
Modelling a Road Using Spline Interpolation

Kendall Atkinson
Dept of Computer Science

Dept of Mathematics
The University of Iowa
Iowa City, Iowa 52242

February 26, 2002

Abstract

We study the use of cubic spline interpolation to represent the center-
line of a road, for curves in both R

2 and R
3 . We look at algorithms to

create a representation based on arc length and evenly spaced nodes along
the centerline. We also consider methods for moving between rectangular
coordinates and coordinates based on distance along the centerline and
the offset from that centerline (in R2) and a related decomposition in R3 .

1 Introduction

In road vehicle simulation, we need a way to describe the road. The usual
procedure is to give the center line of the road and to then relate the position of
the vehicle to this center-line. In the simulation it is necessary to go back and
forth between rectangular coordinates and coordinates based on distance along
the road and an offset from the centerline. To do this most conveniently, we
need a parameterization of the center line based on arc length along that line.
In the following, we give a way to create such a parameterization when the given
parameterization does not use arc length. We create cubic spline interpolates
with nodes that are evenly spaced. Using these and arc length, we can rapidly
calculate the position of a vehicle.

The converse problem is to find the arc length and offset from the centerline
of a point that is given in rectangular coordinates. To do this, we need to
minimize a function of the arc length s that represents the distance of the given
point from the point on the centerline with arc length s.

In §§2 and 3, we consider these problems when the road is located entirely
within the plane R

2. We generalize these ideas to §§4 and 5. In §6 we discuss
the error as it is related to the meshsize used in constructing the approximating
spline curve

1

2 Fitting a planar curve

Let Γ be a planar curve with the parameterization (x, y) = (f(t), g(t)), 0 ≤ t ≤
b. We want to produce an accurate cubic spline fit to this curve Γ with the
parameterization variable the arc length s along the curve. To begin we must
calculate t as a function of s, and we begin by finding the arc length of Γ.

Let n > 0 and h = b/n; define tj = jh for j = 0, 1, . . . , n. We produce a
curve Γsp with the parameterization (x, y) = (fsp(t), gsp(t)) , 0 ≤ t ≤ b, in which
the components are cubic spline interpolates that satisfy

(fsp(tj), gsp(tj)) = (f(tj), g(tj)) , j = 0, 1, ..., n (1)

This could be based on using either not-a-knot boundary conditions or first
derivative boundary conditions, if the latter are known. Also, one could use one
type of boundary condition at one end of the curve and another type at the
other end. With our examples, we use the not-a-knot boundary conditions as
that is the default used with the Matlab function for computing a cubic spline
interpolate. If f, g ∈ C4 [0, b], then

‖f − fsp‖∞ , ‖g − gsp‖∞ = O
(
h4

)
(2)∥∥f ′ − f ′

sp

∥∥
∞ ,

∥∥g′ − g′sp

∥∥
∞ = O

(
h3

)
See [4, p. ??]. In further calculations we use Γsp to replace Γ. Usually we choose
a very large choice of n to ensure high accuracy in our computations, to ensure
that Γsp ≈ Γ is an accurate approximation.

The arc length of Γ is given by

L =
∫ b

0

√
f ′(t)2 + g′(t)2dt (3)

≈
∫ b

0

√
f ′

sp(t)2 + g′sp(t)2dt ≡ Lsp

with the latter integral the arc length of Γsp. Compute an approximation to Lsp

by using numerical integration, calling it L̂sp. We assume n is even and we use
Simpson’s numerical integration with n subdivisions. Other integration rules
could be used. From (2), it follows that

L− Lsp = O
(
h3

)
(4)

The arc length to an arbitrary point (x, y) = (fsp(t), gsp(t)) on Γsp is given
by

s(t) =
∫ t

0

√
f ′

sp(τ)2 + g′sp(τ)2dτ, 0 ≤ t ≤ b. (5)

We would like to know t as a function of s, and we would like to find the values
of t corresponding to m equally spaced values of s on

