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1 OVERVIEW

This guide describes a collection of programs for (1) creating and re�ning tri-
angulations on surfaces, and (2) solving integral equations using collocation
methods over these triangulations. The main purpose of this package is to
allow for experimentation with numerical methods for solving boundary inte-
gral equations that are de�ned on piecewise smooth surfaces in R3. General
surveys of the numerical solution of boundary integral equation (BIE) refor-
mulations of Laplace's equation are given in [5] and [9], and an introduction
to the numerical solution of such BIE is given in [8, Chap. 9].

Our package is restricted to triangulations which are \uniform", as there
are additional di�culties in dealing with meshes that are suitably graded. We
have included a few routines to create graded meshes, to allow for numerical
integration of functions which have poor behaviour near edges and corners
of the surface. These can also be used for setting up graded meshes for
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solving boundary integral equations in which the unknown solution function
has poor behaviour near edges and corners of the surface.

An additional feature of the second release of the package is the treatment
of the \radiosity equation" from computer graphics and radiative transfer. It
is de�ned and discussed in x7, and we give some programs for its numerical
solution.

1.1 Framework for Triangulation

The method of triangulation used in this package is described and used in [8,
Chap. 5]. It works well with a wide variety of surfaces, including polyhedra,
smooth surfaces such as ellipsoids and tori, cones, paraboloids, and many
others. The intended application is to the solution of integral equations over
the boundary surfaces of connected regions in R3, although the triangulation
package can also be used with open surfaces.

All triangulations TN = f�k j k = 1; � � � ; Ng of a surface S are given by
means of three arrays, named IFACE, VERTEX, and INDEXV. The integer
array IFACE contains the triangles of the triangulation, the double precision
array VERTEX contains the nodes of the triangulations, and the integer
array INDEXV contains additional information about the nodes in VERTEX.

Each triangular element �k has six nodes associated with it: three ver-
tices, called vk;1; vk;2; vk;3; and three \midpoints", called vk;4; vk;5; vk;6;
which are approximate midpoints of the 3 sides of the triangular element.
These are arranged as shown in Figure 1. The array IFACE contains in
column k the information which de�nes �k; k = 1; � � � ; N . The entries
IFACE(1,k),� � � ;IFACE(6,k) contain the position indices of vk;1; � � � ; vk;6; rel-
ative to the array VERTEX. The entry IFACE(7,k) contains additional in-
formation about the location of �k relative to the original surface. It is
often convenient to decompose piecewise smooth surfaces into sub-surfaces.
If the latter are indexed in some way, then IFACE(7,k) can be used to carry
the information as to which sub-surface contains �k: For example, a cube
would ordinarily be divided into six sub-surfaces, and the location of each
�k relative to this decomposition is given in IFACE(7,k). The array IFACE
is dimensioned as

DIMENSION IFACE (7, MXFACE)
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Figure 1: The element �k and its nodes vk;j

with MXFACE being the maximum number of faces to be allowed. Also,
the order of the vertices which are given in column k of IFACE will also give
the direction of a normal to �k: If the vertices vk;1; vk;2; vk;3 are used with
the right-hand rule, then this will be taken as indicating the direction of the
interior normal to �k when it is considered as a portion of a closed surface
S:

The array VERTEX contains the nodes of the triangulation (the vertices
and midpoints of the triangular elements in the triangulation). The dimen-
sion statement is

DIMENSION VERTEX (3, MXVERT)

with MXVERT the maximum number of vertices to be allowed. For closed
surfaces with conforming triangulations of the type created in this package,
the number of faces N and the number of nodes Nv are related by:

Nv = 2(N + 1)
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The nodes are referred to in two ways: as vk;j for node j in the triangu-
lar element �k; and as vi with 1 � i � Nv, when we are referring to the
nodes collectively and not with reference to any triangular element. The
three components of the node vi = (xi; yi; zi) are stored in the array en-
tries VERTEX(1,i), VERTEX(2,i), and VERTEX(3,i), respectively. We let
VN = fvi j i = 1; � � � ; Nvg denote the nodes collectively.

The one-dimensional array INDEXV, of length MXVERT, is used to
describe the nature of the node points in VERTEX. Consider S as being
a piecewise smooth surface, and suppose it can be decomposed into sub-
surfaces S1; � � � :SL with each Sl a smooth sub-surface. Each node point vi
can be classi�ed as follows: (1) vi belongs to the interior some Sl; or (2) vi
in contained in an edge of such a Sl; but is not a vertex of S; or (3) vi is a
vertex of S. These three cases lead to INDEXV(i) = 0, 1, 2, respectively.
On a smooth surface, INDEXV(i) = 0 for i = 1; � � � ; Nv:

1.1.1 The structure of the triangulation process

The triangulation is initiated with a call to a subroutine INIT which is to
be supplied by the user. The routine INIT gives an initial triangulation
of S, supplying the initial values for IFACE, VERTEX, and INDEXV. More
detailed information on the requirements of writing INIT are given later in x3,
along with examples for many common surfaces. To re�ne the triangulation,
we proceed as follows. Connect the midpoints of the sides of each �k. This
will form four new smaller triangular elements, as is illustrated in Figure 2.
The midpoints of their sides can then be constructed by calling on a second
user-supplied subroutine, called MIDPT. It too is described further in x3.
The programs actually used to carry out the re�nement process, including
the de�nition of the arrays IFACE, VERTEX, and INDEXV for the new
re�nement, are given in the triangulation package which we will refer to as
TRIPACK. Its contents are described in x2.1.The most important routine in
the re�nement process is the subroutine REFINE (and REFIN2 when doing
two-grid iteration methods).

In addition to the re�nement of the surface, other routines are given to
aid with other needs of working with a triangulation of the surface. For ex-
ample, the subroutine CIRCLE calculates for each triangle �k the center Ck

and radius rk of the circumscribing circle for the planar triangle that joins
the three vertices of �k: This can be used to check whether or not a given
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Figure 2: The re�nement of �k

node or point P belongs to a given element �k: Merely compare jP � Ckj
and rk : if jP � Ckj > rk; then P =2 �k: In addition to CIRCLE, also con-
sider the routines ORIENT, DIAMTR, NORMAL, FNDNRM, FNDNRM2,
NRM AV, POLYPREP, LOCATE, F TO V, and PRNTRI, given in the col-
lection named TRIPACK.

1.1.2 Interpolation over the surface

The methods we use for solving boundary integral equations are based on the
collocation method with approximating functions which are piecewise poly-
nomial, in a certain sense, over the triangulation TN . We use approximating
functions that are piecewise polynomial in the parameterization variables, of
degrees 0, 1, and 2. These functions are referred to as `piecewise constant',
`piecewise linear', and `piecewise quadratic', respectively.

Introduce
� = f(s; t) j 0 � s; t; s+ t � 1g
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Each triangular element �k is considered to be the image of a mapping

mk : �
1�1
!
onto

�k, making � the parametrization domain for �k. For piecewise

constant interpolation over TN to a function f 2 C(S), de�ne

PNf(P ) = f
�
mk

�
1
3
; 1
3

��
(s; t) 2 �; P = mk(s; t)

for k = 1; :::; N . The function PNf is piecewise constant over the surface
S. There is a problem of multiple de�nition of PNf(P ) at points P on the
boundary of the various elements �k, and we ignore this by generally not
evaluating the interpolation function at such points. As an alternative, we
could use an average of the values obtained from all of the triangles containing
the given P .

For piecewise linear interpolation over S with the triangulation TN , we
�rst introduce the following interpolation node points in �:

q1(�) = (�; �) ; q2(�) = (�; 1� 2�) ; q3(�) = (1� 2�; �)

with 0 � � < 1
3
. For � = 0, the three nodes are the vertices of �, and then

mk (qi(0)) = vk;i; i = 1; 2; 3

For 0 < � < 1
3
, the node points are interior to �. Introduce the linear basis

functions

l1(s; t) =
u� �

1� 3�
; l2(s; t) =

t� �

1� 3�
; l3(s; t) =

s� �

1� 3�

with u = 1�s� t for (s; t) 2 �. It is straightforward to show li (qj(�)) = �i;j,
for i; j = 1; 2; 3.

To interpolate a function f 2 C(�k); de�ne

PNf(P ) =
3X

j=1

f(mk(qj(�))`j(s; t); (s; t) 2 �; P = mk(s; t) (1)

With the above properties, we have PNf(mk(qi(�)) = f(mk(qi(�)); i =
1; 2; 3: The function PNf(mk(s; t)) is linear in the parametrization variables
(s; t) for �k: Extend this de�nition to all of the elements �k of the trian-
gulation TN ; and refer again to the resulting function as PNf: We call PNf
a piecewise linear interpolation function (somewhat incorrectly). If � = 0,
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Figure 3: The parametrization of �k for quadratic interpolation

then PNf is continuous over S, and PNf(vk;i) = f(vk;i); i = 1; 2; 3. For
0 < � < 1

3
, PNf(P ) is generally not continuous at points P on the boundary

of the elements �k.
To de�ne piecewise quadratic interpolation, introduce the quadratic basis

functions f`jg :

l1(s; t) = u(2u� 1); l2(s; t) = t(2t� 1); l3(s; t) = s(2s� 1)
l4(s; t) = 4tu; l5(s; t) = 4st; l6(s; t) = 4su

(2)

Introduce the points

q1 = (0; 0) q2 = (0; 1) q3 = (1; 0)
q4 = (0; :5) q5 = (:5; :5) q6 = (:5; 0)

(3)

Then
`j(qi) = �ij; i; j = 1; � � � ; 6

These are quadratic basis functions, for quadratic interpolation over � at the
interpolation points fq1;���;q6g . For a pictorial representation of the relation-
ship of �; �k; fvk;jg; and fqjg; see Figure 3. The values of f`j(s; t)g at a
given (s; t) are given by the subroutine BASIS.
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To interpolate a function f 2 C(�k); de�ne

PNf(P ) =
6X

j=1

f(vk;j)`j(s; t); (s; t) 2 �; P = mk(s; t) (4)

With the above properties, we have PNf(vk;i) = f(vk;i); i = 1; � � � ; 6: The
function PNf(mk(s; t)) is quadratic in the parametrization variables (s; t) for
�k: Extend this de�nition to all of the elements �k of the triangulation TN ;
and again refer to the resulting function as PNf: We call PNf a piecewise
quadratic interpolation function, somewhat incorrectly. The routine BASIS
calculates the basis functions f`jg; and the function INTERP carries out
the interpolation over a given �k. Piecewise quadratic interpolation is the
principal form of approximation used in our package, although some routines
are also included for piecewise constant and piecewise linear interpolation.

For f 2 C(S), and for all the above forms of piecewise polynomial inter-
polation, it is easy to show that kf � PNfk1 ! 0 as N !1: Let

h � hN = max
1�k�N

diameter(�k)

If f is su�ciently smooth, and if the sub-surfaces of S are su�ciently smooth,
then kf � PNfk1 = O(hd+1) with d the degree of the interpolation being
used, d = 0; 1; 2. For the piecewise linear case, the choice of � = 1

6
is often

an optimal choice when solving integral equations and when creating a nu-
merical integration formula from the interpolation formula. For additional
detail, see [12]. For general degrees d � 0, more information about the con-
vergence of PNf is given in [8, Chap. 5]. The above interpolation operators
PN are used below in de�ning the collocation method for solving boundary
integral equations. It should be clear from the context as to which degree of
interpolation is being used and therefore which de�nition of PN to use.

1.1.3 Approximation of the surface by interpolation

When doing numerical integration over the surface, as is needed in imple-
menting the collocation method for solving integral equations, we need to
calculate integralsZ

�k

f(Q) dSQ =
Z
�
f(mk(s; t)) jDsmk �Dtmkj d� (5)

8



In this,Dsmk(s; t) = @mk(s; t)=@s; and similarly forDtmk(s; t): If the surface
S is polyhedral, then calculating the Jacobian jDsmk �Dtmkj is straightfor-
ward. But when the surface S is curved, calculating the Jacobian requires an
explicitly di�erentiable parametrization of S. To avoid this inconvenience,
we approximate mk(s; t) by quadratic interpolation.

