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Abstract

We study a boundary integral equation method for solving Laplace�s
equation �u � � with nonlinear boundary conditions� This nonlinear
boundary value problem is reformulated as a nonlinear boundary in�
tegral equation� with u on the boundary as the solution being sought�
The integral equation is solved numerically by using the collocation
method� with piecewise quadratic functions used as approximations
to u� Convergence results are given for the cases that ��	 the origi�
nal surface is used� and �
	 the surface is approximated by piecewise
quadratic interpolation� In addition� we de�ne and analyze a two�grid
iteration method for solving the nonlinear system that arises from the
discretization of the boundary integral equation� Numerical exam�
ples are given� and the paper concludes with a short discussion of the
relative cost of di
erent parts of the method�
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� INTRODUCTION

Consider solving the nonlinear boundary value problem

�u�P � � �� P � D ���

�u�P �

�nP
� g�P� u�p�� � f�P �� P � � � �D ���

The region D is to be an open connected region in R� with a smooth con�
nected boundary �	 and nP is the interior unit normal at P � �
 We study
the numerical solution of a nonlinear boundary integral equation reformu�
lation of this problem	 a reformulation that has been studied previously in
���
	 ��
 for planar problems �������
 We seek a solution u � C��D� �C��D��
Our numerical methods generalize to other problems	 for example exterior
problems	 but such problems are not considered here
 The function g�P� v�
is assumed to be continuous for �P� v� � ��R� although this can be relaxed

Further assumptions on g are given later

Using Green�s representation formula for harmonic functions	 the function

u satis�es

u�P � �
�

��

Z
�

�u�Q�

�nQ

dS�Q�

jP �Qj
�
�

��

Z
�
u�Q�

�

�nQ

�
�

jP �Qj

�
dS�Q�� P � D

���
Letting P tend to a point on � 	 and using the boundary condition ���	 we
obtain the nonlinear boundary integral equation

�� u�P ��
Z
�
u�Q�

�

�nQ

�
�

jP �Qj

�
dS�Q� �

Z
�
g�Q�u�Q��

dS�Q�

jP �Qj
���

This can be solved for u�P � on �� The normal derivative of u can be obtained
from ���	 and ��� then yields u�P � at all P � D

We solve ��� by using a boundary element method
 A triangulation

T N�f�k�N j � � k � Ng is given for �� depending on an integer N 
 Any
function f � C��� is approximated on an element �k�N by a function which
is polynomial of degree at most d in the parametrization variables for �k�N 

Let AN denote the set of all such functions which are continuous on � and
are a polynomial of degree at most d on each element �k�N of the triangu�
lation
We assume a solution uN from AN for ���	 and we determine uN by
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forcing it to satisfy the integral equation at a selected set of node points on
�
 We note that our results and arguments are given only for the case of
quadratic polynomial approximations �d � ��� but the ideas involved will
generalize to any other degree of polynomial approximation

Preliminary de�nitions and assumptions on the triangulation of the sur�

face � and on the interpolation scheme being used are given in Section �
 The
collocation method is de�ned and analyzed in Section �
 Practical details of
the collocation method �e
g
 the calculation of the integrals by numerical
integration� are discussed in Section �	 and numerical examples are included

An iteration method for the solution of the associated nonlinear algebraic
system is given in Section �	 and numerical examples of the iteration method
are given in Section �
 We also discuss the relative cost of the various parts
of the solution procedure


� PRELIMINARIES

We assume the surface � is smooth� and more precisely	 at each P � �	 there
is a local parametrization which is four times continuously di�erentiable
 In
addition	 assume � can be decomposed as

� � �� � � � � � �J ���

with each �i the range of a smooth one�to�one mapping on a closed polygonal
domain in R� �

Fi � Ri
���
��
onto

�i� i � �� � � � � J� Fi � C��Ri� ���

It is assumed that if two distinct sections �i and �j intersect	 then it is only
along some portion of their boundaries

Each Ri is triangulated	 say by f b�k�ig	 leading to a triangulation of each

�i through the application of Fi to each b�k�i� Collectively these form the tri�
angulation T N�f�k�Ng referred to earlier
 It is assumed that if two triangles
�j�N and �k�N intersect	 then they do so only at a common vertex or along
an entire common edge

We make a further assumption about the re�nement process by which

the triangular mesh is made �ner
 An initial triangulation f b����
k�ig is to be

given for each Ri	 and it is to be re�ned as follows
 For each b����
k�i 	 connect
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the midpoints of the sides of the triangle	 to form four new triangles	 referred
to generically by b����

k�i � This new triangulation is re�ned similarly to form

triangles b����
k�i 	 and so on	 with each such re�nement leading to a new �ner

triangulation of �
 For each triangulation T N 	 this re�nement process leads
to a new triangulation with four times as many elements

As notation	 introduce

�h � max
i�������J

�
max
k

diameter� b�k�i�
�

Note that �h� � O� �
N
�� and when using the re�nement scheme described

above	 �h is halved when N increases by a factor of �

Let � denote the unit simplex	

� � f�s� t� j � � s� t� s� t � �g

Introduce the nodes

q� � ��� ��� q� � ��� ��� q� � ��� �� ���

Let �k � T N be associated with the subsection �i� De�ne a one�to�one
mapping of � onto �k � T N by

mk�s� t� � Fi�u q� � t q� � s q��� �s� t� � �� u � �� s� t ���

Integrals over �k are evaluated as integrals over ��Z
	k

g�Q� dS �
Z
�
g�mk�s� t�� jDsmk �Dtmkj d� ���

with Ds and Dt referring to derivatives with respect to s and t	 respectively

Later in Section �	 we discuss the numerical evaluation of such integrals

To approximate u� we use functions which are piecewise quadratic on the

triangulation
 More precisely	 the approximants are to be continuous on S
and they are to be quadratic on each �k in the parametrization variables from
��k�We begin by de�ning such functions and the associated interpolation on
the reference element �
 Introduce the nodes

q� � ��� ����� q
 � ����� ����� q� � ����� �� ����
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Introduce the quadratic interpolation basis functions�

l��s� t� � u��u� ��� l��s� t� � t��t� ��� l��s� t� � s��s� ��
l��s� t� � �tu� l
�s� t� � �st� l��s� t� � �su

