y2
(y2 − z2)

with ζ on the line joining y and z.



Consider now

f(x, y1, y2)− f(x, z1, z2)
=
∂f(x, ζ)

∂y1
(y1 − z1) +

∂f(x, ζ)

∂y2
(y2 − z2)

We apply this with f1 and f2. This yields for i = 1, 2,

fi(x, y1, y2)− fi(x, z1, z2)
=
∂fi(x, ζi)

∂y1
(y1 − z1) +

∂fi(x, ζi)

∂y2
(y2 − z2)

with ζi on the line segment joining (y1, y2) and (z1, z2).

We can write this in matrix-vector form as

f(x,y)− f(x, z) = F (y − z)

with F the 2× 2 matrix

F =


∂f1(x, ζ1)

∂y1

∂f1(x, ζ1)

∂y2
∂f2(x, ζ2)

∂y1

∂f2(x, ζ2)

∂y2


where both ζi and ζi are on the line segment joining

(y1, y2) and (z1, z2).



When y is close to z, the matrix F is close to the

Jacobian matrix

fy(x,y) =


∂f1(x,y)

∂y1

∂f1(x,y)

∂y2
∂f2(x,y)

∂y1

∂f2(x,y)

∂y2



For an m × 1 vector v and an m ×m matrix A, we

introduce the norms

‖v‖∞ = max
1≤i≤m |vi|

‖A‖ = max
1≤i≤m

m∑
j=1

∣∣∣Ai,j∣∣∣
Then it can be shown that

‖Av‖∞ ≤ ‖A‖ ‖v‖∞



We apply this to

f(x,y)− f(x, z) = F (y − z)

to obtain

‖f(x,y)− f(x, z)‖∞ ≤ ‖F‖ ‖y − z‖∞
Looking at the definition of F and of ‖F‖, we intro-
duce

K = max−∞<y1,y2<∞
x0≤x≤b

max
i

∑
j

∣∣∣∣∣∂fi(x, y1, y2)∂yj

∣∣∣∣∣


and we assume it is a finite number. Then

‖f(x,y)− f(x, z)‖∞ ≤ K ‖y − z‖∞
This is the replacement to the inequality

|f(x, y)− f(x, z)| ≤ K |y − z|
with

K = max−∞<y<∞
x0≤x≤b

∣∣∣∣∣∂f(x, y)∂y

∣∣∣∣∣
for working with a single equation y′ = f(x, y).



We can imitate the earlier proofs to show convergence,

with

‖Y(xn)− yn‖∞ ≤ e(xn−x0)K ‖Y0 − y0‖∞
+h
e(xn−x0)K − 1

2K
max
x0≤x≤b

∥∥Y′′(x)
∥∥∞

The other results for a single equation have similar

analogues when solving systems of first order equa-

tions. The formula for an asymptotic error formula is

given in the text.