De�ne

fmk(s; t) =
6X

j=1

vk;j `j(s; t); (s; t) 2 � (6)

use the quadratic basis functions f`jg of (2). This mapping satis�es fmk(qj) =
vk;j; j = 1; � � � ; 6: We let e�k = fmk(�); k = 1; � � � ; N ; and

eSN =
N[
k=1

e�k

The triangular elements �k and e�k agree at the nodes f vk;1; � � � ; vk;6g: The
routine QUADSF calculates fmk(s; t):

Approximate the integral (5) byZ
�k

f(Q) dSQ �
Z
�
f(fmk(s; t)) jDsfmk �Dtfmkj d� (7)

This approximation is analyzed in considerable detail in Chien [13]-[14] and
is discussed further in [8, x5.3]. With the re�nement procedure which we
use, it can be shown that the error in (7) is of order h4, rather than the
order h2 which might be expected on the basis of using the derivative of
a quadratic interpolant. Using fmk(s; t) considerably simpli�es integrations
over triangular elements �k:

In the case the surface S is polyhedral, the functions mk are a�ne map-
pings, fmk = mk, and the Jacobian satis�es

jDsfmk �Dtfmkj = 2 �Area (�k) ; k = 1; :::; N

An option for such polyhedral surfaces is given with most of the numerical
integration and integral equation programs in the package. Also, there is a
subroutine POLYPREP which is used to pre-process the surface triangulation
TN for later use by other programs in the package.
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1.1.4 Numerical integration over the surface

Many numerical integration routines are included in TRIPACK, to be used
for the wide variety of integrals which must be calculated. We list the four
main forms of integration used over the standard parametrization region �:
The �rst three formulas refer to the nodes fqig of (3).Z

�
g(s; t) d� �

1

6
[g(q1) + g(q2) + g(q3)] (8)

Z
�
g(s; t) d� �

1

6
[g(q4) + g(q5) + g(q6)] (9)Z

�
g(s; t) d� � 9

40
g
�
1
3
; 1
3

�
+ 1

40
[g(q1) + g(q2) + g(q3)]

+ 1
15
[g(q4) + g(q5) + g(q6)]

(10)

Z
�
g(s; t) d� �

7X
j=1

wjg(�j) (11)

with the weights and nodes for (11) taken from the formula T2:5-1 of Stroud
[21, p. 314]. For the latter, the weights fwjg and nodes f�jg are given by the
routine SMPLXR; and the integration over � is carried out in the routines
SMPLX, SMPLX3, SMPLX6, and TRI INT. The degrees of precision over �
of these four formulas are respectively 1, 2, 3, and 5. We apply these formulas
to the calculation of integrals over �k by means of (7). An alternative to
formulas (10) and (11) is given in SMPLXL, giving the weights and nodes
over � of a 6-point formula with degree of precision 4.

For routines which are used just for numerical integration over the surface
S, see the programs INTEGRATE and INTEGRATE PL. The �rst is based
on the method (9), and the second is based on (8). Both use the piecewise
quadratic approximation of the surface as de�ned in (6).

When applying (8) or (9) to the right side of (7), the weights of the
integration are given by the routines WGT1 and WGT, respectively, incor-
porating the quadratic surface approximation of (6). When applying (11) to
the right side of (7), we use the routines SMPLX, SMPLX3, SMPLX6, and
TRI INT, depending on the intended application. We seldom use (10), but
it is a good formula to use when the re�nement method for the triangulation
does not have the symmetry of that described in x1.1.1.
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When the integrand in (7) is considered to be badly behaved, we use
composite forms of (11). This occurs principally with integrands formed
from 1= jP �Qj, with P near to but not in the integration triangle �k. In
such cases, we subdivide the parametrization region �; and then (11) is used
over each subdivision. To decide on the number of subdivisions needed, one
of the routines SETLEV and SETLV2 is used.

Some of the integrals that arise in solving integral equations will have a
singular integrand, and we handle such integrals with a change of variables.
For integrands of the type occurring with boundary integral equations, the
new integrand will generally be quite smooth. The transformed integral is
then approximated using Gauss-Legendre quadrature with respect to both
variables. The needed integrations are carried out with the aid of the routines
INTEGR, INTGR2, INTEGR3, INTEGR3G, TRI SNG, and RECT SNG,
with the choice varying with the particular application.

There are many types of integral equations which we wish to consider,
and within the same equation, there may be more than one type of collo-
cation integral which must be evaluated. The many quadrature routines in
x2.5 are designed for these various types of integration. They use the above
quadrature schemes, together with the routines we have mentioned already.
In addition, all the numerical integration programs incorporate the approx-
imation of the surface given in x1.1.3. These programs also incorporate an
option for polyhedral boundaries, to avoid the calculations associated with
the approximation of the surface, since the approximation would be exact
for such boundaries.

1.2 The Solution of Integral Equations

The routines in this package can be used to set up the numerical solution of
a wide variety of linear and nonlinear integral equations de�ned on piecewise
smooth surfaces S in R3. We have developed general programs for a number
of these equations, although not all programs we have developed are yet in the
package. Most of our programs are for integral equations of the second kind,
with most of them relating to the solution of boundary integral equations
and the radiosity equation.
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1.2.1 Integral equations with smooth kernel functions

Consider the integral equation

� �(P )�
Z
S
K(P;Q) �(Q) dSQ = g(P ); P 2 S (12)

with � 6= 0: Symbolically, we will write this equation as

(�� K)� = g (13)

The smoothness of solutions to this equation depends on that of S; K; and
g; and we give more precise assumptions in x5.1. We have programs to
solve this integral equation in several ways. We use the collocation method
with piecewise quadratic approximation, as de�ned earlier in x1.1.2. We also
use the Nystr�om method with the numerical integration rule based on (9).
Variants of the latter are given for both direct solution of the associated
linear system and the iterative solution of the linear system using a two-grid
iteration method.

1.2.2 Integral equations from potential theory for Laplace's equa-

tion

We include programs for solving the interior Dirichlet problem and the exte-
rior Neumann problem for Laplace's equation, de�ned as follows.
P1. The interior Dirichlet problem. Let D be a bounded, open, simply
connected region in R3, and let its boundary S be piecewise smooth,
which is de�ned more precisely in Section 5. The problem is to �nd u 2
C( �D) \ C2(D) such that

�u(P ) = 0; P 2 D

u(P ) = f(P ); P 2 S

We assume u can be represented as a double layer potential:

u(P ) =
Z
S
�(Q)

@

@�Q

"
1

jP �Qj

#
dSQ; P 2 D (14)

The density function � is determined from the integral equation

2��(P ) +
Z
S
�(Q)

@

@�Q

"
1

jP �Qj

#
dSQ + [2� � 
(P )]�(P ) = f(P ); P 2 S

(15)
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For notation, �Q denotes the unit normal to S at Q (if it exists), pointing
into D. The quantity 
(P ) is the inner solid angle of S at P 2 S; and
we assume

0 < 
(P ) < 4�:

Symbolically, we write the integral equation (15) as

(2� +K)� = f

Under suitable assumptions on S,

K : C(S)! C(S)

is a bounded linear operator. This is discussed at length in Wendland [22].
P2. The exterior Neumann problem. Let D and S be as above, and
let De = R3n �D, the region exterior to D and S. The problem is to �nd
u 2 C( �De) \ C2(De) such that

�u(P ) = 0; P 2 De

@u(P )

@�P

= f(P ); P 2 S

u(P ) = O(jP j�1); jru(P )j = O(jP j�2) as jP j ! 1

It can be shown that such a function u exists (under suitable assumptions
on S and f) and that Green's third identity can be applied to u:

4�u(P ) =
Z
S
f(Q)

1

jP �Qj
dSQ �

Z
S
u(Q)

@

@�Q

"
1

jP �Qj

#
dSQ; P 2 De

(16)
To �nd u on S, we solve the integral equation

2�u(P ) +
Z
S
u(Q)

@

@�Q

"
1

jP �Qj

#
dSQ + [2� � 
(P )]u(P ) (17)

=
Z
S
f(Q)

1

jP �Qj
dSQ; P 2 S

Then (16) gives u on De. Symbolically, we write (17) as

(2� +K)u = Sf (18)
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with K as before and S the single layer potential integral operator.
An alternative approach to solving the exterior Neumann problem is ob-

tained by representing the solution as a single layer potential:

u(P ) =
Z
S

�(Q)

jP �Qj
dSQ; P 2 D (19)

Then the single layer density � must satisfy the second kind equation

(2� +K)� = f (20)

This approach does not require the numerical integration needed on the right
side of (18), but the solution � must then be processed further using (19).

Programs are included for both of these problems. In the case of the
interior Dirichlet problem, we approximate the density function �, and then
we provide for evaluating the resulting solution u(P ) at user provided points
P inD. For the exterior Neumann problem, the program solves only for u(P )
at points P 2 S. The needed numerical integration programs to evaluate the
various integrals at points P both on and o� of the surface S are provided in
INTPACK. Variants of some of the integral equation programs are provided
to either solve the discretized linear systems directly by Gaussian elimination
or by two-grid iteration.

1.2.3 The radiosity equation

The radiosity equation is a mathematical model for the brightness of a collec-
tion of one or more surfaces when their re
ectivity and emissivity are given,
and it occurs in both computer graphics and heat transfer. The equation is

u(P )�
�(P )

�

Z
S
u(Q)G(P;Q)V (P;Q) dSQ = E(P ); P 2 S (21)

with u(P ) the \brightness" or radiosity at P and E(P ) the emissivity at
P 2 S. The function �(P ) gives the re
ectivity at P 2 S, with 0 � �(P ) < 1.
In deriving this equation, the re
ectivity is assumed to be independent of the
angle at which the re
ection takes place, that is the surface is a Lambertian

di�use re
ector.
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The function G is given by

G(P;Q) =
cos �P cos �Q

jP �Qj2

=
[(Q� P )�nP ] [(P �Q) � nQ]

jP �Qj4

(22)

In this, nP is the inner unit normal to S at P , and �P is the angle between
nP and Q�P ; and nQ and �Q are de�ned analogously. The function V (P;Q)
is a \line of sight" function. More precisely, if the points P and Q can \see
each other" along a straight line segment which does not intersect S at any
other point, then V (P;Q) = 1; and otherwise, V (P;Q) = 0. An unoccluded

surface is one for which V � 1 on S, and it is this case for which we provide
programs. Note that S need not be connected, and it may be only piecewise
smooth. The interior surface of a convex solid is unoccluded; but one can
also be dealing with disconnected surfaces.

We often write (21) in the simpler form

(I � K)u = E (23)

An introduction to the use of (21) in computer graphics is given in [15] and
[20], along with methods for its numerical solution. The unoccluded case is
of lessor importance in applications, and we intend to include programs for
occluded surfaces in future extensions of BIEPACK.

1.2.4 Iteration methods for solving the discretized linear systems

The numerical approximation of integral equations on surfaces in R3 leads
easily to linear systems of quite large order. With both the integral equations
having smooth kernel functions and those arising from solving boundary in-
tegral equations, we provide programs which implement two-grid iteration
methods for solving the associated linear systems. For the case of integral
equations having smooth kernel functions, this is a straightforward applica-
tion of techniques discussed earlier in [8, Chap. 6].

With discretizations of the boundary integral equations (15) and (17),
the iteration methods used are discussed in [6] and [8, Chap. 9]. When
the surface S is smooth, then the standard two-grid iteration methods are
quite satisfactory. But with surfaces S that are only piecewise smooth, the
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two-grid methods must be modi�ed, by multiplying the linear system by a
`preconditioner'. This is discussed further in x8.

2 SUMMARY OF GENERAL TOOLKITS

We provide three general \toolkit" packages named AUXPACK, INTPACK,
and TRIPACK. These are used in putting together programs to solve a wide
variety of programs for numerical integration, re�nement and manipulation
of triangulations, and numerical solution of integral equations.

In brief, AUXPACK are general routines needed for general purposes, pri-
marily setting machine constants, solving linear systems, and the creation of
Gaussian quadrature nodes and weights. INTPACK contains programs for
speci�c integrations associated with particular types of integral equations.
TRIPACK contains programs for re�nement and manipulation of triangu-
lations of S. It also contains programs to do interpolation and numerical
integration over such triangulations.

2.1 Contents of TRIPACK

We give a very short description of each of the subprograms in the trian-
gulation package TRIPACK. These programs can be used with a variety of
main programs, which are discussed elsewhere in this document. We group
the various subprograms by function.

2.1.1 Re�nement of the Triangulation.

1. SUBROUTINE REFINE (NFACE, NVERT, IFACE, VERTEX, IN-
DEXV)
This program takes a triangulation, de�ned by the input parameters,
and it creates a new triangulation by subdividing each triangle into
four new triangles.