[
0, L̂sp

]
, calling them

2

{s0, s1, . . . , sm} with s0 = 0 and sm = L̂sp. From (5),

ds

dt
=

√
f ′

sp(t)2 + g′sp(t)2, s(0) = 0

But we know that

dt

ds
=

[
ds

dt

]−1

Thus t(s) satisfies

t′(s) =
1√

f ′
sp(t)2 + g′sp(t)2

, 0 ≤ s ≤ L̂sp, t(0) = 0 (6)

Use an ODE solver to find Tj = t(sj), j = 0, . . . ,m. The accuracy with which
the points {Tj} are computed will depend on the choice of the ODE solver and
the accuracy requested of it. The choice ofm will be determined by the accuracy
with which Γ is to be approximated.

Calculate the points (Xj , Yj) = (fsp(Tj), gsp(Tj)) , j = 0, . . . ,m on Γsp.
These are spaced equally as regards arc length, with an arc length of δ ≡ L̂sp/m
between each successive pair of points on Γsp. Construct a new fitting function

(x, y) = (ξn,m(s), ηn,m(s)) on
[
0, L̂sp

]
using spline functions ξn,m(s), ηn,m(s)

that interpolate as follows:

(ξn,m(sj), ηn,m(sj)) = (Xj, Yj) , j = 0, 1, . . . ,m.

The parameterization (ξn,m(s), ηn,m(s)), 0 ≤ s ≤ L̂sp, is to be used as the
model for the center-line of the road. Finding a position on the road at an arc
length of s is a simple matter of first determining the appropriate subinterval
[sj−1, sj] in which s is located. The index is given by j = 1 + [s/δ], where [·]
denotes the greatest integer function. Calculating (ξn,m(s), ηn,m(s)) amounts
to evaluating two cubic polynomials, determined by j, and this is a simple
calculation involving 8 arithmetic operations for each polynomial.

For extra accuracy in solving for the cubic spline functions ξn,m(s), ηn,m(s)

on
[
0, L̂sp

]
, we recommend the following when using the not-a-knot boundary

conditions. In addition to the node points (Xj , Yj) defined above, also include
the additional two points

(fsp(t (δ/2)), gsp(t (δ/2))) ,
(
fsp

(
t
(
L̂sp − δ/2

))
, gsp

(
t
(
L̂sp − δ/2

)))
. (7)

With {(Xj , Yj)} and these two additional points, solve for the spline functions
ξn,m(s), ηn,m(s). Including these two additional points will increase the accuracy

of the cubic spline interpolates when s is near to the endpoints of
[
0, L̂sp

]
. With

the not-a-knot boundary condition, the cubic polynomial on [0, δ/2] and that

3

−2 0 2 4 6 8

1

2

3

4

5

6

7

8

9

x

y

Figure 1: Fitting the curve of (8) with n = 80 and m = 20.

on [δ/2, δ] are the same. Therefore when calculating (ξn,m(s), ηn,m(s)) on [0, δ],
simply use the polynomial produced for [0, δ/2]. Proceed analogously when
calculating (ξn,m(s), ηn,m(s)) on

[
L̂sp − δ, L̂sp

]
.

Example. Consider the curve Γ given by

(x, y) =
(
t, 2

3 (t+ 1)
3
2

)
, t ≥ 0. (8)

The arc length is given by

s =
2
3

[
(t+ 2)

3
2 −√

8
]

(9)

or equivalently,

t =
(
3
2
s+

√
8
) 2

3

− 2 (10)

Using n = 80, m = 20 with the construction described above for 0 ≤ t ≤ 5, we
obtain the cubic spline function shown in Figure 1. The circles are equidistant
in arc length along Γ. The true arc length of Γ is given by (9) with t = 5;
using our schema described above for computing the arc length L̂sp, the error
is −1.83 × 10−8. Note that only n is of importance as a parameter in this
computation.