����
in which u � �� s� t� These polynomials satisfy

li�qj� � �ij

For a function f � C���� the polynomial

�X
j��

f�qj� lj�s� t� ����

interpolates the function f at the nodes fqjg� and among polynomials of
degree at most two	 it is unique

Now consider interpolation to a function g � C�S��De�ne the interpolant

on �k by

PNg�mk�s� t�� �
�X

j��

g�mk�qj�� lj�s� t�� �s� t� � � ����

This de�nes a continuous function on �	 which we refer to as a piecewise
quadratic interpolation function� The collection of all such piecewise quadratic
functions gives the approximating subspace AN �
If f � C���� then it is straightforward to show that kf �PNfk� � � as

N ��� In addition	 if f � C����� then

kf �PNfk� � O��h�� ����

Finally	 it is also straightforward to show

kPNk �
�

�

The points

vj�k � mk�qj�� j � �� � � � � �� k � �� � � � � N

lay on �	 and we refer to them as the nodes of the triangulation
 The nodes
v��k� v��k� v��k are the vertices of �k	 and the nodes v��k� v
�k� v��k can be
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regarded as approximate midpoints of the sides of �k
 Collectively	 the
number of such nodes is

Nv � ��N � ��

We also refer to these nodes as

VN � fv�� � � � � vNv
g

when we are not considering the triangular element to which they belong

When evaluating surface integrals	 we need an explicitly di�erentiable

parametrization of the surface
 More precisely	Z
	k

f�Q� dS �
Z
�
f�mk�s� t�� j�Dsmk �Dtmk��s� t�jd� ����

The derivatives Dsmk and Dtmk involve the derivatives of Fi	 as in ����

For polyhedral surfaces S	 there is no problem in obtaining these derivatives

But for surfaces which are curved	 this can be a major inconvenience in
using high order boundary element methods
 For that reason	 we introduce
approximations of the surface	 and we use their derivatives to approximate
those used in ����

For a triangle �k	 de�ne

�mk�s� t� �
�X

j��

mk�qj� lj�s� t�� �s� t� � � ����

We refer to the image of �mk as ��k
 The triangles �k and ��k agree at the
nodes v��k� � � � � v��k� The union of all such ��k is denoted by e� 	 e�N � and this
is a continuous and piecewise smooth surface

The integral in ���� becomesZ

	k

f�Q� dS
�
�
Z
�
f� �mk�s� t�� j�Ds �mk �Dt �mk��s� t�jd� ����

The function f is now being evaluated at points o� of �	 but that is not a
major practical or theoretical di�culty
 We can always extend the function
f to a neighborhood of S in such a way as to maintain its di�erentiability	
subject to � being su�ciently di�erentiable
 In practice	 we approximate
���� for cases in which the extension of f is known explicitly
 Alternatively	
when numerical quadrature is used for a general function f 	 our quadrature

�



formulas often evaluate f� �mk�s� t�� only at the points �s� t� � q�� � � � � q�� and
in this case	 f is being evaluated at points on the original surface
 Evaluating
Ds �mk � Dt �mk is relatively straightforward and can be incorporated into a
general package for triangulating and approximating S

Detailed error analyses for the above approximations and for various

quadrature schemes are given in Chien ���
	 ���
� and for their use in solving
boundary integral equations	 see Atkinson and Chien ��

 We will refer to
these papers when necessary	 to avoid duplication of complicated arguments

Only the use of piecewise quadratic interpolation in solving the boundary

integral equation ��� is analyzed in this paper� but the methods of analysis are
not limited to this case
 Chien ���
 discusses the use of piecewise quadratic
interpolation for integral equations with smooth kernel functions� and he
shows how the central ideas extend to other degrees of piecewise polynomial
interpolation
 We have concentrated our attention on the use of piecewise
quadratic interpolation because ��� it is simpler to write about one particular
degree of approximation	 ��� we wanted to analyze and program something
signi�cantly more complicated than the more well�known panel methods	
and ��� the use of piecewise quadratic approximations is important in its
own right


� THE COLLOCATION METHOD

The integral equation ��� can be written abstractly as

u � Ku� SG�u� 	 L�u� ����

In this equation	 K is the double layer potential operator

K��P � �
�

��

Z
�
��Q�

�

�nQ

�
�

jP �Qj

�
dS�Q�� P � � ����

S is the single layer potential operator

S��P � �
�

��

Z
�

��Q�

jP �Qj
dS�Q�� P � � ����

and G is the Nemytskii operator

�G�����P � � g�P� ��P ��� P � � ����
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In ���������	 � is an arbitrary element from the function space in which ����
is to be analyzed
 We use C��� with the uniform norm as the space for all
of our error analyses

With � a smooth surface	 as assumed in Section �	 the operators K and

S are compact linear operators on C��� into C���
 When � is only piecewise
smooth	 K is no longer compact� and it acts in some ways like the Dirac delta
function
 This lack of compactness in K for a piecewise smooth boundary
� leads to non�trivial changes in both the numerical methods for ���� and
their error analysis
 For this reason	 we consider only the case of a smooth
boundary � in this paper

With the assumption of continuity of g�P� v� for �P� v� � ��R	 it follows

easily that G maps bounded subsets of C��� into bounded subsets of C����
We make the further assumption that

gv�P� v� �
�g

�v
and gvv�P� v� �

��g

�v�

are continuous for �P� v� � � �R� This assures the existence of the Frechet
derivative G���� as a bounded linear operator on C���� for all � � C����
and moreover	 G���� is continuous in � with respect to the operator norm on
C���� These assumptions on g can be relaxed to ones which are local with
respect to a solution u� of ����� but the present assumptions simplify our
presentation	 without making any major di�erence to the �nal results

