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ABSTRACT. The radiosity equation occurs in computer
graphics, and its solution leads to more realistic illumination
for the display of surfaces. We consider the behavior of the
radiosity integral operator, for smooth and piecewise smooth
surfaces. A collocation method for solving the radiosity equa-
tion is proposed and analyzed. The method uses piecewise
linear interpolation; and for one particular choice of such lin-
ear interpolation, it is shown that superconvergence results
are obtained when solving on a smooth surface. Numerical
results conclude the paper.

1. Introduction. The radiosity equation is a mathematical model
for the brightness of a collection of one or more surfaces when their
reflectivity and emissivity are given. The equation is

(1) u(P ) − ρ(P )
π

∫
S

u(Q)G(P, Q)V (P, Q) dSQ = E(P ), P ∈ S

with u(P ) the “brightness” or radiosity at P and E(P ) the emissivity
at P ∈ S. The function ρ(P ) gives the reflectivity at P ∈ S, with
0 ≤ ρ(P ) < 1. In deriving this equation, reflections at every point are
assumed to diffuse equally in all physically possible directions, that is
the surface is a Lambertian diffuse reflector.

The function G is given by

(2)
G(P, Q) =

cos θP cos θQ

|P − Q|2

=
[(Q − P )·nP ][(P − Q) · nQ]

|P − Q|4 .
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In this, nP is the inner unit normal to S at P , and θP is the angle
between nP and Q − P ; and nQ and θQ are defined analogously. The
function V (P, Q) is a “line of sight” function. More precisely, if the
points P and Q can “see each other” along a straight line segment
which does not intersect S at any other point, then V (P, Q) = 1; and
otherwise, V (P, Q) = 0. An unoccluded surface is one for which V ≡ 1
on S, and it is this case we investigate here. Note that S need not
be connected, and it may be only piecewise smooth. The interior
surface of a convex solid is unoccluded, but one can also be dealing
with disconnected surfaces, as is illustrated with the two-piece surfaces
used in some numerical examples in Section 5.

We often write (1) in the simpler form

(3) u(P ) −
∫

S

K(P, Q)u(Q) dSQ = E(P ), P ∈ S

or in operator form as

(4) (I −K)u = E.

In Section 2 we investigate some of the properties of G and K, along
with the solvability of (1). An introduction to the use of (1) in computer
graphics is given in [8], along with methods for its numerical solution.
The unoccluded case is of lesser importance in applications, but it is
important to first understand it before proceeding with the case in
which S is occluded.

In the numerical solution of (1), the Galerkin method has been the
predominant form of numerical solution, with piecewise constant func-
tions as the approximations. In this paper, we investigate collocation
methods with approximations of all possible orders. In Section 3 we as-
sume S is either a smooth surface or a finite collection of disconnected
smooth surfaces. We give general results that are applicable to methods
of arbitrary order and we investigate some optimal methods. In Section
4 we allow S to be only piecewise smooth, which is a more practical
situation, and we also investigate the effect of using interpolation to
approximate S. Numerical examples are given in Section 5.

2. Properties of the radiosity equation. The solvability theory
for the radiosity equation (1) is relatively straightforward, being based
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on the geometric series theorem. We consider first the case that S
is a smooth surface, and later we discuss the more difficult case of
boundaries which are only piecewise smooth.

Assume S has a local representation at each P0 ∈ S, i.e., there is a
plane tangent to S at P0 with the surface given locally by

ζ = f(ξ, η), (ξ, η) in a neighborhood about P0.

We assume that each such f is at least twice continuously differentiable,
although this can be weakened somewhat. Over each such smooth
surface S, the kernel function G(P, Q) of (2) has a bounded singularity
at P = Q and otherwise it is a smooth function of P and Q. To see
this, we first note that

(5) | cos θP | ≤ c|P − Q|

with c independent of P and Q, e.g., see [11, p. 232]. (Note that,
throughout this paper, we will use c to denote a generic constant.)
Applying (5) to (2), we have

(6) |G(P, Q)| ≤ c, P, Q ∈ S, P �= Q.

Using this boundedness, it is straightforward to show that when S is
smooth, the integral operator K of (3) is compact as an operator on
either C(S) or L2(S) into itself, e.g., see [10, pp. 160 162]. We also
note that the inequality (6) is still true when P and Q belong to a
smooth sub-surface of a larger piecewise smooth surface.

As an aid in developing a solvability theory for (1), we must examine
the norm of K when it is considered as an operator from C(S) to
C(S). To do so, we use the following lemmas. We state the lemmas
for surfaces S which need not be smooth, for application later with
piecewise smooth surfaces.

Lemma 2.1. Assume S is the boundary of a convex open set Ω, and
assume S is a surface to which the divergence theorem can be applied.
Let P ∈ S, and let S be smooth in an open neighborhood of P . Then
G(P, Q) ≥ 0 for Q ∈ S, and

(7)
∫

S

G(P, Q) dSQ = π.
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Proof. The positivity of G(P, Q) follows from the inequalities

0 ≤ θP , θQ ≤ π

2

which follow, in turn, from the convexity of the region Ω.

Let P ∈ S, and let ε be a sufficiently small number. Exclude an
ε-neighborhood of P from Ω, and denote the remaining set by Ωε:

Ωε = Ω\{Q : |Q − P | ≤ ε}.

Let Sε denote the boundary of Ωε, and let S̃ε denote the boundary of
Ω\Ωε, the ε-neighborhood of P that was excluded from Ω. Then

(8)
∫

S

G(P, Q) dSQ =
∫

Sε

G(P, Q) dsQ +
∫

S̃ε

G(P, Q) dsQ.

Note that the unit normal nQ at Q ∈ S, Sε, or S̃ε is directed into the
interior of the region being bounded. Thus if Q ∈ S̃ε ∩ Sε, then nQ

relative to Sε is oriented opposite to that of nQ relative to S̃ε.

For a continuously differentiable vector function v(Q) defined Ωε, the
divergence theorem says∫

Sε

v(Q) · nQ dsQ = −
∫

Ωε

∇ · v(Q) dQ.

We apply this with

v(Q) =
[(Q − P )·nP ]
|P − Q|4 (P − Q).

A straightforward computation shows

∇ · v(Q) = 0, Q ∈ Ωε,

and, therefore,∫
Sε

G(P, Q) dSQ =
∫

Sε

v(Q) · nQ dsQ = 0.
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Decompose S̃ε into two parts:

S̃ε = Tε ∪ Uε

with

Tε = {Q ∈ S | |Q − P | ≤ ε}
Uε = {Q ∈ Ω | |Q − P | = ε}.

Then

(9)
∫

S̃ε

G(P, Q) dsQ =
∫

Tε

G(P, Q) dsQ +
∫

Uε

G(P, Q) dsQ,

and we examine separately each of these two righthand integrals.

Use (6) to write

(10)

0 ≤
∫

Tε

G(P, Q) dsQ

≤ c

∫
Tε

dsQ

= O(ε2).

Thus this integral goes to zero as ε → 0.

For the last integral in (9), we can simplify G(P, Q) and estimate the
integral. For Q ∈ Uε,

nQ =
P − Q

|P − Q| , nQ · P − Q

|P − Q| = 1

(11)

∫
Uε

G(P, Q) dsQ =
∫

Uε

nP · (Q − P )
|P − Q|3 dSQ

=
1
ε3

∫
Uε

nP · (Q − P ) dSQ.

The set Uε is approximately a hemisphere of radius ε. Change the
variable of integration in the latter integral to w, with Q−P = εw, so
that |w| = 1. In addition, reorient the set in such a manner that the
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unit normal nP becomes the unit vector k directed along the positive
w3-axis in R3. Then the integral in (11) becomes∫

Uε

G(P, Q) dsQ =
∫

U1

k · w dSw + o(ε)

with U1 = {w ∈ R3 | w3 > 0}. In turn, this yields

(12)
∫

Uε

G(P, Q) dsQ = π + o(ε).

