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In this work, we consider solving the radiosity equation using the collocation method. We develop analytic
evaluation of the integrations which are needed to setup the linear system in solving the radiosity equation
using the collocation method. These integrations are over triangular elements in R3. Our approach is to use
affine transformations to convert integrations over elements in R3 to integrations over elements in R2 and then
to use a change of variables. For this, we introduce functions Hm,n,k for m, n, k ∈ N0 and use these to give
our analytic formulas. The analytic evaluations of Hm,n,4 and other relevant integrations are given in detail for
some values of m and n. Finally, a performance comparison of the analytic evaluation integration with that of
other well-known numerical integration schemes is given.
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1 Introduction

With the introduction of raster graphics in computer graphics, more elaborate rendering methods were needed to
decide the color of all the pixels. The radiosity method was first proposed by a group of researchers at Cornell
University in 1984 as an alternative to local illumination models such as Phong’s model. See [17] and [29].
Their idea was to simulate the actual underlying physical phenomena using the radiosity equation that had been
developed in the radiative heat transfer literature. The radiosity equation is given by

u(p)− ρ(p)

π

∫

S

V (p, q)G(p, q)u(q)dq = E(p), p ∈ S. (1)

In this, S is contained in a closed environment in R3, and it is often polyhedral. V (p, q) is the visibility function
between two points p, q ∈ S, defined as

V (p, q) =

{

1 if←→pq ∩ S = {p, q},
0 otherwise.

(2)

and G(p, q) is the radiosity kernel function defined as

G(p, q) =
cos(θp) cos(θq)

‖p− q‖2
,

where θp and θq are the angle between the line←→pq and the normal vector np at p ∈ S and the normal vector nq

at q ∈ S, respectively. The direction nq is the direction from which p is being viewed from q.

∗ Corresponding author: e-mail: jseol@valdosta.edu, Phone: +01 229 259 2043, Fax: +01 229 219 1257
∗∗ e-mail: atkinson@math.uiowa.edu, Phone: +01 319 335 0766, Fax: +01 319 335 0714

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 Jaehoon Seol and Kendall E. Atkinson: Analytic Evaluation of Collocation Integrals for the Radiosity Equation.

This equation is the result of applying the balance of energy to the radiosity under the assumption that all the
surfaces are diffuse emitters, absorbers and reflectors in a nonparticipating medium, cf. [25]. Mathematically, it
is a Fredholm integral equation of the second kind. In general, we use a numerical method to find an approximate
solution of this equation. After solving (1) using various numerical methods, the value u(p) is used to determine
the color values for the pixel p on the surface S. This rendering method is called a global illumination model
since it takes the interreflection between all the surfaces into consideration.

One of the most popular numerical solution methods of solving (1) in computer graphics is the piecewise
constant Galerkin method. Applying the piecewise constant Galerkin method to the radiosity equation, we obtain
the following linear system.

Bi = Ei + ρi

N
∑

j=1

FijBj , (3)

where

Fij = αij

∫

x∈Pi

∫

y∈Pj

cos (θi) cos (θj)

πr2
V (x, y)dydx. (4)

Here, Bi is the radiosity that we want to find and Fij is called the form factor between two elements Pi and Pj .
Frequently equation (3) is called the radiosity equation in the computer graphics community instead of (1).

The linear system (3) is a dense matrix and there are n2 terms Fij . Thus, it is important to find a fast and
accurate method to evaluate Fij in order to find a quality approximate solution of (3). Some of the special
methods used to approximate the form factors are the ‘Monte Carlo method’, ‘crossed-strings method’, ‘unit
sphere method’, and the ‘inside sphere method’. These methods have been developed in the radiative heat transfer
community and adapted to computer graphics. In particular, the implementation of the unit sphere method using
rendering hardware has been studied in [11]. It is also called the ‘hemi-cube method’.

