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9.5 The QR Method At the present time this is the most

efficient and widely used general method for the calculation of
all of the eigenvalues of a matrix. The method was first
published in 1961 by J.G.F. Francis and it has since been the
subject of intense investigation. The QR method is quite complex
in both its theory and application, and we are able to give only
an introduction to the theory of the method. For actual
algorithms for both symmetric and nonsymmetric matrices, refer to
those in EISPACK and Wilkinson-Reinsch (1971).

Civen a matrix A, there is a factorization

A = QR

with R upper triangular and Q orthogonal. With A real, both Q
and R can be chosen real; and their construction is given in
section 9.3. We will assume A is real throughout this section.

Let A1=A, and define a sequence of matrices Am, Qm and Rm by
A =QR , A =R Q, m=1,2,... (9.5.1)

The sequence {Am} will converge to either a triangular matrix
with the eigenvalues of A on its diagonal or to a near-~triangular
matrix from which the eigenvalues can be easily calculated. In
this form the convergence is usually slow; and a technique known
as shifting is used to accelerate the convergence. The technique
of shifting will be introduced and illustrated later in the
section.

Before illustrating (9.5.1) with an example, a few

properties of it will be derived. From (9.5.1), Rszﬁ, and thus

T
ALy = QA (9.5.2)




Am+1 is orthogonally similar to Am, and thus by induction te

AIEA. From (9.5.2),

T T
Ape1 = Q-+ -Q1A;Q; .. Q. (9.5.3)

Introduce the matrices Pm and Um by
L.Q U =R "'Rl' (9.5.4)

Then from (9.102)
A, =P AP, m21. (9.5.5)

The matrix Pm is orthogonal, and Um is upper triangular.

For later use, we derive a further relation involving Pm

and U .
m

(9.5.6)

Palm = 419 Qg Ry g Ry = AP Uy

Since P1U1=Q1R1=A1, induction on the last statement implies

m
PmUm = Al’ m21. (9.5.7)
Example. Let
2 0
AL = |1 3 1. (9.5.8)
0 4
The eigenvalues are
AL = 3+{3 = 4.7321, A, = 3.0, Ag = 3-43 = 1.2679.

The iterates Am do not converge rapidly, and only a few are given

.
I3
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to indicate the qualitative behaviour of the convergence.

[3.0000 1.0954 0o | [3.7059 .9558 o
A, = |1.0954 3.0000 -1.3416{, A, = .0558 3.5214 .9738 ],
0 -1.3416  3.0000] ) .0738 1.7727]
4.6792 2979 0 ] 4.7104  .1924 o ]
A, = .2979 3.0524 0274, Ag = .1924 3.0216 -.0115],
0 0274  1.2684 |0 -.0115 1.2680)
[4.7233 .1229 o ] 4.7285  .0781 0
Ay = .1229  3.0087 .0048|, A = .0781 3.0035 ~.0020
0 .0048  1.2680] 0 -.0020 1.2680]

The elements in the (1,2) position decrease geometrically with a
ratio of about .64 per iterate, and those in the (2,3) position
decrease with a ratio of about .42 per iterate. The value in the

(3,3) position of A15 will be 1.2679, which is correct to five

places.

The preliminary reduction of A to simpler form The QR me thod

(9.100) can be relatively expensive because.thé QR factorization
is time consuming when repeated many times. To decrease the
expense the matrix is prepared for the QR method by reducing it
to a simpler form, one for which the QR factorization is much

less expensive.

If A is symmetric, it is reduced to a similar symmetric

tridiagonal matrix exactly as described in §9.3. If A is
nonsymmetric, it is reduced to a similar Hessenberg matrix. A
matrix B is Hessenberg if

b = 0, for all i>j+1. (9.5.4)

1]
It is upper triangular except for a single nonzero subdiagonal.

The matrix A is reduced to Hessenberg form using the same




o)
|
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algorithm as was used for reducing symmetric matrices to

tridiagonal form.