Combining this with (8) (10) and taking limits as ε → 0, we have (7).

Let S be a piecewise smooth unoccluded surface in R3. By this, we
mean that S can be decomposed into a finite union,

(13) S = S1 ∪ · · · ∪ SJ

with each Sj a smooth surface, i.e., there is a function

(14) Fj : Rj
1−1→
onto

Sj

with Rj a closed simply-connected polygon in R2 and Fj a twice
continuously differentiable function on Rj . We include the possibility
that S may be disconnected.

Corollary 2.2. Assume S is a piecewise smooth unoccluded surface
in R3, and assume S ⊂ Ŝ, with Ŝ the type of surface required in
Lemma 2.1. Let P ∈ S be a point at which S is smooth, and assume P
does not lay on an edge or corner of S. Then

(15)
∫

S

G(P, Q) dSQ ≤ π, P ∈ S.

Proof. Apply the preceding Lemma 2.1 to Ŝ, and then note that∫
S

G(P, Q) dSQ ≤
∫

Ŝ

G(P, Q) dSQ = π.
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2.1. Solvability of the radiosity equation. Again, assume S is
a smooth unoccluded surface, although it need not be connected. As
an extension of the discussion following (1), we assume the reflectivity
function ρ(P ) satisfies

(16) ‖ρ‖∞ < 1.

Physically, this is a very sensible assumption, as real surfaces do not
reflect 100 percent of all light that they receive. We also assume
ρ ∈ C(S).

With these assumptions, and with Lemma 2.1 and Corollary 2.2, we
have K is a bounded compact operator on C(S) to C(S); and, moreover,

(17) ‖K‖ ≤ ‖ρ‖∞ < 1.

Using the geometric series theorem, the operator I −K is invertible on
C(S) to C(S), with

(18) ‖(I −K)−1‖ ≤ 1
1 − ‖K‖ .

Thus the equation (1) is uniquely solvable for all emissivity functions
E ∈ C(S). In practice, the functions E(P ) and ρ(P ) are often
discontinuous; and, later in the section, we discuss some appropriate
modifications of the theoretical framework.

To talk about the regularity of solutions of (1), we need the following
result.

Lemma 2.3. Let m ≥ 0 be an integer, and consider a surface S of
the form in (13). Assume the parameterization functions of (14) are
m+2 times continuously differentiable, and also assume the reflectivity
function ρ ∈ Cm+1(S). Then

(19) u ∈ Cm(S) =⇒ Ku ∈ Cm+1(S).
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Proof. For the case m = 0, the proof is relatively straightforward.
Differentiate the kernel function G(P, Q) with respect to P , to get

∂G(P, Q)
∂P

= O

(
1

|P − Q|

)
.

Then the associated function

∂(Ku)
∂P

is dominated by a ‘single layer integral operator,’ and, with the latter,
it easily follows that Ku ∈ C1(S).

For the more general case, one needs to generalize the form of proof
given in Günter [9, p. 49] for single and double layer potential integral
operators. We omit it here.

We summarize the solvability and regularity results in the following.

Theorem 2.4. Let m ≥ 0 be an integer. Let Ŝ be the boundary of a
convex open set Ω, and assume Ŝ is a surface to which the divergence
theorem can be applied. Assume S is a smooth (possibly disconnected)
unoccluded surface S ⊂ Ŝ, and assume it can be represented as in (13)
with each parameterization function Fj being (m+2)-times continuously
differentiable over its polygonal domain. Assume ρ, E ∈ Cm(S). Then:

(a) the equation (1) is uniquely solvable, with the solution u(P )
satisfying

‖u‖∞ ≤ ‖E‖∞
1 − ‖K‖ .

(b) The solution u ∈ Cm(S).

Proof. The proof of (a) is obvious from earlier remarks, and this also
proves (b) for the case m = 0. For (b) with m > 0, write

u = E + Ku.

Use Lemma 2.3 to give an induction argument that u ∈ Cm(S).
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2.2. Piecewise smooth surfaces. The majority of applications
are likely to have surfaces S that are only piecewise smooth. As a
simple example which illustrates the main mathematical difficulties of
such surfaces, let S be the boundary of a rectangular solid, say that of
the solid

Ω = [0, a] × [0, b] × [0, c].

The function G(P, Q) no longer is as well-behaved as for the smooth
surface case, and it has singular behavior along all edges and corners;
and, consequently, the integral operator K is also less well-behaved.

To illustrate the behavior of G(P, Q), we use an even simpler surface
S. Introduce

Sxz = {(x, 0, z) | 0 ≤ x, z ≤ 1}, Sxy = {(x, y, 0) | 0 ≤ x, y ≤ 1},

the unit squares in the xz and xy-planes in R3, respectively. Define

(20) S = Sxz ∪ Sxy

which is not smooth along the edge eS ≡ {(x, 0, 0) | 0 ≤ x ≤ 1}. Let
P = (x, y, z) and Q = (ξ, η, ζ). Then

(21) G(P, Q) =

⎧⎨
⎩

(yζ/[(x − ξ)2 + y2 + ζ2]2), P ∈ Sxy, Q ∈ Sxz

(zη/[(x − ξ)2 + η2 + z2]2), P ∈ Sxz, Q ∈ Sxy

0 otherwise.

For P, Q ∈ Sxy, G(P, Q) ≡ 0. But for P = ((1/2), 0, z) and Q =
((1/2), η, 0),

G(P, Q) =
zη

η2 + z2
· 1
η2 + z2

.

The first fraction is bounded, and, for z = η, it equals 1/2 exactly.
But the second fraction is unbounded as η, z → 0. Thus G(P, Q) is
an unbounded function along the edge eS common to the two smooth
sub-surfaces Sxy and Sxz.

The results of Lemma 2.1 and Corollary 2.2 are still valid for the
surface S of (20), but the function space needs to be changed to account
for the discontinuity of G(P, Q) for P or Q belonging to eS . We use
the Banach space L∞(S), to allow for discontinuities along edges and
corners of S, and this will also allow us to introduce emissivity E(P )
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and reflectivity ρ(P ) which need not be continuous. The invertibility
of I − K still follows as in (17) (18). But the regularity result (19) of
Lemma 2.3 is no longer valid. To further investigate the regularity of
Ku, we compute Ku(P ) for the functions u(Q) = 1, ξ − x and η, with
P ∈ Sxz and Q ∈ Sxy.

Letting u ≡ 1, and evaluating only at P ∈ Sxz with P = (x, 0, z),

Ku(P ) =
∫ 1

0

∫ 1

0

zη dξ dη

[(x − ξ)2 + η2 + z2]2
, 0 < x, z < 1.

After some manipulation,

(22) Ku(P ) =
1
2

{
π − arctan

(
z

x

)
− arctan

(
z

1−x

)}

− z

2
√

1+z2

{
arctan

(
x√

1+z2

)
+ arctan

(
1−x√
1+z2

)}
.

For 0 < z < 1, this is a well-behaved function; but there are indications
of problems near the edges at x = 0 and x = 1, particularly as
(x, 0, z) → (0, 0, 0) or (1, 0, 0).

Letting u ≡ ξ−x for some 0 < x < 1, and evaluating Ku(P ) for only
P ∈ Sxz, we have

Ku(P ) =
∫ 1

0

∫ 1

0

(ξ − x)zη dξ dη

[(x − ξ)2 + η2 + z2]2
, 0 < x, z < 1.

Then

(23) Ku(P ) =
z

4
log

{
[(1 − x)2 + z2][x2 + 1 + z2]
[(1 − x)2 + 1 + z2][x2 + z2]

.