In 1993, Peter Schröder presented a formula for Fij between two general polygons. He derived the formula
using repeated application of Stoke’s theorem. For more information, refer to [35]. More recently, Min Chen and
James Arvo used the concept of generalized irradiance tensors to derive new closed-form expressions for com-
puting the illumination from luminaires with linearly varying radiant exitace. The derivation of these expressions
are based on the use of Clausen’s integral. For more details, refer to [7] and [8].

Another numerical method for solving (1) is the collocation method. General numerical methods for Fredholm
integral equations of the second kind are given in [2]. Applying the piecewise constant collocation method to the
radiosity equation, (1) , we get the following linear system,

MB = E, (5)

where

Mij = δij −
ρ(ti)

π

∫

Pj

G(ti, q)V (ti, q)dSq , (6)

Bi = bi, (7)

Ei = E(ti). (8)

Again, the linear system (5) is a dense matrix with n2 double integrals to evaluate. In general, these integrals are
nontrivial to evaluate, and they are the reason for this paper.

In the following section, we present an analysis of the numerical solution of the radiosity equation using the
collocation method. We give general stability and convergence results for the collocation solution of the equation.

In §3 we show how to use affine transformation to convert the integration in Mij into integrations over a
standard integration domain σ that are easier to evaluate analytically. In §4 we introduce integrals Hm,n,4,
and we show the analytic evaluation of Hm,n,4 for m,n = 0, 1 that is needed to solve (6) . We also discuss
possibilities and difficulties related to the analytic evaluation ofHm,n,4 for other values ofm and n. Experimental
calculations of the analytic evaluation procedures are given in §5 for models that are commonly encountered in
computer graphics.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Appl. Num. Anal. Comp. Math. 1, No. 1 (2004) / www.anacm.org 5

2 Projection Methods for the Radiosity Equation

If we put the integral equation (1) into operator form, we have

(I −K)u = E. (9)

In this, K is an integral operator from a Banach space X to X defined as

Ku(p) =
ρ(p)

π

∫

S

V (p, q)G(p, q)u(q)dq, p ∈ S. (10)

Usually, X = L∞(S) or L2(S). If the surface S is unoccluded, then we have V (p, q) = 1 for all p, q ∈ S and
the integral (10) simplifies into

Ku(p) =
ρ(p)

π

∫

S

G(p, q)u(q)dq, p ∈ S. (11)

In order to solve (9) approximately, we choose a sequence of finite-dimensional subspaces Xn ⊂ X with
dim(Xn) = dn <∞ and we try to find a function un ∈ Xn such that the residual defined by

rn = E − (I −K)un (12)

is made small in some sense. Projection methods use projection operators Pn : X → Xn as a means to minimize
the residual (12). For a given projection operator Pn : X → Xn, our goal is to find un ∈ Xn such that

Pnrn = Pn[E − (I −K)un] = 0. (13)

Different projection operators lead to different approximate solution methods, cf. [2]. In the following sec-
tions we introduce collocation methods, one of the most popular projection methods. After that, we develop an
evaluation method for integrals that are related to collocation methods since collocation methods are the main
subject of this work.

2.1 Collocation Methods

We review the theoretical framework for collocation methods, emphasizing those aspects we need here. Let
Xn = span{lj ∈ X | j = 1, 2,. . . , dn} be a subspace of X and let t1, t2,. . . , tdn ∈ S be fixed distinct points.
Given u ∈ X , define Pnu to be the element ofXn that interpolates u at the nodes {t1, t2,. . . , tdn}. Thus, we can
write

Pnu(t) =

dn
∑

j=1

bj lj(t), (14)

with the coefficients {bj | j = 1, 2,. . . , d} determined by solving the linear system

dn
∑

j=1

bjlj(ti) = u(ti), i = 1, 2, . . . , dn.

This linear system has a unique solution if

det[lj(ti)] 6= 0.

