AUTOMATIC BOUNDARY INTEGRAL EQUATION PROGRAMS FOR
THE PLANAR LAPLACE EQUATION

KENDALL ATKINSON* AND YOUNGMOK JEON'

Abstract. Algorithms with automatic error control are described for the solution of Laplace’s
equation on both interior and exterior regions, with both Dirichlet and Neumann boundary conditions.
The algorithms are based on standard reformulations of each boundary value problem as a boundary
integral equation of the second kind. The Nystrém method is used to solve the integral equations,
and convergence of arbitrary high order is observed when the boundary data is analytic. The Kelvin
transformation is introduced to allow a simple conversion between internal and external problems. Two
Fortran program implementations, DRCHLT and NEUMAN, are defined, analyzed, and illustrated.
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1. Introduction. This paper presents two programs with automatic error control
for solving Laplace’s equation in two dimensions. The programs are based on solving
standard boundary integral equation (BIE) reformulations of various boundary value
problems. Let (2 denote a bounded simply connected planar region with a smooth
boundary I'. The programs treat both the Dirichlet and Neumann problems, for both
interior and exterior regions, for such regions ).

We use standard BIE reformulations of Laplace’s equation, and the numerical meth-
ods are also quite standard. The programs are of interest in that they are automatic
in selecting various problem parameters so as to ensure a requested error tolerance.
Moreover, we believe the programs are robust and relatively efficient, especially when
the requested error tolerances are small or when the region €2 is not convex and has
a complicated boundary. The NAG library [8] contains a routine DOSEAF for using
boundary integral representations to solve Laplace’s equation. That program requires
the user to specify the discretization parameter, and it does not contain any means to
estimate the error in the computed solution, in contrast to our codes. For that reason,
we have not included any numerical comparisons with DOSEAF. Our codes, however,
are restricted to smooth boundaries I, which is not a restriction with the NAG routine.

In §2, we review the reformulation of the interior Dirichlet problem and the exterior
Neumann problems as boundary integral equations; and we describe the numerical
method used to solve these BIE. In §3, this work is extended to the exterior Dirichlet and
interior Neumann problems, by means of applying a Kelvin transformation to convert
the problems to those treated in §2. In §4, we describe the algorithms DRCHLT for the
solution of the Dirichlet problem and NEUMAN for the Neumann problem. Numerical
examples which explore the behaviour of the algorithms are given in §5. We note
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particularly the numerical example for the “amoeba” boundary of Figure 2, as it is a
region which would give a great deal of trouble to finite element and finite difference
codes.

2. The Interior Dirichlet and Exterior Neumann Problems. The material
of this and the following section is well-known, and the reader can find an extensive
development of it in [4, Chap. 7], Kress [5], or in a number of other texts on boundary
integral equations. Consider first the interior Dirichlet problem

Au(4) = 0, AeQ

(1) j
u(P) = f(P), Pel

and assume that I" has a parameterization which is at least twice continuously differ-
entiable. Represent u as a double layer potential

@) u() = = [ Q)5 loglA— @ dSo, 49

in which ng is the outward unit normal at () € I'. Then p satisfies the uniquely solvable
integral equation

(3) ~np(P) = [ (@) og P~ QlldSg = S(P). P eT

Parameterize I" by r(t) = (x(¢),y(t)), 0 <t < 27w, where we assume |r'(t)| # 0 for all .
Rewrite (3) as

(@) -ﬂmﬂ—AFM$K@Q$=f@,O§t§%

In this, we have identified p(r(¢)) with p(t), for simplicity. For the kernel function,

Vi) ols) — 2]~ (5) i) — (D),
@ Kt =4 0 20 b =)
Y (1) (1) — 2" () (¢) .
20+ Y (@)

With the assumption that r(¢) is at least twice continuously differentiable, the kernel
function K (¢, s) is continuous; and for r € C9*2) it follows that K € C'? with respect to
all partial derivatives of K. We write (4) symbolically as