}

For z ≈ 0,

Ku(P ) ≈ z

4
log

{
[(1 − x)2][x2 + 1]
[(1 − x)2 + 1][x2]

}
,

which is well-defined for 0 < x < 1, but has problems around x = 0
and x = 1.

Letting u(ξ, η, 0) = η and P = (x, 0, z),

Ku(P ) =
∫ 1

0

∫ 1

0

zη2 dξ dη

[(x − ξ)2 + η2 + z2]2
, 0 < x, z < 1.
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Then

(24)
Ku(P ) =

−z

2
√

1+z2

{
arctan

(
x√

1+z2

)
+ arctan

(
1−x√
1+z2

)}

+
1
2

∫ 1

0

∫ 1

0

z dξ dη

(x−ξ)2 + η2 + z2
.

For the last integral in this formula, we break the integration region
into two portions:

R1 = {(ξ, η, 0) | (ξ − x)2 + η2 ≤ r2, η ≥ 0},
R2 = [0, 1] × [0, 1]\R1

with some r chosen to be small enough that the semi-circle R1 is located
entirely within the unit square [0, 1] × [0, 1]. The integral

(25)
∫∫

R2

z dξ dη

(x − ξ)2 + η2 + z2

is a smooth function of x and z as z → 0, provided 0 < x < 1. For the
remaining integral, over R1, change the integration variables to polar
coordinates centered at (ξ, η, 0) = (x, 0, 0). Then

(26)
∫∫

R1

z dξ dη

(x − ξ)2 + η2 + z2
=

πz

2
log

(
r2 + z2

)
− πz log(z)

Thus for u = η, Ku(P ) is dominated by −πz log(z) as z → 0. The
function Ku(P ) does not belong to C1(S).

For more general density or brightness functions u(Q), we can expand
them about (x, 0, 0) and then apply the above results to obtain more
general regularity results. In Section 4, we return to some of these
formulas, to investigate the effect on the behavior of our numerical
schemes of S having edges and corners.

3. Collocation on smooth surfaces. To define numerical methods
for solving (1), we follow closely the ideas used in defining boundary
element methods for solving boundary integral equation reformulations
of elliptic partial differential equations on regions in R3, e.g., see [2],
[4, Chapters 5, 9], [5, 12]. In this section we develop numerical
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methods for the case that S is a smooth surface, although it need not be
connected, and we follow the notation of (13) (14) when considering S.
In the following section, we extend the numerical theory to the cases
where S is only piecewise smooth and where S is approximated by
interpolation. The general idea of the numerical method is as follows.
Begin by triangulating S and then approximate the unknown u(P )
by functions which are piecewise polynomial over the triangulation of
S. The numerical solution is found by collocation, meaning that the
approximate form of the solution is substituted into (1) and then the
equation is forced to be true at the collocation node points, leading to
a system of linear equations for determining the approximate solution.

We use the framework for collocation methods that is described in [4,
Chapter 5] and [5], and only the most pertinent points are summarized
here. An implementation of the numerical methods of this paper makes
use of the boundary element package described in [3], to which the
reader is referred for more detail.

We assume there is a sequence of triangulations of S, Tn = {Δn,k |
1 ≤ k ≤ n}, with some increasing sequence of integer values n
converging to infinity. Usually in our codes, the values of n increase by
a factor of 4. For example, if S is an ellipsoid, then we often subdivide
S into a sequence of triangulations {Tn | n = 8, 32, 128, ...}. There are
assumptions made on the triangulations, most of which we leave to the
cited references. Associated with most surfaces are parameterizations
of the surface, as in (14). Consider only one such parameterization
function, say

Fj : Rj
1−1→
onto

Sj

with Rj a polygonal region in the plane and some 1 ≤ j ≤ J .
Triangulate Rj , say as

(27) {Δ̂j
n,k | k = 1, . . . , nj}.

Then triangulate the corresponding subsurface Sj using

(28) Δj
n,k = Fj(Δ̂

j
n,k), k = 1, . . . , nj .

For S as a whole, define

Tn =
J⋃

j=1

{Δj
n,k | k = 1, . . . , nj}.
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Often we will dispense with the subscript n, although it is to be
understood implicitly. The mesh size of this triangulation is defined by

h ≡ hn = max
1≤j≤J

max
1≤k≤nj

diameter (Δ̂j
n,k).

For purposes of numerical integration and interpolation over the
triangular elements in Tn, we also need a parameterization over each
Δj

n,k with respect to a standard reference triangle in the plane. Our
reference triangle is the unit simplex,

σ = {(s, t) | 0 ≤ s, t, s + t ≤ 1}.

Let the vertices of Δ̂j
n,k be denoted by {v1, v2, v3}, and define a

parameterization function mk : σ
1−1→
onto

Δj
n,k by

(29) mk(s, t) = Fj(uv3 + tv2 + sv1), (s, t) ∈ σ

with u = 1 − s − t. Using this, we can write

(30)
∫

Δk

f(Q) dSQ =
∫

σ

f(mk(s, t))|(Dsmk × Dtmk)(s, t)| dσ,

and this can be used to numerically evaluate the lefthand integral by
using numerical integration formulas developed for the region σ.

Interpolation of functions over σ can be used to develop interpolatory
approximations of functions defined on the triangular elements Δk. If

(31) f(s, t) ≈
p∑

i=1

f(si, ti)�i(s, t)

is an interpolatory formula for functions f ∈ C(σ), then define inter-
polation of functions g ∈ C(Δk) by

(32) g(mk(s, t)) ≈
p∑

i=1

f(mk(si, ti))li(s, t), (s, t) ∈ σ.

In the following, the formula (31) is used for interpolation of all
possible degrees; and more detailed results are given for degrees 0,
1, and 2.
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3.1. A piecewise linear collocation method. For the moment,
let (31) denote a linear interpolation function. More precisely, let α be
a given constant with 0 ≤ α < (1/3), and define interpolation nodes in
σ by

(33) {q1, q2, q3} = {(α, α), (α, 1− 2α), (1 − 2α, α)}.

If α = 0, these are the three vertices of σ; otherwise, they are
symmetrically placed points in the interior of σ. Define corresponding
Lagrange interpolation basis functions by

l1(s, t) =
u − α

1 − 3α
, l2(s, t) =

t − α

1 − 3α
, l3(s, t) =

s − α

1 − 3α

for (s, t) ∈ σ and u = 1 − s − t. The linear polynomial interpolating
f ∈ C(σ) is given by

(34) f(s, t) ≈ (Lσf)(s, t) ≡
3∑

i=1

f(qi)li(s, t).

For g ∈ C(S), define

(35) (Png)(mk(s, t)) =
3∑

i=1

g(mk(qi))li(s, t), (s, t) ∈ σ

for k = 1, 2, . . . , n. This interpolates g(P ) over each triangular element
Δk ⊂ S, with the interpolating function linear in the parameterization
variables s and t. Let the interpolation nodes in Δk be denoted by

vk,i = mk(qi), i = 1, 2, 3; k = 1, . . . , n.

Then (35) can be written

(36) (Png)(P ) =
3∑

i=1

g(vk,i)li(s, t), P = mk(s, t) ∈ Δk

for k = 1, . . . , n. Collectively, we refer to the interpolation nodes {vk,i}
by {v1, v2, . . . , v3n}, for α > 0.
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In the case α = 0, the formula (35) defines a projection operator on
C(S), and, easily,

‖Pn‖ = 1, with α = 0.

For 0 < α < (1/3), the function Png is usually not continuous, and if
the standard type of collocation error analysis is to be carried out in
the context of function spaces, then C(S) must be enlarged to include
the piecewise linear approximants Png. One way of doing this is by
using the space L∞(S). This is the set of all essentially bounded and
Lebesgue measurable functions on S, and the norm is the essential
supremum ‖ · ‖∞. This approach is fully explored in [6] and, with it,
Pn can be extended to be a projection on L∞(S). The reader is referred
to [6] for details. For this case of α,

(37) ‖Pn‖ =
1 + α

1 − 3α
, with 0 < α <

1
3
.