The projection operator Pn defined in (14) is called an interpolatory projection operator. Finding un ∈ Xn that
satisfies (13) is called a collocation method for obtaining an approximate solution of (9), cf. [2].

For instance, suppose S is a polyhedral surface composed of planar polygons {Sj ⊂ R3 | j = 1, .., N} in R3.
We have

S = S1 ∪ S2 ∪ . . . ∪ SN . (15)
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We assume that Sj ∩ Sk is (1) a line segment of the boundaries of Sj and Sk, (2) a vertex of Sj and Sk, or (3)
Sj ∩ Sk = ∅.

Let

Tn = {∆n,k | k = 1, 2, . . . , dn} (16)

be a triangulation of S satisfying S = ∪dn

k=1∆n,k, and for each k, ∆n,k ⊂ Si for some i = 1, 2,. . . , N . Let lj
be the characteristic function with support ∆n,j . Take Xn = span{lj | j = 1, 2,. . . , dn}. For fixed distinct points
t1, t2,. . . , tdn ∈ S satisfying tj ∈ interior(∆n,j), we define a projection operator Pn : X → Xn by

Pnu(t) =

dn
∑

j=1

u(tj)lj(t)

Note that

Pnu(ti) = u(ti), for i = 1, 2, . . . , dn, (17)

and

lj(ti) = δij , for i = 1, 2, . . . , dn,

by the definition of Pn and lj . Using this definition of Pn leads to the piecewise constant collocation method.
By using the collocation method to solve (9) approximately, we have

Pn[E − (I −K)un] = 0,

Pn[(I −K)un] = Pn(E),

(I −K)un(ti) = E(ti), (18)

for all i = 1, 2,. . . , dn, by (17). Since un ∈ Xn = span{lj |j = 1, 2,. . . , dn}, we have

un =

dn
∑

j=1

bj lj . (19)

Combining (18) and (19), we get

un(ti)−Kun(ti) = E(ti)

dn
∑

j=1

bj(lj(ti)−
ρ(ti)

π

∫

∆n,j

V (ti, q)G(ti, q)lj(q)dSq) = E(ti) (20)

for i = 1, 2,. . . , dn. Since

lj(q) =

{

1, if q ∈ ∆n,j ,
0, otherwise,

we have the following system of equations

dn
∑

j=1

bj(δij −
ρ(ti)

π

∫

∆n,j

V (ti, q)G(ti, q)dSq) = E(ti), (21)

for i = 1, 2,. . . , dn, from equation (20).
In matrix form, (21) can be written as

MB = E,
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with

Mij = δij −
ρ(ti)

π

∫

∆n,j

V (ti, q)G(ti, q)dSq , (22)

Bi = bi, (23)

Ei = E(ti), (24)

for i, j = 1, 2,. . . , dn. By solving this linear system for B, we can get the approximate solution un(t) =
∑dn

j=1 bj lj(t) ∈ Xn of (9) . When tj is the centroid of ∆j , we refer to this collocation method as the centroid
method for obtaining the approximate solution of (9) .

We can use higher degree piecewise polynomial functions over the triangulation {∆n,k | k = 1, 2,. . . , dn} of
S instead of using piecewise constant functions. In that case, we have to choose different node points depending
on the degree of piecewise polynomial functions being used. See [2, Section 5.2] for a general schema for such
methods.

When we consider an interpolatory projection operator in X = L∞(S), the evaluation of u ∈ X at a point
p ∈ S is not well-defined. This issue and other relevant considerations of the collocation method in L∞(S) have
been considered and dealt with by Atkinson, Graham and Sloan in [4].

2.2 General Framework of the Projection Method

In this section we provide the analysis of the projection method for solving the radiosity equation. If we put the
projection method for solving the radiosity equation in abstract framework, it can be written as

(I − PnK)un = PnE.

In here, Pn is an interpolatory projection operator on a Banach space X . We usually take X = L∞(S).
In order to prove

‖K‖ < 1,

we use the following result, proven in [3].