(- =K)p=7f

The most efficient way to solve (4) is to use the Nystrom method with the rectangle
rule. This is because the integral in (4) is periodic in s with period 27, and for such
cases, the rectangle rule (or equivalently the trapezoidal rule, due to periodicity) is
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a very rapidly convergent method. For example, if g belongs to the Sobolev space
H?[0, 2] for some 8 > %, and if g is periodic on [0, 27], then

(6)

= lglys, n>1

/%g(s) ds—hig(sj) < VATC(25)

with h =27 /n, s; = jh for j = 1,...,n, and ((¢) the Riemann Zeta function.
The Nystrom approximation of (4) is given by

(7) —mpa(t) — hZK(t, §1)Pn(s5) = (1), 0<t<2m

We write this symbolically as

(_ﬂ' - K:n) Pn = f

with the numerical integral operator K, defined implicitly by (7). The equation (7) is
equivalent in solvability to the linear system

(8) —rpu(s:) = B S K(siy 55)pa(s;) = f(s5), i=1,.m
j=1
The equivalence of these two formulas is given by the Nystrom interpolation formula
1 n
(9) pu(t) = —= [f(O) + B> K(t,s;)pals;)|, 0<t<2m

™
i=1

enabling one to extend the solution {p,(s;)} of (8) to p,(s) for general s. The equivalence
is discussed in [4, p. 101]. We write (8) symbolically as

(10) (=7 — Ku) p,, = f0, Pp.fn € R

By standard error analysis results (e.g. see [4, Chap. 4]), the operators —m — K,
are invertible for all sufficiently large n, say n > ng, and their inverses are uniformly
bounded. Moreover,

(11) lp = pulloo < || (=7 = Ka) | 1Ko = Kapllo s 7210

Thus the smoother the curve and the smoother the data f, the faster the uniform
convergence of p, to p. Precise bounds can be obtained from either (6) or the Euler-
MacLaurin formula (cf. [3, p. 285]). Using the latter, we have the following result. Let
I" be (g + 2)-times differentiable, let p € C?(I"), and let 7 = min {p, ¢}. Then

_ L ,m
(12) lo = pnlloe < — 157
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for some ¢ independent of n and r. By differentiating the equations (4) and (7) with

respect to £, we can also obtain bounds on the rate of convergence of pgc) to pk):

(k) (k)

— ., k=1,.,r-1

Hp ||oo S nr k }

for some ¢, independent of n.
To solve approximately the Dirichlet problem (1), introduce the approximating
potential

(13) n(4) == [ 2@ losl4-QlldSe, A€

Using the parameterization of I', rewrite this as

(14) iy (A) = — /0 " pn(s)Ka(s)ds, A€

0
Ka(s) = |r'(s)] g [log [A — Q|] o
Q=r(s

The function u,, is harmonic on 2. To look at the error v — u,, note first that by the
maximum principle,

(15) [u(A) = un(A)] < max |u(P) — un(P)]

PeT

Let A— P €T in (13) and then subtract from (3) to obtain

—n[o(P) = pu(P)] — [ 19(Q) — pu(@Q) % llog |P — Q[] dSg
=u(P) —u,(P), PeTl
Then

max [u(P) = un(P)] < (7 +[[K[]) [lp = pullo

When combined with (15),
(16) u(A) —un(A) < (m + KD lp = pulle, A€

If the region 2 is convex, then ||| = 7 and the bound simplifies further. In the
program, we use the approximation

2w
IIK|| = mgx/o |K(t,s)| ds = h max Z |K (s4, 55)]

1<i<n



It is not difficult to see that K 4(s) is very peaked for A near to I', with the maximum
peaking occurring at the point of I nearest to A. For that reason, we use a standard
integral identity to write

(17) Un(A) = —2mpy (%) — / " [0u(s) = puls7) Ka(s)ds, A€

with s* chosen to approximately minimize |r(s) — A|. This new integral is slightly better
in terms of its behaviour for s near to s*. This is a standard technique, long used to
reduce the effect of the peak in K,(s).