With the above assumptions on � and g	 the nonlinear operator L is

completely continuous on C��� to C���� Moreover	 for each u � C���� L��u�
is a compact linear operator on C��� to C����and the mappings u 
�� L��u� is
continuous as a mapping from C��� to the space of bounded linear operators
on C��� to C���� The classical tools and results for the analysis of ���� are
given in Krasnoselskii ���
	 and we will refer to them as needed

Using the interpolatory projection operator PN of Section �	 we approx�

imate ���� by
uN � PNL�uN � ����

We henceforth let u� denote the desired solution of ����	 and we let u�N denote
the desired solution of ����	 provided such a solution exists
 The method in
���� is a collocation method	 and solving it reduces to the solution of a �nite
system of nonlinear algebraic equations
 Later in this section	 we consider
the actual system being solved
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The abstract error analysis for ���� was �rst given by Krasnoselskii ���	
p
 ���

 In ��
 and ���
	 these results were extended	 and we will refer to
these papers in our error analysis
 For this analysis	 we need to assume that
� is not an eigenvalue of L��u��� which is equivalent to assuming

I �L��u�� � C���
���
�
onto

C��� ����

This assumption is the generalization of assuming the Jacobian matrix is
nonsingular when solving a �nite algebraic system of equations� and for a
root u� of a single equation f�u� � � of a real variable u	 this assumption is
equivalent to assuming the root u� is simple
 Under suitable assumptions on
g� it can be shown that ���� has a unique solution u� and that � is not an
eigenvalue of L��u��� but we do not discuss such results here


Theorem � Assume � is a four times continuously di�erentiable surface�
Assume g�P� v� is twice continuously di�erentiable with respect to v� for
�P� v� � � � R� Moreover� assume G maps Cr��� into Cr��� for r � ��
Let u� denote an isolated solution of ����� and assume u� � C����� Further�
assume � is not an eigenvalue of L��u��� Then for some � � � and for all
su�ciently large N � say N � N�� the equation ���� has a solution u�N which
is unique within the neighborhood fu j ku� � uk� � �g � Moreover�

ku� � u�Nk� � c ku� �PNu
�k� � N � N� ����

for some c � �� Thus
ku� � u�Nk� � O�bh�� ����

Proof� The proof is omitted	 as it is a straightforward repetition of deriva�
tions given in ��
 and ���

 However	 we need certain results obtained in those
proofs	 and we state those here
 There is an open neighborhood � of u� and
an integer N� for which the following is true


�
 The solution u� is the unique solution within � of equation ����


�
 The equation ���� has a unique solution u�N within �� N � N��

�
 The Frechet derivatives L��u�� L���u� exist and are uniformly bounded
for u � �� Note that his implies the uniform boundedness of the �rst
and second derivatives of PNL�u�	 for N � � and u � ��

�



�
 For all u� v � ��

kL��u�� L��v�k � b ku� vk� � b �max
w��

kL���w�k ����

�
 The inverses �I � L��u�
�� and �I �PNL��u�
�� exist for N � N� and
they are uniformly bounded	 say by c � �
 Moreover	����I � L��u�
��v � �I �PNL

��u�
��v
���
�
� c

����I �PN�L
��u��I � L��u�
��v

���
�

����
for all N � N� and u � �� �

��� The �nite algebraic system

The equation ���� is equivalent to a �nite system of algebraic equations

Using the notation of Section �	 write

u�N�mk�s� t�� �
�X

j��

u�N �vj�k�lj�s� t�� �s� t� � �� k � �� � � � � N ����

to de�ne u�N�P �� for P � �k� We substitute this into the equation ��� and
collocate at the nodes v�� � � � � vNv

of the triangulation
 This leads to the
nonlinear system

uN � LN �uN �� uN � R
Nv ����

with solution u�N 	 the restriction of u
�
N to the collocation nodes� The vec�

tors u � R
Nv will be treated as discrete functions with domain fvi j i �

�� � � � � Nvg	 and the components of u will be denoted by u�vi�� i � �� � � � � Nv�
The nonlinear operator LN � RNv � R

Nv is de�ned by

LN �u��vi� �
�

��

NX
k��

Z
	k

�ENu��Q�
�

�nQ

�
�

jvi �Qj

�
dSQ

�
�

��

NX
k��

Z
	k

g�Q� �ENu��Q��
�

jvi �Qj
dSQ� u � R

Nv

with the extension or prolongation operator EN de�ned by

�ENu��mk�s� t�� �
�X

j��

u�vjk�lj�s� t�� �s� t� � �� k � �� � � � � N ����

��



Using the parametrization mk � �
���
�
onto
�k of Section �	 we can write

LN �u��vi� �
�

��

NX
k��

�X
j��

u�vjk�
Z
�
lj�s� t�

�

�nQ

�
�

jvi �mk�s� t�j

�
jDsmk �Dtmkj d�

����

�
�

��

NX
k��

Z
	k

g�mk�s� t��
�X

j��

u�vjk�lj�s� t��
�

jvi �mk�s� t�j
jDsmk �Dtmkj d�

for arbitrary u � R
Nv� Bounds on LN �u� and its derivatives follow from

corresponding bounds for PNL and its derivatives
 The bounds for vectors in
R

Nv and matrices on it are based on the vector norm k�k� and the associated
matrix row norm

We approximate these integrals further by replacing mk�s� t� by the in�

terpolating approximation fmk�s� t� of ����
 This yields the new nonlinear
operator

eLN �u��vi� �
�

��

NX
k��

�X
j��

u�vjk�
Z
�
lj�s� t�

�

�nQ

�
�

jvi �fmk�s� t�j

�
jDsfmk �Dtfmkj d�

����

�
�

��

NX
k��

Z
	k

g�fmk�s� t��
�X

j��

u�vjk�lj�s� t��
�

jvi �fmk�s� t�j
jDsfmk �Dtfmkj d�

for u � R
Nv� We actually solve the nonlinear system

uN � eLN �uN �� uN � R
Nv ����

and its solution is denoted by eu�N �provided it exists�
 The integrals in ����
must still be evaluated numerically	 but we defer the discussion of this until
Section �

Let RN � C���

onto
� R

Nv be the restriction operator	 so that RNu is the
restriction of u to the collocation nodes fvig�

Theorem � Make the same assumptions as in Theorem �� Then there is
an integer N� � N� and an � � � for which we have the following� For all
N � N�� �		� has a solution eu�N � and it is unique within an �
neighborhood
of RNu

� in R
Nv� Moreover�

max
i
ju��vi� � eu�N �vi�j � cbh� ����

��



Proof� We reformulate the equation ���� as an equivalent equation to
which the Contractive Mapping Theorem �cf
 ���
	 p
 ���� can be applied	
uniformly with respect to N 
 For notation	 c will be treated as a generic
constant	 uniform in N for N su�ciently large

In ����	 expand eLN �uN � in a linear Taylor series about u�N 	 with remain�

der�

eLN �uN� � eLN �u
�
N � �

eL�N�u�N ��uN � u
�
N� �RN�u

�
N �uN � u

�
N � ����

with
RN�u

�
N � �� � O�k�k��� ����

Let � � uN � u
�
N 	 subtract u

�
N � LN �u

�
N � from ����	 and rewrite the result

as
�I � eL�N �u�N�
� � eLN �u

�
N �� LN�u

�
N � �RN �u

�
N � �� ����

From the uniform boundedness of �I�PNL��u�
�� for N � N� and u � B�
it is relatively straightforward to show that the same is true of �I�L�N�u

�
N �


��

In addition	 the matrix eL�N �u�N� is obtained from L�N �u

�
N � by replacing mk

by fmk	 as in ���� above
 From a proof very similar to that of ��	 Theorem
�
�
	 we can show ���eL�N �u�N�� L�N �u

�
N �

��� � cbh�� N � N� ����

It is then straightforward to show that �I� eL�N�u�N �
�� exists and is uniformly
bounded for for su�ciently large N�
The equation ���� can then be written

� ��I � eL�N �u�N �
�� nheLN �u
�
N�� LN �u

�
N �
i
�RN �u

�
N � ��

o
����

Write this as
� �MN���

To apply the Contractive Mapping Theorem	 we must show

�A�� MN maps some ball B��� 	 fu j kuk� � �g about zero into itself	
uniformly with respect to N � and

�A��MN is contractive on B���� uniformly with respect to N�

��



From ����	 we can show for the collocation discretization that

kLN �u
�
N �� LN �RNu

��k� � b� ku
�
N �RNu

�k� � O�bh�� �������eLN �u
�
N��

eLN �RNu
��
���
�
� b� ku

�
N �RNu

�k� � O�bh��
for a suitable constant b� � �� Consequently���eLN �u

�
N�� LN �u�N �

���
�

� �b� ku�N �RNu
�k� �

���LN �RNu
��� eLN �RNu

��
���
�

� O�bh��
����

Combining this with ���� shows A�	 provided � is chosen su�ciently small

To show MN is contractive	 we need the following result for arbitrary

twice�di�erentiable nonlinear operators F on an open set S	 with u� � S �

F�u� � F�u�� � F ��u���u� u�� �R�u��u� u��

For 	 su�ciently small	 and for k��k � k��k � 	�

kR�u�� ����R�u
�� ���k � 
�u�� ��� k�� � ��k


�u�� ��� �
�
�

�
k�� � ��k� k��k

�
max
k�k��

kF ���u� � ��k

As this is a standard result	 we omit the proof
 The constant 
�u�� ��� can
be made arbitrarily small by choosing 	 suitably small� and using it	 the
mapping R�u�� �� can be shown to be contractive with respect to ��
We apply this to the operators RN�u�N � �� of ����
 Using the results given

above	 including the uniform boundedness of PNL���u� for u � B and N �
N�� we obtain contractiveness for both RN �u�N � �� andMN���� uniformly in
N�
Using the Contractive Mapping Theorem cited earlier	 we obtain the ex�

istence of the solution eu�N of ����	 unique within some ��neighborhood as
asserted
 Moreover	

keu�N � u
�
Nk� � c

��� eLN �u
�
N �� LN �u

�
N�
���
�
� O�bh��

with the latter also based on ����
 �

��



The empirical results we obtain in Section � seem to imply the error is
O�bh��
 We hypothesize that this is due to two e�ects
 First	 we believe the
result ���� should be O�bh��� and to prove this	 we believe the result ����
can be improved to O�bh��	 although we have not yet been able to do so

Second	 we make an additional modi�cation to the nonlinear system ����	
and it further improves the convergence to O�bh���
� NUMERICAL EXAMPLES

The collocation method of x� was implemented with the aid of a package of
programs which we have designed for solving boundary element methods on
smooth and piecewise smooth surfaces
 The package was �rst described in ��
	
��
� and it has since been updated and improved in several ways
 We expect
to make it available for general use in the near future	 with an accompanying
user�s manual

There are two additional aspects of the practical implementation of the

collocation method analyzed in x�� the numerical approximation of the vari�
ous integrals in ����	 and the iterative solution of the nonlinear system ����

We discuss now the calculation of the integrals	 and the iteration method is
taken up in x� and x�
 To avoid unnecessary repetitions in our evaluations
of integrals	 note that the bulk of the work in the evaluation of ���� at a
particular u � R

Nv is in the numerical integration of the single and double
layer potentials for the quadratic basis density functions lj�s� t� of ����
 Pre�
ceding the iterative solution of ����	 we set up matrices for these collocation
integrals for the linear single and double layer operators S and K