2. SUBROUTINE REFIN2 (NFACE, NVERT, IFACE, VERTEX,
INDEXV, F TO C, STFACE)
This variant on REFINE is used when two-grid iteration methods are
being used in solving a boundary integral equation. It assigns to each
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new �ne mesh element its parameters relative to the coarse mesh ele-
ment containing it.

3. SUBROUTINE SUBDIV (IDX, IFT, VRTX, IVX, IFACE, VERTEX,
INDEXV)
This routine subdivides a triangle into four new triangles. The portion
of the work which is dependent on the particular surface is done in the
user given subroutine MIDPT.

4. SUBROUTINE VRTXLC (V, IDX, NVERT, IVX, VERTEX, INDEXV)
For the given vertex V, �nd whether it is already in the known nodes
in VERTEX. If not, then add it to the list and assign it an index.

5. SUBROUTINE ADAPT (NFACE, NVERT, IFACE, VERTEX,
INDEXV)
This program takes a triangulation, de�ned by the input parameters,
and it creates a new adaptive triangulation. It subdivides each triangle
which contains either a node on an edge or a vertex of the original
surface.

6. SUBROUTINE ADAPT2 (NFACE, NVERT, IFACE, VERTEX,
INDEXV, F TO C, STFACE)
This variant on ADAPT is used when two-grid iteration methods are
being used in solving a boundary integral equation. It assigns to each
new �ne mesh element its parameters relative to the coarse mesh ele-
ment containing it.

2.1.2 Additional Information on the Triangles in the Triangula-

tion.

1. SUBROUTINE ORIENT (IFACE, NFACE, VERTEX, NVERT, P)
This program chooses an orientation for each triangular face so that
the normal to the planar triangle determined by the three vertices will
point towards the given vector P.

2. SUBROUTINE CIRCLE (IFACE, NFACE, VERTEX, RADSQR,
CENTER)
This routine calculates the center and the square of the radius of the
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circumscribing circle for the planar triangle determined by each trian-
gular face.

3. SUBROUTINE DIAMTR (IFACE, NFACE, VERTEX, H MIN, H MAX)
This routine calculates the maximum and minimum diameter of the tri-
angles in the triangulation.

4. SUBROUTINE NORMAL (IFACE, VERTEX, NVERT, NFACE, VNRM)
Calculate the normals to all faces in IFACE, at all six nodes in each
face. This is intended for only the case of piecewise quadratic interpola-
tion with the node points based on the parameterization variables (3).
The normal is obtained is based on the approximate surface de�ned
using (6).

5. SUBROUTINE FNDNRM (IFACE, V, K, J, VN)
Calculate the \inner normal" to the surface S at the node #J in element
#K. This routine is called by NORMAL. This is intended for only the
case of piecewise quadratic interpolation with the node points based on
the parameterization variables (3). The normal is obtained is based on
the approximate surface de�ned using (6).

6. SUBROUTINE FNDNRM2 (S, T, IFACE, V, K, VN)
Calculate the \inner normal" to the surface at the point in element
#K with parameterization variables (S; T ). The normal is obtained is
based on the approximate surface de�ned using (6).

7. SUBROUTINE NRM AV (NVERT, VNRM, NFACE, V TO F,
VFLIST, VNRM V)
Beginning with the normals in VNRM for each element in IFACE,
calculate an average of the normals at each node point. This means
that for some node point, say #I, �nd all faces to which this node point
belongs and then average the corresponding normals from VNRM. This
is intended for only the case of piecewise quadratic interpolation with
the node points based on the parameterization variables (3).

8. SUBROUTINE POLYPREP (NFACE, IFACE, VERTEX, AREA,
V NORMAL)
Calculate areas and normals of elements in IFACE for polyhedral sur-
faces. This is to be used only if the triangular elements are all planar. It
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is preparation for setting up the boundary element integrals for polyhe-
dral surfaces, leading to faster numerical integration routines for planar
triangular approximations of such surfaces.

9. SUBROUTINE LOCATE (P, IFACE, V, CENTER, RADIUS,
NFACE, LOC, S, T, U)
Given P in the surface S, �nd the planar triangular element within
IFACE to which P belongs. This should be used only when the trian-
gulation leads to planar triangular faces.

10. SUBROUTINE F TO V (IFACE, NFACE, NVERT, V TO F, VFLIST)
For each node point, produce the faces containing this vertex and store
these in a list. This considers only the node points associated with the
parameterization variables in (3).

11. SUBROUTINE PRNTRI (IWRITE, NFACE, NVERT, IFACE,
VERTEX, INDEXV, CENTER, RADSQR, H MIN, H MAX)
This prints the triangles of the triangulation, including their indices,
vertices, approximate area, and circumscribing circles.

12. SUBROUTINE PRNTR2 (IWRITE, NFACE, NVERT, IFACE,
VERTEX, INDEXV, CENTER, RADSQR, F TO C, STFACE, H MIN,
H MAX)
This variant of PRNTRI is used to print triangulation information
when a two-grid situation is being used with the triangulations. It in-
cludes additional information on the relation of the �ne mesh to the
coarse mesh.

2.1.3 Piecewise Quadratic Isoparametric Interpolation.

1. FUNCTION INTERP (S,T, IDX, IFACE, F)
Evaluate the piecewise quadratic isoparametric function interpolating
to F at the point with parameters (S,T).

2. SUBROUTINE QUADSF (S, T, IDX, IFACE, VERTEX, Q)
Find the point Q on the piecewise quadratic isoparametric surface as-
sociated with triangle #IDX and parameters (S,T).
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3. SUBROUTINE BASIS (S, T, P)
Evaluate the quadratic basis functions on the unit simplex.

2.1.4 General Numerical Integration.

1. SUBROUTINE WGT (IDX, W, IFACE, V)
This program calculates the weights for the numerical integration of
F(P) over triangle #IDX within the triangulation. This integration
has degree of precision 2.

2. SUBROUTINE WGT1 (IDX, W, IFACE, V)
This program calculates the weights for the �rst order integration
method over the quadratic isoparametric surface speci�ed by triangle
#IDX of the triangulation. This integration has degree of precision 1.

3. SUBROUTINE SETLEV (K, IFACE, VERTEX, NVERT, CENTER,
RADIUS, LEVEL, MAXLEV, H)
This program calculates integration levels over triangle #K for each
of the nodes in VERTEX. If the node point lies in triangle #K, then
we will want a special integration, to compensate for the singularity in
the integrand. For nodes immediately next to triangle #K, we will set
the level to MAXLEV. As the node moves away from triangle #K, the
assigned level decreases.

4. SUBROUTINE SETLV2 (K, IFACE, VERTEX, NFACE, NVERT,
CENTER, RADIUS, LEVEL, MAXLEV, H, F TO C, STFACE,
POINT, STINFO)
This variant of SETLEV is used for adaptive re�nement of the trian-
gulation.

5. SUBROUTINE INTEGR (VINT, F, N)
This program calculates a double integral over the unit square [0,1]x[0,1]
for the vector-valued function F(S,T) of length 6, using an N-point
product Gaussian quadrature formula.

6. FUNCTION INTGR2 (F, N)
This program calculates a double integral over the unit square [0,1]x[0,1]
for the function F(S,T), using an N-point product Gaussian quadrature
formula.
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7. SUBROUTINE ZEROLG (N, ZZ, WW, A, B)
This routine produces the nodes and weights for Gauss-Legendre quadra-
ture on (A,B), of order N.

8. SUBROUTINE SMPLXR (W, SM, TM)
This routine gives the weights and nodes that are used in the quadra-
ture rule used in function SMPLX, SMPLX3, and SMPLX6. It is the
7-point rule T2:5-1 of Art Stroud, with degree of precision 5.

9. FUNCTION SMPLX (FN, LEVEL)
This program calculates the integral of FN(S,T) over the unit simplex
in the plane by using a composite version of the 7-point rule T2:5-1 of
Art Stroud.

10. SUBROUTINE SMPLX3 (VRINT, FCNKL, LEVEL)
This program calculates the integral of the vector-valued function FC-
NKL(S,T) of length 3 over the unit simplex in the plane by using a
composite version of the 7-point rule T2:5-1 of Art Stroud. Intended
for use with piecewise linear interpolation.

11. SUBROUTINE SMPLX6 (VRINT, FCNKL, LEVEL)
This program calculates the integral of the vector-valued function FC-
NKL(S,T) of length 6 over the unit simplex in the plane by using a
composite version of the 7-point rule T2:5-1 of Stroud [21]. Intended
for use with peicewise quadratic interpolation.

12. SUBROUTINE SMPLXL (W, S, T)
This routine gives the nodes and weights for the six point method of
degree of precision 4, given as Rule 41 of Table 4 from [18].

2.2 Contents of INTPACK

These are specialized routines for calculating various integrals needed for
discretizing integral equations. Most of the routines are for calculating col-
location integrals over triangular elements.

1. SUBROUTINE INTKL1 (IDX,P, VRINT, OPTION, LEVEL, IFACE,
VERTEX)
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This program evaluates the integrals over triangle #IDX of the inte-
grands

KERNEL(P,Q(S,T))*C(I,S,T), I=1,...,6

The functions C(I,S,T) are quadratic basis functions. The numerical
integration uses SMPLX6. If the kernel function KERNEL is singular
when P=Q, then subroutine INTKL3 should be used in preference to
INTKL1.

2. SUBROUTINE INTKL2 (IDX, P, VRINT, OPTION, LEVEL, IFACE,
VERTEX, LAYER)
This program evaluates the integrals over triangle #IDX of the inte-
grands

KERNEL(P,Q(S,T))*C(I,S,T), I=1,...,6

where KERNEL(P,Q) is either a single layer or double layer kernel
function. The functions C(I,S,T) are quadratic basis functions. The
numerical integration uses SMPLX6. This program is intended for the
case where the �eld point P is not in the triangle #IDX. In the case P
does belong to triangle #IDX, one should use subroutine INTKL4.

3. SUBROUTINE INTKL3 (IDXF, IDXP, VRINT, OPTION, NINTEG,
IFACE, VERTEX)
This program evaluates the integrals over triangle #IDXF of the inte-
grands

KERNEL(P,Q(S,T))*C(I,S,T), I=1,...,6

The numerical integration uses INTEGR. It is restricted to the case
that P is a node point in triangle #IDXF.

4. SUBROUTINE INTKL4 (IDXF, IDXP, VRINT, OPTION, NINTEG,
LAYER, IFACE, VERTEX)
This program evaluates the integrals over triangle #IDXF of the inte-
grands

KERNEL(P,Q(S,T))*C(I,S,T), I=1,...,6

where KERNEL(P,Q) is either a single layer or double layer kernel
function. The numerical integration uses INTEGR. It is restricted to
the case that P is a node point in triangle #IDXF.
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5. SUBROUTINE INTKB5 (IDX, P, VRINT, OPTION, LEVEL, IFACE,
VERTEX, LAYER)
This program evaluates the integral over triangle #IDX of the integrand

KERNEL(P,Q(S,T))*B(Q(S,T))

where KERNEL(P,Q) is either a single layer or double layer kernel
function, the function B(Q) is a given density function. The numerical
integration uses SMPLX. This routine is intended for the case where P
is not in the triangle speci�ed by #IDX. In the case P does belong to
triangle #IDX, one should use subroutine INTKB6.

6. SUBROUTINE INTKB6 (IDXF, IDXP, VRINT, OPTION, NINTEG,
LAYER, IFACE, VERTEX)
This program evaluates the integral over triangle #IDXF of the inte-
grand

KERNEL(P,Q(S,T))*B(Q(S,T))

where KERNEL(P,Q) is either a single layer or double layer kernel
function, the function B(Q) is a given density function. The numerical
integration uses INTGR2. It is restricted to the case that P is a node
point in triangle #IDXF.

7. SUBROUTINE INTKL7 (IDX, P, VRINT, OPTION, LEVEL, IFACE,
VERTEX, LAYER)
This program evaluates the integrals over triangle #IDX of the inte-
grands

KERNEL(P,Q(S,T))*D(I,S,T), I=1,2,3

where KERNEL(P,Q) is either a single layer or double layer kernel func-
tion. The functions D(I,S,T) are linear basis functions. The numerical
integration uses SMPLX3. This routine is intended for the case where
the �eld point P is not in the triangle #IDX. In the case P does belong
to triangle #IDX, one should use subroutine INTKL8.