To evaluate (17), we again use the rectangle rule, say with m nodes:

(18) Un,m(A) = —=2mpy (s nz [Pn(95) = pn(s")] K a(o;)

with n = 27/m, 0; = jn, j = 1,2,...,m. In our program, we begin with n = ny = 16,
doubling as needed. The values of m begin with m = mgy = 32; and m is doubled
as needed. When m exceeds n, the Nystrom formula (9) is used to extend p, to new
argument values; and these are saved for possible use with other points A. The size of
m is limited by the size of the workspace given to the subroutine DRCHLT.
For the total error in u, ,(A),
u(A) = tnm(A)| < Ju(A) = un(A)] + [un(A) = tnm(A)]

_ {n (r+ IK]) + — }Hp” oo

In this, the bound on |u,(A) — Upm(A)| comes from [6], with

(19)

d = min |[A — P|

Pel

The power of ¢ in the denominator would be one greater if (13) had been used rather
than (17).

2.1. The exterior Neumann problem. Consider the exterior Neumann prob-
lem

Au(A) = 0, AeQ,
Ou(P)

(20) 5 — = g(P), PeTl

u(A) — 0 as |A| — oo

in which Q, = R? /ﬁ Again, np is directed into €2,. Note that in the exterior Neumann
problem,

(21) u(A) > 0as |[Al 200 & /
)

T

3np



For details, see Kress [5].
Represent the solution u of (20) as a single layer potential,

(22) u(4) = = [ ¥(Q)logl A~ QldSq, A€,

By standard arguments, v satisfies the equation

(23) ~mu(P) - [ w(Q)5- llog|P~ QldSg =g(P), PeT
Using the parameterization r(t) = (z(¢),y(t)) for I', (23) becomes

(24) —mip(t) — " Y(s)Ke(t,s)ds=g(t), 0<t<2r

0

For the kernel function,

V() [2(s) = 2(0) = 'O ) ~ y(®)] VTPV,

K(t,s) = [z(s) — (t)]2+ y(s) — ?J(t)]2 CU'(t)Q-i-y’(t)?’
y"(t)z'(t) — 2" (t)y'(t) .
2[2'(¢)> +y'(t)?]

The integral equation (24) is solved in the same manner as earlier with the interior
Dirichlet problem, resulting in an approximation ,,; and the error bounds and rates of
convergence are also as before. For the approximation of u, introduce

(25) iy (A) = —/Fwn(Q) log|A—Q|dSg, A€ Q.

Using the parameterization of I', we write

(26) un(A) = —/0 ' Un(s)Ke,a(s)ds, A€ Q.

Ke,a(s) = |r'(s)[ log |[A — x(s)]

Using the maximum principle and arguing as before,
@) [ul4) = unA)] < 6 = dullsup [ llog|P - QdSq, A€,
per Jr
We approximate u,,(A) by ¢y ,(A), much as before in (18):
(28) Un,m(A) = —UZ%(UJ')Ke,A(Uj), A€
j=1
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The error bound for |u(A) — u,,(A)| is exactly the same as that in (19) for the ap-
proximation of the double layer potential, with p replace by ¥ and with other choices
for ¢ and ¢.

For the case that P € T, we must use an alternative to (28). Rewrite (26) as

(29) Un(r(t)) = TAY, (1) — RUu(t), 0<t<2rm

In this, we write Jn (t) = Y (2) ()],

1 27
Ap(t) = ——/0 log

™

2¢ % sin (t g 8) ‘ v(s)ds

r(t) —r(s)
%% sin (t 3 i

27
Ro(t) = / log
0

) o(s)ds = /027r R(t, s)p(s)ds

It is well-known that A : HP(O,Q’]T) Hp+1(0 27) for these Sobolev spaces, with

onto

p > 0. Moreover,

(30) A ( Z akeikt) = Zie’kt, k* = max {1, |k|}

k=—00 k=—o

Also, the kernel of R is smooth; and for r € C9t!, the kernel is in C?, ¢ > 0, with respect
to both s and t. We combine these results to give an accurate means of numerically
approximating u, in (29). N

Let [ be an even integer, and let 7; = 2mj/l, j =1,...,1. Let 9,,(t) be the Fourier
approximation of degree (/2 for 1, (t) given by

1/2

1) Bul) = 30 afe, = z% e

k=—1/2

Then we approximate u,(r(t)) by

(32) Un i (2(8)) = T A1 () — Rontn (t)
lezn (t) =1 Z Jn (O-j)R(tv Oj)

recalling the definitions of  and {0} from (18). The term At (t) is calculated from
(30).