We give only a sketch of the ideas we use in evaluating the integrals in

����	 and refer to ��
 for a more complete discussion
 Consider the evaluation
of a canonical integralZ

�
��vi�fmK�s� t��lj�s� t� jDsfmK �DtfmKj d� ����

in which ��P�Q� denotes the kernel function of either the single layer or
double layer operator

When vi � �K	 the integrand is singular� and for purposes of explanation	

assume	 vi � mK��� ��
 Then we use the transformation

s � ��� y�x� t � yx� � � x� y � �

��



With this	 the singularity in the integrand is removed entirely	 including in
the derivatives of the integrand
 We then apply a repeated standard Gauss�
Legendre quadrature	 say with Ng nodes in each of the variables x and y

Generally we have found Ng � �� to be quite su�cient
 This transformation
has been used previously� for example	 see ��
	 ���
	 ���
	 and ���

 The latter
paper of Schwab and Wendland ���
 contains an extensive analysis of this
transformation	 including extensions of its use to other types of problems

Another discussion of numerical integration for boundary element methods
is given in ���


For vi �� �K	 the integrand in ���� is analytic� but it is increasingly

peaked as the distance between vi and �K decreases
 Our integration of ����
is based on the formula T����� of Stroud ���
	 p
 ����

Z
�
g�s� t�d� �


X
j��

wjg�sj� tj� ����

It has degree of precision �ve
 Note that the number of integrals in which
vi � �K is of order O�Nv�	 whereas the number of integrals in which vi �� �K

is of order O�N�
v �
 Thus the total cost of evaluating the latter integrals is

likely to be more time�consuming as N increases

Let

�N � max
K

diameter��K�

Let an integer Nd � � be given by the user
 If vi �� �K and if

dist�vi��K� � �N

then integrate ���� using Nd levels of subdivision of � �thus subdividing �
into �Nd congruent subtriangles	 with ���� applied to the integral over each
of the corresponding subintegrals

 If vi �� �K and

�N 
 dist�vi��K� � ��N �

then integrate ���� using ���� with maxfNd� �� �g levels of subdivision of ��
If vi �� �K and

��N 
 dist�vi��K� � ��N �

then integrate ���� using ���� with maxfNd � �� �g levels of subdivision of
�� Continue with this in the obvious way
 Generally we have found that it is

��



more than adequate to increase Nd by � when N is increased to �N 
 That
would mean that when using N � �� ��� ���� ���	 that we would use Nd �
�� �� �� �
 However we have found it quite satisfactory to use Nd � �� �� �� �
or even Nd � �� �� �� � for the above choices of N 

There is one other important factor in de�ning the discretization of the

double layer integral operator
 For the double layer integral operator	 we
have the identity

Z
�

�

�nP

�
�

jP �Qj

�
dSQ � ���� P � � ����

After performing the quadratures described above	 we add a �correction
term� to the diagonal element of each row of the matrix for the discretization
of the double layer	 to force the sum of the elements for each row to equal
���� This is discussed in ��
	 in which an illustration is given of the usefulness
of the above �correction� in increasing the order of convergence


��� The Surfaces

Two surfaces were used in our experiments
 Surface  � �denoted by S ��
was the ellipsoid �

x

a

��
�
�
y

b

��
�
�
x

c

��
� �

In Table � given below	 �a� b� c� � ��� ���� ��

The ellipsoid is convex and symmetric
 For that reason	 we have devised

and used a surface which is neither convex nor symmetric
 Surface  � �S ��
is de�ned by

�x� y� z� � ���� 	� ���A��B	�C��� �� � 	� � �� � �

with

���� 	� �� � � �
�




h
�� � ����� � ��	 � ����� � ��� � �����

i
and A�B�C � �� 
 � �� The case we use here is 
 � �� and �A�B�C� �
��� �� ��
 Figure � gives the intersections of the surface � with the vertical
planes containing the z�axis and intersecting the xz�plane at angles of � �
�� ���� ���
 Experiments were done with other choices of 
 and �A�B�C�	
corresponding to surfaces with a more pronounced lack of symmetry and

��



Table �� Maximum errors for eu��N and eu��N on S �

N kRNu� eu�

�N
k� Order kRNu� eu��Nk� Order

� �
��E�� �
��E��
�� �
��E�� �
�� �
��E�� �
��
��� �
��E�� �
�� �
��E�� �
��
��� �
��E�� �
�� �
��E�� �
��

convexity
 But in order to obtain error results with some regularity in the
asymptotic behavior	 we chose the parameters given above	 giving the surface
illustrated in Figure �


��� Convergence Results

The problem ������� was solved with known values of the solution u�P � and

g�P� v� � v � sin�v�

The function f�P � was then determined by

f�P � � g�P� u�P �� �
�u�P �

�nP
� P � �

The true solutions chosen were

u��x� y� z� � x� � y� � �z�

u��x� y� z� � ex cos�y� � ez sin�x�

These are quite well�behaved functions	 although u� does vary a great deal
over the surface ��
The maximum errors for the collocation solutions at the node points for

surfaces S � and S � are given in Tables � and �	 respectively
 In the
tables	 the column labeled Order gives the empirical order of convergence of
the collocation solutions	 i
e
 the error is O�bhOrder��
Looking at these numerical results	 the empirical order for S � appears

to be approaching �	 and this is much better than the order of � predicted

��



Table �� Maximum errors for eu��N and eu��N on S �

N kRNu� eu�

�N
k� Order kRNu� eu�

�N
k� Order

� �
��E�� �
��E��
�� �
��E�� �
�� �
��E�� �
��
��� �
��E�� �
�� �
��E�� �
��
��� �
��E�� �
�� �
��E�� �
��

by ���� in Theorem �
 For S �	 the empirical order is also increasing� and
we believe that as N increases further	 the empirical order will also approach
�
 This is also based on looking at the error at individual node points	 in
which the empirical order is more clearly approaching �
 As in ��
 for the
case of linear boundary integral equations	 it appears likely that the increase
in order is due to two e�ects
 First	 the result ���� in Theorem � should
probably be O�bh��	 based on other numerical experiments
 Second	 the use
of a �correction� based on ���� appears to add one additional power to the
order of convergence
 We do not yet have a rigorous explanation	 but our
many computations lead us to this conclusion