A particularly important case is α = 1/6, for which

‖Pn‖ =
7
3
, with α =

1
6
.

Our collocation error analysis given below in Theorem 3.6 will use
another approach, one using only the space C(S) and not requiring
Pn to be a projection operator.

It is clear that these definitions can be extended to interpolation
with polynomials of any given degree. Particularly important cases
are degree 0 and degree 2. For degree 0, define piecewise constant
interpolation by

f(s, t) ≈ f

(
1
3
,
1
3

)
, (s, t) ∈ σ,

for f ∈ C(σ), with (1/3, 1/3) the centroid of σ. Over Δk ⊂ S, define
vk = mk(1/3, 1/3), which we call the centroid of Δk, k = 1, . . . , n.
Define piecewise constant interpolation over S by

(38) (Png)(P ) = g(vk), P = mk(s, t) ∈ Δk

for k = 1, . . . , n and g ∈ C(S). The operator Pn can again be
extended to be a projection on L∞(S), with ‖Pn‖ = 1. The case
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of quadratic interpolation is well-developed in the references for the
case of interpolation at the vertices and midpoints of sides of Δk, e.g.,
see [4, Section 5.1], [5], and therefore the details of such interpolation
are omitted here.

We define a collocation method with (36). Substitute

(39)
un(P ) =

3∑
i=1

un(vk,i)li(s, t),

P = mk(s, t) ∈ Δk, k = 1, . . . , n

into (1), with V ≡ 1 for an unoccluded surface. To determine the
values {un(vk,i)}, force the equation resulting from the substitution to
be true at the interpolation node points (which are now also called the
collocation points). This leads to the linear system
(40)

un(vi) −
ρ(vi)

π

n∑
k=1

3∑
j=1

un(vk,j)

·
∫

σ

G(vi, mk(s, t)) lj(s, t)|(Dsmk × Dtmk)(s, t)| dσ = E(vi),

i = 1, . . . , 3n,

which is of order 3n. The system (40) contains integrals which must
be evaluated numerically, and this is discussed in Section 5.

It is well known that (40) can be rewritten abstractly as

(41) (I − PnK)un = PnE,

which is to be compared to (4), the abstract formulation of (1). This is a
standard form for an abstract error analysis of the collocation method;
and for a general reference of such analyses for integral operators K
which are compact on a Banach space X into itself, see [1, p. 54] or
[4, Chapter 3]. We instead give an error analysis based on the iterated
collocation solution, introduced below, as it is also needed in examining
the question of superconvergence for some collocation solutions un at
the collocation node points.

Given the collocation solution un for (41), introduce the iterated
collocation solution

(42) ûn = E + Kun.
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Then it is straightforward to show

(43) Pnûn = un.

This says that un and ûn agree at the collocation node points:

(44) ûn(vi) = un(vi), i = 1, 2, . . . , 3n.

Results for the convergence of ûn are in turn results for the convergence
of un at the collocation node points. In addition,

(45)
u − un = u − Pnûn

= (u − Pnu) + Pn(u − ûn)
‖u − un‖∞ ≤ ‖u − Pnu‖∞ + ‖Pn‖‖u − ûn‖∞.

Convergence results for ûn yield convergence results for un.

Substituting (43) into (42), we obtain

(46) (I −KPn)ûn = E.

The operator
KPn : C(S) → C(S)

is a numerical integral operator based on product integration, for ex-
ample, see [1, p. 106] or [4, Section 4.2]. An error analysis for (46) can
be based on the general theory for such numerical integral operators.

Theorem 3.1. Assume S is a smooth unoccluded surface in R3, and
assume S ⊂ Ŝ, with Ŝ the type of surface required in Lemma 2.1. As-
sume the surface S satisfies (13) (14) with each Fj ∈ C3. Assume the
radiosity equation (1) is uniquely solvable for all emissivity functions
E ∈ C(S). Then for all sufficiently large n, say n ≥ n0, the operators
I −KPn are invertible on C(S) and have uniformly bounded inverses.
Moreover, for the true solution u of (1) and the solution ûn of (46),

(47) ‖u − ûn‖∞ ≤ ‖(I −KPn)−1‖ ‖K(u − Pnu)‖∞, n ≥ n0.

Furthermore, if the emissivity E ∈ C2(S), then

(48) ‖u − ûn‖∞ ≤ O(h2), n ≥ n0.
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Proof. It is relatively straightforward to show that the family {KPn |
n ≥ 1} is collectively compact and pointwise convergent on C(S) to
C(S). It then follows from the assumption of the existence of (I−K)−1

and the theory of collectively compact operators, see [1, p. 96] or [4,
Section 4.1.2] that the operators I − KPn are invertible on C(S) and
have uniformly bounded inverses for all sufficiently large n, say n ≥ n0.
The bound (47) follows from the identity

(49) u − ûn = (I −KPn)−1K(u − Pnu).

The bound (48) follows from standard interpolation error bounds for
linear interpolation.

This theorem immediately generalizes to collocation based on inter-
polation of any given degree. For interpolation with polynomials of
degree r, and with E sufficiently smooth, the error bound becomes

(50) ‖u − un‖∞ ≤ O(hr+1), n ≥ n0.

We omit the details, as they too are a straightforward consequence of
existing theory.

We also note that the inverses for the collocation equation (41) and
the iterated collocation equation (46) are related by the identities

(I −KPn)−1 = I + K(I − PnK)−1Pn

(I − PnK)−1 = I + Pn(I −KPn)−1K.

See the discussion in [4, Section 3.4].

3.2. A superconvergent piecewise linear method. With the
interpolation parameter α = 1/6, we obtain a collocation method which
converges more rapidly at the collocation node points. To show this,
we must examine more carefully the term K(u − Pnu) from (49).

By looking at the linear system associated with

(I −KPn)(u − ûn) = K(u − Pnu)

we can argue that

(51) max
1≤i≤3n

|u(vi) − ûn(vi)| ≤ c max
1≤i≤3n

|K(I − Pn)u(vi)|.
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We omit the argument; but it is the same as that given in the
discussion following formula (33) in [5]. Below we will look at the
errors K(I − Pn)u(vi) occurring on the right side of (51). But first
we need some preliminary results for the piecewise linear interpolation
used in defining Pn.

Consider the interpolation formula (34) for linear interpolation over
σ. It also leads to a numerical integration formula

(52)
∫

σ

f(s, t) dσ ≈
∫

σ

Lσf(s, t) dσ.

With any choice of the interpolation parameter α, if f is a linear, then
the interpolation is exact, Lσf = f , and hence the integration formula
(52) is also exact. However, if we choose α = (1/6), then the linear
interpolation formula also satisfies

(53)
∫

σ

f(s, t) dσ =
∫

σ

Lσf(s, t) dσ, deg(f) ≤ 2

for f any polynomial in s, t of degree ≤ 2. The proof is a straightforward
computation with the choices f(s, t) = s2, st, t2.

Integrating the right side of (52) yields the quadrature formula

(54)
∫

σ

f(s, t) dσ ≈ Qσ(f) ≡ 1
6
[f(α, α)+f(α, 1−2α)+f(1−2α, α)]

for arbitrary f ∈ C(σ) and 0 ≤ α < 1/3. This has degree of precision
1 for general α; and for α = 1/6, it has degree of precision 2, based on
(53). For the remainder of this section, we assume α = 1/6.