As in the analysis of the error for the Dirichlet problem, assume r € C92 and
g € C?, and let » = min {p, ¢}. For the error in 1, ;(?),

HJ_Jn,l ~ S H"Z_Jn OO+ Jn_{[n,l‘oo
< &g @%ﬂ)%w
n o] l [e'e}

with the Fourier approximation error bound based on standard results (e.g. see [3, p.
180]). Also,

< 8o+ L
n o0 m [e's)

Returning to the analysis of the Nystrom method, it is straightforward to show that

|

and we omit the proof. Combining these results, we have

o

<cs H{ﬁvm

o0

() =t (Do < || A0 = At + RS = Rt
(33) < ce crlogl cg ~
< {—+ +—}Hﬁ)

o

n’ Ir mr 00

For smooth curves I' and smooth data g, the covergence will be quite rapid. The
coefficients {ain’l)} can be evaluated quite rapidly with a FF'T, which we have incorpo-
rated into our code. The routine used is DRFFT from Swarztrauber [10] with a minor
modification.

The above approximations for solving (20) are incorporated into the program NEU-
MAN. This and DRCHLT are discussed in §4, including a description the error predic-
tion mechanisms.

3. The Exterior Dirichlet and Interior Neumann Problems. We begin by
introducing the Kelvin transformation, and we use it to reformulate the exterior Dirich-
let and interior Neumann problems as interior Dirichlet and exterior Neumann problems,

respectively. Define 7 : R?/{(0,0)} — R?/{(0,0)} by
(34) Tay) = @D =(55), =+

Also introduce 72 = 72 + 72, and note that 77 = 1. In addition, define the Kelvin
transformation of a function u by

(35) uz,y) = u(z,y),  (@9) =T(zy)



Assume € contains the origin (0,0), and define

Q={(Z7) =Ty | (z,y) €}

and T is the boundary of Q.
Introduce the exterior Dirichlet problem:

Au(A) = 0, A€,
(36) uw(P) = f(P), Pel
u(4) — C as |A| — oo
with C a given constant. Also introduce the interior Neumann problem

Au(4) = 0, Ae€Q

(37) %ﬁm — ¢(P), PeT
u(0,0) = 0

As is well-known, this has a unique solution provided that

(38) / 9(Q) dSg =0

All solutions without the restriction «(0,0) = 0 are obtained by merely adding an
arbitrary constant to the given solution u of (37). We reformulate these boundary
value problems using (35).

The exterior problem (36) is equivalent to the following interior problem: find u
such that

Au(4) = 0, A€,
(39) uwP) = f(T'P), Pel
u(0,0) = C

The interior Neumann problem (37) is equivalent to the following exterior problem: find
u such that

Au(A) = o, Aeq
du(P) 1~ =
- = P), Pel
(10) e So(T1P), Pe
u(A) — 0 as ‘g‘ — 00

The proofs are omitted as this is standard material; see [4, §7.1].

We can now solve the problems (36) and (37) by applying the methods of the
preceding section. This reformulation process is incorporated into the codes DRCHLT
and NEUMAN.
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4. Numerical Algorithms. Many of the ideas are the same for both DRCHLT
and NEUMAN, and we choose to introduce them for only DRCHLT. Later in the section,
we discuss the differences which occur in NEUMAN. We also discuss the problems (1)
and (20) of §2, as those in §3 follow easily by applying the Kelvin transformation. The
programs are written in double precision in Fortran 77, but are compatible with Fortran
90.

In DRCHLT, we first call INTEQN to generate the density function p,, of (7); and
we call EVALU to evaluate u,, ,, from (18). Summary outlines of INTEQN and EVALU
are given later in §4.1. In INTEQN, we set up and solve the linear system (8), using
LAPACK routines [1] for the Gaussian elimination. We could have used an iterative
technique to solve the linear system, but the systems being used are of such size that
it is both simpler and equally fast to just use a direct method of solution.