Figure 2 contains the error in the arc length function with n = 20. Note
that the error in computing the solution to (6) is dependent on only n and the

4

0 1 2 3 4 5 6 7 8 9 10

−10

−8

−6

−4

−2

0

2

4

6

x 10
−7

s

Figure 2: The error in the arc-length function for the computation of (8) using
n = 20.

n Error in L̂sp Ratio Error in t(s) Ratio
10 −5.72E − 5 1.00E − 5
20 −4.26E − 6 13.4 1.13E − 6 8.85
40 −2.85E − 7 14.9 1.02E − 7 11.1
80 −1.83E − 8 15.6 7.70E − 9 13.2

Table 1: Errors in computing arc-length function t(s)

accuracy of the ODE solver (and we used the Matlab solver ode45 with a very
stringent error tolerance). In Table 1, we give the error in the computation
of L̂sp and the maximum norm of the error in approximating the arc length
function for varying values of n. The true arc length of Γ is given by (9) with
t = 5; and the true formula for the original parameter t as a function of the arc
length s is given in (9). The rate of convergence for L̂sp appears to be O

(
h4

)
,

better than predicted by (4), but consistent with the theory given in [2] for a
closely related method for computing arc length. The rate of convergence for
the approximation of the arc length function t(s) also appears to be O

(
h4

)
;

and again this is better than would be expected when considering (2).
As a convenient test of accuracy when the true solution is unknown, which

is the usual case, we look at the expression√(
ξ′n,m(s)

)2 +
(
η′n,m(s)

)2 − 1, 0 ≤ s ≤ L̂sp. (11)

This should equal zero. For the above example, the graph of this is shown in

5

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14
x 10

−5

s

Figure 3: The error test function (11) using n = 80 and m = 20.

Figure 3 for n = 80 and m = 20. The error around t = 0 is much larger than
elsewhere in the interval, although for practical purposes it is still acceptably
small (the maximum is 1.26×10−4). Without the use of the extra interpolation
points in (7), the error around t = 0 is even worse, both for this example and
in general (the maximum is then 6.13× 10−4 for this example).

3 Finding a closest point - Planar case

At each point of the center line of the road, given here by the cubic spline
representation

(ξ(s), η(s)) , 0 ≤ s ≤ L̂sp (12)

there is a curvature which describes the reciprocal of the radius (called the radius
of curvature) of the largest circle that is tangent to the curve at that point. For
the example (8) of the preceding section, Figure 4 gives the curvature κ(s) as
a function of arc length. For a general parameterization with s not necessarily
arc length,

κ(s) =
ξ′(s)η′′(s)− η′(s)ξ′′(s)(√

(ξ′(s))2 + (η′(s))2
)3 (13)

With s the arc length, the denominator of this fraction is identically 1.

6

0 1 2 3 4 5 6 7 8 9 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

s

Figure 4: Curvature of (8) as a function of arc length s

If a given point (x, y) is sufficiently close to the center line (12), then we
would like to find the closest point on the center line to the given point. Then
the arc length of this center line point and its offset from (x, y) is another way
to describe the location of (x, y). If the distance from the curve is within the
region defined by the radius of curvature, then there is a unique such closest
point on the center line.

In practice, the driver of a vehicle will be constantly monitored as to his or
her location relative to the center line of the road. The driver will have xy-
coordinates (α, β), and it necessary to determine the point (γ, δ) on the center
line that is closest to (α, β). This point on the center line will be defined using
the arc length parameter s∗ at that point; and the distance from (α, β) to (γ, δ)
is called the offset distance (denote it by ω). Given (α, β), we can usually assume
that we know an approximation of the closest subinterval, call it [sj−1, sj], or a
good initial guess, call it σ0.

Let

D(s) = (α− ξ(s))2 + (β − η(s))2 , 0 ≤ s ≤ L̂sp (14)

with (ξ(s), η(s)) ≡ (ξn,m(s), ηn,m(s)) as determined earlier in §2 following (7).
We need to minimize D(s), with s∗ denoting the point at which the minimum
is attained (and then ω = D(s∗)). There are three procedures we have used
tested in order to determine s∗.