8. SUBROUTINE INTKL8 (IDXF, IDXP, VRINT, OPTION, NINTEG,
LAYER, IFACE,
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VERTEX)
This program evaluates the integrals over triangle #IDXF of the inte-
grands

KERNEL(P,Q(S,T))*D(I,S,T), I=1,2,3

where KERNEL(P,Q) is either a single layer or double layer kernel
function. The functions D(I,S,T) are linear basis functions. The nu-
merical integration uses INTEGR. It is restricted to the case that P is
a node point in triangle #IDXF.

9. SUBROUTINE INTKB9 (IDXF, IDXP, VRINT, OPTION, NINTEG,
LAYER, IFACE, VERTEX, IDXPST, STINFO)
This program evaluates the integral over triangle #IDXF of the inte-
grand

KERNEL(P,Q(S,T))*B(Q(S,T))

where KERNEL(P,Q) is either a single layer or double layer kernel
function, the function B(Q) is a given density function. The numerical
integration uses INTGR2. It is restricted to the case that P is a node
point in triangle #IDXF, But P is not one of the regular six nodes
which de�ne the triangle. This routine is to be used with adaptive
mesh re�nements, where the mesh is nonconforming.

10. SUBROUTINE INTKL10 (IDXF, IDXP, VRINT, OPTION, NINTEG,
LAYER, IFACE, VERTEX, IDXPST, STINFO)
This program evaluates the integrals over triangle #IDXF of the inte-
grands

KERNEL(P,Q(S,T))*C(I,S,T), I=1,...,6

where KERNEL(P,Q) is either a single layer or double layer kernel func-
tion. The numerical integration uses INTEGR. It is restricted to the
case that P is a node point in triangle #IDXF, But P is not one of the
regular six nodes which de�ne the triangle. This routine is to be used
with adaptive mesh re�nements, where the mesh is nonconforming.

11. SUBROUTINE INTKL14 (K INT, VRINT,OPTION, LEVEL, IFACE,
VERTEX, P, P NORM)
Form the integral with respect to Q over triangular element #K INT of
the radiosity kernel function (unoccluded). This is the collocation inte-
gral for using piecewise constant interpolation over S, with collocation
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at the \centroid" of the element. This is for the case the collocation
point P is not in the element #K INT. The numerical integration uses
SMPLX.

12. SUBROUTINE INTKL15 (K INT, VRINT, OPTION, NINTEG, IFACE,
VERTEX, P, P NORM)
Form the integral with respect to Q over triangular element #K INT
of the radiosity kernel function (unoccluded). This is the collocation
integral for using piecewise constant interpolation over S, with colloca-
tion at the \midpoint" of the element, with P the \centroid" of element
#K INT.

13. SUBROUTINE INTKL16 (K INT, VRINT, OPTION, LEVEL, IFACE,
VERTEX, P, LAYER)
Form the integral with respect to Q over triangular element #K INT
of the potential kernel function. This is the collocation integral for
using piecewise constant interpolation over S, with collocation at the
\centroid" of the element. This is for the case the collocation point P is
not in the element #K INT. The numerical integration uses SMPLX.

14. SUBROUTINE INTKL17 (K INT, VRINT, OPTION, NINTEG, IFACE,
VERTEX, P, LAYER)
Form the integral with respect to Q over triangular element #K INT
of the potential kernel function. This is the collocation integral for
using piecewise constant interpolation over S, with collocation at the
\centroid" of the element, with P the \midpoint" of element #K INT.
The numerical integration uses INTGR2.

15. SUBROUTINE INTKB18 (IDXF, P, VRINT, OPTION, NINTEG, LAYER,
IFACE, VERTEX)
Form the integral over triangle #IDXF of the integrand

KERNEL(P,Q(S,T))*BDYFCN(Q(S,T),ISUR)

where KERNEL(P,Q) is either a single layer or double layer kernel
function, depending on the value of the variable LAYER; the func-
tion BDYFCN is a given density function. This program is restricted
to the case that P is the centroid in triangle #IDXF. The numerical
integration uses INTGR2.
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16. SUBROUTINE INTKL19 (K INT, VRINT, OPTION, LEVEL, IFACE,
VERTEX, P, P NORM, A)
Form the integral with respect to Q over triangle #K INT of

KERNEL(P,Q)*LINEAR BASIS(I,Q), I=1,2,3

where KERNEL(P,Q) is the radiosity kernel function (unoccluded).
The functions LINEAR BASIS(I,Q) are the basis functions for the lin-
ear interpolation de�ned in (1) with the interpolation parameter A.
This routine assumes the �eld point P is not in triangle #K INT.

17. SUBROUTINE INTKL19G (K INT, VRINT, OPTION, LEVEL, IFACE,
VERTEX, P, P NORM, A)
This is the same as INTKL19, except that the numerical integration
uses INTEGR3G, based on a change of variables (cf. (35)) and Gaus-
sian quadrature.

18. SUBROUTINE INTKL20 (K INT, VRINT, OPTION, NINTEG, IFACE,
VERTEX, P, P NORM, P ST, A)
Form the integral with respect to Q over triangle #K INT of

KERNEL(P,Q)*LINEAR BASIS(I,Q), I=1,2,3

where KERNEL(P,Q) is the radiosity kernel function (unoccluded).
The functions LINEAR BASIS(I,Q) are the basis functions for the lin-
ear interpolation de�ned in (1) with the interpolation parameter A.
This routine assumes the �eld point P is in triangle #K INT. The
numerical integration uses INTEGR3.

19. SUBROUTINE INTKB21 (K INT, OPTION, LEVEL, IFACE, VER-
TEX, NODES, P, P NORM, A, FCN, INTEGRAL)
Form the integral with respect to Q over triangle #K INT of

KERNEL(P,Q)*FCN N(Q)

where KERNEL(P,Q) is the radiosity kernel function (unoccluded).
The function FCN N(Q) is the interpolation of FCN(Q) at the inter-
polation points in triangle #K INT. This routine assumes P does not
belong to the element #K INT. The numerical integration uses SM-
PLX3.
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20. SUBROUTINE INTKB22 (K INT, OPTION, NINTEG, IFACE, VER-
TEX, NODES, P, P NORM, P ST, A, FCN, INTEGRAL)
Form the integral with respect to Q over triangle #K INT of

KERNEL(P,Q)*FCN N(Q)

where KERNEL(P,Q) is the radiosity kernel function (unoccluded).
The function FCN N(Q) is the interpolation of FCN(Q) at the interpo-
lation points in triangle #K INT. This routine assumes P does belong
to the element #K INT. The numerical integration uses INTEGR3.

21. SUBROUTINE INTKL23 (IDX, P, VRINT, LEVEL, IFACE, VER-
TEX, LAYER, AREA, V NORMAL)
This program assumes all elements in IFACE are planar with an asso-
ciated preliminary preparation of needed facts about the surface. The
routine evaluates the integrals over triangle #IDX of the integrands

KERNEL(P,Q(S,T))*C(I,S,T), I=1,...,6

where KERNEL(P,Q) is either a single layer or double layer kernel
function. The functions C(I,S,T) are quadratic basis functions. The
numerical integration uses SMPLX6. This program is intended for the
case where the �eld point P is not in the triangle #IDX. The numerical
integration uses SMPLX6.

22. SUBROUTINE INTKL24 (IDXF, IDXP, VRINT, NINTEG, LAYER,
IFACE, VERTEX, AREA)
This program assumes all elements in IFACE are planar with an asso-
ciated preliminary preparation of needed facts about the surface. The
routine evaluates the integrals over triangle #IDX of the integrands

KERNEL(P,Q(S,T))*C(I,S,T), I=1,...,6

where KERNEL(P,Q) is either a single layer or double layer kernel
function. The functions C(I,S,T) are quadratic basis functions. The
numerical integration uses SMPLX6. This program is intended for the
case where the �eld point P is in the triangle #IDX. The numerical
integration uses INTEGR.
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23. SUBROUTINE INTKB25 (IDX, P, VRINT, LEVEL, IFACE, VER-
TEX, LAYER, AREA, V NORMAL)
This program assumes all elements in IFACE are planar with an asso-
ciated preliminary preparation of needed facts about the surface. Form
the integral over planar triangle #IDX of the integrand

KERNEL(P,Q(S,T))*BDYFCN(Q(S,T),I SUR)

where KERNEL(P,Q) is either a single layer or double layer kernel
function, depending on the value of LAYER; the function BDYFCN is
a given density function. This routine assumes P does not belong to
triangle #IDX. The numerical integration uses SMPLX6.

24. SUBROUTINE INTKB26 (IDXF, IDXP, VRINT, NINTEG, LAYER,
IFACE, VERTEX, AREA)
This program assumes all elements in IFACE are planar with an asso-
ciated preliminary preparation of needed facts about the surface. Form
the integral over planar triangle #IDX of the integrand

KERNEL(P,Q(S,T))*BDYFCN(Q(S,T),I SUR)

where KERNEL(P,Q) is either a single layer or double layer kernel
function, depending on the value of LAYER; the function BDYFCN
is a given density function. This routine assumes P does belong to
triangle #IDX. The numerical integration uses INTEGR.

25. SUBROUTINE INTKL27 (K INT, VRINT, OPTION, LEVEL, IFACE,
VERTEX, P, P NORM, A, LAYER)
Form the integral with respect to Q over triangle #K INT of

KERNEL(P,Q)*LINEAR BASIS(I,Q), I=1,2,3

where KERNEL(P,Q) is the single layer kernel or the normal derivative
of the single layer. The functions LINEAR BASIS(I,Q) are the basis
functions for the linear interpolation de�ned in (1) with the interpo-
lation parameter A. This routine assumes the �eld point P is not in
triangle #K INT. The numerical integration uses SMPLX3.

26. SUBROUTINE INTKL27G (K INT, VRINT, OPTION, LEVEL, IFACE,
VERTEX, P, P NORM, A)
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This is the same as INTKL27, except that the numerical integration
uses INTEGR3G, based on a change of variables (cf. (35)) and Gaus-
sian quadrature.

27. SUBROUTINE INTKL28 (K INT, VRINT, OPTION, NINTEG, IFACE,
VERTEX, P, P NORM, P ST, A)
Form the integral with respect to Q over triangle #K INT of

KERNEL(P,Q)*LINEAR BASIS(I,Q), I=1,2,3

where KERNEL(P,Q) is the single layer kernel or the normal derivative
of the single layer. The functions LINEAR BASIS(I,Q) are the basis
functions for the linear interpolation de�ned in (1) with the interpola-
tion parameter A. This routine assumes the �eld point P is in triangle
#K INT. The numerical integration uses INTEGR3.

2.2.1 Evaluation of Integrands.

To carry out the integrations implicit in the above subroutines, there are
accompanying functions or subroutines de�ning the needed integrands. For
the subroutine named INTabcd, there is an accompanying program named
FCNabcd, with `abcd' of the form `KLef' or `KBef'. In addition, there is a
routine

FUNCTION DBLAYR (P, Q, S, T, V)

This routine calculates the double layer kernel for the triangular surface
speci�ed by the vertices in V.

2.3 Contents of AUXPACK

This package contains standard routines from general numerical computing,
including setting machine constants, setting Gaussian quadrature nodes and
weights, solving dense linear systems, and other tasks.

1. FUNCTION D1MACH (I)
This is the standard routine from Bell Labs for computing double pre-
cision machine constants.
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2. FUNCTION DELTA (I)
This uses D1MACH to calculate speci�c machine constants for use with
BIEPACK. The value DELTA(2) is not used in the present release of
BIEPACK.

3. SUBROUTINE ZEROLG (N, ZZ, WW, A, B)
Produce the nodes and weights for Gauss-Legendre quadrature on the
interval [A,B] of order N. This yields values for N = 1, 2, ..., 20.

4. SUBROUTINE GAUSS2 (A, B, N, TT, WW)
Produce the nodes and weights for Gauss-Legendre quadrature on the
interval [A,B] of order N. This yields values for N = 1, 2, 4, 8, 16, 32,
64, 128, 256.

5. SUBROUTINE LINSYS (A, LUFACT, N, B, SOLN, OPTION, RCOND,
IPIVOT, MACHIN, Z, ERRMAX)
This is a driver program for solving the linear system A*X=B using
the LINPACK routines DGECO and DGESL. Various options are avail-
able. Other needed LINPACK routines are also given in AUXPACK.

3 THE ROUTINES INIT & MIDPT

Our framework has been so designed as to maximize the types of surfaces
to which our programs can be applied. Because surfaces S can be speci�ed
in many di�erent ways, we have chosen a way to work with S which does
not require knowing an explicit parametrization of S. Instead the user must
supply two subroutines named INIT and MIDPT. The routine INIT will
de�ne the initial `coarse' mesh for the surface; and the routine MIDPT will
allow us to �nd an approximate midpoint on S between two given nodes vi
and vj: The coarse mesh TN and associated nodes VN are to be so chosen
that the following assumptions are satis�ed.