The stopping criteria for INTEQN for the current values of n and p, is based on
the estimate

(41) EST = cond(m + K,,) (m + || K||)

5
1= P~ Pimll
for the right side of the error bound (16). This bound is obtained as follows. In (16),
we estimate ||p — py ||, using

LA
() I = pnlls = 1= n = 10,
and
. . " b= 2T
Jon = oial = oo, Jonti) = pyutia] o= 2

The constant A < 1 is meant to estimate the rate of convergence of p, to p. In the
program, we have both a conservative and a normal way to define this rate A (denoted
by RATE in INTEQN). The normal way of defining it is by

(43) = =
) p%n - p%n o

with A restricted to lay in the interval [RT LOW, RTUP]. These limits are defined in
an introductory DATA statement in INTEQN by

[RTLOW, RTUP] = [0.1,0.5]

For the initial two choices of n in our program INTEQN, we always use A = RTUP.
The choice (43) is a fairly conservative choice, since (12) implies that the true rate A
should tend to zero as n — oco. The more conservative way of defining A in our program
is by choosing

(44) RATE = RTUP
10



and this choice leads to the error estimate

EST = cond(A,) (7 + [|K||) ‘ Pn = PLy

o0

The first estimate (43) usually results in less computation, and the value of RTLOW
could even be made smaller for quite well-conditioned problems. For fairly ill-conditioned
problems with an error tolerance ¢ that is fairly large, say € ~ 1072 to 1074, it is prob-
ably better to use the conservative choice of A in (44), as the asymptotic estimate (42)
is less likely to be accurate in this situation.

In (41), we have included the term cond(w + K,,), multiplying the right side of (16),
to take into account changes in the solution due to the conditioning of the linear system
of (10).

We accept p, as being sufficiently accurate if the test

(45) EST < %

is satisfied, where ¢ is a given error tolerance for the solution u of the boundary value
problem (1). If this test is satisfied, then (16) is likely to be satisfied with

(46) max |u(A) — u,(A)| < EST < AeQ

[\CR RO

We must then evaluate uy, ,,(A) with sufficient accuracy for each given A.
Given A € 2, we use EVALU to calculate u, ,(A) from (18) with m so chosen that

| ™

(47) |un(A) = unm(A)] <

~— DN

To do this, we must first find the point s* of (17)-(18) which approximately minimizes
|A —r(s)|. Initially we use a simple check of the node points s at which p,(s) has
already been computed. In general, we accept a point s = s* as acceptable if

(48) lcosf| < .01

for the angle 6 between r(s*) — A and the tangent vector r'(s*). As the point A
approaches the boundary I', this simple procedure is not adequate and we must use
a rootfinding method to calculate s*. We use Newton’s method if it appears to be
converging, and otherwise we use the bisection method.

In the evaluation of u,m,(A), m is doubled repeatedly until u, ., (A) satisfies (47),
and our codes begin with m = 32. We use an estimate of |u,(A) — U, ,(A)| to decide
on an acceptable value of m. When m > n, we evaluate p,(0;) at new node points
{0} using the Nystrém interpolation formula (9); and such values are stored for later
use with other evaluations of u,. The basic stopping criteria in EVALU for accepting
Unm(A) is the test

(49) un(4) =t (4)| = 5 i (4) =t 10 (4) | <



As in INTEQN, there are two choices for p (which is called RATE within EVALU).
The normal choice is to define u by

(50) p=

This is also restricted to lay in an interval

[RTLOW, RTUP] = [0.1,0.5]
so as to be neither too large nor too small. The conservative choice for u is again to use
(51) uw= RTUP

Again, this seems necessary for more ill-conditioned problems.

The maximum allowable size for m is determined from the size of the work space
vector supplied by the user to DRCHLT. The introductory comments for DRCHLT
contain detailed information on the parameters to be supplied to the routine, and we
omit those here.