With A tridiagonal or Hessenberg, the Householder matrices
of §9.3 take a simple form when calculating the QR factorization.
But generally the plane rotations (9.3.28) are used in place of

the Householder matrices because they are more efficient to

compute and apply in this situation. Having produced A1=Q1R1 and

A2=R1Q1, we need to know that the form of A2 is the same as that

of Al in order to continue using the less expensive form of QR

factorization.

Suppose A1 is in the Hessenberg form. From 9.3 the

factorization A1=Q1R1 has the following value of QI:

Q =H ...H ., (9.5.10)
with each H, a Householder matrix (9.3.12):
H = -2w N UOT  ypenag, (9.5.11)

Because the matrix AI is of Hessenberg form, the vectors

w(k) can be shown to have the special form

wgk)=0 for i<k and i>k+1. (9.5.12)

This-can be shown from the equations for the components of w(k},
and in particular (9.3.10). From (9.5.12), the matrix Hk will
differ from the identity in only the four elements in positions
{(k,k),(k,k+1),(k+1,k), and (k+1,k+1). And from this it is a

fairly straightforward computation to show that Q1 must be

Hessenberg in form. Another necessary lemma is that the product

of an upper triangular matrix and a Hessenberg matrix is again
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Hessenberg. Just multiply the two forms of matrices, observing
the respective patterns of zeros, in order to prove this lemma.
Combining these results, observing that R1 is upper triangular,
we have that A2=RlQ1 must be in Hessenberg form.

If A, is symmetric and tridiagonal, then it is trivially

1
Hessenberg. From the preceding result, A2 must also be

Hessenberg. But A2 is symmetric since
T T T T, T T
Ay = (QA1Q;) = QA0 = 14,0y = 4.
Since any symmetric Hessenberg matrix is tridiagonal, we have

shown that A2 is tridiagonal. Note that the iterates in the

example (9.5.8) illustrate this result.

A convergence result for the QR method A convergence tesult is

given for a large class of matrices, symmetric and nonsymmetric.
Part of the proofrwill show the factor which determines the speed
of convergence of the method. For a more general discussion of
the method, see Golub~Van Loan (1983, §7.5, §8.2), Parlett

(1968), Parlett {1980, Chap. 8), and Wilkinson (1965, Chap. 8).

Theorem 9.6 Let A be a real matrix of order n, and let its
eigenvalues {Ai} satisfy
|h1|>|h2|>...>|hn|>0. | (9.5.13)

Then the iterates Am of the QR method, defined in (9.5.1),
will converge to an upper triangular matrix which contains the
eigenvalues {Ri} in the diagonal positions. If A is
symmetric, the sequence {Am} converges toc a diagonal matrix.
Proof. The proof is fairly lengthy and involved, and the

reader may wish to skip it and go onto the discussion




following the proof. The main factor in determining the speed
of convergence is contained in (9.5.19), and it is illustrated
following the proof. This proof follows closely that of

Wilkinson (1965. pp. 517-519).

Since A has distinct eigenvalues, there is a nonsingular

matrix X for which

X 1ax = D = diag[A ., ...,A_T. (9.5.14)

Then
A™ - xp™x!. (9.5.15)
Since A is real and all of its eigenvalues are of distinct
magnitude, it cannot have any complex roots, as they would
have to occur in conjugate pairs of equal magnitude.
The next few paragraphs will derive some alternative
forms for Am,‘based on modifying (9.5.15}. Assume X_1 has the

decomposition
x! - Lo, (9.5.16)

For the appropriate modification to use when this is not
possible and pivoting must be used, see Wilkinson (1965,

p. 519). Combining (9.5.15) and (9.5.16),

m

A" = x(d"LD ™)p"U. (9.5.17)

Recall that in the derivation of the decomposition (9.5.16) in
§8.1 of Chapter 8, the diagonal elements of L could be chosen

to be 1. Then the matrix D"LD™ is lower triangular with

diagonal elements equal to 1, and

W, .~ 7\i mo
(d"p™),, = [——] Ly l¢j<i¢n. (9.5.18)

Define Em implicitly by
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m, .=

D"LD =1+ E .
m

Em is a lower triangular matrix which converges to zero:

using (9.5.18) and (9.5.13),

A |
IlE [l , ¢ c-Maximum —%il , m:1, (9.5.19)
m 1¢jen-1 j

for some constant c>0.