1. All vertices on S are in the set of vertices VN :

2. The edges of the surface S are to be contained in the union of the sides
of the triangular elements in TN :
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3. If two elements �k and �l intersect, then they do so at either a common
vertex or along an entire common edge. [For adaptive mesh re�nement
programs, which we are now constructing, this assumption is dispensed
with.]

To help explain the structure of these two routines, we include here two
examples of them, for the cases of an ellipsoid and a simplex in R3: With the
subroutine INIT for S an ellipsoid, we have omitted (for reasons of space)
the subroutine POLYHD which calculates the faces and vertices for those
regular polyhedra which have triangular faces.

� ELLIPSOID

SUBROUTINE INIT(VERTEX,IFACE,NFACE,NVERT,NMIDPT,INDXV)

C ---------------

C

C SET UP THE INITIAL TRIANGULATION OF THE SURFACE S.

C 'VERTEX' WILL CONTAIN THE NODES.

C 'IFACE' WILL CONTAIN THE FACES, WITH INDICES OF THE APPROPRIATE

C NODES AND OTHER INFORMATION GIVEN FOR EACH FACE.

C 'NFACE' IS THE DIMENSION OF 'IFACE'.

C 'NVERT' IS THE DIMENSION OF 'VERTEX'.

C 'NMIDPT' IS THE NUMBER OF MIDPOINT NODES FOR THE TRIANGULATION.

C 'INDXV' WILL CONTAIN AN INDEX FOR EACH NODE, INDICATING WHETHER

C IT IS AT A VERTEX, EDGE, OR FACE OF THE ORIGINAL SURFACE S.

C INDXV(I)=0 MEANS VERTEX(I) IS INTERIOR TO A FACE OF S.

C INDXV(I)=1 MEANS VERTEX(I) IS INTERIOR TO AN EDGE OF S.

C INDXV(I)=2 MEANS VERTEX(I) IS A VERTEX OF S.

C

C IN THIS VERSION OF INIT, WE FIRST GIVE THE FACES IN TERMS OF

C JUST THEIR MAIN VERTICES. THEN SUBROUTINE 'MIDPT' IS USED TO

C OBTAIN THE MIDPOINTS OF THE SIDES.

C

C ******************************************************************

C IN THIS CASE S IS THE ELLIPSOID

C (X/AP)**2 + (Y/BP)**2 + (Z/CP)**2 = 1
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C THE USER MUST SPECIFY THE PARAMETERS (AP,BP,CP) THRU THE COMMON

C STATEMENT GIVEN BELOW.

C ******************************************************************

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON/SURPAR/AP, BP, CP, NP

DIMENSION IFACE(7,*), VERTEX(3,*), INDXV(*),

* IFT(3,20), V(3), ID(4), CENTER(3)

PARAMETER(ZERO=0.0D0)

DATA CENTER/3*ZERO/

DATA ID/1,2,3,1/

C

C ***************************************************************

C

C THIS PORTION OF THE ROUTINE DEPENDS ON THE SURFACE BEING

C AN ELLIPSOID.

C

NFACE = NP

CALL POLYHD(IFT,NFACE,VERTEX,NVERT)

DO 10 I=1,NFACE

IFACE(7,I) = 0

DO 10 J=1,3

10 IFACE(J,I) = IFT(J,I)

DO 20 I=1,NVERT

20 INDXV(I) = 0

DO 30 I=1,NVERT

VERTEX(1,I) = AP*VERTEX(1,I)

VERTEX(2,I) = BP*VERTEX(2,I)

30 VERTEX(3,I) = CP*VERTEX(3,I)

NVOLD = NVERT

C

C ***************************************************************

C

C CALCULATE THE MIDPOINTS OF THE SIDES GIVEN IN IFACE.

DO 100 I=1,NFACE

DO 100 J=1,3

CALL MIDPT(I,V,IVX,ID(J),ID(J+1),1,IFACE,VERTEX,INDXV)
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CALL VRTXLC(V,IDX,NVERT,IVX,VERTEX,INDXV)

100 IFACE(J+3,I) = IDX

C

C RE-ORIENT THE FACES OF 'IFACE' SO THAT THEY WILL DETERMINE

C A NORMAL WHICH POINTS TOWARDS THE ORIGIN.

CALL ORIENT(IFACE,NFACE,VERTEX,NVERT,CENTER)

NMIDPT = NVERT - NVOLD

RETURN

END

SUBROUTINE MIDPT(IDX,V,IVX,I1,I2,LED,IFACE,VERTEX,INDXV)

C ----------------

C

C FIND THE MIDPOINT 'V' BETWEEN TWO GIVEN NODES, OF INDICES

C #I1 AND #I2 WITHIN FACE #IDX OF 'IFACE'. ALSO SET 'IVX' TO

C INDICATE WHETHER 'V' IS AT A VERTEX, EDGE, OR FACE OF THE

C ORIGINAL SURFACE S. LED=0 MEANS THAT 'V' IS NOT ON AN EDGE

C OF S NOR IS IT A VERTEX OF S; AND THUS IVX=0 IN THIS CASE.

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DIMENSION V(3), IFACE(7,*), VERTEX(3,*), INDXV(*)

COMMON/SURPAR/AP, BP, CP, NP

C

I = IFACE(I1,IDX)

J = IFACE(I2,IDX)

C

C ***************************************************************

C

C THESE STATEMENTS ASSUME THE TRIANGULAR SURFACE IS ON AN ELLIPSOID.

C

V(1) = (VERTEX(1,I) + VERTEX(1,J))/AP

V(2) = (VERTEX(2,I) + VERTEX(2,J))/BP

V(3) = (VERTEX(3,I) + VERTEX(3,J))/CP

SUM = SQRT(V(1)*V(1) + V(2)*V(2) + V(3)*V(3))

DO 20 K=1,3

20 V(K) = V(K)/SUM

V(1) = AP*V(1)
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V(2) = BP*V(2)

V(3) = CP*V(3)

C

C ***************************************************************

C

K1 = INDXV(I)

K2 = INDXV(J)

IF((K1*K2 .EQ. 0) .OR. (LED .EQ. 0)) THEN

IVX = 0

ELSE

IVX = 1

END IF

RETURN

END

� SIMPLEX

SUBROUTINE INIT(VERTEX,IFACE,NFACE,NVERT,NMIDPT,INDXV)

C ---------------

C

C SET UP THE INITIAL TRIANGULATION OF THE SURFACE S.

C 'VERTEX' WILL CONTAIN THE NODES.

C 'IFACE' WILL CONTAIN THE FACES, WITH INDICES OF THE APPROPRIATE

C NODES AND OTHER INFORMATION GIVEN FOR EACH FACE.

C 'NFACE' IS THE DIMENSION OF 'IFACE'.

C 'NVERT' IS THE DIMENSION OF 'VERTEX'.

C 'NMIDPT' IS THE NUMBER OF MIDPOINT NODES FOR THE TRIANGULATION.

C 'INDXV' WILL CONTAIN AN INDEX FOR EACH NODE, INDICATING WHETHER

C IT IS AT A VERTEX, EDGE, OR FACE OF THE ORIGINAL SURFACE S.

C INDXV(I)=0 MEANS VERTEX(I) IS INTERIOR TO A FACE OF S.

C INDXV(I)=1 MEANS VERTEX(I) IS INTERIOR TO AN EDGE OF S.

C INDXV(I)=2 MEANS VERTEX(I) IS A VERTEX OF S.

C
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C IN THIS VERSION OF INIT, WE FIRST GIVE THE FACES IN TERMS OF

C JUST THEIR MAIN VERTICES. THEN SUBROUTINE 'MIDPT' IS USED TO

C OBTAIN THE MIDPOINTS OF THE SIDES.

C

C ***************************************************************

C IN THIS CASE S IS A TETRAHEDRON IN SPACE, WITH THREE OF THE

C EDGES LYING ALONG THE COORDINATE AXES, AND WITH THE ORIGIN

C AS ONE OF THE VERTICES. THE LENGTHS OF THE EDGES ALONG THE

C X, Y, AND Z AXES ARE A,B, AND C, RESPECTIVELY. THE USER MUST

C SPECIFY THE PARAMETERS (A,B,C) THRU THE COMMON STATEMENT GIVEN

C BELOW.

C ***************************************************************

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

PARAMETER(ZERO=0.0D0, FOUR=4.0D0)

DIMENSION IFACE(7,*), VERTEX(3,*), INDXV(*),

* IFC(3,4), CENTER(3), ID(4), V(3)

COMMON/SURPAR/A, B, C, NP

DATA IFC/2,3,4,1,3,4,1,2,4,1,2,3/

DATA ID/1,2,3,1/

C

C ***************************************************************

C

C THIS PORTION OF THE ROUTINE DEPENDS ON THE TETRAHEDRON.

C

NFACE = 4

NVERT = 4

DO 5 I=1,3

DO 5 J=1,4

5 VERTEX(I,J) = ZERO

VERTEX(1,2) = A

VERTEX(2,3) = B

VERTEX(3,4) = C

DO 15 I=1,4

15 INDXV(I) = 2

C

C SET FACES.
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DO 20 J=1,NFACE

DO 30 I=1,3

30 IFACE(I,J) = IFC(I,J)

20 IFACE(7,J) = J

C

C **********************************************************

C

C CALCULATE THE MIDPOINTS OF THE SIDES GIVEN IN IFACE.

NV=NVERT

DO 100 I=1,NFACE

DO 100 J=1,3

CALL MIDPT(I,V,IVX,ID(J),ID(J+1),1,IFACE,VERTEX,INDXV)

CALL VRTXLC(V,IDX,NVERT,IVX,VERTEX,INDXV)

100 IFACE(J+3,I) = IDX

C

C ORIENT THE TRIANGLES TOWARD THE CENTER OF THE SOLID.

CENTER(1) = A/FOUR

CENTER(2) = B/FOUR

CENTER(3) = C/FOUR

CALL ORIENT(IFACE,NFACE,VERTEX,NVERT,CENTER)

NMIDPT = NVERT - NV

RETURN

END

SUBROUTINE MIDPT(IDX,V,IVX,I1,I2,LED,IFACE,VERTEX,INDXV)

C ----------------

C

C FIND THE MIDPOINT 'V' BETWEEN TWO GIVEN NODES, OF INDICES

C #I1 AND #I2 WITHIN FACE #IDX OF 'IFACE'. ALSO SET 'IVX' TO

C INDICATE WHETHER 'V' IS AT A VERTEX, EDGE, OR FACE OF THE

C ORIGINAL SURFACE S. LED=0 MEANS THAT 'V' IS NOT ON AN EDGE

C OF S NOR IS IT A VERTEX OF S; AND THUS IVX=0 IN THIS CASE.

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION V(3), IFACE(7,*), VERTEX(3,*), INDXV(*)

DATA TWO/2.0D0/

C
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Table 1: IFACE for S a simplex: ij=IFACE(j; k)

k i1 i2 i3 i4 i5 i6 i7
1 3 2 4 5 7 6 1
2 1 3 4 8 6 9 2
3 2 1 4 10 9 7 3
4 1 2 3 10 5 8 4

I = IFACE(I1,IDX)

J = IFACE(I2,IDX)

C **************************************************************

C

C THESE STATEMENTS ASSUME THE TRIANGULAR ELEMENT IS PLANAR

C WITH EDGES WHICH ARE STRAIGHT LINES.

C

DO 10 K=1,3

10 V(K) = (VERTEX(K,I) + VERTEX(K,J))/TWO

C

C ***************************************************************

K1 = INDXV(I)

K2 = INDXV(J)

IF((K1*K2 .EQ. 0) .OR. (LED .EQ. 0)) THEN

IVX = 0

ELSE

IVX = 1

END IF

RETURN

END

The case of the simplex is illustrated in Figure 4. To illustrate what is
produced by INIT for this surface, we give IFACE, VERTEX, and INDEXV
in Tables 1 and 2.

A careful perusal of these programs will show the common structure and
the types of quantities which need to be computed or speci�ed within the
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Figure 4: Initial triangulation of a simplex

programs. In INIT, we usually specify �rst the vertices of the triangulation
and the portions of the faces which depend upon them. Following that, we
use MIDPT to create the midpoints of the sides of the triangular elements.
The routine ORIENT is used to so orient each element, as stored in IFACE,
that the order of storage within IFACE will give the direction of an inner
normal to the surface.