For NEUMAN, we use the same framework as described above. The error test for
accepting v, must be modified in consonance with (27), but that is straightforward
and we omit it here. When evaluating u,(P) for P € T', we approximate v, using a
Fourier approximation, as is described in §2.1 following (31). The needed value of [ is
determined experimentally by comparing the approximations of 1, for parameters [ and
2l. The Fourier coefficients of (31) are evaluated with an FFT program of Swarztrauber
[10].

4.1. An outline of the codes. The routine DRCHLT coordinates the use of
INTEQN and EVALU, including dividing up the working storage delivered to DRCHLT
by the user. It first calls the subroutine INTEQN, which has the following approximate
outline.

Initialize for a loop on n, the number of nodes.

Do steps 3 through 7 until the error test in step 7 is satisfied.
Calculate the boundary nodal points on I' for n subdivisions.
Set up the linear system (8) and estimate ||C||.

Solve the linear system (8) for {p,(s;) | 1 =1, ...,n}.

Update the value of RATE and EST.

If EST < ¢/2, then return to DRCHLT.

NSOt W

The program EVALU has the following approximate outline.
1. Initialize for a loop on the number of given points A at which u(A) is to be
approximated.
2. For point A;, do steps 3 through 9 until the error test in step (47) is satisfied.
3. Initialization of variables for integration of u,(4;).
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4. Calculate s*. Begin by consideration of points s at which p,(s) is already
known. If (48) is satisfied go to next step. Otherwise, solve for s* using
Newton’s method or the bisection method.

5. Begin numerical integration (18) with m = mg/2 nodes.

6. Loop thru step 8 on m, beginning with m = my nodes. Compare the results
for m and 1m nodes, updating y in (50) as needed.

7. Calculate error estimate (49) for numerical integration error.

If integration error estimate satisfies (47), then end integration.

9. Calculate an error estimate for the approximation u, ,(A4;), and then go to the
consideration of the next point A;.

®©

In both INTEQN and EVALU, the storage limitations are checked at all stages; and
when these restrict obtaining the desired accuracy, appropriate error indicators are set.
The program NEUMAN is organized similarly to the above, except for the inclusion
of the option of computing the solution u(A) at points A € T', using the procedure
described following (29).

4.2. Computational complexity. What is the computational cost of using DRCHLT
or NEUMAN? The cost of solving a single linear system of order k£ by Gaussian elimina-
tion is well-known to be approximately %k?’ arithmetic operations. If we solve systems
of orders

(52) k =n0,2n0,...,nf

(with ng = 16 in our code), then the total cost for the solution of linear systems is
approximately

2 3 3 v, 3 2 ovtl 3 ny
(53) = (ng+8ny+--+8ny) =— (8" —1) n, l/:logQ(—>

3 21 o
We have not found it necessary to go above v = 5 in the vast majority of our examples
because of the rapid convergence of the trapezoidal numerical integration of (7). The
value of ny can be changed by simply changing the variable NV_0 in the DATA statement
of INTEQN. The cost of setting up the coefficient matrix of (10), —7I — K, is n?
evaluations of the kernel function K (t,s) of (5); and the total cost for the indices of
(52) is

(47T = 1) ng

NoY I\

evaluations of K(t,s).
The cost of evaluating u, ,,(A) using the trapezoidal rule in (18) for the indices

m = KO; ceey ff
is
J4
0
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arithmetic operations for the sum and the same number of evaluations of the kernel
function K 4(s). In our program, ¢, = 16; and it can be reset by changing the variable
M_0 = 2¢y in the DATA statement of EVALU. If the approximate solution u, ., (A)
is to be evaluated at a very large number of points A, then this can be an expensive
proposition, especially if some of the points A are close to the boundary I'. Again,
however, the trapezpoidal rule converges very rapidly if one wishes high accuracy.