1. Quadratic fit method

2. Newton’s method

7

3. Brent’s single variable minimization method

Method 1: Quadratic fit. Given three points σ1, σ2, σ3, we fit D(s) with a
quadratic polynomial p(s), determined by interpolation to D(s) at σ1, σ2, σ3.
We then use the minimum of this polynomial as a new estimate σ4 of s∗. We
let (σ2, σ3, σ4) → (σ1, σ2, σ3) and repeat the process. It can be shown that with
a sufficiently good set of initial guesses σ1, σ2, σ3, the iterates will converge to
s∗.The formula for σ4 is given by

σ4 =
1
2
y2,3D(σ1) + y3,1D(σ2) + y1,2D(σ3)
σ2,3D(σ1) + σ3,1D(σ2) + σ1,2D(σ3)

(15)

σi,j = σi − σj , yi,j = σ2
i − σ2

j , i, j = 1, 2, 3

This has a superlinear rate of convergence. For a further discussion, see [6, p.
206].

Method 2: Newton’s method. We solve the rootfinding problem

D′ (s) ≡ −2 [(α− ξ(s)) ξ′(s) + (β − η(s)) η′(s)] = 0

using Newton’s method:

σk+1 = σk − D′ (σk)
D′′ (σk)

, k = 0, 1, 2, . . .

In this case, we need an initial guess σ0 ≈ s∗; and since the driver is being
monitored along the road, it is not difficult to supply such an initial guess.
Because D(s) uses the spline functions ξ(s), η(s), both D′ (s) and D′′ (s) can be
calculated quite efficiently. The method is, of course, quadratically convergent.

Method 3: Brent’s single variable minimization method. The original
form of this method can be found in [3]. The version used here is the Matlab
function fminbnd and is based on that given in [5, Chap. 9].The method assumes
the function D(s) to be minimized is continuous on a given interval [slow, sup],
and it finds a local minimizing point s∗ within [slow, sup]. If there is a unique
minimum within the given interval (including possibly an endpoint), then s∗ is
that point. The method is guaranteed to converge, and the error bound is also
guaranteed. The method uses a combination of the quadratic fit method given
above and the golden section search (cf. [6, p. 199]).

The latter method was the only one that was completely reliable. To test
the methods, we generated random choices of s∗ and the offset distance ω, and
then we produced (α, β) from s∗ and ω. Then we attempted to retrieve the
given (s∗, ω) and compared it to the original randomly generated values. We
also randomly generated nearby initial intervals (needed for methods 1 and 3)
and initial guesses (needed for method 2). As an illustration, consider the case
illustrated in Figure 1. We generated 100 random values of s∗ within the arc

8

−2 0 2 4 6 8

1

2

3

4

5

6

7

8

9

x

y

Figure 5: Random test cases for finding a nearest point on the centerline from
a given point (α, β); 100 such points (α, β) are given here.

length for the curve, and for each s∗ we generated random offsets ω using a
maximum offset of size 1. If s∗ ∈ [sj , sj+1], then we randomly generated an
initial guess [si, si+1] for this subinterval with |i− j| ≤ 1. We formed the point
(α, β) and then attempted to recalculate (s∗, ω). We used a requested error
tolerance of 10−5, which is probably more than would be needed in practice.
With fminbnd, we gave to it the subinterval [si−1, si+2] as its requested initial
interval that was to contain the desired minimizing point. Figure 5 contains
the curve of Figure 1, together with the randomly generated points for our test.
For a similar test using a 1000 random values, the range of function evaluations
for the minimization in fminbnd was [8, 17], with 10.1 as the average number of
such evaluations. The function being evaluated was the distance of the given
point (α, β) from the curve; this involved evaluating the two spline functions
(ξn,m(s), ηn,m(s)) and their first derivatives.