� THE ITERATION METHOD

To solve the nonlinear system ����	 we use a modi�ed Newton�s method
 We
begin by supposing that the system to be solved is

uM � eLM �uM �� uM � R
Mv ����

for an increasing sequence of values M � and we denote its solution by eu�M �
Our modi�cation of Newton�s method will use a two�grid approximation toh
I � eL�M �uM�i�� � based on an inverse hI � eL�N �w�i�� for some N 
 M and

some point w � R
Nv which is close to RNu

�� The iteration method is very
similar to that �rst given in ��
� but now we use extension and restriction oper�
ators to move between spaces of di�erent �nite dimension	 whereas Nystr!om
interpolation was used in ��

 This is also similar to what is used in Hack�
busch ���
 for the two�grid approximation of linear integral operators
 For
other discussions of the use of two�grid iteration methods of the type used

��



here	 see ���
	 ���
	 ���

 In the following we initially work with the exact
surface �� and later we replace it with the approximate surface e�M 

Some additional notation is needed
 Let matrices SM and KM be de�ned

by

SM��vi� �
�

��

MX
k��

�X
j��

��vjk�
Z
�
lj�s� t�

�

jvi �mk�s� t�j
jDsmk �Dtmkj d�

and

KM��vi� �
�

��

MX
k��

�X
j��

��vjk�
Z
�
lj�s� t�

�

�nQ

�
�

jvi �mk�s� t�j

�
jDsmk �Dtmkj d�

with Q � mk�s� t�� for i � �� � � � �Mv and � � R
Mv 
 De�ne the nonlinear

operator GM �
GM �u� � RMG�EMu�� u � R

Mv

This maps RMv into RMv � Recalling ����	

LM �u� � KMu� SMGM �u�� u � R
Mv

Then it is straightforward to obtain

L�M �u�� � KM��SMG�
M �u��

� KM��SMRMG��EMu�EM�� � � R
Mv

We need to consider the linear integral equation problem

� � �K � SG��u��
� � f

and the collocation method for its solution�

�M �PM �K � SG
��u��
�M � PMf

with arbitrary f � C���� The associated collocation matrix is I �AM with

AM � KM�SMRMG
��u��EN

By our assumption in Theorems � and �	 that � is not an eigenvalue of
L��u��� it follows that the inverses �I� PML��u��
�� exist and are uniformly

��



bounded on C��� for all su�ciently largeM 
 From this it follows by standard
arguments that the matrices �I�AM
�� also exist and are uniformly bounded
for su�ciently large M� using the matrix row norm
 As we asserted earlier
in the proofs of Theorems � and �	 this leads to the existence and uniform
boundedness of �I� PML��u�M�


�� and �I � L�M�u
�
M �


�� with u�M � RMu
�
M 	

using ���� and its consequences

Newton�s method for solving uM � LM�uM � for u�M is

u
�k���
M � u

�k�
M �

h
I � L�M �u

�k�
M �

i�� h
u
�k�
M � LM �u

�k�
M �

i
� k � �� �� � � � ����

To de�ne our iteration method	 we approximate the inverse appearing in
this de�nition
 We do so in several steps	 to justify the �nal form of the
approximation which we use

First	 consider the approximationh

I � L�M�u
�k�
M �

i��
� �I � L�M �u

�
M�


��

Using this in ���� is known to lead to a linearly convergent iteration method�
and this can be shown to be uniformly so for M su�ciently large
 As M �
�	 the linear rate of convergence approaches �

Next	 use

�I � L�M �u
�
M�


��
� �I � L�M �RMu

��

��

Since u�M � u�	 again we have a good approximation of the inverse matrix
in ����	 provided M is chosen su�ciently large
 This new inverse is further
approximated by

�I � L�M�RMu
��


��
� �I �AM 


��

This is justi�ed by the interpolation convergence result that EMRMu
� � u��

Our modi�cation of the Newton iteration ���� now takes the form

u
�k���
M � u

�k�
M � �I �AM 


��
h
u
�k�
M � LM �u

�k�
M �

i
� k � �� �� � � � ����

To move between vectors in R
Mv and R

Nv� we introduce the restric�
tion operator RMN and the extension operator ENM 
 For u � R

Mv	 de�ne
RMNu � R

Nv to be the restriction of u to the nodes associated with the
coarse mesh triangulation TN 
 For u � R

Nv 	 de�ne EMNu � R
Mv to be the

��



extension of u to the nodes associated with the �ne mesh TM � and this ex�
tension is based on the same interpolation as used in de�ning ENu in ����

We now introduce the two�grid approximation in its theoretical frame�

work
 Use
�I �AM 


�� � I � ENM �I �AN 

��RMNAM ����

withN 
 M 
 The triangulation associated withN is usually called the coarse
mesh	 and that associated with M is called the �ne mesh
 This approxima�
tion comes out the theory of collectively compact operator approximations

We refer to the extensive discussions in ��	 p
 ���
 for additional discussion
and motivation

To obtain convergence of the iteration with this new approximation	 pro�

ceed as follows
 First	 by straightforward algebraic manipulation	

�I �AM 

�� �

n
I � ENM �I �AN 


��RMNAM

o
� �I � ENM�I �AN ���RMN�I �AM�
AM �I �AM 


��

	 CNM �I �AM 

�� ����

Next	 from ��	 Appendix
	 it follows that

kCNMk �
�

�

����I �PNL
��u��


��
��� k�PN �PM�L

��u��k ����

Since k�I �PM�L��u��k � �	 it follows that

lim
N��

sup
M�N

kCNMk � � ����

Finally	 we work backward to an approximation based on the iterates
actually being used in the computation�

�I �AM 

�� � I � ENM �I � L�N �u

�
N �


��
RMNL

�
M �u

���
M �

If N is chosen su�ciently large	 and if u���M is chosen su�ciently close to
uM � then this last approximation will also have small error	 uniformly for
su�ciently large M 

Combining the above approximations	 we de�ne our modi�ed Newton�s

method�
u
�k���
M � u

�k�
M � r

�k�
M � ENM�

�k� ����

��



�I � L�N �u
�
N �
 �

�k� � RMNL
�
M �u

���
M �r

�k�
M ����

r
�k�
M � u

�k�
M �RML�u

�k�
M � ����

Combining the above arguments	 this iteration will converge linearly for all
su�ciently large M� uniformly inM 	 provided the coarse mesh parameter N
is chosen su�ciently large	 and provided the initial guesses u

���
M are chosen

su�ciently close to the true solutions u�M �

Theorem � Make the same assumptions as in Theorem �� and consider the
iteration ����
��
�� Then there exists an � � � and an integer N� � � such

that if N � N� and if u
���
M satis�es���u�M � u

���
M

���
�
� �

then ���u�M � u
�k���
M

���
�
� dN�M

���u�M � u
�k�
M

���
�
� M � N

The constant dN�M satis�es

lim
N��

sup
M�N

dN�M � �

Consequently there is a � � ��� �� for which dN�M � � � �� uniformly in M �
provided N is chosen su�ciently large�

Proof� The proof consists of simply using the approximations given
preceding the theorem and applying standard �xed point arguments
 The
proof is complicated	 but uses standard perturbation arguments
 We omit it
here
 �

��� Using the approximate surface

We use the approximate surface e�N rather than �
 We are solving the linear
system uM � eLM �uM� which has the solution eu�N � In analogy with Theorem
�	 we have the following


Theorem � Make the same assumptions as in Theorem �� and consider the
iteration ����
��
�� Let e�N be the interpolatory approximating surface de�ned

��



in Section �� Then there exists an � � � and an integer N� � � such that if
N � N� and if eu���M satis�es ���eu�M � eu���M

���
�
� �

then ���eu�M � eu�k���M

���
�
� edN�M

���eu�M � eu�k�M

���
�
� M � N

The constant edN�M satis�es

lim
N��

sup
M�N

edN�M � �

Consequently there is a � � ��� �� for which edN�M � � � �� uniformly in M �
provided N is chosen su�ciently large�

Proof� The proof follows along exactly the same lines as indicated for
Theorem �
 The major point at which a problem arises is in showing the
analogue of ���������
 Let eAM denote the analogue of AM � when using e�N
rather than ��
Using results from ��
	 we can show���AM � eAM

��� � O�bh��� M � �� bh�M � O��� ����

A proof can be given which is almost exactly the same as that of ��	 Theorem
�
�

 Combining this with ���������	 we can give a proof thath

I � eAM

i��
� I � ENM

h
I � eAN

i��
RMN

eAM � M � N ����

when N is chosen su�ciently large
 �

� ITERATION EXAMPLES

We use the same surfaces and examples as were used in Section �	 but now we
consider the solution of the nonlinear systems uM � eLM �uM� associated with
those earlier examples
 We use the iteration ���������	 modi�ed to use the

approximate surface e�M 
 In our examples	 the initial guess u���M is obtained
from the �nal solution for the preceding value of M 
 Where possible	 we

��



Table �� Iteration Statistics for S �


N M Ratio Cost
� �� 
��� 
���
��� 
��� 
��
��� 
��� �
�

�� ��� 
��� 
���
��� 
��� �
�

�� �� 
��� 
���
��� 
��� �
��

�� ��� 
��� �
��

Table �� Iteration Statistics for S �


N M Ratio Cost
� �� diverges
�� ��� 
��� 
���

��� 
��� �
��
�� �� 
��� 
���

��� 
��� �
��
�� ��� 
��� �
��

��



experimented with di�erent values of N 	 to see the e�ect of this on the speed
of convergence

In Tables � and �	 we give results of the two�grid iteration for the surfaces

S � and S �� We iterated until the successive di�erences
���eu�k�M � eu�k���M

���
�

were less than �����
 The unknown function used was u��x� y� z� � x� �
y� � �z�� For S �	 the results for u� and u� �also given in Section �� were
almost identical
 For S �	 the results when using u� were slightly slower�
but the essential nature of the results was the same	 and therefore we omit
them here
 The column labeled Ratio is either the �nal value of the ratio���eu�k�M � eu�k���M

���
����eu�k���M � eu�k���M

���
�

�

or for those cases where this ratio was still varying	 Ratio is the geometric
average of the last several values of this ratio
 The column labeled Cost is
the approximate cost in time �in seconds� of calculating each iterate eu�k�M 

The results were computed on an Hewlett�Packard ���	 which operates at ��
MIPS
 It can be seen that the speed of convergence improves as the coarse
mesh parameter N is increased


��� Comparative timings

It is useful to look at timings of all parts of the boundary integral equation
method which is described in this paper	 to see which parts are the more
expensive
 To this end	 we give such timings for the problem on S � with
u� as the solution being sought� To look at the entire picture	 we include the
parameter Nd �see Section � following ����
 and the errors kRMu

� � eu�Mk� �
The timings are a�ected greatly by Nd� As it increases	 the time to set up
the collocation matrices KM and SM also increases greatly� and if Nd is
chosen too small	 then error 	 kRMu

� � eu�Mk� is not as small as it might
be otherwise

The timings �in seconds� are given in Table �
 The columns labeled triang�

matrix� and iterate refer	 respectively	 to the costs of the triangulation	 the
setup of the collocation matrix	 and the calculation of one iterate
 The
timings are somewhat crude	 as they are taken on a system with multi�
tasking �although the timings were done when there were no other users on