The matrix X can be factored.
X = QR,

for some orthogonal Q and nonsingular upper triangular R.

Returning to (9.5.17), this leads to

H

A" = QR(I+E_)D"U

-1 o (9.5.20)
= Q(I+REmR JRDU.
Using another QR factorization,
—1 a4
I+REmR = QmRm. (9.5.21)

We require the diagonal elements of Rm to be positive, which
is possible from the construction for the factorization given
in §8.3. Also see the discussion between {9.3.15) and
(9.3.16), which shows that with this positivity assumption,
the decomposition (9.5.21) is unique.

We can show that

am,ﬁm — I as ma®, (9.5.22)

Using {(9.5.21) and (9.5.19), it is straightforward to show

that
T
RR-1 —0 as m=-0,
m m

A detailed examination of the coefficients of ﬁgﬁm will then
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show that ﬁmal, using the positivity of the diagonal elements.
Using this result in (9.5.21) will then show Gmer.

Using (9.5.21) in {9.5.20)},
A" = (Qam)(ﬁmRDmU). (9.5.23}

Clearly Qam is orthogonal. And because ﬁm’ R, U are upper
triangular and p" is diagonal, we have their product is upper
triangular. Thus (9.5.23) is a QR factorization of A™.

Returning to (9.5.7), we have the second QR factorization

AM - puU
m m

Comparing these results and using the uniqueness of the QR

factorization expressed in (9.3.15) and (9.3.16), we have

- R 4 - m
P, = (@)D . u =75 (R ro"v), (9.5.24)

for some diagonal matrix ﬁm with

52 = 1,  ml. (9.5.25)

We now examine the behavior of the sequence {Am} as m-o,

From (9.5.5) and (9.5.24),

T
Ane1 = FpPh
~ ~T. T ~
= QOQ AQQI’I’I m
From earlier X=QR, and
Q = xp~1
of = o7 - gx~!

Substituting above,

STaTo o1, pp=lx =
A D8 RX™AXRT'Q D

m+1
(9.5.26)
1

= DQORDR QmDm
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Consider just the diagonal elements of Am+1 since they
are the main point of interest. The matrix RDR™° is upper
triangular and its diagonal elements are just {Al,...,Kn}.
Using (9.5.22) and (9.5.25), that Q ~I and D2=I, we will then
have the diagonal elements of Am+1 will converge to the
eigenvalues of A, ordered from largest to smallest in
magnitude. In addition, since RDR-—1 is upper triangular, the
elements below the diagonal in Am+1 will converge to zero.
The speed of convergence will depend completely on the speed
of convergence of 6m to I; and this depends on the bound in
(9.5.19).

If A is symmetric, then the iterates Am are also
symmetric. Since the lower triangular part of Am converges
to zero, the same is true of the part above the diagonal.

This proves that for a symmetric matrix satisfying {9.5.13),

Am converges to a diagonal matrix. This completes the proof.

|
As pointed out in the proof, the critical factor in
determining the speed of convergence are the ratios Rj+1/kj'
1<j¢n-1. Thus there is a geometric rate of convergence, and this

can be very slow. In the example (9.5.8), the ratios of

successive eigenvalues are

A A
A—z-é 0.63, )\—35 0.42.
1 2

And if the off-diagonal elements are observed, we see that they

decrease with about these ratios.
For matrices whose eigenvalues do not satisfy (9.5.13},

the iterates Am may not converge to a triangular matrix. For A




symmetric, the seguence {Am} will converge to a block diagonal

matrix

A — D . , (9.5.27)

in which ail blgcks Bi have order 1 or 2. Thus the eigenvalues
of A can be easily computed from those of D. If A is real and
nonsymmetric, the situation is more complicated, but acceptable.
For a discussion, see Wilkinson (1965, Chap. 8) and Parlett
(1968).

| To see that {Am} does not always converge to a diagonal

matrix, consider the simple symmetric example

0 1
A = .
1 0

Its eigenvalues are A=1t1. Since A is orthogonal, we have

And thus
Ay = R1Q = 4,
and all iterates Am=A. The sequence {Am} does not converge to a

diagonal matrix.