5. Numerical examples. For our examples, we use three boundary curves: an
ellipse, the ovals of Cassini, and an “amoeba”. For the ellipse, the boundary parame-
terization is simply

(55) r(s) = (acoss,bsins), 0<s<2r
with a,b > 0. For the ovals of Cassini, the boundary parameterization is

r(s) = R(s)(coss,bsins)

(56)
R(s) = \/cos (25) + v/a — sin® (2s), 0<s<2nm

with a > 1, b > 0. The ovals of Cassini with (a,b) = (1.1,1) is shown in Figure 1. The
“amoeba” boundary is defined by

r(s) = R(s)(coss,sins)

o7 :
(57) R(s) = e°%cos?(2s) + e5"#sin? (25), 0<s<2rm

and its graph is shown in Figure 2. Its interior is a decidedly nonconvex and complicated
region, and we use it to illustrate that our programs can handle solutions on such unusual
boundaries.

In evaluating the function u(z, y), we choose a radial grid of test points. It is defined
for the interior Dirichlet problem as follows.

9
Tj = —]ﬂ-, j=0,...,n9—1
A k
O ’I’Lr-i-l nr+1 y g aeey Ny
Py = oyr(y)

along with the origin P = (0,0). The number oy is a measure of how close P;j is to
the boundary point r(7;); and oy is an increasing function of k. Also, note that

1
(nr + 1)2
If n, is even moderately large, some of the points P;; will be quite close to the boundary.
With the Neumann method we use the slight modification

Op, = 1—

.
7']- = ﬂ, j:(),...,ng_].
/% k
(59) op = <_> [2 _ _] C k=1,..n,
N, n,
Py = oxr(7y)
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Fic. 1. Owals of Cassini with (a,b) = (1.1,1)

which includes points on the boundary TI'.
For exterior problems, we define o} and 7; as above, and then we define
1
P = —r(7;
Jk o ( y)
We also include a very distant point, to approximate a point at oo. The test program
is designed to work with any region ) which is starlike with respect to the origin, and
we have used it with regions other than those discussed here.
As test problems, we have used the following.
e Dirichlet problem:

Interior Problem: u(®) = e®cosy

. z Y
Exterior Problem: v = exp | ——— }cos | —2—
p x? + y? 2 +9?

e Neumann problem:

Interior Problem: u® = e®cosy — 1
Exterior Problem: u® = — 2 _
.TZ + y2
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Fi1G. 2. The “amoeba” boundary

These are well-behaved functions, but they will still adequately test the procedures
when combined with boundaries I" that are more ill-behaved. We have, of course, used
other test functions in addition to the ones given above. The function u(? is the result
of applying the Kelvin transformation (35) to u®).

5.1. The Dirichlet problem. There is a great deal of data to be presented, and
a combination of graphical and tabular forms seems best. We give detailed results for
solving the interior Dirichlet problem for u(") at the points Por, k =0,1,...,n, [with
Poo = (0,0)]. The parameter ¢ refers to the desired error tolerance, and n is the final
order of the linear system used in INTEQN to calculate the density function p. The
number of quadrature points used in obtaining the solution is m, and it varies with the
point P, 1,k-

Table 1 contains results for the ellipse with (a,b) = (1,5), with error tolerances
of ¢ = 107® and 10~7. The columns labeled Error and PredErr give the actual error
and the predicted error bound. PredErr is obtained by combining the error estimates
from INTEQN and EVALU, using EST from (41) and the numerical integration error
estimate from (49). Figure 3 gives the plots the predicted and actual errors as a function
of oy; or more precisely, we plot

{ak} V8. {logm |Ek‘}: k= 0,1,...,m,

16



TABLE 1
Interior Dirichlet problem on an ellipse - Selected errors

e=10"7° n=064 e=10"" n=128

o m U Error PredErr m Error PredErr
.000 | 128 1.0000 —4.85E —11 6.99E—5| 256 1.44F — 15 1.62F — 10
.210 128 1.2335 —251E—9 829F —5| 256 —4.22F —15 4.36FE — 10
.395 128 1.4845 —1.78E—7 180FE —4| 256 —2.84F —14 1.99F —8
b6 | 256 1.7429 —-T721E —-11 6.85FE —5| 512 289F — 15 1.64F — 10
691 | 256 1.9964 —-3.46F —8 831EF—5| 512 —-533FE—15 4.00E -9
802 | 256 2.2310 —4.36E—6 3.14FE —4 | 1024 222F —15 1.76EF — 10
889 | 512 24324 —-392E -7 1.02FE—4)|1024 —-438FE —12 4.37TE -8
951 | 1024 2.5873 —-2.7T7TE -7 833FE—-5|2048 -—-1.11F—-11 3.10E-38
988 | 2048 2.6849 —2.76F —6 9.23F —5|8192 —-7.10F —13 2.09E -9