The first two methods worked well in most cases; but there were always
cases, seemingly innocuous ones, where the iteration did not converge. The
program fminbnd was completely reliable, and we recommend its use in the
future.

4 Fitting a curve in three dimensions

Let Γ be a curve in R
3 with the parameterization (x, y, z) = (f(t), g(t), k(t)),

0 ≤ t ≤ b. We want to produce an accurate cubic spline fit to this curve Γ with
the parameterization variable the arc length s along the curve. We proceed as

9

with the planar case in §2, although later we consider some differences. To begin
we must calculate t as a function of s, and we begin by finding the arc length
of Γ.

Let n > 0 and h = b/n; define tj = jh for j = 0, 1, . . . , n. We produce a
curve Γsp with the parameterization (x, y, z) = (fsp(t), gsp(t), ksp(t)) , 0 ≤ t ≤ b,
in which the components are cubic spline interpolates that satisfy

(fsp(tj), gsp(tj), ksp(tj)) = (f(tj), g(tj), k(tj)) , j = 0, 1, ..., n (16)

This could be based on using either not-a-knot boundary conditions or first
derivative boundary conditions, if the latter are known. Also, one could use one
type of boundary condition at one end of the curve and another type at the
other end. With our examples, we use the not-a-knot boundary conditions as
that is the default used with the Matlab function for computing a cubic spline
interpolate.

We calculate an approximation L̂sp to the arc length of Γ as before, by
numerical integration. To find t(s), we solve the differential equation

t′(s) =
1√

f ′
sp(t)2 + g′sp(t)2 + k′sp(t)2

, 0 ≤ s ≤ L̂sp, t(0) = 0 (17)

We proceed as described above, between (6) and (7), solving at the points

{sj} = {jδ : 0 ≤ j ≤ m} ∪
{
δ/2, L̂sp − δ/2

}
with δ ≡ L̂sp/m. Using {t (sj)}, produce cubic spline functions (ξn,m(s), ηn,m(s), ζn,m(s)),
0 ≤ s ≤ L̂sp, which interpolate Γ at the points {sj}.
Example. Consider the curve given by

(x, y, z) = (a cos t, b sin t, ct) , 0 ≤ t ≤ d (18)

for some a, b, c, d > 0. Figure 6 shows the resulting spline curve with m = 50
subdivisions on the original interval 0 ≤ t ≤ 4π and (a, b, c) = (1, 2, 0.2); we
used n = 500 in the construction of the first spline interpolates.

The comments made for the planar case regarding accuracy all apply here
as well.

5 Finding a closest point - 3D case

In the planar case we were given a point (α, β) close to Γ and we needed to
find the point on Γ that was closest to the given point. Doing so yielded the
arc length parameter s∗ and the offset distance ω of this closest point on Γ. In
the three dimensional case, we are given a closest point (α, β, γ) and we must
calculate three parameters: s∗, the arc length for the closest point on the center
line; ω, the offset for the plane of the road; and λ, the loft of (α, β, γ) from that
plane of the road. We begin by looking at the specification of the road in three
dimensions.

10

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

2.5

x

y

z

Figure 6: Subdivisions of (18) with m = 50 and (a, b, c) = (1, 2, 0.2).

5.1 Specifying the road

The center line can be approximated by cubic splines, as is described in the
preceding section. However, we give a development of the specification of the
road that is more general, and it can then be applied to the approximating spline
approximation (ξn,m(s), ηn,m(s), ζn,m(s)) developed in the preceding section.
We give a moving coordinate system along the center line.

Let v(t) be the unit vector that is tangent to the center line at the position
r(t) = (f(t), g(t), k(t)), directed according to increasing t; and let n(t) denote
the unit normal to the road at this point, directed upwards. Let u(t) denote
the unit normal to the center line directed tangent to the road and to the
driver’s left when driving along the road in the direction of increasing s. Easily,
n(t) = v(t) × u(t), and

v(t) =
r′(t)
|r′(t)|

To specify u(t) as simply as possible, we give the angle θ(t) between the road
and the horizon as the driver looks to his or her left. When we know t(s), we
can also regard θ as a function of s.