Suppose �k is speci�ed by the nodes fvk;i j 1 � i � 6g in VERTEX of
indices IFACE(i; k), i = 1; � � � ; 6: Then the order of vk;1; vk;2; vk;3, together
with the `right-hand rule' for vectors, gives the direction of the inner normal
to �k when considered as a portion of S: For most surfaces one encounters
in practice, the routine ORIENT is a simple way to create the correct ori-
entation for all triangular faces stored in IFACE. The user gives a point P
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Table 2: VERTEX for S a simplex: vi = (xi,yi,zi)

i xi yi zi Index
1 0.0 0.0 0.0 2
2 1.0 0.0 0.0 2
3 0.0 1.0 0.0 2
4 0.0 0.0 1.0 2
5 0.5 0.5 0.0 1
6 0.0 0.5 0.5 1
7 0.5 0.0 0.5 1
8 0.0 0.5 0.0 1
9 0.0 0.0 0.5 1
10 0.5 0.0 0.0 1

inside the region bounded by S; so chosen that the following is true for all
points Q 2 S : The angle between the normal vector � and the vector from
Q to P is to be less than 90�: If the surface S is the boundary of a region
which is not homeomorphic to a sphere, then the routine ORIENT cannot
be used to create the correct orientation of the triangulation; and there are
also regions which are homeomorphic to the sphere for which ORIENT is
also not suitable. All of the surfaces we provide (ellipsoid, simplex, and the
remaining ones given below) can be oriented with ORIENT; but a toroidal
region could not be oriented with this routine.

The routine MIDPT can vary greatly with the form of the surface. The
version for the simplex is the same as that used for all polyhedral surfaces.
In general, the routine MIDPT contains within it an implicit de�nition of the
surface S: We have used this operational manner of specifying the surface as
a way of being very 
exible to the user. Di�erent types of surfaces require
di�erent types of de�nitions.

The routine MIDPT accepts as input the indices of two existing node
points on S and a triangular element to which they belong. MIDPT is to
return a third point V which is to be considered a midpoint on S between
the two given nodes. The routine also returns IVX, which indicates whether
V is on an edge of the original surface or is on an interior of a smooth initial
sub-surface of S:
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The library we provide contains versions of INIT and MIDPT for the
following surfaces, in addition to the above ellipsoid and simplex:

1. Elliptical paraboloid with top.

2. Rectangular parallelopiped.

3. Elliptical cone.

4. L-block. This is an L-shaped block.

5. Beanbag. This surface can be thought of as an ellipsoid which has been
squeezed inward around its intersection in the xy-plane. It is a smooth
boundary, but the region it encloses is neither convex nor symmetric.

6. Sector. This is a sector of a circle in the xy-plane, with the central
vertex at the origin. This is useful for studying numerical integration
of functions with a singularity at the origin.

7. 2-piece. The \two-piece surface" is de�ned as follows:

S1 = f(x; y; 0) j 0 � x; y � 1g

S
(p)
2 = f(x; y; z) j 0 � x; y � 1; z = 2� xpg

(24)

and let S(p) = S1 [ S
(p)
2 . We use S(2) and S(3), and there are separate

routines for both, named INIT TWOPIECE 2 and INIT TWOPIECE 3,
respectively. Note that the interpolatory quadratic interpolation of S

(2)
2

is exact, so problems solved on this surface with BIEPACK do not
have any errors due to approximation of the surface. The interpolatory
quadratic interpolation of S

(3)
2 is, of course, not exact. These surfaces

were intended for use with the radiosity equation, but can be used as
an example for any integral equation over surfaces in space. They can
be used for comparisons of the e�ect on the order of convergence of
using the approximation S � eSN .

8. Wedge surface. This is a three dimensional wedge boundary. It is
intended for use in experimenting with the behaviour of solutions of
boundary integral equations and the radiosity equation on surfaces with
edges. The routine is named INIT 3D-WEDGE.
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9. Octant. This is the portion in the �rst octant of an ellipsoidal surface
centered at the origin.

4 NUMERICAL INTEGRATION

Many numerical integration routines are included in TRIPACK, to be used
for the wide variety of integrals which must be calculated. We list again the
four main forms of integration used over the standard parametrization region
�: Z

�
g(s; t) d� �

1

6
[g(q1) + g(q2) + g(q3)] (25)Z

�
g(s; t) d� �

1

6
[g(q4) + g(q5) + g(q6)] (26)Z

�
g(s; t) d� � 9

40
g
�
1
3
; 1
3

�
+ 1

40
[g(q1) + g(q2) + g(q3)]

+ 1
15
[g(q4) + g(q5) + g(q6)]

(27)

Z
�
g(s; t) d� �

7X
j=1

wjg(�j) (28)

with the weights and nodes for (28) taken from the formula T2:5-1 of Stroud
[21, p. 314]. For the latter, the weights fwjg and nodes f�jg are given by
the routine SMPLXR; and the integration over � is carried out in the routine
SMPLX (and SMPLX3 and SMPLX6). The degrees of precision over � of
these four formulas are respectively 1, 2, 3, and 5.

We apply these formulas to the calculation of integrals over �k by means
of (7), which includes the approximation of the surface S by eSN . Let the
result of using these formulas to integrate I(f) �

R
S f(Q) dSQ be denoted

by I
(r)
N (f) for r = 1; 2; 3; 4 for the above three quadrature formulas, respec-

tively. If the sub-surfaces of S are su�ciently smooth, then with su�cient
smoothness on f , we can show

I(f)� I
(1)
N (f) = O(h2) (29)

I(f)� I
(2)
N (f) = O(h4) (30)

I(f)� I
(3)
N (f) = O(h4) (31)
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I(f)� I
(4)
N (f) = O(h4) (32)

The result (30) is better than expected might have been expected when
considering the degree of precision of (26), and a detailed discussion is given

in Chien [13] and Atkinson [8, Chap. 5]. Although I
(2)
N ; I

(3)
N ; and I

(4)
N have

equal orders of convergence, we have generally found I
(4)
N is the more accurate

formula in our applications to boundary integral equations. In the case of
polyhedral boundaries S and those boundaries for which eSN = S, the result
in (32) can be improved to O(h6); and this gives an additional reason for

using it in preference to I
(2)
N : We seldom use I

(3)
N , but it is less sensitive to

the manner of re�nement of the triangulation; and for surfaces S for whicheSN = S, the result (31) is valid regardless of the method of re�nement being
used.

For routines which are used just for numerical integration over the surface
S, see the programs INTEGRATE and INTEGRATE PLANAR. The �rst
is based on the method (26), and the second is based on (25). Both use the
piecewise quadratic approximation of the surface as de�ned in (6).

When applying (25) or (26) to the right side of (7), the weights of the
integration are given by the routines WGT1 and WGT, respectively. When
applying (28) to the right side of (7), we use the routines SMPLX, SMPLX3,
and SMPLX6, depending on the intended application.

When the integrand in (7) is considered to be badly behaved, we use
composite forms of (28). This occurs principally with integrands formed from
1= jP �Qj, with P near to the integration triangle �k but not contained in
it. In such cases, we subdivide the parametrization region �; and then (11) is
used over each subdivision. To decide on the number of subdivisions needed,
the routine SETLEV is used.

A user chosen parameter MAXLEV is given to SETLEV. For a given
element �k, each node point P = vi is classi�ed by SETLEV as to its position
relative to �k; with the classi�cation to be stored in LEVEL(i), i = 1; � � � ; Nv:
Let rk and Ck be the radius and center for the circle which circumscribes the
planar triangle determined by IFACE(j; k), k = 1; 2; 3:

If P 2 �k; then LEVEL(i) = -1.

If P =2 �k; de�ne
R = jP � Ckj
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` = max f0; 
oor[(R� rk)=h]g (33)

LEVEL(i) = max f0;MAXLEV� `g

The function `
oor(x)' refers to the integer part of x: For LEVEL(i) � 0,
the value of LEVEL(i) will be the number of levels of subdivision to be used
in applying (11) to the evaluation of our integrals for which the integrand
contains a singularity of the type of 1= jP �Qj.

As the distance between �k and P = vi increases, the number of levels
of subdivision of � decreases, eventually reaching an integration over � with
no subdivision needed. This is the most e�cient way we have found for han-
dling the nearly singular integrals which arise when implementing boundary
element methods. Also, it seems su�cient to begin with MAXLEV = 0 for
the coarse mesh; and then to increase MAXLEV by 1 for each time the tri-
angulation TN is re�ned. In fact, this is probably a faster rate of increase for
MAXLEV (considered as a function of N) than is necessary. This applies
only to an accurate calculation of the unknown density function which solves
the integral equation. When the density function is to be used to calculate a
potential function by integration of a single or double layer potential integral
formula at points P not on the boundary (as with an interior Dirichlet prob-
lem), then MAXLEV = 0 or 1 is probably su�cient when calculating the
density function. Higher values of MAXLEV will be needed in the numerical
integration of the potential function, with the size of MAXLEV increasing as
the distance of P from the boundary S decreases. This schema does reduce
considerably the computational cost of setting up the linear system for the
collocation method and in computing potential integrals, without a�ecting
the error in the solution to a signi�cant extant.

Some of the integrals have a singular integrand. For example, if in (7),
we have

f(Q) = �(Q)= jP �Qj

with P 2 �k; then the integrand is singular. We handle such integrals with
a change of variables. For simplicity, suppose we are calculatingZ

�
g(s; t) d� (34)

with g(s; t) singular at only (s; t) = (0; 0): Introduce the change of variables

s = (1� y)x; t = yx; 0 � x; y � 1
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With this, we haveZ
�
g(s; t) d� =

Z 1

0

Z 1

0
x g((1� y)x; yx) dx dy (35)

For integrands of the type occurring with boundary integral equations, the
new integrand will generally be quite smooth over the integration region
[0; 1]� [0; 1]: For a detailed error analysis of the use of this transformation,
see Schwab and Wendland [19].

For calculating the right side of (35), we use Gauss-Legendre quadrature
with respect to both variables. The needed integrations are carried out with
the aid of the routines INTEGR and INTGR2. With all of the potential
theory programs, the user is asked for an integration parameter NINTEG for
the calculation of (35). Then iterated Gaussian quadrature with NINTEG
nodes in each variable is used to calculate the integral. Our experiments
have shown that NINTEG = 10 is more than adequate for all of the surfaces
S we have used. Contrary to one's expectations, these singular integral
calculations are less expensive than the nonsingular ones discussed earlier.
Using a value of NINTEG which is somewhat too large will not lead to a
signi�cant increase in computation time.

4.1 Numerical integration programs

We provide two integration programs, named INTEGRATE and
INTEGRATE PLANAR. These programs do a numerical integration ofZ

S
f(Q) dSQ

They use a given triangulation TN , along with the methods in (26) and (25),
respectively. These basic integration formulas are applied to the reformula-
tion (7) for integrals over a triangle �k. The user must supply the de�nition
of the function f , and this is done in a function subprogram

FUNCTIONF (P, KFACE)

In this, P is the point at which f is to be evaluated; and as a possible aid
in computing f(P ), KFACE is the face of the original surface S to which P
belongs.
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5 NONSINGULAR INTEGRAL EQUATIONS

Consider the numerical solution of the integral equation,

� �(P )�
Z
S
K(P;Q) �(Q) dSQ = g(P ); P 2 S; � 6= 0 (36)

In this section, we consider the case in which K(P;Q) and g(P ) are consid-
ered \smooth" functions. For the numerical approximation of (36), we use
the Nystr�om method with the numerical integration based on (26). This is
the same numerical integration method as is implemented in INTEGRATE,
which is discussed in x4.

To talk about the di�erentiability of functions de�ned over S, proceed as
follows. Recall that S can be decomposed as

S = S1 [ � � � [ SL

with each Sl a smooth surface; and for S itself smooth, L = 1: If L > 1,
we assume that Sl is the image of a four times continuously di�erentiable
function that is de�ned on a polygonal region in the plane. If L = 1; we
assume that at each point P 2 S; there is local representation of the surface
which is four times continuously di�erentiable. [Note that this assumption
disallows conical boundaries, since the di�erentiability assumption cannot
hold at the vertex.]