with Ej both the predicted error and the actual error. Figure 4 gives graphs of

{ox} vs. {logy, |u(PJak) - uﬂ,m(jjj:k)‘}a k=0,1,...,n,

for selected j, with ¢ = 1072, The program DRCHLT used the normal error estimates
based on (43) and (50), and the grid parameters inside 2 were ny = 7, n, = 8. All
computations were carried out on an HP 720 workstation. Timings are omitted, in part
because they were never more than a few seconds, and in part because timings on a
workstation network with many users are unreliable.

We solved the same interior Dirichlet problem, but on the “amoeba” boundary of
Figure 2. When requesting an error tolerance of ¢ = 10~* and when solving at the
points of (58) for (ng,n.) = (7,8), we obtained very regular behaviour in the error
in the approximate values of u("). The final number of nodes used in INTEQN was
n = 256. At all points P € (, the predicted error bound for u(Pjx) — tnm(Pjr) Was
less than the requested error bound; and the actual errors were always smaller than the
predicted error bound, usually much smaller.

We also solve an exterior Dirichlet problem on the elliptical region used above. In
this case, the boundary I' obtained by inverting I" thru the unit circle is somewhat
ill-behaved, as can be seen in Figure 5. The test function is u(?), and the other problem
parameters are as before. The density function is shown in Figure 6 (with periodic
extension to a larger interval), and it is clearly fairly ill-behaved around s = 0. The
analogue of Figure 3 is given in Figure 7; and again the predicted error bound satisfies
the given error tolerance. For the desired error tolerances of ¢ = 103,107, the final
values of n used in INTEQN were 256 and 512, respectively. The “normal” error test
was used.

5.2. The Neuman problem. The principal differences in NEUMAN as compared
to DRCHLT are as follows: (i) the error bound (27) has been changed; (i) the Kelvin
transform is now used to convert the interior Neumann problem to an exterior Neumann
problem; and (4ii) the potential u(P) can now be evaluated at points P on the boundary

17
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FiG. 3. Predicted and actual errors along the radial line 8 = 0 for a Dirichlet problem on an ellipse

I'. We illustrate NEUMAN by solving the exterior Neumann problem on the ovals of
Cassini shown in Figure 1, with boundary data generated from the test case u(* and
with error tolerances of ¢ = 1072 and 10~7. The points P at which the problem is
solved are given in (59), which includes boundary points on I'; and for the parameters
defining P, we used (ng, n,) = (7,8). The analogue of Figure 7, for errors along the line
f = 0, is given in Figure 8; and again the predicted error bound satisfies the given error
tolerance. For the desired error tolerances of ¢ = 1072,1077, the final values of n used
in INTEQN were 128 and 256, respectively.

5.3. Details on computers used in testing. The programs DRCHLT and
NEUMAN were tested on several workstations and on a PC using MS Fortran 77.
The workstations used were a Hewlett-Packard 720, a Hewlett-Packard C200, an SGI
02, and an IBM RS/6000. The first three used the Fortran 90 compiler delivered by the
manufacturers of the machines, and the last used a Fortran 77 compiler, again supplied
by the manufacturer. The examples of this paper are from the HP 720 using Fortran
90 and the default options.
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FiG. 4. Errors along selected radial lines 8 = 8; for a Dirichlet problem on an ellipse
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F1a. 6. The density p(s) on r for exterior Dirichlet problem defined originally outside an ellipse
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F1G. 8. Predicted and actual errors along the radial line § = 0 for an exterior Neumann problem
on an “ovals of Cassini”
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