11

−1
−0.5

0
0.5

1

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

0

0.5

1

1.5

2

2.5

x

y

z

Figure 7: A roadbed based on (18) and (19)

Example. Using the center line (18), define the function

θ(t) = − π

20

(
1 + sin t

2

)
(19)

which gives a slope downward to the left varying from θ = 0 to θ = π/20. Figure
7 contains the road; and the slight slope of the road to the left side of the driver
when ascending the road should be apparent.

How do we construct u(t) from the given θ(t)? Let u(t) be orthogonal to
the center line and let it be located in the road in a direction to the left of the
mid-line; and let u(t) have unit length. To specify u(t), write it as

u(t) = (cos θ cosφ, cos θ sinφ, sin θ) , −π

2
< θ <

π

2
, 0 ≤ φ ≤ 2π (20)

The angle θ is the angle that u makes with the horizon. For θ < 0, the vector
u is directed downward, and for θ > 0, the vector u is directed upward.

The case θ = 0 corresponds to u being parallel to the xy-plane. In this case,

u =


 −vy√

v2
x + v2

y

,
vx√
v2

x + v2
y

, 0




12

Consider now the cases of −π
2 < θ < π

2 with θ �= 0. We want to choose u by
showing how to find cosφ and sinφ. Note that u · v = 0, or

uxvx + uyvy + uzvz = 0

Then

vx cos θ cosφ+ vy cos θ sinφ+ vz sin θ = 0
vx cosφ+ vy sinφ = −vz tan θ

(21)

Introduce

(cosψ, sinψ) =


 vx√

v2
x + v2

y

,
vy√
v2

x + v2
y




which defines ψ uniquely in [0, 2π). Then (21) becomes

(cosψ, sinψ) · (cosφ, sinφ) = −vz tan θ√
v2

x + v2
y

cos (ψ − φ) =
−vz tan θ√
v2

x + v2
y

This yields

φ− ψ = ± arccos


 −vz tan θ√

v2
x + v2

y




φ = ψ ± arccos


 −vz tan θ√

v2
x + v2

y




(22)

Which sign and which value of φ should be chosen? Choose one and then check
if the resulting vector (ux, uy) is on the correct side of (vx, vy). If

(ux, uy) · (−vy, vx) > 0

then we have the correct side. Otherwise choose the other possible value for φ.

5.2 Finding the nearest point

Given a point (α, β, γ) near to the centerline, we find a nearest point

(ξn,m(s∗), ηn,m(s∗), ζn,m(s∗))

by minimizing

D(s) = (α− ξ(s))2 + (β − η(s))2 + (γ − ζ(s))2 , 0 ≤ s ≤ L̂sp (23)

13

We use method 3 from §3, implemented in Matlab as fminbnd. After finding s∗,
we find the offset ω and the loft λ using

ω = u· [(α, β, γ)− (ξn,m(s∗), ηn,m(s∗), ζn,m(s∗))] (24)
λ = n · [(α, β, γ)− (ξn,m(s∗), ηn,m(s∗), ζn,m(s∗))]

To test the method, we proceed similarly to the test procedure of §3 as
illustrated in Figure 5. We generated random values of s∗, ω, λ within specified
limits, and using these we generated the corresponding values of (α, β, γ). We
then used fminbnd to find s∗, and we used (24) to reconstruct ω and λ. We then
compared the recalculated values of (s∗, ω, λ) to the original values to ensure the
desired accuracy was being obtained. For an actual numerical example, consider
the curve illustrated in Figure 6, but with m = 100. We generated 1000 random
values, and we used a desired error tolerance of ε = 10−5 for the minimization.
The maximum sizes allowed for ω and λ were 0.5 and 0.05, respectively. The
range of function evaluations for the minimization in fminbnd was [7, 16], with
9.1 as the average number of such evaluations.