We can extend this to an integration formula over the unit square
U ≡ [0, 1] × [0, 1] by applying the same formula over both σ and its
mirror image in U . Then we have a numerical integration formula over
U which can be shown to have degree of precision 3:

∫ 1

0

∫ 1

0

f(s, t) dσ ≈ 1
6
[f(α, α)+f(α, 1−2α)+f(1−2α, α)

+ f(1−α, 1−α)+f(1−α, 2α)+f(2α, 1−α)].(55)

A proof based on using symmetry is straightforward, and we omit it.
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Let τ ⊂ R2 be a planar triangle with vertices {v1, v2, v3}. The
mapping

(56) (x, y) ≡ μτ (s, t) = uv3 + tv2 + sv1, u ≡ 1 − s − t

is an affine one-to-one transformation of σ onto τ , and polynomials in
s, t are transformed to polynomials in x, y of the same degree. For a
function g ∈ C(τ ), the function

Lτg(x, y) =
3∑

i=1

g(μτ (qi))li(s, t), (x, y) = μτ (s, t)

in a linear polynomial which interpolates g at the points {μτ (q1), μτ (q2),
μτ (q3)}, with the latter symmetrically placed in τ . [Recall the defini-
tion of {qi} from (33).]

As earlier for integration over σ, define a numerical integration
formula by

(57)
∫

τ

g(x, y) dτ ≈
∫

τ

Lτg(x, y) dτ.

Using the affine change of variables (56), and applying it to the earlier
results over σ, we have that (57) can be written as

(58)
∫

τ

g(x, y) dτ ≈ Qτ (g) ≡ Area(τ )
3

3∑
i=1

g(μτ (qi)).

This has degree of precision 2. Moreover, if τ1 and τ2 are triangles for
which τ1 ∪ τ2 is a parallelogram, then the formula

(59)
∫

τ1∪τ2

g(x, y) dτ ≈ Qτ1∪τ2(g)

has degree of precision 3.

For differentiable functions f , introduce the notation

|Dkf(x, y)| = max
0≤i≤k

∣∣∣∣∂kf(x, y)
∂xi∂yk−i

∣∣∣∣.
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Lemma 3.2. Let τ be a planar right triangle, and assume the two
sides which form the right angle have length h. Let f ∈ C3(τ ). Let
Φ ∈ L1(τ ) be differentiable with the first derivatives DxΦ, DyΦ ∈ L1(τ ).
Assume α = 1/6. Then

(60)
∣∣∣∣
∫

τ

Φ(x, y)(I − Lτ )f(x, y) dτ |

≤ c h3

[ ∫
τ

(|Φ| + |DΦ|) dτ

]
max

τ
{|D2f |, |D3f |}.

In this and in the following proof, the letter c denotes a generic
constant.

Proof. It is possible to find a linear polynomial p1(x, y) for which

(61) ‖f − p1‖∞ ≤ ch2‖D2f‖∞, f ∈ C2(τ )

for a suitable constant c. We can also find a quadratic polynomial
p2(x, y) for which

(62) ‖f − p2‖∞ ≤ c h3‖D3f‖∞, f ∈ C3(τ )

Simply let p1 and p2 be Taylor polynomials of f . Similarly, we can find
a constant φ0 for which

(63) ‖Φ − φ0‖1 ≤ ch‖D1Φ‖1

with ‖ · ‖1 denoting the norm on L1(τ ). As a general reference, see [7,
Chapter 4].

To shorten the notation, let L′
τ = I − Lτ . To prove (60), write

(64)

∫
τ

ΦL′
τf dτ =

∫
τ

ΦL′
τ (f − p2) dτ

+
∫

τ

(Φ − φ0)L′
τp2 dτ +

∫
τ

φ0L′
τp2 dτ.

The first term on the right side is bounded using (62):∣∣∣∣
∫

τ

ΦL′
τ (f − p2) dτ

∣∣∣∣ ≤ ‖L′
τ‖‖f − p2‖∞

∫
τ

|Φ| dτ

≤ ch3‖D3f‖∞
∫

τ

|Φ| dτ.
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The bound for ‖L′
τ‖ comes from (37). The third term on the right side

of (64) is zero, by using the fact that (57) has degree of precision 2.

For the second term on the right side of (64), note that

L′
τp2 = L′

τ (p2 − p1) = L′
τ ([p2 − f ] − [p1 − f ])

since Lτp1 = p1. Taking bounds and using (61) (62),

‖L′
τp2‖∞ ≤ c h2(h‖D3f‖∞ + ‖D2f‖∞).

Using this and (63),

∣∣∣∣
∫

τ

(Φ − φ0)L′
τp2 dτ

∣∣∣∣ ≤ ‖L′
τp2‖∞

∫
τ

|Φ − φ0| dτ

≤ ch3

∫
τ

|D1Φ| dτ · max
τ

{‖D2f‖∞, ‖D3f‖∞}.

Combining these results with (64) proves (60).

Lemma 3.3. Let τ1 and τ2 be planar right triangles that form a
square R of length h on a side. Let f ∈ C4(R). Let Φ ∈ L1(R) be twice
differentiable with all first and second derivatives belonging to L1(R).
Assume α = 1/6. Then

(65)
∣∣∣∣
∫

R

Φ(x, y)(I − Lτ )f(x, y) dτ

∣∣∣∣
≤ c h4

[ ∫
R

2∑
i=0

|DiΦ| dτ

]
· max

R
i=2,3,4

{|Dif |}

with Lτf(x, y) ≡ Lτi
f(x, y) when (x, y) ∈ τi, i = 1, 2.

Proof. The proof is similar to the preceding one. Begin by letting
pk(x, y) be a polynomial of degree k over R which satisfies

(66)
‖f − pk‖∞ ≤ c hk+1‖Dk+1f‖∞, f ∈ Ck+1(R),

k = 1, 2, 3
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with ‖ · ‖∞ denoting the uniform norm on C(R). From (66), we have

(67) ‖pk − pk−1‖∞ ≤ chk(‖Dkf‖∞ + h‖Dk+1f‖∞), k = 2, 3.

In addition to (66), let φi(x, y) be a polynomial of degree i satisfying

(68) ‖Φ − φi‖1 ≤ c hi+1‖Di+1Φ‖1, i = 0, 1.

In this, ‖ · ‖1 denotes the norm on L1(R).

In analogy with (64), consider the identity

(69)

∫
R

ΦL′
τf dτ =

∫
R

ΦL′
τ (f − p3) dτ

+
∫

R

(Φ − φ0)L′
τ (p3 − p2) dτ

+
∫

R

(Φ − φ1)L′
τ (p2 − p1) dτ

+
∫

R

(φ1 − φ0)L′
τp2 dτ.

This uses the identities L′
τp1 = 0 and∫

R

φ0L′
τp3 dτ = 0.

The first identity is immediate from the use of linear interpolation, and
the second one follows from the fact that (59) has degree of precision
3.

Use the same type of arguments as in the proof of Lemma 3.2,
together with the bounds (66) (68). It follows easily that the first
three terms on the right side of (69) are all O(h4), together with being
multiplied by quantities of the form given on the right side of (65).

For the final term on the right side of (69), note first that

(70) L(φiLp2) = L(φip2), i = 0, 1.

To show this, we need show only that φiLp2 and φip2 agree at the
node points for the interpolation operator L. Call these node points
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μj , j = 1, . . . , 6, and they are the analogues for R of the node points
used in (55). Then

(φiLp2)(μj) = φi(μj) · (Lp2)(μj) = φi(μj) · p2(μj)

since Lp2 interpolates p2 at the nodes {μj}. Next note that (φ1 −
φ0)L′

τp2 is a polynomial of degree ≤ 3. Then from the fact that (59)
has degree of precision 3,∫

R

(φ1 − φ0)L′
τp2 dτ =

∫
R

Lτ [(φ1 − φ0)L′
τp2] dτ.

It then follows from (70) that

(71)
∫

R

(φ1 − φ0)L′
τp2 dτ =

∫
R

L′
τ ((φ1 − φ0)p2) dτ = 0.

The last step again uses the result that (59) has degree of precision 3.

This completes the proof of (65).

The results in Lemmas 3.2 and 3.3 can be generalized to general
triangles and parallelograms; but the derivatives of f and Φ will now
involve the affine mapping μτ of (56). The bounds of (60) and (65)
must now contain a term proportional to some power of

(72) r(τ ) ≡ h(τ )
h∗(τ )

.

In this fraction, h(τ ) is the diameter of τ and h∗(τ ) is equal to the
radius of the circle inscribed in τ and tangent to its sides. We will
only use triangulations for which the maximum of this ratio over the
triangulation Tn = {Δ̂n,k} is uniformly bounded in n :

(73) sup
n

max
Δ̂k∈Tn

r(Δ̂k) < ∞.

This prevents the triangles Δ̂n,k from having angles which approach 0
as n → ∞. We give the generalizations to arbitrary triangles in the
following, and we omit the proof as it is basically straightforward.
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Corollary 3.4. (a) Let τ be a planar triangle of diameter h, let
f ∈ C3(τ ) and let Φ ∈ L1(τ ) with both first derivatives also in L1(τ ).
Assume α = 1/6. Then

(74)
∣∣∣∣
∫

τ

Φ(x, y)(I − Lτ )f(x, y) dτ

∣∣∣∣
≤ c(r(τ )) h3

[ ∫
τ

(|Φ| + |DΦ|) dτ

]
max

τ
{|D2f |, |D3f |}

with c(r(τ )) some multiple of a power of r(τ ).

(b) Let τ1 and τ2 be two planar triangles of diameter h, with R ≡
τ1 ∪ τ2 a parallelogram. Let f ∈ C4(R), and let Φ ∈ L1(R) have all of
its second derivatives also belong to L1(R). Assume α = 1/6. Then

(75)
∣∣∣∣
∫

R

Φ(x, y)(I − Lτ )f(x, y) dτ

∣∣∣∣
≤ c(r(R)) h4

[ ∫
R

2∑
i=0

|DiΦ| dτ

]
max

R
i=2,3,4

{|Dif |}

with r(R) = maxi=1,2 r(τi) and c(r(R)) some multiple of a power of
r(R).

The above results will be applied to the individual subintegrals in

(76) Ku(vi) =
ρ(vi)

π

·
n∑

k=1

∫
σ

G(vi, mk(s, t))u(mk(s, t))‖(Dsmk × Dtmk)(s, t)| dσ

with the role of f played by u(mk(s, t))|(Dsmk × Dtmk)(s, t)| and the
role of Φ played by G(vi, mk(s, t)). Before doing so, we need to examine
the growth of G(P, Q) as Q → P . We omit the proof as it is relatively
straightforward.

Lemma 3.5. Assume that S is a smooth C2 surface. Then

(77) |D2
QG(P, Q)| ≤ c

|P − Q|2 , P �= Q
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for all second order derivatives D2
Q with respect to Q.

Theorem 3.6. Assume the hypotheses of Theorem 3.1, with each
parameterization function Fj ∈ C4. Let α = 1/6, and assume the
triangulation of S satisfies (73). Assume u ∈ C3(S). Then

(78) max
1≤i≤3n

|u(vi) − ûn(vi)| ≤ c h3.

Proof. We omit the proof since it is very similar to that of the
following theorem.

We generally restrict our triangulations to be of a symmetric type,
which refers to the method of carrying out the refinement process.
When a parameterization triangle Δ̂k is refined, we divide it into four
new triangles by connecting the midpoints of the three sides. With
this, the number of triangles in a triangulation increases by a factor
of 4 with each refinement. More importantly, most of the triangles
can be grouped as parallelograms. More precisely, such a grouping will
contain all but O(

√
n) = O(h−1) of the triangles. More discussion of

this method of refinement is given in [3, 4] and [5].

Theorem 3.7. Assume the hypotheses of Theorem 3.1, with each
parameterization function Fj ∈ C5. Let α = 1/6, and assume u ∈
C4(S). Assume the triangulation Tn of S satisfies (73), and further
assume it is a symmetric triangulation. For those integrals in (76) for
which νi ∈ Δk, assume that all such integrals are evaluated with an
error O(h4). Then

(79) max
1≤i≤3n

|u(vi) − ûn(vi)| ≤ c h4| log h|.

Proof. Following (51), we bound

max
1≤i≤3n

|K(I − Pn)u(vi)|
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to prove (79). For a given node point vi, remove from Tn the triangle
Δ∗ which contains νi, calling the remaining triangulation T ∗

n . By
assumption, the error in evaluating the integral of (76) over Δ∗ will
be O(h4).

Divide the triangles in T ∗
n into two classes. Partition T ∗

n into
parallelograms (actually parallelograms in the parameterization plane)
to the maximum extant possible. Let T (1)

n denote the set of all triangles
making up such parallelograms, and let T (2)

n contain the remaining
triangles. It can be shown that the number of triangles in T (1)

n is O(n),
and the number of triangles in T (2)

n is O(
√

n). Moreover, all but a
finite number of the triangles in T (2)

n , bounded independent of n, will
be at a minimum distance ε > 0 from νi with ε independent of n and
i. Based on the decomposition (76), consider the error K(I −Pn)u(vi)
as composed of the errors over each of the triangles in T ∗

n .

Consider first the contributions to the error coming from triangles in
T (2)

n . Applying Lemma 3.2 or Corollary 3.4(a), the error over each
such triangle is O(h5‖D3u‖∞), based on each such triangle having
area proportional to O(h2). Since there are O(

√
n) = O(h−1) such

triangles in T ∗
n , the total error contributed from triangles in T (2)

n is
O(h4‖D3u‖∞).

Consider next the contributions to the error coming from triangles
in T (1)

n . We apply either Lemma 3.3 or Corollary 3.4(b). This yields
an error of size O(h4) multiplied times the integral over each such
parallelogram of the maximum of the second derivatives of K(νi, Q)
with respect to Q. Combining these, we will have a bound

c h4

∫
S\Δ∗

|νi − Q|−2 dSQ.

Using a local representation of the surface, and then using polar
coordinates to evaluate the integral, it can be shown to be of order
O(log h). Thus the error arising from considering the triangles in T (1)

n

is O(h4 log h).

Combining the errors arising from the integrals over Δ∗ and the
triangles in T (1)

n and T (2)
n , we have (79).

Some numerical examples to illustrate the error bound in (79) are
given in Section 5.
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4. Collocation on piecewise smooth surfaces. With S only
piecewise smooth, there are additional problems, some of which were
indicated following (21) in Section 2. On the practical side, there is
difficulty when evaluating the unit normal nP to the surface at points
P located on an edge or at a corner of S. In part, for that reason,
we consider only those collocation methods for which the collocation
points are not on an edge or at a corner of S. With this caveat, we
use the same basic numerical schemes as in Section 3. The difficulty
of handling the evaluation of the unit normal nP can be handled in
other ways; but our assumption simplifies the overall implementation
of the collocation method. The main result Theorem 3.1 is still valid
for most cases, but the method of proof must change. With S smooth,
the operator K is compact on C(S), and this was used crucially in the
proof of Theorem 3.1; but the lack of smoothness of G(P, Q) shown in
(21) implies K is no longer compact, nor is any power of it compact.

Use the same definitions for the triangulation of S and the definition
of the collocation method as that used in Section 3. Note that, for the
piecewise linear interpolation of (34), we now restrict the interpolation
parameter α to satisfy 0 < α < (1/3), to satisfy the restriction of
the last paragraph on the location of the collocation points. When
we prescribe that the function f ∈ Cr(S), we mean the following: (1)
f ∈ C(S); (2) With respect to the decomposition of S in (13) (14), the
restriction of f to Sj belongs to Cr(Sj), for each j = 1, . . . , J .

Theorem 4.1. Assume S is a piecewise smooth unoccluded surface
in R3, and assume S ⊂ Ŝ, with Ŝ the type of surface required in
Lemma 2.1. Assume the surface S satisfies (13) (14) with each Fj ∈
C3. For the interpolation method of (34), assume

(80) ‖Pn‖‖K‖ ≤ γ < 1, n ≥ n0

for some constant γ and some n0 > 0. The norm ‖Pn‖ is given in
(37), and a bound on ‖K‖ is given in (17). Then for all sufficiently
large n, say n ≥ n0, the operators I − PnK are invertible on X and
have uniformly bounded inverses. Moreover, for the true solution u of
(1) and the solution un of (41),

(81) ‖u − un‖∞ ≤ ‖(I − PnK)−1‖‖u − Pnu‖∞, n ≥ n0.
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Furthermore, if the emissivity E ∈ C2(S), then

(82) ‖u − un‖∞ ≤ O(h2), n ≥ n0.

Proof. The existence of (I −PnK)−1 and the proof of stability comes
immediately from the geometric series theorem and (80), and

‖(I − PnK)−1‖ ≤ 1
1 − ‖Pn‖‖K‖ ≤ 1

1 − γ
, n ≥ n0.

The remainder of the proof is straightforward and standard, and we
omit it.

In Section 3 there was superconvergence in the case that α = 1/6.
This is not true here, because

(83) ‖K(I − Pn)u‖∞ = O(h2)

in general. To see this, we consider only the example surface S =
Sxy ∪ Sxz of (20), and we use only special cases of u.

We first look at Ku(P ) for u ≡ 1; and we only look at a portion of
the integral. More precisely, consider P = (x, 0, z) = (ah, 0, bh) with
0 < a, b < 1, and consider the integral over only the portion [0, h]×[0, h]
of the integration region Sxy. Letting Q = (ξ, η, 0), we have the integral

Ih(a, b) ≡
∫ h

0

∫ h

0

zη dξ dη

[(x − ξ)2 + η2 + z2]2

=
∫ h

0

∫ h

0

bhη dξ dη

[(ah − ξ)2 + η2 + (bh)2]2
.

Change the variables of integration using

(84) ξ = sh, η = th, 0 ≤ s, t ≤ 1.

Then

Ih(a, b) =
∫ 1

0

∫ 1

0

bt ds dt

[(a − s)2 + t2 + b2]2
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and the value of this integral is given earlier in (22). Thus Ih(a, b) ≡
I(a, b) is independent of h.

Now consider the portion of K(I −Pn)u(P ) consisting of the integral
over [0, h] × [0, h] ⊂ Ssy, and call it eh(P ):

eh(x, 0, z) =
∫ h

0

∫ h

0

[u(ξ, η, 0) − (Pnu)(ξ, η, 0)]zη dξ dη

[(x − ξ)2 + η2 + z2]2
.

Using the change of (84),

(85) eh(ah, 0, bh) =
∫ 1

0

∫ 1

0

[u(sh, th, 0)− (Pnu)(sh, th, 0)]bt ds dt

[(a − s)2 + t2 + b2]2
.

Let u(ξ, η, 0) be a quadratic polynomial in ξ, η, say u = ξ2. Assume
[0, h]× [0, h] consists of two triangles (say, both containing the origin),
named Δ1 and Δ2. Then we can show

u(sh, th, 0) − (Pnu)(sh, th, 0) = h2qi(s, t), i = 1, 2

with each qi quadratic in s, t. Then

(86) eh(ah, 0, bh) = h2

∫ 1

0

∫ 1

0

q(s, t) bt ds dt

[(a − s)2 + t2 + b2]2

with q(s, t) = q1 or q2, depending on which triangle contains (s, t). This
effectively shows the asserted result (83), although an argument needs
to be made regarding the remaining part of K(I − Pn)u(P ) that does
not include eh(P ), to show it too goes to zero like O(h2) or faster.

4.1. Approximation of the boundary. If the boundary S is
curved rather than polyhedral, then it is convenient to approximate S
by interpolation, obtaining an approximate boundary Ŝ. This is then
used in the approximate calculation of the collocation integrals of (40),
using the interpolatory surface in the approximate calculation of the
Jacobian |(Dsmk×Dtmk)(s, t)| and the approximate calculation of the
unit normals nP and nQ. This is also commonly done with boundary
integral equations in potential theory, and an example can be found in
[5].
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Given a triangulation Tn = {Δn,k}, with mk : σ → Δn,k, it is typical
to approximate Δn,k by interpolating mk at an evenly spaced grid
on σ. For a discussion of this, see [4, Section 5.3]. Let m̃k be an
interpolatory approximation of mk of degree r. We let Δ̃n,k = m̃k(σ)
and S̃n = ∪n

1 Δ̃n,k. Generally, the interpolation is so chosen that
adjoining triangles Δn,k and Δn,l will have interpolates which also join
continuously.

It is straightforward that

(87) max
(s,t)∈σ

|mk(s, t) − m̃k(s, t)| = O(hr+1)

(88) max
(s,t)∈σ

|Dmk(s, t) − Dm̃k(s, t)| = O(hr)

for D = Ds and Dt. Let nk(s, t) denote the unit normal to Δn,k at
mk(s, t). It is easily computed from

nk(s, t) =
Dsmk(s, t) × Dtmk(s, t)
|Dsmk(s, t) × Dtmk(s, t)|

and it is approximated by

(89) ñk(s, t) =
Dsm̃k(s, t) × Dtm̃k(s, t)
|Dsm̃k(s, t) × Dtm̃k(s, t)|

It is straightforward that

(90) max
(s,t)∈σ

|nk(s, t) − ñk(s, t)| = O(hr).

The error bounds of (87) (90) are all uniform with respect to k and n.

Using S̃n, we approximate the linear system (40) by

(91)

ũn(vi) −
ρ(vi)

π

n∑
k=1

3∑
j=1

ũn(vk,j)
∫

σ

G(vi, m̃k(s, t)) lj(s, t)

· |(Dsm̃k × Dtm̃k)(s, t)| dσ = E(vi),
i = 1, . . . , 3n.
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The kernel G(vi, m̃k(s, t)) is based on using ñk(s, t) in place of nk(s, t)
in the definition (2). An error analysis can be based on regarding (91)
as a perturbation of (40). Doing so leads to the following convergence
result when S is a smooth surface.

Theorem 4.2. Assume the hypotheses of Theorem 3.1, with each
parameterization function Fj ∈ C5. Let α = 1/6, and assume u ∈
C4(S). Assume the triangulation Tn of S satisfies (73), and further
assume it is a symmetric triangulation. For those integrals in (91)
for which νi ∈ Δk, assume that all such integrals are evaluated with
an error O(h4). Then there is a unique and stable solution ũn to the
system (91), and for its error,

(92) max
1≤i≤3n

|u(vi) − ũn(vi)| ≤ c max{h4| log h|, hr}.

The proof is similar to that given in [5, Theorem 3.5], and we omit it
here. With smoother kernel functions which do not involve the normal
n to the surface, it is known that the use of the approximate surface
with quadratic interpolation (r = 2) will usually result in an error of
O(h4) or better, e.g., see [4, Section 5.4]. But here, the presence of nP

in the kernel G(P, Q) of (2) leads to part of the approximation error
containing |nP − ñP | = O(hr) with no possibility of cancellation due to
integration over S. Thus to retain the error of h4| log h| associated with
using the exact surface, it is necessary to use interpolation of degree 4
when approximating S using interpolation.

For piecewise smooth surfaces, the generalization of Theorem 4.1 to
using S̃n ≈ S leads to an error bound

(93) max
1≤i≤3n

|u(vi) − ũn(vi)| ≤ c hmin{2,r}.