5.1 The Collocation Method for Integral equations

For any f 2 C(S); we will say f 2 C4(S) if f j Sl 2 C4(Sl); l = 1; � � � ; L:
With this de�nition, we consider the di�erentiability of solutions � 2 C(S):
It is easy to see that if (i) g 2 C4(S); and (ii) with respect to both P and Q;
the kernel function K is in C4(S); then the solution � 2 C4(S):

The collocation solution of (36) is obtained by solving

(�� PNK)�N = PNg (37)

in which PNg denotes the piecewise quadratic interpolatory approximation
of g. In more concrete form, we let

�N(mk(s; t)) =
6X

j=1

�N (vk;j)`j(s; t); (s; t) 2 �; k = 1; � � � ; N (38)
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and we solve for �N at the node points by solving the linear system

��N(vi)�
NX
k=1

6X
j=1

�N (vk;j)
Z
�
K(vi;fmk(s; t)) `j(s; t) jDsfmk �Dtfmkj d� = g(vi)

(39)
for i = 1; � � � ; Nv:

The theory for this method is well-known and quite straightforward. As-
suming (36) is uniquely solvable, we can show (39) is uniquely solvable for all
su�ciently large N: Moreover, with the above assumptions on the smooth-
ness of g; K; and S; it can be shown that

k�� �Nk1 = O(h3)

Moreover, it can also be shown that

max
1�i�Nv

j�(vi)� �N(vi)j = O(h4) (40)

See [13], [14], and [8, Chap. 5] for a detailed discussion of these results.
The collocation method can be implemented using the programs in TRI-

PACK. In particular, the quadrature routines INTKL1 and INTKL3. The
former is used when the kernel function is smooth; and the latter is used
when the kernel function is singular at a collocation point.

5.2 The Nystr�om Method

Recall the composite numerical integration formula which is based on (26)
and whose convergence rate is given in (30). Write this formula asZ

S
�(Q) dSQ �

NvX
j=1

wj;N �( vj); � 2 C(S) (41)

We approximate (36) by applying this integration formula to obtain

� �N(P )�
NvX
j=1

wj;N K(P; vj) �N( vj) = g(P ); P 2 S (42)

As is well-known, this functional equation is equivalent to the linear system

� �N(vi)�
NvX
j=1

wj;N K(vi; vj) �N( vj) = g(P ); I = 1; � � � ; Nv (43)
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Once a solution is obtained for this linear system, use the Nystr�om interpo-
lation formula to extend it to a function �N (P ) de�ned for all P 2 S :

�N (P ) =
1

�

24g(P ) + NvX
j=1

wj;N K(P; vj) �N( vj)

35 ; P 2 S (44)

The equation (42) is written abstractly as

(�� KN)�N = g

From the well-known theory of collectively compact operator approximations
(e.g. see [1]), an existence and convergence theory can be given for (42)-(44).
Assuming (36) is uniquely solvable on C(S), we have that the same will be
true of (43) and (44), for all su�ciently large N; say N � N0. Moreover, the
inverses (�� KN)

�1 will be uniformly bounded for N � N0, and

k�� �Nk1 �



(�� KN)

�1



 kK�� KN�k1 ; N � N0 (45)

When combined with (30), this leads to

k�� �Nk1 = O(h4)

Two programs are given which implement the Nystr�om method. One is
for smooth surfaces, and it is called INTEQN SMOOTH; and the other is for
piecewise smooth surfaces, and it is called INTEQN PWSMOOTH. Both of
these programs solve the linear system (43) by using Gaussian elimination,
by means of LINPACK via a driver program called LINSYS. The routine
INTEQN SMOOTH is set up for the solution of problems on an ellipsoid;
and the routine INTEQN PWSMOOTH is set up for the solution of problems
on an elliptical paraboloid. Both programs can be easily modi�ed to handle
other surfaces, as is described in their introductory comment statements.

5.3 Two-grid Iteration Methods

The linear system (43) increases rapidly in its order as N is increased. The
order of (43) is Nv; and when N increases to 4N , the size of the matrix for
(43) increases by a factor of approximately 16: In Table 3, we give a typical
set of values of the triangulation N; along with the order Nv and the storage
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Table 3: Storage requirements

N Nv 8N2
v

8 18 2,592
32 66 34,848
128 258 532,512
512 1026 8,421,408
2048 4098 134,348,832

requirement (in bytes) 8N2
v : Clearly, the case with N = 2048 can be solved

on only the largest of computers in terms of computer memory requirements;
or some kind of virtual memory with e�cient bu�ering will be needed. We
do not include such programs in the general package being made available,
but we have done some work on developing such programs.

With values of N that are such that the matrix for (43) can be stored in
the computer's main memory, the use of direct methods (Gaussian elimina-
tion) will still be too expensive if N is at all large. For example, with most
current workstations, N = 512 (and Nv = 1026) would be considered too
large for a direct solution. In our package, the more e�cient of the two-grid
iteration methods described in [1, p. 142] is implemented for the problem
with a smooth boundary. This program is called ITERATION, and it is the
iterative analogue of INTEQN SMOOTH.

6 POTENTIAL THEORY PROBLEMS

We provide tools for the numerical solution of Laplace's equation

�u(P ) = 0; P 2 D (46)

for a variety of regions D and boundary conditions on u: We give means for
numerically evaluating potential integrals over the surface S = @D; and we
use these to solve the following problems. We use piecewise quadratic collo-
cation in solving the boundary integral equation reformulations of Laplace's
equation, except where stated explicitly to the contrary.
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1. The exterior Neumann problem: Let D be an unbounded region with

a complement which is a simply connected region. Find u 2 C2(D)
that satis�es the equation (46), the Neumann boundary condition

@u(P )

@�P

= f(P ); P 2 S (47)

and the growth condition

ju(P )j = O(jP j�1); jru(P )j = O(jP j�2) as jP j ! 1

In this, �Q is the inner unit normal to S atQ; directed into the bounded
region associated with the surface S:

2. The interior Dirichlet problem: Let D be a bounded simply connected

region. Find u 2 C1(D) \ C2(D) that satis�es the equation (46) and
the Dirichlet boundary condition

u(P ) = f(P ); P 2 S (48)

The numerical methods we will use to solve these problems are based on
reformulating them as boundary integral equations of the second kind. We
do not investigate the use of boundary integral equations of the �rst kind;
but the tools to do such are included in our package.

6.1 Single Layer Integral Approximations

Single layer potentials are integrals of the form

u(P ) =
Z
S
�(Q)

1

jP �Qj
dS(Q); P 2 R3 (49)

Our codes are directed towards the evaluation of these integrals for the case
that P 2 S. The numerical integration methods given earlier in x4 can be
used to evaluate such integrals for P =2 S; and we do not discuss it further in
this section.

To numerically evaluate (49) when � is known, we proceed much as in x4.
Using piecewise quadratic interpolation of the surface, we write

u(P ) �
NX
k=1

Z
�
�(fmk(s; t))

jDsfmk �Dtfmkj

jP �fmk(s; t)j
d� (50)
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The sub-integrals are considered according to whether P 2 �k or P =2 �k: For
the �rst case, use the subroutine INTKB6, which is based on the change of
variables of (35). For the second case, we proceed in the manner described in
x4 for handling singular and near singular integrands, given both before and
after (33). A composite rule based on (28) is used, with the number of levels of
subdivision based on the distance of P from �k; with a maximum MAXLEV
on the number of levels of subdivision speci�ed by the user. The needed
number of subdivisions is calculated in SETLEV, as was described earlier
preceding (33). The numerical integration is implemented in the subroutine
INTKB5. The routines INTKB5 and INTKB6 are restricted to having P be
a node point in the triangulation.

For approximating integrals (49) when � is unknown, so as to discretize
boundary integral equations containing it, we proceed using a variation of
the above. Write

u(P ) �
NX
k=1

6X
j=1

�(vk;j)
Z
�

`j(s; t) jDsfmk �Dtfmkj

jP �fmk(s; t)j
d� (51)

The integrals are again grouped according to whether P 2 �k or P =2 �k: For
the �rst case, the subroutine INTKL4 is used, and it evaluates simultaneously
the integrals over �k for j = 1; � � � ; 6: For the second case, use INTKL3;
and again the subroutine evaluates the integrals over �k for j = 1; � � � ; 6:
The methods used for the evaluation are the same as those described in the
preceding paragraph. The routines INTKL3 and INTKL4 are restricted to
having P be a node point in the triangulation. The results of these two
routines are used to de�ne collocation matrices associated with the single
layer integral operator.

6.1.1 Normal derivative of single layer potentials

The Neumann problem (both interior and exterior) can be solved by repre-
senting the solution as a single layer potential (49). The density function �
is obtained by solving a boundary integral equation involving the boundary
integral operator

K��(P ) =
Z
S
�(Q)

@

@�P

"
1

jP �Qj

#
dS(Q); P 2 S� (52)
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where S� = fP 2 S j 
(P ) = 2�g. The quantity 
(P ) is the solid interior
angle at P 2 S; and when P is a point at which S is smooth, we have 
(P ) =
2�: Since the normal derivative in (52) requires knowledge of the normal �P ,
the quantity K��(P ) can be de�ned only at P 2 S�. It follows that K��(P )
can be approximated only at P 2 S�; and therefore, collocation schemes that
involve approximating K��(P ) must restrict collocation nodes to belong to
S�. See the following subsection for a discussion of the approximation of �P .

6.2 Double Layer Integral Approximations

Double layer potentials are integrals of the form

u(P ) =
Z
S
�(Q)

@

@�Q

"
1

jP �Qj

#
dS(Q); P 2 R3 (53)

Our codes are directed towards the evaluation of these integrals for the case
that P 2 S. This integral is discontinuous as P crosses the boundary S: The
numerical integration methods given earlier in x4 can be used to evaluate
such integrals for P =2 S; and we do not discuss this case further in this
section.

When P 2 S; we consider a modi�ed version of (53), namely

K�(P ) =
Z
S
�(Q)

@

@�Q

"
1

jP �Qj

#
dS(Q) + [2� � 
(P )]�(P ); P 2 S: (54)

The quantity 
(P ) is the solid interior angle at P 2 S: When P is a
point at which S is smooth, we have 
(P ) = 2�: With this de�nition,
K : C(S) ! C(S) is a bounded linear operator; but it is not compact
unless S is su�ciently smooth, having no edges or corners. This has major
implications for the error analysis of approximations of K:

For P 2 S, the integration of K�(P ) proceeds almost exactly as for single
layer potentials. The use of the approximate surface leads to the integral
term in (54) being approximated by

NX
k=1

6X
j=1

�(vk;j)
Z
�
`j(s; t)

[P �fmk(s; t)] � [Dsfmk �Dtfmk]

jP �fmk(s; t)j
3 d� (55)

For the calculation of the collocation integral approximations, we use the
subroutines INTKL3 and INTKL4 just as is described above for single layer
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potentials. For the case of evaluatingK�(P ) when � is known, we also proceed
in analogy with the single layer case, using INTKB5 and INTKB6. The only
cautionary note is that one must be careful in setting up the triangulation so
that Dsfmk �Dtfmk will be oriented in the correct direction, namely into the
bounded portion of the region associated with the surface S: If one follows
the examples given earlier in x3 for constructing subroutine INIT, then the
correct direction for normals to the approximate surface will be calculated,
namely

e�Q =
Dsfmk �Dtfmk

jDsfmk �Dtfmkj
; Q = fmk(s; t) (56)

The only major di�erence with the case of single layer potentials is in the
need to evaluate 
(P ); which is unknown in general at edges and corners
of S. To evaluate 
(P ), we use the following well-known identity, which
implicitly de�nes 
(P ):

Z
S

@

@�Q

"
1

jP �Qj

#
dS(Q) + 2� � 
(P ) = 2�; P 2 S (57)

Let KN denote the collocation matrix associated with the double layer po-
tential operator (54). Then we use

Ki;l =
X
k; j

vk;j = vl

Z
�
`j(s; t)

[vi �fmk(s; t)] � [Dsfmk �Dtfmk]

jvi �fmk(s; t)j
3 d� + [2� � 
N (vi)]�i;l

(58)
The value of 
N(vi) is so determined that

NvX
l=1

Ki;l = 2�; i = 1; � � � ; Nv (59)

This correction has been found to increase the order of convergence in all
calculations involving the double layer potential; and this includes surfaces
S which are smooth. With the de�nition of 
N(vi) which this implies, we
have found empirically that


(vi)� 
N (vi) = O(h3)

although we have been able to prove only an order of O(h2):
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6.3 The Exterior Neumann Problem

We consider two approaches to solving the exterior Neumann problem (46)-
(48).