6 Effect of curvature on meshsize

Consider the approximation (ξn,m(s), ηn,m(s)) of the curve Γ as developed in §2
The error in the final approximation depends on both n and m. We assume
that n is chosen so large that the error due to n is insignificant compared to
that due to m, and therefore we ignore the effects due to n. The curvature κ(s)
is given by (13), and the radius of curvature is 1/κ(s).

Let Γr be the circle of radius r about the origin, and denote the approxima-
tion to Γr by (ξm,r(s), ηm,r(s)). A circle of radius r has a radius of curvature of
r. We analyze the accuracy of (ξm,r(s), ηm,r(s)) as a function first of m and r,
and then as a function of the meshsize

hr =
2πr
m

,

used in constructing (ξm,r(s), ηm,r(s)).
Let E(r,m) denote the maximum error when using m subdivisions of Γr:

E(r,m) = max
0≤s≤2πr

∣∣∣r (
cos

s

r
, sin

s

r

)
− (ξm,r(s), ηm,r(s))

∣∣∣
It is not difficult to see that

(ξm,r(rs), ηm,r(rs)) = r (ξm,1(s), ηm,1(s)) , 0 ≤ s ≤ 2π

Thus

E(r,m) = rE(1,m) (25)

14

m ε ≡ E(1,m) Ratio h1

5 1.0494E − 2 1.257
10 5.4932E − 4 19.10 0.6283
20 3.2752E − 5 16.77 0.3142
40 2.0224E − 6 16.19 0.1571
80 1.2602E − 7 16.05 0.0785

Table 2: Errors in approximation of the unit circle

Suppose we calculate numerically the true error E(1,m) for a particular
value of m, say m1: ε = E(1,m1). Based on results in [4], assume

E(r,m) =
cr
m4

(26)

This is true only asymptotically, but is essentially correct for practical purposes.
Then solving

c1
m4

1

= ε

yields

c1 = εm4
1 (27)

Now choose m so that E(r,m) = ε. Combining (25) and (26) results in

cr = rc1 (28)

Using (26)-(28) with E(r,m) = ε,

m = 4

√
cr
ε
= 4

√
rc1
ε

=
4

√
rεm4

1

ε
= 4

√
rm4

1

= 4
√
rm1 ≡ mr (29)

We are interested in the meshsize associated with the grid on the circle of
radius r. It is defined by

hr =
2πr
mr

=
2πr

4
√
rm1

= h1
4
√
r3 (30)

We use this last result when dealing with a general curve Γ with varying
curvature, using it to give a “rule of thumb” for choosing a stepsize in the
approximation of Γ. When the radius of curvature is r, we should use a local
meshsize of hr in order to preserve an accuracy of ε in the approximation of
(ξ(s), η(s)).

15

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

x 10
−5

s

Figure 8: The error (31) when approximating the unit circle with m = 20.

Figure 8 gives the error

|(cos s, sin s)− (ξm,1(s), ηm,1(s))| , 0 ≤ s ≤ 2π (31)

form = 20 and Γ = Γ1, the unit circle. The points marked by ‘o’ give the evenly
spaced node points on the interval [0, 2π], with h ≡ h1 = 2π/m. Note that the
error is also zero at the two points h/2 and 2π − h/2, reflecting the use of the
not-a-knot interpolating boundary conditions at these points, as suggested in
and following (7). In Table 2 we give the values of ε and h1 for varying values of
m. The ratios in the table confirm empirically that (26) is true asymptotically
as m increases.

References

[1] K. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York,
1989.

[2] K. Atkinson and E. Venturino, Numerical evaluation of line integrals, SIAM
J. Numerical Analysis 30 (1993), pp. 882-888.

[3] R .Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall,
1972.

16

[4] C. De Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.

[5] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software,
Prentice-Hall, 1989.

[6] D. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-
Wesley, 1984.

17