The QR method with shift The QR algorithm is generally applied

with a shift of origin for the eigenvalues in order to increase
the speed of convergence. For a sequence of constants {cm},

define A1=A and

(9.5.28)
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The matrices Am are similar to Al, since

T
R =Q (A -c I)

T
Am+1 = ch+Qm(Am“ch)Qm
T
= ch+QmAQO—ch,
A . =QAQ m21 (9.5.29)
m+l T mmom’ ) e

The eigenvalues of Am+1 are the same as those of Am, and thence

the same as those of A.

To be more specific on the choice of shifts {cm}, we will

consider only a symmetric tridiagonal matrix A. For Am, let

-agm) Bgm) o ..... O©
5§m) aém) 5§m)
Am = 0 : (9.5.30)
(m)
ﬁn—l
: TORR
There are two methods by which {cm} is chosen: (1) Let cm=a£m);
and (2) let c be the eigenvalue of
(m) (m})
at” B_
?mi ?m;, (9.5.31)
ﬁn—l “n

which is closest to aim). The second strategy is preferred; but

in either case the matrices Am converge to a block diagonal

matrix in which the blocks have order 1 or 2, as in (9.5.27). It
can be shown that either choice of {cm} ensures

5£T%5£T% — 0 as n—w, (9.5.32)




generally at a much more rapid rate than with the original QR

method (9.5.1).
From (9.5.29),

T
la,, 0y = leTa o, = fIa_[l,.

using the operator matrix norm (7.3.19) and problem 27(c) of
Chapter 7. The matrices {Am} are uniformly bounded, and
consequently the same is true of their elements. From (9.5.32)
and the uniform boundedness of {5£T%} and {BgT%}, we have either
ﬂgT%ﬁO or BiT%eO as m»,. In the former case, aﬁm) converges to
an eigenvalue of A. And in the latter case, two eigenvalues can
easily be extracted from the limit of the submatrix (9.5.31).

5(m)

Once one or two eigenvalues have been obtained due to n-1

or BiT% being essentially zero, the matrix Am can be reduced in
order by one or two rows, respectively. Following this, the QR
method.with shift can be applied to the reduced matrix. The
choice of shifts is designed to make the convergence to zero be
more rapid for BgT%ﬁiT% than for the remaining off-diagonal
elements of the matrix. In this way, the QR method becomes a
rapid general purpose method, faster than any other method at the
present time. For a proof of convergence of the QR method with
shift, see Wilkinson {1968). For a much more complete discussion
of the QR method, including the choice of a shift, see Parlett

{1980, Chap. 8)

Example. Use the previous example (9.5.8), and use the first

method of choosing the shift, cmzaim). The iterates are
2 1 0 1.4000 .4899
A, = |1 3 11, A2 = .4899 3.2667 . 7454

0 1 4 0 . 7454 4.3333
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1.2915 .2017 0 1.2737 .0993 0
A3 = .2017  3.0202 L2724, A4_= . 0993 2.9943 .0072
0 .2724 4.6884 0 .0072 4.7320
1.2694 . 0498 0
A5 = . 0498 2.9986 0
0 0 4.7321

The element Bém) converges to zero extremely rapidly, but the

element ﬁgm) converges to zero geometrically with a ratio of only

about 0.5.

Mention should be made of the antecedent to the QR method,
motivating much of it. In 1958, H. Rutishauser introduced an LR
method based on the Gaussian elimination decomposition of a
matrix into a lower triangular matrix times an upper triangular
matrix. Define

Am = LmRm’ Am+1 = RmLm = L; AmLm
with Lm lower triangular, Rm upper triangular. When applicable,
this method will generally be more efficient than the QR method.
But the non-orthogonal similarity transformations can cause a
deterioration of the conditioning of the eigenvalues of some
non-symmetric matrices. And generally it is a more complicated
algorithm to implement in an automatic program. A complete

discussion is given in Wilkinson (1965, Chap. 8).