6.3.1 Using Green's representation formula:

Using Green's representation formula, the solution u(P ) of (46)-(48) satis�es
the following:

4�u(P ) =
Z
S
f(Q)

1

jP �Qj
dSQ �

Z
S
u(Q)

@

@�Q

"
1

jP �Qj

#
dSQ; P 2 D

(60)
Letting P ! S; we obtain the integral equation

2�u(P ) +
Z
S
u(Q)

@

@�Q

"
1

jP �Qj

#
dSQ + [2� � 
(P )]u(P )

=
Z
S
f(Q)

1

jP �Qj
dSQ; P 2 S (61)

This is well-studied, for both the cases of smooth boundaries and piecewise
smooth boundaries; see [8, Chap. 9]. For piecewise smooth boundaries, the
seminal work on this equation, including its numerical solution by boundary
integral equations, is that of Wendland [22]; and many of our error analyses
have been based on generalizing and applying his ideas.

For a presentation and error analysis of the collocation methods we use,
see [4], [10], and [8, Chap. 9]. We replace the integral operators in (61) by
using the approximations described in (55) and (58). The resulting approx-
imation is then collocated at the node points, leading to a linear system of
equations of order Nv: The linear system is solved directly using standard
routines from LINPACK.

Programs implementing the collocationmethod for given for several smooth
and piecewise smooth surfaces. The names given are NEUMANN ###,
where ### is an abbreviation for the name of the surface S: The surfaces
included are

� ellipsoid
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� \beanbag". This is a squashed and unsymmetric ellipsoid.

� elliptical paraboloid

� simplex

� L-block

By studying the programs for these cases, it should be clearer as to how
to proceed with a problem and surface of your own design. With all of
these programs, you will need to link with the following other programs:
AUXPACK, INTPACK, and TRIPACK. You will also need to link to the
appropriate version of INIT ###.

Polyhedral boundaries When the surface S is polyhedral, there are sev-
eral desirable properties for the surface. First, the normals are constant over
each face of the surface, and they are quite simple to calculate. Second, the
surface S need not be approximated by eSN , and again this leads to simpler
programming, including the calculation of the Jacobians needed in the var-
ious collocation integral calculations. We have introduced special tools into
TRIPACK for this case, to make it easier to deal with such surfaces. Their
use is illustrated in the program NEUMN EXT POLYHED S, in which S is
a simplex.

6.3.2 Representation as a single layer potential:

Assuming the representation (49), we have that the single layer density �
satis�es

(2� +K�) � = f

withK� de�ned as in (52). To solve this with a collocation method with nodes
chosen from S�, we use the piecewise linear interpolation of (1) with 0 < � <
1
3
. The routine implementing this is named NEUMN EXT INDIR ELLIP.

6.4 The Interior Dirichlet Problem

The ideas involved here are very much the same as for the exterior Neumann
problem, and again we give to approaches to the problem.
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6.4.1 Representation as a double layer potential:

We represent the solution u(P ) as a double layer potential:

u(P ) =
Z
S
�(Q)

@

@�Q

"
1

jP �Qj

#
dSQ; P 2 D (62)

The unknown density function � is determined by solving the integral equa-
tion

2��(P ) +
Z
S
�(Q)

@

@�Q

"
1

jP �Qj

#
dSQ + [2� � 
(P )]�(P ) = f(P ); P 2 S

(63)
This is essentially the integral equation (61), with a di�erent right side to
the equation. It can be solved numerically by the same methods as are used
for the boundary integral equation (61) for the exterior Neumann problem.
After �nding �; the solution u(P ) is found with numerical integration, of the
type described in x4, in and about (33). The needed number of levels of
integration in calculating the composite numerical integration will vary with
the distance of P from the boundary S, and it is calculated in the subroutine
LEVDIR which is included as a part of all the programs listed below. The
needed value of MAXLEV will be requested for each given point P , and it
should increase as P approaches S more closely. The user should experiment
to determine reasonable values of MAXLEV for the points P at which u(P )
is being evaluated.

The included programs for solving the interior Dirichlet problem are
named DRCHLT, DRCHLT SMOOTH ITERT, and DRCHLT PWSMOOTH ITERT.
The �rst program solves the discretized collocation system directly, using
LINPACK programs; and the second and third programs solve this system
with two-grid iteration, for smooth and piecewise smooth surfaces, respec-
tively.

6.4.2 Representation as a single layer potential:

Let the solution be represented as single layer potential, as in (49). To
determine the single layer density function �, we solve the �rst kind equationZ

S
�(Q)

1

jP �Qj
dS(Q) = f(P ); P 2 S (64)
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We give a collocation method based on the use of piecewise constant inter-
polation at the centroids of the triangular elements. It is relatively straight-
forward to generalize this to higher order interpolation, both linear and
quadratic, with the routines we have provided. The illustrative example
of this is named 1ST KIND CENTROID, and it is for the simple case that
S is an ellipsoid.

The linear system being solved in this case is

NX
j=1

�N(Pj)
Z
�j

dSQ

jPi �Qj
= f(Pi); i = 1; 2; :::; N

with Pj = mj

�
1
3
; 1
3

�
the \centroid" of triangular element �j. There is no

convergence or stability theory for this or any other collocation method for
solving (64). Some numerical examples are given in [8, pp. 467-468].

7 THE RADIOSITY EQUATION

The radiosity equation of x1.2.3,

u(P )�
�(P )

�

Z
S
u(Q)G(P;Q)V (P;Q) dSQ = E(P ); P 2 S (65)

occurs in both computer graphics and radiative transfer. In our programs, we
assume V (P;Q) � 1, which is equivalent to assuming there are no shadows
generated on the surface; and this is known as an \unoccluded" surface. In
using collocation to approximate (65), note that the kernel function G(P;Q)
(cf. (22)) is unde�ned when P is on an edge of S. Moreover, our interpolatory
approximation eSN is such that the normal produced at points P on the
common edge of two triangular elements �i and �j will be di�erent (although
only slightly if 
(P ) = 2�) when produced from the two functions fmi(s; t)
and fmj(s; t). Consequently, collocation nodes must be chosen interior to the
triangular elements, and our piecewise quadratic interpolatory approximation
of (4) cannot be used in solving (65).

The collocation solution of (65) is quite similar to what is done for the
collocation solution of the exterior Neumann problem following (61) above.
We include programs for both piecewise constant and piecewise linear collo-
cation. The resulting systems are solved directly by Gaussian elimination,
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although iteration is a straightforward variant, as is discussed in [12] and
[11].

For general discussions of the radiosity equation and its numerical solu-
tion, see [15] and [20]. For discussions of our contributions and methods, see
[12] and [11]. The problems we include in the package are as follows.

1. RDSTY-E-CEN - Solve using the centroid method over an ellipsoidal
surface.

2. RDSTY-E-LIN - Solve using piecewise linear collocation over an ellip-
soidal surface.

3. RDSTY-R-CEN - Solve using the centroid method over a rectangular
parallelopiped.

4. RDSTY-R-LIN - Solve using piecewise linear collocation over a rectan-
gular parallelopiped.

5. RDSTY-RG-LIN - Solve using piecewise linear collocation over a rect-
angular parallelopiped. This uses a variant for calculating the colloca-
tion integrals, using the change of variables described following (34).

6. RDSTY-T2-LIN - Solve using piecewise linear collocation over the dis-
connected surface S(2) of (24).

7. RDSTY-T3-LIN - Solve using piecewise linear collocation over the dis-
connected surface S(3) of (24).

As test programs, these programs take a given radiosity u(P ) and produce the
emissivity E(P ) of (65) by numerical integration. Then the program proceeds
to solve for the radiosity, obtaining uN(P ), which can then be compared with
the true solution u(P ). Of necessity, this numerical integration to calculate
E(P ) varies with the form of the surface S, and the user is asked to supply the
needed numerical integration parameter INTEG EM. In RDSTY-E-LIN, the
integration for E(P ) involves spherical integration; whereas with RDSTY-
R-LIN and the corresponding programs over the two piece surfaces S(p), the
integration is reduced to product Gaussian quadrature over the unit square.

57



7.1 A Package for Very Large N .

We are developing a separate package for piecewise constant collocation with
very large values of N . It includes both an iterative method of solution and
a \clustering" method due to Hackbusch and Nowak [17]. We will also allow
for occluded surfaces, i.e. V (P;Q) is not equivalent to 1 in (65). The method
being used is presented in [11]. When completed, it will be available from
the same source as the present package.

8 ITERATIONMETHODS FOR POTENTIAL

THEORY

As can be seen in table 3, the size of the linear systems being solved can
become very large with only a few re�nements of the initial triangulation.
For this reason, iteration methods are needed for solving these systems. The
methods we use are examples of two-grid iteration; and a general theory for
this is given in [8, Chap. 6]. The actual methods we use are described and
analyzed in [6] and [8, Chap. 9]. These methods are quite e�ective, although
there has been little comparison of them with methods based on generalizing
the conjugate gradient method, such as GMRES.

8.1 Smooth Surfaces

Our methods are a combination of the two-grid iteration method described
in [1, p. 142] and ideas of Hackbusch [16]. In [1, p. 142], Nystr�om interpo-
lation is used to extend functions de�ned on the coarse grid and to restrict
functions de�ned on the �ne grid. In our situtation, this is too expensive
computationally; and instead we use prolongation [based on the quadratic
interpolation of (4)] and restriction operators. For the case of smooth sur-
faces, a proof of the convergence of the two-grid iteration method is given in
[6].

The programs which implement this method are given in
NEUMN ### ITERT. The two surfaces included are the ellipsoid and the
\beanbag". As with the earlier case in which the system is solved directly, you
will need to link with the following other programs: AUXPACK, INTPACK,
TRIPACK, and the appropriate INIT ### subroutine.
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In addition, a third program called NEUMN ELL ITERT T, based on S
an ellipsoid, contains computations of elapsed time. The program requires
a machine dependent timing routine (called SECNDS in our program) to
give the machine clock. It is quite interesting to compare the computational
costs of the di�erent parts of the solution process. In spite of great attention
having been given to e�cient numerical integration of collocation integrals,
such integrations are still, by far, the most costly part of the solution process.

8.2 Piecewise Smooth Surfaces

For surfaces which are only piecewise smooth, the standard two-grid iteration
method will often not converge. See [4] and [6] for a more extensive discussion
of this. To retain the use of two-grid iteration, we �rst precondition the
system (and its coarse grid counterpart). In essence, we partition the node
points into two subsets, called \singular" and \nonsingular". The portion of
the linear system that corresponds to the singular nodes is solved exactly.
Then two-grid iteration is applied to the modi�ed linear system. A more
complete description of this method is given in [6], and defer to that paper
for a discussion of the method. Generally, the method converges, but it is
not as well-behaved an iteration method as is the original two-grid method
for the smooth surface case.

The programs implementing this method are named NEUMN ### ITERT.
The surfaces included are the L-block, the simplex, and the elliptical paraboloid.
The programs print out the norms of the individual corrections in the itera-
tion, along with the ratios by which they are decreasing.

9 NONLINEAR PROBLEMS

Work has been done for solving the nonlinear boundary value problem

�u(P ) = 0; P 2 D (66)

@u(P )

@�P

= g(P; u(p))� f(P ); P 2 S = @D (67)

The region D is an open connected region in R3 with a smooth connected
boundary S, and �P is the interior unit normal at P 2 S. We seek a solution
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u 2 C2(D) \ C1(D): The function g(P; v) is assumed to be continuous for
(P; v) 2 S �R; although this can be relaxed somewhat.

Using Green's representation formula for harmonic functions, the function
u satis�es

u(P ) =
1

4�

Z
S

@u(Q)

@�Q

dS(Q)

jP �Qj
�

1

4�

Z
S
u(Q)

@

@�Q

"
1

jP �Qj

#
dS(Q); P 2 D

(68)
Letting P tend to a point on S , and using the boundary condition (67), we
obtain the nonlinear boundary integral equation

2� u(P )�
Z
S
u(Q)

@

@�Q

"
1

jP �Qj

#
dS(Q) =

Z
S
[g(Q; u(Q))� f(Q)]

dS(Q)

jP �Qj
(69)

for P 2 S: This can be solved for u(P ) on S: The normal derivative of u can
be obtained from (67), and (68) then yields u(P ) at all P 2 D.

Modi�cations of the numerical methods of sections 6 and 7 are used to
solve (69). This work is discussed in [7], and we include an associated pro-
gram with the present package, named NONLIN-ELL. This is for an ellip-
soidal surface, but it is straightforward to use it for other surfaces.
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