��



Table �� Timings �in seconds� on S �

N M Nd error triang matrix iterate

� �� � �
��E�� 
��� �
�� 
��
� �
��E�� 
��� �
�� 
��

� ��� � �
��E�� 
�� ��
� 
��
� �
��E�� 
�� ��
� 
��
� �
��E�� 
�� ��� 
��

� ��� � �
��E�� �
�� ��� �
��
� �
��E�� �
�� ��� �
��
� �
��E�� �
�� ��� �
��

the machine�
 Nonetheless	 the timings serve to show the relative costs of
the various parts of the program� and they show the e�ect of increasing Nd�
The setup of the collocation matrices KM and SM is the most costly part

of the solution process
 This matrix setup cost is almost entirely due to
the numerical integration of the collocation integrals	 and this was discussed
earlier in the beginning of Section �
 We have experimented a great deal with
the numerical integration	 and the present approach is the most e�cient of
those we have implemented
 From the timings in the table	 there seems little
reason to improve further the e�ciency of the iteration method	 at least until
the matrix setup cost can be reduced signi�cantly


References

��
 K
 Atkinson	 The numerical evaluation of �xed points for completely
continuous operators	 SIAM J� Num� Anal� �� ������	 pp
 �������


��
 K
 Atkinson	 Iterative variants of the Nystr!ommethod for the numerical
solution of integral equations	 Numer� Math� �� ������	 pp
�����


��
 K
 Atkinson	 A Survey of Numerical Methods for the Solution of Fred

holm Integral Equations of the Second Kind	 SIAM	 Philadelphia	 PA	
����


��



��
 K
 Atkinson	 Piecewise polynomial collocation for integral equa�
tions on surfaces in three dimensions	 J� Integral Equations
� �����	 supplementary issue�	 pp
 �����


��
 K
 Atkinson	 Solving integral equations on surfaces in space	 in Con

structive Methods for the Practical Treatment of Integral Equations� ed

by G
 H!ammerlin and K
 Ho�man	 Birkh!auser	 Basel	 ����	 pp
�����


��
 K
 Atkinson	 A survey of boundary integral equation methods for the
numerical solution of Laplace�s equation in three dimensions	 in Numer

ical Solution of Integral Equations	 ed
 by M
 Golberg	 Plenum Press	
New York	 ����	 pp
 ����


��
 K
 Atkinson	 Two�grid iteration methods for linear integral equations of
the second kind on piecewise smooth surfaces in R�� SIAM J� Sci� Stat�
Comp�� to appear


��
 K
 Atkinson and G
 Chandler	 BIE methods for solving Laplaces�s equa�
tion with nonlinear boundary conditions	 Math� Comp� �� ������	 pp

�������


��
 K
 Atkinson and D
 Chien	 Piecewise polynomial collocation for bound�
ary integral equations	 submitted to SIAM J� Sci� Stat� Comp�

���
 K
 Atkinson and I
 Graham	 Iterative variants of the Nystr!om method
for second kind boundary integral equations	 SIAM J� Sci� Stat� Comp�
�� ������	 pp
 �������


���
 K
 Atkinson and F
 Potra	 Galerkin�s method for nonlinear integral equa�
tions	 SIAM J� Num� Anal� �� ������	 pp
 ���������


���
 D
 Chien	 Piecewise Polynomial Collocation for Integral Equations on
Surfaces in Three Dimensions	 PhD thesis	 Univ
 of Iowa	 Iowa City	
Iowa	 ����


���
 D
 Chien	 Piecewise polynomial collocation for integral equations with a
smooth kernel on surfaces in three dimensions	 submitted for publica�
tion


��



���
 G
 Fairweather	 F
 Rizzo	 and D
 Shippy	 Computation of double inte�
grals in the boundary integral method	 in Advances in Computer Meth

ods for Partial Di�erential Equations
III	 ed
 by R
 Vichnevetsky and R

Stepleman	 IMACS Symposium	 Rutgers University	 New Jersey	 ����	
pp
�������


���
 J
 Guermond	 Numerical quadratures for layer potentials over curved
domains in R

�	 SIAM Journal on Numerical Analysis �� ������	 pp

���������


���
 W
 Hackbusch	 Die schnelle Au"!osung der Fredholmschen Integralgle�
ichungen zweiter Art	 Beitr�age Numerische Math� � ������	 pp
 �����


���
 C
 Johnson and L
 R
 Scott	 An analysis of quadrature errors in second�
kind boundary integral equations	 SIAM J� Numer� Anal� �� ������	
pp
���������


���
 L
 Kantorovich and G
 Akilov	 Functional Analysis in Normed Spaces	
Pergamon Press	 London	 ����


���
 C
 T
 Kelley	 Operator prolongation methods for nonlinear equations	
in Computational Solution of Nonlinear Systems of Equations	 ed
 by E

Allgower and K
 Georg	 Amer
 Math
 Soc
	 ����	 pp
 �������


���
 C
 T
 Kelley	 A fast two�grid method for matrix H�equations	 Transport
Theory and Stat� Physics �	 ������	 pp
 �������


���
 C
 T
 Kelley and E
 W
 Sachs	 Multigrid algorithms for constrained
compact �xed point problems	 submitted to SIAM J� Sci� Stat� Comp�

���
 M
 Krasnoselskii	 Topological Methods in the Theory of Nonlinear Inte

gral Equations� MacMillan	 New York	 ����


���
 K
 Ruotsalainen and W
 Wendland	 On the boundary element method
for some nonlinear boundary value problems	 Numer� Math� �� ������	
pp
 �������


���
 C
 Schwab and W
 Wendland	 On numerical cubatures of singular sur�
face integrals in boundary element methods	 Numer� Math� ������	 to
appear


��



���
 A
 Stroud	 Approximate Calculation of Multiple Integrals	 Prentice�Hall	
New Jersey	 ����


��


