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PROJECTION AND ITERATED PROJECTION METHODS
FOR NONLINEAR INTEGRAL EQUATIONS*

KENDALL E. ATKINSONt AND FLORIAN A. POTRAY
Dedicated to Werner C. Rheinboldt on the occasion of his 60th birthday.

Abstract. Consider the nonlinear operator equation x = J%(x) with ) a completely continuous mapping
of a domain in the Banach space & into &; and let x* denote an isolated fixed point of ¥. Let ¥, n=1,
denote a sequence of finite dimensional approximating subspaces, and let P, be a projection of £ onto Z,,.
The projection method for solving x = % (x) is given by x, = P, %(x,), and the iterated projection solution
is defined as X, = %(x,). We analyze the convergence of x, and X, to x*, giving a general analysis that
includes both the Galerkin and collocation methods. A more detailed analysis is then given for a large class
of Urysohn integral operators in one variable, showing the superconvergence of X, to x™*.

Key words. nonlinear integral equation, Galerkin method, collocation method
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1. Introduction. Consider the nonlinear operator equation
(1.1) x=H(x),

where % is a completely continuous operator defined on the closure D of an open
subset D of a Banach space Z. An example of such an operator ¥ is the Urysohn
integral operator

(1.2) f?[(x)(t)=J K(t,s,x(s))ds, teQ, xeD,
Q

with Q a closed bounded region in R™, some m = 1. It will be examined in more detail
in § 3. We are interested in the evaluation of fixed points x* of %, and we will investigate
the use of projection methods to approximate such fixed points.

For &, a finite dimensional approximating subspace of Z, let P, be a projection
of & onto &,. The projection method consists of solving

(1.3) x, = P,H(x,).

This method was analyzed in Krasnoselskii (1964, Chap. 3, § 3), and results on the
rate of convergence of {x,} to x* were obtained. We will give additional such results,
including improved convergence rates for some widely used subspaces Z,.

The iterated projection solution is defined by

(1.4) X, = H(x,).

When &%, is a Hilbert space and P, is an orthogonal projection, the sequence {X,}
always converges more rapidly than does {x,}, as shall be seen in § 2; and this is also
true for some other projection methods. We will give an analysis of the convergence
of {x,}, including results on uniform and pointwisé convergence.

Projection methods have been studied extensively, as is indicated in Krasnoselskii,
Vainikko et al. (1972) and Krasnoselskii and Zabreiko (1984, p. 327). We will generalize
to the nonlinear case the results of Chatelin and Lebbar (1984) for projection methods
for linear integral equations. This will include detailed convergence results for the use

* Received by the editors July 7, 1986; accepted for publication (in revised form) November 11, 1986.
This work was supported in part by National Science Foundation grant DMS-8503365.
t Department of Mathematics, University of Iowa, Iowa City, Iowa 52242.
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of spaces &, of piecewise polynomial functions, for both Galerkin and collocation
projection methods. In addition, we obtain estimates for the order of convergence of
the derivatives of the approximate solutions given by the iterated Galerkin and iterated
collocation methods. Related results in the linear case have been given by Sloan and
Thomée (1985).

Section 2 contains a general framework for the convergence analysis of projection
and iterated projection methods. Section 3 gives mapping properties for a class of
Urysohn integral operators, and § 4 gives preliminary approximation results for piece-
wise polynomial functions. The Galerkin method for Urysohn integral operators on
an interval ) =[a, b] is analyzed in § 5, and similar results for the collocation method
are given in § 6. Numerical examples are given in § 7.

Although projection methods are widely used, there are severe practical problems
in using them to solve nonlinear integral equations. In future papers we will discuss
modifications of these methods, to make them into more efficient and practical methods.

2. The projection and iterated projection method. We assume a slightly different
setting for J than indicated in the Introduction. Let & be a Banach space, and let ¥
be a closed subspace. Assume J is a completely continuous operator defined on D< Z,
D an open set, and assume the values % (x) € ¥ for all xe D. The main application
is to let Z=L"(Q), ¥ = C(Q), with Q a closed bounded region in R™, some m=1.

Let {Z,} be a sequence of finite dimensional subspaces of &, such that

(2.1) Inf |y—x||->0 as n—>oo forall ye%¥.
xXeZ,

Let {P,} be a sequence of projections associated with {Z,}:

(2.2) P ¥Xr—Z,, n=1.

onto
Assume that when restricted to @, the projections are uniformly bounded:

(2.3) sup | P,|¥[|=p <co.

By the principle of uniform boundedness, (2.1) and (2.3) are equivalent to assuming
(2.4) |P.y—y|->0 asn-ooforall ye%.
The projection method for solving (1.1) is
(2.5) X, = P,Jt(x,),
or equivalently,
(2.6) P,(x,—%(x,))=0, x, €Z,.

In the literature, the name ““Galerkin method” is used in the case P, is an orthogonal
projection. In case P, is an interpolation operator, (2.5) is called a collocation method.
For these methods applied to linear operator equations, see Atkinson (1976, Part II,
Chap. 2).

The iterated projection method is given by

(27) x~n =%(X,,).

It was first introduced by Ian Sloan for linear integral equations; for example, see
Sloan (1976). From (2.7), it is immediate that

(2.8) PoX, = Xy,
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and hence X, satisfies
(2.9) x, = H(P,X,).

An analysis of the existence and convergence of {X,} can be given using Atkinson
(1973) or Weiss (1974). Under suitable assumptions on % and the fixed point x*, it
can be shown that X, exists for all sufficiently large n. In addition,

(2.10) |x* =X, || = c|| H(x*) — H(Px*)|.
The convergence of {x,} will follow by using (2.8) to write
(2.11) x*—x,=[x*-Px*]1+P,[x*—X,].

Instead of using this approach, we will use one based on first considering the projection
solution x,,.

The following major result for the existence and convergence of {x,} is due to
Krasnoselskii.

THEOREM 2.1. Suppose that x* € D is a fixed point of nonzero index for . Then
for all sufficiently large n, the equation (2.5) has at least one solution x,, € Z,, N\ D such that
(2.12) limit ||x, —x*|| = 0.

Proof. See Krasnoselskii (1964, Chap. 3, § 3) or Krasnoselskii and Zabreiko (1984,
p.-326). O

To simplify the notation, we will suppose (2.5) has a solution x, for all n=1.

Assume ¥ (x) is Fréchet differentiable about x*, and let L =3"(x*). Define

_ 15 Ge) = 9 (x*) — LOe = x|

(2.13) '

[[2 = x|
From (2.12) and the definition of L,
(2.14) r,~»0 asn->o0,

In addition, assume %'(x) is Lipschitz continuous in some neighborhood V of x*:
(2.15) 19 C) = W)I=qllx—yl, xyeV

for some constant q. For example, g could be a bound on #"(x) over V, if the second
Fréchet derivative exists. Then easily,

(2.16) ra=3q|1%, — x*[;

for example, see Potra and Ptak (1984, p.21).

It is known that % being completely continuous implies that L = #'(x*) is compact
on Z (see Krasnoselskii and Zabreiko (1984, p.77)). Also, ¥ (D)< % implies
Range (L) < %. Using (2.4) with these facts, we have (see Atkinson (1976, pp. 53-54))

(2.17) a,=|(I-P,)L||>0 as n->c.
We will also need to consider the sequence

(2.18) boi= | L(I-P,)|¥].

It is uniformly bounded:

(2.19) b,=b, n=1;

and for some cases (for example, if & is a Hilbert space and P, is orthogonal), we
have b, >0 as n > 00, as will be seen later in Theorem 2.3.
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If 1 is not an eigenvalue of L, then (I— L)™' is a bounded operator on Z to Z.
(This will also imply that x* is of nonzero index as a fixed peint of % (see Krasnoselskii
(1964, p. 136)), and that x,, will be the unique solution of (2.5) within some sufficiently
small neighborhood of x*.) As further notation, let

a=|I-L||, c=|(I-D)"|, d=a".
THEOREM 2.2. If 1 is not an eigenvalue of L = %' (x*), then there are two nonnegative
sequences {¢e,}, {8,}, convergent to zero, such that
(2.20) d(1—g,)||Px*—x*|| = ||x* —x,[| = c(1+8,)| Px* —x*|.
Proof. Using the identity
(I = L)(xy —x*) = (P, = I) L(x, = x*) + (P, — I)x* + P,[# (x,) — #(x*) — L(x, —x*)],
and bounding from above and below, we obtain (2.20). The constants are given by

__clap+pr,) __d(a,+pr,)
" 1+d(a,+pr,)

n

“1-c(a,+pr,)

This result is given in Krasnoselskii and Zabreiko (1984, p. 326), without the values
of the constants being given. 0O

In the case that X, > x* more rapidly than x,, > x*, the constants ¢ and d in (2.20)
can be replaced by 1. This follows from (2.11). The result (2.20) shows that the speed
of convergence of x, to x* is exactly the same as that of P,x* to x*. Thus it does not
depend explicitly on %, but only on the approximation properties of &, and P,x™*.
(The convergence does depend on % implicitly, since the smoothness of x* depends
on the properties of ¥.)

The iterated Galerkin method in Hilbert spaces. Let & be a Hilbert space and let
P, be the orthogonal projection of Z onto &,. We will show that {X,} converges more
rapidly than {x,}. To this end, we introduce

(2.21) Sy =

We say the method is superconvergent if
s,~>0 as n->oo,

THEOREM 2.3. Assume that 1 is not an eigenvalue of L=3%"(x*). In addition, let
% be a Hilbert space and let P, be the orthogonal projection of & onto %,. Then X, is
superconvergent to x*; more precisely, for some constant s> 0,

(2.22) s, =s-Max{b,, r.},

and b, — 0, so that s,~ 0 as n—> .
Proof. By the orthogonality of P, and the argument of Sloan (1976, Thm. 1),

(2.23) n = (I = P,)*L*|| = (I = P,)L*| > 0.
For the convergence of X, to x*, use the identity
(I - L)(%, —x*) =[I = L(I = P) ][ H#(x,) = H(x*) = L(x, —x*)]
—L(I = P,)(L—I)(x, —x¥).
Multiplying by (I — L)™', and then bounding the right side, we find that
(2.24) 1%, = x*|| = e[(1+ b,) r,, + ab, || x, — x*|.
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Inequality (2.22) follows easily. Note that this latter inequality gives a bound for
| %, —x*||, showing the dependence on b, and r,. O
We have seen in (2.16), assuming (2.15), that

ra = O([lx, —x*[|) = O(|| P.x* — x*|)).

We will see that for integral operators with sufficiently smooth kernel functions that
b, = O(|| P,x* — x*||). Thus for such operators, we have

(2.25) [ X, —x*| = O(|| Pax* — x*[|*) = O(||x,, — x*|*).

This can make a dramatic difference in the convergence, as is illustrated with the
examples in § 7. Theorem 2.3 gives convergence in an L® sense; the applications to
Urysohn integral operators are left until later, following (2.32).

The iterated projection method in Banach spaces. Results on the uniform conver-
gence of the Galerkin method will follow from the results given here.

THEOREM 2.4. Assume Z is a Barach space, and assume 1 is not an eigenvalue of
L=3"(x*). Then {X,} is superconvergent if and only if

[LU = P)x*|

(2.26) e, =———"——50 asn->oo.
||(I_Pn)x*”

Moreover, in this case there is a constant § such that
(2.27) s, =5+ Max {a,b,, r,, e,}.
Proof. The following identity is easily verified:
(I - L)(X, —x*) =[1 = L(I = P,)][H(x,) — H(x*) — L(x, —x*)]

(2.28)
— L(I - P,)*L(x, — x*) = L(I - P,)x*.
Then
|%, — x*||= d || L(I = P)x*| — d[(1+b,)r, + a,b,]]x, — x*|.
Hence

s,=zdf,e,—d[(1+b,)r,+a,b,]

with f, = ||(I — P,)x*||/||x, — x*||. From Theorem 2.2, f, is bounded above and bounded
away from zero, as n—> 0. Thus if s, >0, which means {X,} is superconvergent; then
the convergence to zero of {r,} and {a,} implies that e, >0 as n—~> .

For the converse statement, use (2.28) to obtain

(2'29) ||')Zn _x*” = C[enf;, +(1 +bn)rn +anbn]||xn _X*H'

This will show that e, >0 implies 5,>0. 0O
COROLLARY 2.5. With the same hypothesis, there is § >0 such that

(230) ”in _x*” égA Max {a,,b,,, In, en}“an*_X*H'
Note that
(231) L= Pt

e, = =b,.
”(I - Pn)x*H
Then (2.27) implies (2.30).
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Urysohn integral operators. Let ) be a compact subset of R™ with nonempty
interior, or let it be a bounded, closed, piecewise smooth surface in R™. We will consider
the Urysohn operator

(2.32) f/{(x)(t)=J' K(t, s, x(s)) ds
Q

where the kernel K (¢, s, u) is a measurable function from Q X Q xR into R.

From Krasnoselskii et al. (1976) we can deduce various conditions on K which
will imply % is completely continuous on L*(Q) or L¥({}). The same reference also
contains various types of sufficient conditions for the Fréchet differentiability of . If
any of those conditions are satisfied, then the Fréchet derivative J’(x) is the linear
integral operator

(2.33) (H'(x)h)(1) =J-

2 K (1,5, x(s))h(s) ds.
ool

Let {Z,} be a sequence of finite dimensional subspaces of L*(Q), satisfying (2.1)
on a closed subspace ¥ of L*(Q), with ¥ containing the range of ¥#. Let P, be the
orthogonal projection of L*(Q) onto %,. Then the results in and following Theorem
2.3 will apply, and we obtain the superconvergence of the iterated Galerkin method
along with the associated error bounds in the L* norm.

However, as is often the case in numerical applications, we would like similar
results in the uniform norm. In order to apply Theorem 2.4 and its corollary, we must
estimate e, of (2.26) for the L™ norm.

We have L=%'(x*), given by (2.33). Let us denote

(2.34) 1(s) :(% K(t 5, x*(s)).

Then
ILL(I = P,)x*1(1)| = |((I = P,)x*, I,)]
=[((I=P)x*, (I=P)1,)|
=1 =P)x*[LIl(1 = P) L]
=[Meas (W)]77(|(1 = P)x*[|ll(1 = P) L.
It follows that
(2.35) e, =[Meas (Q)]"/? sup I(T=P)L|>.

Under certain mild smoothness assumptions on the kernel of Urysohn’s operator
%, the family {I,: t€ Q} is precompact in L*(Q2). From the pointwise convergence of
P,, it will then follow that e, ~>0 as n— oo, thus implying superconvergence of the
iterated Galerkin method in the uniform norm. In order to obtain bounds on the rate
of uniform convergence for the approximate x,, X, given by the Galerkin and iterated
Galerkin methods, we only have to estimate the rates of convergence to zero of
| P.x* — x*| 0, an, bn, €, and r,.

In §8 5 and 6, the above schema will be applied to the case Q=[0,1] and &, a
space of piecewise polynomial functions on some partition of Q. For &, a space of
piecewise polynomial functions of degree =r, we will show that

1 . 1
=%l = o(—) I~ %, = o(—)

provided the integrand K (s, t, u) is sufficiently smooth; see Theorems 5.2 and 6.1.
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The above schema can also be applied to multivariate problems, but that will be
deferred to another paper in which we look at discrete Galerkin methods (in analogy
with Atkinson and Bogomolny (1987) for linear integral equations).

3. Urysohn integral operators of class ¢,(a, v). In this and the following sections,
we will consider a special class of Urysohn integral operators

1
(3.1) .‘/{(x)(t)=J K(t, s, x(s)) ds.
0
A theory will be presented that closely parallels that of Chatelin and Lebbar (1984)
for linear integral equations.
Let @ and y be integers with a =y, « =0, y = —1. We will assume that the kernel
K has the following properties.
(G,) The partial derivative

K(t
(3.2) 11,5, u) = KL W
ou
exists for all (¢, s, u)e ¥=[0,1]%x[0, 1]XR.
(G,) Define

U, ={(t,s,u)|0=s=t=1,ucR},
U,={(t,s,u)|0=t=s=1,ucR}.
There are functions ;e C*(¥;), i=1, 2, with

ll(t,s, u), (t9 S, u)eq,l9 t;ésa
IZ(t, S, u), (ta S, u)e\IIZ'

(3.3) Iz, s,u)={

(G;) If y=0, then e C7(W). If y=—1, then | may have a discontinuity of the

first kind along the line s=t.

The class of kernels satisfying (G,)-(G;) will be denoted by %,(«, y). The assump-
tion that the variable u ranges over all of R can be weakened to having u belong to
abounded set; but then the arguments will be more complicated in their details, without
any essential difference in the form of the final results. If K € (e, v), then it is easily
shown that

(G4) There are two functions K;e C*(V¥;), i=1, 2, such that

Kl(t, S, u)a (ta S, u)eqila I#S,
KZ(t, S, u)a (ta S, u)e‘IIZ'

As additional notation, we will let L?=L”(0,1), 1=p=c0, and C*= C*[0, 1],
k=0. For x € C¥, define

3.4) K(1, s,u)={

k
el = 2 Ix®l,,  1=p=co.
i=

We will write || x|, for |x]|o-

THEOREM 3.1. Suppose that Urysohn’s operator (3.1) has a kernel K € 4,(a, vy).
Then

(a) X is a completely continuous operator from L into C”, for v=0,1,---,y,,
with y,=Min {y+1, a}.

(b) For a =1, % is a continuous operator from C” into C*™', v=0,1,---,a—1.

Proof. (i) We will first show (a) for y, =0.
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Let B, be the closed ball in L™, of radius a and centered at 0. Define
V.(a)={(t,s,u): (t,s,u) eV, |ul=a}, i=1,2.
Denote
M;=Max {|Ki(t, s, u)|: (t, s, u) e ¥;(a)},
M =Max {M,, M,}.

The function K; is uniformly continuous on ¥;(a). Thus for any £ >0, there is §;,>0
such that

(3.5)

(3.6) |Ki(t+At, s, u)— Ki(1, s, u)|§§

whenever (1, s, u), (t+At, s, u) € Q;(a) and |At| = §;. Take
5 =Min {8,, 8,, ¢/ (2M, +2M,)}.
Let xe€ B,, y =% (x). We wish to show y e C. Given £>0, if |At|=§, then

t—8

ly(t+At)—y(1)] éJ’ |K, (t+At, s, x(s5)) — K, (¢, s, x(5))| ds

0

3.7) +Jr+ |K(t+At, s, x(s))— K(t, s, x(s))| ds

-5

1

+J |Ks(t+At, s, x(5)) — Ky(t, s, x(s))| ds.
t+8

(For the endpoints t =0 and ¢t =1, we will have to suitably modify this argument.) The
sum of the first and third terms is majorized by (1—268)g/2.

For the second integral in (3.7), over [t—§, t+ 8], let At>0. The integral is
majorized by

J.t | K, (t+At, s, x(s))— K, (t, s, x(s))| ds
t+At
+J |K (t+At, s, x(s)) — Ky(t, 5, x(5))| ds

t+8
+J |Ky(t+At, s, x(s)) — Ky(t, s, x(s))| ds

t+At
€ €
§'2' 5+(M1+M2)At+5 (8 —At).

A similar estimate holds if A7 <0. Thus for |At| < §, we have
(3.3) ly(t+A)—y(1)|=e.

This shows that y = #(x) e C.
To show compactness of J, note that (3.8) shows that ¥ (B,) is an equicontinuous
family of functions. In addition, it is straightforward that

x€B,=||#(x)||=M.

Thus #(B,) is a precompact set, by the Arzela-Ascoli theorem.
The continuity of %, from L* into C, is easily proven from (G,) and (G,). Thus
% is completely continuous as an operator from L™ into C.
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(i) Consider now the case y,=1. Let x€ B,, y =% (x). We can then show that
ye C', with

(39) y'(1) =J

0 ot

VoK (1, s, x(s)) ds

. 0st=1.

The argument is much the same as in (i). In fact, the argument in (i) when applied to
(3.9) will show that % is completely continuous from L™ to C' (with norm | x|, =
[0+ 11| o)

The general case is obtained in a similar way, using

lVK
IR 5x(5) |

(3.10) y<")(t)=J , v=0,1,--, .

0 at”

(iii) To prove (b), consider y = —1, a = 1. The possibility that y=—1 requires us
to modify (3.9). For xe CN B,, let y=3%(x). Then we can show, much as in (i) or
(ii), that

(3.11) y'(t)= Jl %:;x(s)l ds+ K (t,t, x(t))— K,(t, t, x(1)).

Using this formula, we can easily prove that ¥ is a continuous operator from C into C'.
If y=—1, a=2, and xe C’, then

1,2
K
y"(,)=J 8__]_(_£t,.8’;—36(.8'))ds+2a it 6, x(1) ) 9Ks(8, 1 x(1)
0 at at ot

aKi(1, 1, x(t))+aK,~(t, t, x(1))
as du

_ -él (_1),»[ x’(t)].

This shows ¥ is continuous from C' into C?, and we have proven (b) for a =2. The
general case is obtained in a similar manner. 0O

CoROLLARY 3.2. Let K be of class %,(e, v), and consider the Urysohn integral
operator % of (3.1). Then if x* is a fixed point of ¥, we have x*<c C*.

4. The approximating subspaces #, , . For the Urysohn integral operator ¥ of
(3.1), we intend to apply the results of § 2, with =L and ¥ = C. In this section,
we will define the approximating subspaces and will give some results on their
approximation properties. The analysis of Galerkin’s method will be given in the
following section.

Let A" denote a partition of [0, 1]:

(4.1) 0=t <tW<---<tP=1.

Define 2, to be the set of functions that are polynomials of degree =r on each of
the subintervals [#{™), t"’]. The space P, , is a subspace of L, but not of C. For the

partition A, define
=6 -6, h™=Max h{",
B
q(n)= Max —

o h(n)‘
1=i,j=m, Ij

4.2)

We choose P,: L™ P, s to be the restriction to L™ of the orthogonal projection
of L? onto P, 5. We will assume that (2.1) and (2.3) (or equivalently (2.4)) are satisfied.
This will certainly be true if A" is quasiuniform, i.e.,

(4.3) Limit m, =00,  Sup ¢ <oo.

n-oo
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We note that (4.3) implies h” - 0 as n - c0. For more general conditions, see Giismann
(1980).

In order to simplify notation, we will omit the index n in denoting the partition
and its elements. Thus we will write A= A", t,= £, m=m,, h;=h{” h=h", q=q".
In addition, we will let A, =A™ =[t,_,, t;]. The dependence on n will be given by
retaining the notation P, for the projection and x, for the projection solution in (2.5).

The subspace 2, , is embedded in the space

CZ:{yELOO ylAie CV(Ai)a l: 1a Y m}'
For y e Cj, we will write y;,=y|A;,

”yl]l',p,A. = ]]yiHV,p’ "y”p,A, = ”yillo,pa lép =0
for 1=i=m, v=0. It is easily seen that for ze L™,

(Pnz)lAi = Pn,izi

where P,; is the orthogonal projection of L?*(A;) onto P, a,, the polynomials of degree
=ron A,

We generalize Theorem 3.1 to J acting on Cjy.

THEOREM 4.1. Assume K (s, t, u) is of class %,(a, v). Then the Urysohn operator
(3.1) is a continuous operator on Cy into CX+, v=0, with y,,,=Min{y+rv+2, a}.
(Note that y, was defined in Theorem 3.1.)

Proof. We first prove the case v =0. Let x€ C,, and set y = #(x). From Theorem
3.1, ye C" and

(4.4) O=pu=svy,.

ot ’

Y (1) = J 'K (5, x(9) 4

If a =1v,, the proof is finished.
Suppose a > y,, and let 0<t <1, t£A. Let us calculate the limit as At->0 of

t+At "
(4.5) ij':—m [:7 K(t+At s, x(s))——K(t s, x(s))]

Let At > 0. For At sufficiently small, (t — A¢, t) and (¢, t + At) do not contain any element
from A. Then (4.5) can be written as

[ I
EJ [at“’ K,(t+At, s, x(s))———K (t, s, x(s))]
+L t+At [ayl
At ™

Taking the limit as At >0, we obtain the value

K (t+At, s, x(s))——Kz(t s, X(S))]

87K1(t 1, X(t))——Kz(t 1, x(1)).
The same limit is obtained for At <0, as At->0.
This result can be combined with a proof such as that given in Theorem 3.1, to
show that y e CX*'. More explicitly, if t & A, then
at‘y P

(4.6) y"'“’(t)=‘[ o K(t,s,x(s)) ds— Z (- 1)‘—K(t t, x(1)).

By our assumptions on K, and K,, the values y(’l+”(t+0) and y"V (1 —0) will exist,
using limits in (4.6), for all ¢ € A. This completes the proof for the case v =0.
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The general case is obtained in a similar way. For example, if x€ Cj and if
y+3=a, then for t£ A, we have

- 1 ayl+2 a‘yl+1
y (1) = J pyea — = K(t,5,x(s))ds -2 Z (- 1)‘a > Ki(e, 1, x(1))

(4.7) .
v, +1 a'yl+l

K(t, t,x(1))+
(64 x5 o

-y (—1)"[ 2 K11, x(t))x’(t)]. 0

ds o™

In the remainder of this section, we give some approximating properties of 2, 5
which will be used in the proof of our main theorem, in § 5. First, we give a slight
improvement of Theorem 6 of Chatelin and Lebbar (1984). To obtain explicit estimates
of the constants appearing in the L? error bounds of the remainder, we approximate
fe C?[a, b] by its Taylor polynomial of degree B —1,

g-1 £()
(48) (7uN0 =T = =ay

j=0

where 8:=min {a, r+1}.
For 1<p<ooand 0=j<p, let g>1 satisfy 1/p+1/q = 1. Then define
N B-ji 1"
(4.9) c(B,j,p)= ”"[.—] .
PPIEP (B Dg+1

Also define
c(B,B,p)=1, 1=p=o,
c(B,j,1)=c(B,j,©)=1, 0=j=8.

Using this notation, we have the following proposition.
ProrosITION 4.2. If fe C%[a, b] and 1=p =00, then

(b—
(B

Proof. Using the integral form of the remainder, for 0=j<p,

(4.10)

(4.11) IfP = TNV, =c(Bjp) Ilf“”llp

f(j)(t) - f(j)(t) — (t _ S)B—J lf(B)(s) ds.
B

;
(B-j—-D!Ja
Let 1 <p <oo. Applying Holder’s inequality, this gives

) _ g £U) <w ’ ' (B~j~l)qd p/qd v
”f _"/Bf ”P=(B_]_1)! . a(t_S) S t .

Carry out the exact integration, and then simplify to get (4.11) and (4.9). The cases
p=1and p =0 are straightforward; and moreover ¢(B, j, p) approaches 1 as p—>1 or
co. The case j = is trivial, since then If*®'=0. 0O

Following Chatelin and Lebbar (1984), we obtain the following.

CoOROLLARY 4.3. Let {m,} be a sequence of projections from C, onto P, such that

Sup ”77n ”p <©
for some 1=p=co. Then there is a constant c, such that for any ge Cj,
(4.12) (1= m)gl, = h? g1,
where B =Min {a, r+1}.
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Suppose the Urysohn kernel K(t, s, u) is of class %,(e, v), and consider the
function

oK (1, s, x*(s))

(4.13) L(t,s)=1(s)= o

where x* is a fixed point of the Urysohn operator (3.1). Using Corollary 3.2, it follows
that [, belongs to the class ¥(a, y) defined in Chatelin and Lebbar (1984):

A function w:[0,1]x[0,1]~>C is of class 9¥(a, y) (with a=1y, a =0, y=-1) if
and only if :

wi(t, s), 0=s<t=1,
w(t, s)=
wy(t,s), O=st=s=1
withw, e C*({0=s=t=1}), w,e C*{0=t=s5=1})and we C”([0,1] %[0, 1]) for y =
0. In case y =—1, w may have a discontinuity of the first kind on {s = t}.
Let us denote
B =Min {a, r+1}, B, =Min{B, y+1}=Min{a, r+1, y+1},

(4.14)
B,=Min{B, y+2}=Min{a, r+1, y+2}.

Following Chatelin and Lebbar (1984), we have the following two results.
COROLLARY 4.4. Let we 4(a, y) and set w,(s)=w(t,s), 0=t,s=1. Let {m,} be
a sequence of projections as in Corollary 4.3. Then there are constants c,, c, such that

(I —m)will,=c,h? forall teA,
(I =7 )wll,=csh® for all te[0, 1]\A.

ProPOSITION 4.5. Let we 4(a, y) and set w,(s) = w(t, s). Let P, be the orthogonal
projection of C onto P, 5, n=1. Let xe C;. Then there are constants c', ¢" such that

I(I=P)x, w)|=c'h®,  teA,
(1= P)x, w)|=c"h?*P2, 1[0, 1\A.

5. The order of convergence of the Galerkin method. In thissection, we will establish
the order of convergence of the Galerkin and the iterated Galerkin methods for solving
x =J(x), where J is the Urysohn integral operator (3.1). To this end, we will apply
the results of § 2 with &, ¥, Z,, P, defined as in the beginning of § 4.

The Fréchet derivative of J at x is given by

1

(5.1) %’(X)g(t)=J I(t,5,x(s))g(s) ds

0

with I defined in (3.2). As before, we denote L=J3%"(x*), where x* is the fixed point
of & which we want to calculate. We have

(5.2) (Lg)(t)=(g I.)

where k, is defined in (4.13) and (-, ) denotes the inner product of L’ As in § 2, we
assume 1 is not an eigenvalue of L. Since L is compact, this means that (I — L)~ exists
and is bounded on &. Hence the operator

M=(I-L)"'L

is compact. In the proof of our main theorem, we will need the following result.
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LEMMA 5.1. There is a function my € 4(a, y) such that

(5.3) Mg(t)=(g, m,), uel?
where
(5.4) m,(s)=my(t,s), 0=s=1.

Proof. The existence of the function m, € L*([0,1]x[0, 1]) satisfying (5.3) follows
from Riesz and Sz.-Nagy (1955, p. 158). We must prove m, € 4(a, v).
For any x e L?, let y = Mx. Then Lx = (I—L)y. This implies that for any x € L

J‘1 L(t,s)x(s) ds = Jl [m*(t, s) ~J'1 L(t, v)my(v, s) dv]x(s) ds.

0 0 0

If we denote
(5‘5) m*s(t) = m*(ts S), l*s(t) = I*(ts S),

my satisfies the equation my, = Lmy + 1. It follows by a straightforward argument
that for any fixed s, 0=s=1,

(5.6) m,|[0, s]e C*[0, s], my|[s,1]€ C*[s, 1], my, e C".

Similarly, for any u e L? let w=M*u. Then L*u= (I — L*)w can be written as

J‘ l_*(t,s)u(t) dt=J‘ [m*(t,s)—J l—*(v,s)rﬁ*(t,v) dv]u(t)dt.

0

This leads to

m,(s) = Il L(v, s)m,(v) dv+1.(t,s).

By a similar argument to that for m,,, it follows that
(5.7) m,|[0, t]e C*[0, t], m,|[t,1]e C*[1, 1], m,eC”.

Combining (5.6) and (5.7) implies my, € 9(a, v). O

In order to obtain convenient estimates for the numbers r, of (2.13), we want the
Fréchet derivative of % in (3.1) to be Lipschitz continuous in a neighborhood V of
x* i.e., to satisfy (2.15). There are rather general sufficient conditions to ensure (2.15).
However, in order to simplify the presentation, we will assume the stronger condition

2
(5.8) a—Iiie Cc(¥,), i=1,2.

u
This guarantees that (2.15) is satisfied, in both L?> and L™ norms, where V can be any
bounded subset of L™. If K € ¥,(«, v) and satisfies (5.8), we will say that K is of class
%,(a, y). We now state our main result.

THEOREM 5.2. Assume K € 9,(a, y); and let x* be a fixed point of the Urysohn
operator ¥ of (3.1), with 1 not an eigenvalue of #'(x*). Then for n sufficiently large, the
Galerkin solution x, of (1.3) and the iterated Galerkin solution X, of (1.4), corresponding
to x*, will satisfy

(5.9) [|%, — x*||o = O(h*),

(5.10) 1%, — x*|| o= O(RP*P2),

(5.11) Sup |%,(t) — x*(t)] = O(h*?).
teA(")

Recall B =Min{a, r+1}, B,=Min{a, r+1, y+2}.
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Proof. From Corollaries 3.2 and 4.3, we have || P,x*—x*|.= O(h*); and using
Theorem 2.2, we have (5.9).
Applying (I— L)™' to (2.28), we get

X, —x*=[I+MP,][H(x,) — H(x*)— L(x, — x*)]
-M(I-P,)L(x,—x*)—M(I—P,)x*.
From (2.3) with ¥ = C, (2.13), (2.16), (5.9), (5.2) and (5.3), it follows that

(5.12)

(5.13) () —x*(t) =@ (1) + ¢, (1) + O(h*P),  0=t=1
with

(5.14) @n(t) = —((I = P,)L(x, —x*), m,),

(5.15) Yn(t) = = ((I = P,)x*, m,).

If we use Corollary 3.2 and Proposition 4.5, it follows that

(5.16) Sup 19 (0] = O(h***),  Sup I, ()] = O(h**).

To bound ¢,(t), begin with
(0= £ 1((1 = P)L(x, =), (1= P,)i)|

where the subscript j denotes that the inner product is over A; =[¢_,, ¢;]. In the sum,
use the Cauchy-Schwarz inequality to obtain

|¢n(t)] = ‘gl ]](I_Pn)L(xn _X*)”2,j”(1_Pn)mt]]Lj'

In this sum,
(X = P.) L(x, = x*)|12,; = B}?|(1 = P,) L(X, = x*) || o,
= h;”|(1 = P)L|| | %0 = x*||o
= ch}/zh‘s\“’.
The result ||(I — P,)L|| = O(h*) follows as in the proof of Chatelin and Lebbar (1984,
Cor. 8). Also, using the proof in Lemma 9 of the same paper, if t€ A;, then
_ O™, j#i,
]l(I—P’I)m'HZ.j={O(h:Bl+l/2)’ j=l.

If te A", then
I(T =P, = O™, j=1,---,n
When we combine these results,
Max |g, (1) = O(h** %)+ O(h***P*!) = O(hP 1" P),

0=r=1

(5.17) ,
Max |@, (1) = O(h***1).
teA'”

Combining (5.13), (5.16) and (5.17) proves (5.10) and (5.11). O

The above theorem shows that the sequence {X,} obtained via the iterated Galerkin
method converges faster to the solution of x=3%(x) than does the sequence {x,}
obtained from the original Galerkin method. This is further illustrated, sometimes
dramatically, in the numerical examples of § 7.
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In addition to the convergence of {x,} and {xX.}, it also turns out that the first ¥,
(see Theorem 4.1) derivatives of X, converge to the corresponding derivatives of x*.
Before giving a precise statement of this fact, note that

(5.18) X, e C"N Cg.
This follows from Theorems 3.1 and 4.1, the definition X, = %(x,), and the fact that

X, € Cy. Thus in general, ¥2(t) may not exist at the grid points (i.e. te A™).
Nonetheless, we will be able to prove that

(5.19) Max [£07(1) — x*2)(1)| = O(hP).

te[0,1\A
The other derivatives of X, (i.e. ¥*) with ¥2<v=a) may not converge to the corre-
sponding derivative of x*.

THEOREM 5.3. Assume the kernel of the Urysohn integral operator (3.1) is of class
(e, v). Then (5.19) holds for sufficiently large n. Moreover, for any 0sv=vy,,
(5.20) Sup |X.7(1) = x*(1)| = O(hP*P)

te[0,1]
with
Bz, =Min{r+1,a—v, y+2—v}.

Proof. (a) We first show (5.19). If y,=y,, then use (4.4) to examine x729(1) -
x*7(1); and if y,=y,+1, use (4.6). In the latter case let x = x* and x =x, in (4.6),
and then use the mean-value theorem to prove

|2 (1) = x* ()| = C||x, —x*||o= O(hP)

where
2 ANtk oMtk }
Cs=s Sup |——~ u -
igl {Q,(g du gtn™! Ql(g du ™

with a > Sup,, X, |«. In the case y, = 72, the proof is essentially the same.
(b) To show (5.20), fix a as above, let 0= v=1y,, and let & denote the Urysohn
integral operator with kernel 3°K /dt”. From (4.4),

(5.21) X0 = x* = KN (x,) = N (x*).

Since the kernel of ¥ is in %(a, ), it follows that the kernel of & is of class
%(a —v, y—v). In particular, & is Fréchet differentiable and its Fréchet derivative is
Lipschitz continuous in any bounded neighborhood of x* in L™. It follows that

(5.22) )'Eﬁ,’”—):*f”=J\f’(x*)(x,,—x*)+z,1
with
(5.23) Izallo = cllx, = x*(|% = O(n??).
Let us denote G = A'(x*). By a simple manipulation,
(5.24) G(x, —x*)= GP,(%,—x*)+ G(P, — I)x*.
By Theorem 5.2,
(5.25) 1GP. (%, = x*) |l = | GP, || | %, — x*| = O(h#*5:).

For the last term in (5.24), use (5.16) with L replaced by G. Then
|G(P, = I)x*|| o= O(hP*P2n),
Combining (5.22)-(5.25) proves (5.20). 0O
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6. The collocation method. In what follows, we make use of the notation introduced
in §§ 3 and 4. On each subinterval A, =[t,_,, ;], let the nodes {}},

(6.1) Lo <th<-o..<ri<y
denote the Gauss-Legendre nodes relative to A;. We define the projection operator
Q.:Cp~ P rnA
by having
Q..:.y=(Q.y)lA;, yeCy

be the polynomial of degree =r that interpolates y at the r+1 Gaussian points of
(6.1). We assume that the partitions A are such that

(6.2) Sup || Qu| Calleo <.
Let us consider the nonlinear equations

(6.3) y=J%(y),

(6.4) y=Qu(y),

(6.5) y=X(Qny),

with % the Urysohn operator of (3.1). As before, we assume x* is a solution of (6.3),
with 1 not an eigenvalue of L=5%"(x*). From (6.2) and Theorem 2.1, it follows that
for sufficiently large n, (6.4) has a solution y, that is unique within some fixed
neighborhood of x* and for which ||y, — x*||<— 0. Further, y, = #(y,) is a solution of
(6.5), and it will converge to x™* at least as rapidly as {y, }. The approximating equation
(6.4) is called the collocation method, and (6.5) is called the iterated collocation method.
The order of convergence of these methods is given by the following.

THEOREM 6.1. If the kernel of the Urysohn operator (3.1) is of class 4,(«a, v), then

(6.6) 1y = x*[lc = O(R?).

In addition, if a =r+1, then

(6.7) 72 = x*[lc = O(h*),

(63) Sup [5,(1) = x*(1)] = O(h*)

with

(6.9) w;=Min {a, 2r+2, r+y+3}, w,=Min {a, 2r+2}.

In proof, we will use some results from the preceding sections, as well as the
following results of Chatelin and Lebbar (1984). Let

n=a-r—1, B=Min{n,r+1}, B.=Min{B, y+2}.
Then also
w,=r+l+/§2, w2=r+1+ﬁ.
LeMmMA 6.2. For f,ge C(A)),
(6.10) ((I=Qu)g )i=((I-P,)f6"""g, v),

where P, is the orthogonal projection of § 5,

w(s)=T1 (s=7)),
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8"*'g(s) is the divided difference of g at {5, - -, 7., s} and (-,-); denotes the inner
product of L*(A,;).
COROLLARY 6.3. Let n be a nonnegative integer. If f€ C"(A;) and g C*(4,), then

(6.11) (1 = Qn)8 ) = ch" P fl oo.a I8l 51008 U
Proof of Theorem 6.1. From Corollaries 3.2 and 4.3,
(6.12) |x*— Qux*||lo=O(h*),  B=Min{a,r+1},

and then (6.6) follows from Theorem 2.2.
To examine y, — x*, take Q,, y,, y, in place of P,, x,, X, in the derivation of (5.13):

(6.13) Fa(t) = x*(£) = G, (1) + (1) + O(h?F)

with

(6.14) Ga()=((Qu=DL(y,—x%),m,), (1) =((Qu—D)x*, ).
If te A, then apply Corollaries 3.2 and 6.3 to obtain

(6.15) |((Qni = I)x*, )| = ch[***8,  teA

where c is independent of i and n. Using

(6'16) (x, }")=Z(X, y)i’
1
we deduce that
(6.17) Sup |, (1)| = h™1E.
telA

Now we want to bound ¢7(t) over [0,1]. Let t;_, <t <t For i # j, the bound in (6.15)
is still valid. For i =j, we must take account of the fact that m, € ¢”(4;). By carefully
bounding the quantities in

I((I - Qn,j)x*a 'ﬁt)jl = |((I - Pn,j)mt8r+IX*a Uj)jl
=|(1 _Pn,j)mt8r+IX*||2,Aj”(I - PnJ)Uj||2,A,

we can show, using Chatelin and Lebbar (1984, Lemma 9), that

(6.18) (X = Qu)x*, i,),| < ch ™'+,
Combining (6.18) with (6.16) and (6.15), i #j, we obtain
(6.19) sup |¢7,,(t)|§ch’“+‘§2.

1e[0,1]

We now consider the term ¢, (¢) in (6.14). By Lemma 6.2,

I(( = Qui) L(yn = x*), 1i,)i| = |((I = P i) m&" "' L(y, — x*), 0))
=||(I=Poi)m8 " L(yn — x*) |2, II(1 = Poi) Vil 2.4,
= chi ||y, — x*||o = ch"**P.

Using (6.16), we have
(6.20) | @n(t)| = ch™ 5.
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Combining (6.13), (6.17) and (6.20) yields (6.8); and combining (6.13), (6.19) and
(6.20) yields (6.7). O
Concerning the convergence of the derivatives of y,, we have the following result.
THEOREM 6.4. Assume that the kernel of the Urysohn integral operator (3.1) is of
class 4,(a,vy). Then y,€ C""N C3, and

(6.21) 179 = x*P| o= 0(h?), v=1,3,---

s s Y2
In addition, if e Zr+1, then
(6.22) 179 = x**| o= 0O(hr), O0=v=a
where

A=Min{a—r—1,y+1}, @, =r+1+5,,,
gz,y=Min{a—r—l—v, y—v+2}.

Proof. The proof of (6.21) is exactly the same as that given for (5.19) in Theorem
5.3. To prove (6.22), we also follow the proof of Theorem 5.3. Use (5.22)-(5.24), with
X, X,, P, replaced by y,, y,, Q., respectively. Then

(6.23) F = x* = G(y, —x*) + z,, G =N'(x*),
(6.24) Izalleo = cllyn = x*|% = O(h?#),

(6.25) G(yn —x*) = GQ, (¥, —x*)+ G(Q, — I)x*.
From (6.7),

(6.26) 1GQu (¥ = x™) || = O(h*).

The linear integral operator G = /'(x*) has the kernel function

_3"I(t, s, x*(s))
g(ta S)— at,, .

From the assumptions on K, it follows that g(t, s) is the Chatelin and Lebbar class
9(a —v, y—v). For the last term in (6.25), we have

1G(Qn—I)x*|| Sup |((Qn = D)x*, g/)|-

o=t=

From the derivation used to obtain (6.19), we have

(6.27) 1G(Qu = I)x*|lco= ch™*'*P2s
with
(6.28) B.,=Min{a—v—r—1,r+1,y—r+2}.

Combine (6.23)-(6.28) to conclude the proof of (6.22). 0O

7. Numerical examples. We illustrate the convergence results that were given in
Theorem 5.2 for the Galerkin and iterated Galerkin methods. We give results for two
integral equations.

Our first equation is

g
(7.1) x(t)=LTsx(s)+y(t), 0=r=1
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where y is so chosen that
1

8 c>0
t+c

(7.2) x*(t)=
is a solution of (7.1). The function K is given by

1
K(t s =—+y(1).
(1,8, u) = ————+ (1)
In this case, the constants a and y can be chosen as large as desired. Therefore the
constants of (4.14) are given by

B=B1=B>=r+1.
From Theorem 5.2,
(7.3) [x* = x,[lo=O(h"™"), [x%* = %, [l = O(h¥*2).

The results for ¢=1 are given in Tables 1 and 2, for degrees r=1 and r=2. The
analogous results for ¢ =.1 are given in Tables 3 and 4. The latter are worse because
x* becomes more ill behaved as ¢— 0. In both cases, the rates predicted by (7.3) are
confirmed approximately by the numerical results. Of special note is the great improve-
ment in accuracy given by the iterated Galerkin solution X, over that of the Galerkin
solution x,,. We will let n denote the number of (equal) subdivisions of [0, 1], as given
in (4.1). The number of equations used in solving for X, is denoted by n,; and h=1/n.

TABLE 1
x*=1/(t+1); r=1.
n n, lx* = x, [l Ratio |x* =%, Ratio
2 4 2.51E-2 4.02E-6
4 8 7.92E-3 ;;Z) 7.83E—7 1;';3
8 16 2.26E-3 3‘74 5.88E—8 15‘4
16 32 6.05E -4 ’ 3.82E-9 ’
TABLE 2
x*=1/(t+1); r=2.
n n, [x*=x, Ratio lx* =%, | Ratio
2 6 3.03E-3 1.05E-6
4 12 S.28E—4 2;‘; 1.86E -8 22?
8 24 7.96E 5 7'24 2.90E-10 63‘3
16 48 1.10E-5 ’ 4.58E—12 ’
TABLE 3
x*¥*=1/(t+.1), r=1.
n n, [[x*=x, [l Ratio Ix* =%, ]l Ratio
2 4 3.36 1.12E-2
4 8 1.93 ;Z; 1.19E-3 12':1
8 16 910 2'58 8.95E-5 14'9
16 32 353 ’ S.99E—-6 ’
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TABLE 4
x*¥*=1/(t+.1); r=2.

n n, lx* = x, |lo Ratio lx* = %, |l Ratio
2 6 1.65 1.69E -3
4 12 .688 i?g 794E -5 g;i
8 24 216 4'24 2.18E—-6 49'7
16 48 .0509 . 439E-8 ’

There are integrals in setting up the nonlinear system for x, = P,K(x,) and in
evaluating X,. These integrals were evaluated numerically to high accuracy, to imitate
exact integration. In a later paper, we will consider the effects of approximate
integration.

Our second example is

(7.4) x(t)= Jl G(t, s)[f(s, x(s))+z(s)] ds,
[ =(=p)s, sS=t,

(75) GG, S)_{—(l—s)t, t=<s

with z(s) so chosen that

(7.6) x*(t)=£(t—1_;——c—tl, c>0

The integral equation (7.4) is a reformulation of the boundary value problem

x"(t)=f(t, x(1))+z(2), 0<t<i,

7.7
77 x(0)=x(1)=0.

We consider the particular example

(7.8) f(t,u)=1+t+u.

For this equation, y =0 and « can be chosen as large as desired. From (4.14), for r=1,

ﬁ=r+1’ BIZI, ﬁ2=2~
From Theorem 5.2,

|IX*-xn||oo=O(hr+l), le*_i’nllw:O(h’-H),

(79) o4 2r+2
E,=Max |x*(1) = %,(1)] = O(h”"™)
teA™”

The set A™ is given by {i/n: 0=i=n}.

The results for ¢ =2 are given in Tables 5 and 6 for degrees r =1 and r=2; and
the analogous results for ¢ = .4 are given in Tables 7 and 8. The rates (7.9) are confirmed
approximately by the numerical results; and again, the iterate X, is a great improvement
over X,.
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TABLE §
x¥=t(1-1)/(t+2); r=1.
n [|x*=x,| Ratio |x* - %, |l Ratio E, Ratio
2 2.37E-2 1.13E—-4 2.76E-5
4 6.77E—-3 ;;g 1.05E-5 ;22 2.52E-6 :‘1‘(2)
8 1.81E-3 3.85 7.98E—-17 14.6 1.78E-7 15'3
16 4.70E-4 ’ S47TE-8 : 1.16E—8 ’
TABLE 6
x¥*=t(1-1)/(t+2); r=2.
n lx* = x| Ratio flx* = %, [l Ratio E, Ratio
2 1.58E-3 291E-6 411E-7
4 2.39E—-4 '61241 1.23E-7 ;3; 1.20E-8 i:?
8 330E-5 7‘60 4.43E-9 29'9 2.22E-10 60.7
16 4.34E-6 ’ 1.48E—-10 : 3.66E—12 ’
TABLE 7
x*=t(1-1)/(t+.4); r=1.
n [Ix* = x| Ratio [[x* =%, |0 Ratio E, Ratio
2 1.27E-1 391E-4 1.10E—-4
4 495E-2 §(5)471 S.77E-5 g;i 2.03E-5 1(5)':2
8 1.63E-2 3'42 6.17E—6 11'9 1.98E—-6 13'0
16 4.77E-3 3.67 5S17E-17 13.8 1.52E-7 15'2
32 1.30E-3 ’ 3.75E-8 ’ 1.00E -8 ’
TABLE 8
x*=t(1—1t)/(t+.4); r=2.
n [lx* = x, || Ratio [lx* = %, |loo Ratio E, Ratio
2 3.02E-2 3.84E-5 8.40E-6
4 7.12E-3 ‘5‘53 3.03E-6 :;Z 6.92E—-7 ;;;
8 1.32E-3 6‘38 1.63E-7 23'9 2.40E-8 45'5
16 2.07E—-4 7-06 6.82E—9 27.6 5.57TE-10 56.2
32 293E-5 ’ 247E-10 ’ 9.32E—-12 ’

These examples were computed on a PRIME 850 (in double precision) and on
the CRAY X-MP (in single precision). The PRIME is located at the University of
Iowa, and the CRAY X-MP at the University of Illinois.
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