This implies we should use quadratic interpolation to preserve the
order of convergence associated with solving on the exact surface. The
programs in the package [3] use quadratic interpolation to approximate
S , and thus this package will preserve the accuracy expected when
using piecewise linear collocation to solve the radiosity equation on a
piecewise smooth surface S.
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4.2. A preference for using α �= 0. If one uses α = 0 in defining
the piecewise linear interpolation of Section 3 and Section 4, then the
collocation solution un is continuous over S. However, if the surface
S is approximated and the normals are approximated as in (89), then
there is a problem in defining the normal at collocation points which are
common to more than one triangular face Δk. Moreover, if the surface
S is only piecewise continuous, then there is a necessity to define a
normal at edges of S, regardless of whether the surface is approximated
or not. All of these problems are avoided if we choose 0 < α < 1/3, so
that collocation points are interior to each triangular face. This greatly
simplifies the programming. If, later, we want to have the solution un

evaluated at points on nearer to an edge or on an edge of a triangular
face Δk, then the interpolation formula (39) can be used to obtain such
values.

5. Numerical examples. For the examples with a smooth surface,
we use a “two-piece surface.” Define

(94)
S1 = {(x, y, 0) | 0 ≤ x, y ≤ 1}

S
(p)
2 = {(x, y, z) | 0 ≤ x, y ≤ 1, z = 2 − xp}

and let S(p) = S1 ∪ S
(p)
2 . We use S(2) and S(3). In line with the proof

of Theorem 3.7 and the error bound (51),

max
1≤i≤3n

|u(vi) − un(vi)| ≤ c max
1≤i≤3n

|K(I − Pn)u(vi)|

we examine numerically the quantity

En(u) ≡ max
1≤i≤3n

|K(I − Pn)u(vi)|.

For the surface S(2), let

(95) u(x, y, z) =
1√

(x2 + y2 + (z − 0.5)2

In Table 1 we give En(u) for both α = 1/6 and α = 0.1. The true
value of Ku(P ) was obtained by an alternative numerical integration
method.
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TABLE 1. Discretization error En(U) on S(2).

α = (1/6) α = 0.1
n En(u) Ratio En(u) Ratio
4 1.48E−3 4.81E−3
16 1.17E−4 12.7 4.39E−4 11.0
64 1.06E−5 11.0 1.62E−4 2.7
256 7.18E−7 14.8 4.42E−5 3.7
1024 5.06E−8 14.2 1.13E−5 3.9

These results illustrate the superconvergence obtained when α = 1/6
is used in defining the linear interpolation scheme. The results for
α = 0.1 are consistent with a convergence rate of O(h2), predicted
by Theorem 3.1, and the results for α = 1/6 appear to agree with
a convergence rate of O(h4 log h), predicted by Theorem 3.7. The
slight slowdown for n = 1024 is due probably to integration errors
in computing some values of Ku(νi) or KPnu(νi), or it may represent
erratic progress towards the eventual ratio of 16.

TABLE 2. Error in solving radiosity equation on S(2).

α = 1
6 α = 0.1

n ‖u − un‖∞ Ratio ‖u − un‖∞ Ratio
4 1.39E−3 1.24E−2
16 2.90E−4 4.8 3.48E−3 3.6
64 2.93E−5 9.9 9.20E−4 3.8
256 2.10E−6 13.9 2.38E−4 3.9

We solve the radiosity equation (1) with the emissivity E(P ) so
chosen that the true solution is

(96) u(x, y, z) = x2 + y2 + z2.

The reflectivity ρ(P ) ≡ 1, and for solvability of (I − K)u = E, this is
okay since ‖K‖ < 1 due to the surface not being closed. The numerical
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results are given in Table 2, again for two values of α. The reader
should note that the collocation system (40) being solved has order 3n;
and it is for that reason that we did not go to a larger value of n. In
the table, we use

‖u − un‖∞ = max
1≤i≤3n

|u(vi) − un(vi)|.

Again, the numerical results are consistent with the theoretical results
of Theorems 3.1 and 3.7.

We want to illustrate the convergence result (92) for the effect of
using an approximate surface based on quadratic interpolation (r = 2).
In Table 3, we present both En(u) and ‖u − ũn‖∞ for the two-piece
surface S(3), with α = (1/6) and quadratic interpolation of the surface
in (91). We use the function u of (96). The results clearly show a
convergence rate of O(h2), which is consistent with (92).

TABLE 3. Errors with an approximate surface for S(3).

n En(u) Ratio ‖u − ũn‖∞ Ratio
4 2.17E−1 2.27E−1

16 3.26E−2 6.7 3.26E−2 7.0
64 1.09E−2 3.0 1.09E−2 3.0

256 2.80E−3 3.9 2.80E−3 3.9
1024 6.87E−4 4.1

As a very simple piecewise smooth surface, we use the unit cube,

S = [0, 1] × [0, 1] × [0, 1].

Again we use the function u of (96), and we choose α = 1/6. In Table 4,
we present both En(u) and ‖u − un‖∞. The reflectivity function is
ρ ≡ 0.5. It is expected that the ratios for ‖u − un‖∞ will approach 4
as n increases, as is more clearly the case for En(u). This is consistent
with a rate of convergence of O(h2), as predicted in Theorem 4.1.
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TABLE 4. Errors with the unit cube surface.

n En(u) Ratio ‖u − un‖∞ Ratio
12 4.29E−3 8.26E−3
48 1.04E−4 4.1 1.58E−3 5.2

192 1.80E−4 5.8 2.46E−4 6.4
768 4.26E−5 4.2

We also illustrate the convergence to be expected when the collocation
method is based on the centroid rule of (38). The problem being solved
is the same as when the surface is only piecewise smooth, and Table 5
contains the numerical results. Note that the linear system being solved
has order n, in contrast with that based on linear interpolation and
having order 3n. The error is clearly O(h), which is consistent with
piecewise constant interpolation. On a smooth surface with a smooth
unknown function u, one would expect O(h2), with a proof similar to
that given for Theorem 3.7. This is of special interest since much of the
literature on the radiosity equation (1) uses numerical methods based
on piecewise constant approximations.

TABLE 5. Errors with the centroid rule.

n ‖u − un‖∞ Ratio
12 9.12E−2
48 2.91E−2 3.1

192 1.50E−2 1.9
768 7.91E−3 1.9

5.1. Practical remarks. The numerical methods were imple-
mented by using the boundary element package described in [3]. This
required modifying some of the numerical integration subroutines, but
the main schema remained the same. In particular, the method for
calculating the collocation integrals∫

σ

G(vi, mk(s, t)) lj(s, t)|(Dsmk × Dtmk)(s, t)| dσ



THE RADIOSITY EQUATION 289

of (40) was the same. As the distance between the field point νi

and the triangular element Δk decreases, the kernel function G(νi, Q)
becomes more ill-behaved. To compensate for this, the complexity of
the integration was increased as νi approached Δk, so as to obtain about
equivalent accuracy for all such integrals. The details of this process
can be found in [3]. There are additional practical improvements which
can be made when implementing the linear collocation method of this
paper, but these will be left to a future paper dealing with the practical
implementation of our ideas.

6. Concluding remarks. In this paper we have attempted to
give some intuition on the use of collocation methods for solving the
radiosity equation. It has been done for the simplest of cases, that of
unoccluded surfaces. We so restricted it in order to make clearer the
behavior of the approximation methods being used. In addition, we
also wanted to show the difference in behavior between using smooth
surfaces and using piecewise smooth surfaces. These effects will also
make themselves known when using emissivity functions which are only
piecewise smooth, and we expect to handle this more formally in a
future paper. It should be inferred from the discussion near the end
of Section 2 that the unknown function u is likely to be somewhat
ill-behaved in the vicinity of edges and corners of a piecewise smooth
surface; and this may require some grading of the mesh to compensate
for this ill-behavior in u. We also will discuss in a future paper the more
important case of occluded surfaces, which is a much more interesting
case for real graphics applications.
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