Lemma 2.1 Assume S is a polyhedral surface and p ∈ S◦, the interior of a face of S. Then, we have
∫

S

V (p, q)G(p, q)dq ≤ π. (25)

The inequality (25) holds at all points p ∈ S for which S is smooth in some neighborhood of p. Since we
have

measure {p ∈ S| p does not have a smooth neighborhood in S} = 0,

we can say the inequality (25) is true almost everywhere. With this lemma, we can obtain that

ρ(p)

π

∫

S

V (p, q)G(p, q)dq ≤ ρ(p) ≤ ‖ρ‖∞ ,

almost everywhere for p ∈ S . From this, we have

‖Ku‖∞ =

∥

∥

∥

∥

ρ(p)

π

∫

S

V (p, q)G(p, q)u(q)dq

∥

∥

∥

∥

∞

(26)

≤ ‖ρ‖∞ ‖u‖∞ . (27)

This means

‖K‖ ≤ ‖ρ‖∞ .
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8 Jaehoon Seol and Kendall E. Atkinson: Analytic Evaluation of Collocation Integrals for the Radiosity Equation.

Thus, ‖ρ‖∞ < 1 implies that (I −K)
−1 exists as a bounded linear operator from L∞(S) to L∞(S) and

∥

∥

∥(I −K)
−1
∥

∥

∥ ≤ 1

1− ‖K‖ ,

by the use of the geometric series theorem.
If we assume

‖PnK‖ ≤ α < 1, n ≥ 1 (28)

then it follows trivially that (I − PnK)−1 exists and is uniformly bounded for n ≥ 1, with

∥

∥

∥(I − PnK)
−1
∥

∥

∥ ≤ 1

1− α, n ≥ 1 (29)

With the centroid method, we have ‖Pn‖ = 1, and therefore

‖PnK‖ ≤ ‖K‖ ≤ ‖ρ‖∞ < 1

For higher degree interpolation, we would need to have

α ≡
[

sup
n≥1
‖Pn‖

]

‖ρ‖∞ < 1

in order to have (28) be satisfied. A less restrictive analysis is given in Hansen [21] to obtain (29).
Using the identity

(I − PnK) (u− un) = u− Pnu

and assuming (28), we also have the following bounds

‖u− Pnu‖∞
1 + α

≤ ‖u− un‖∞ ≤
‖u− Pnu‖∞

1− α , n ≥ 1

Therefore, the speed of convergence of un to u is the same as the speed of convergence of Pnu to u in X =
L∞(S). The latter is not true for many choices of u ∈ X ; but if u ∈ C(S), then Pnu converges to u in X.

3 Calculation of the Collocation Integrals

If we assume that S is an unoccluded surface in R3, the visibility function V (ti, q) = 1. Thus, in order to solve
the linear system (21) for unoccluded surface S, we are required to evaluate the following integral

∫

∆n,j

G(ti, q)dSq , (30)

where ∆n,j is an arbitrary triangle in R3. For this we convert the integral (30) into a sum of following form of
integrals

∫

σ

f(ti, q)dSq ,

over the triangle σ = { (s, t, 0) | 0 ≤ s ≤ a, and 0 ≤ t ≤ b
as }. We call this type of triangle a standard integral

domain. In this section, we show how to use affine transformations to transform the integral (30) over a triangle
∆ in R3 into one or more integrals over a standard integral domain σ.
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3.1 Affine Transformation from R3 into R2

We first show how to use an affine transformation to convert an integral over a triangle in R3 into an integral over
a triangle in R2.

Definition 3.1 Let S be a n-polygon in R3 defined by the vertices v0, v1,. . . , vn−1 with v0 satisfying

‖v0‖ = min{‖vi‖ |i = 0, 1, . . . , n− 1}

For S having the normal vector nS which is equal to (1, θ, φ) in spherical coordinates, or (nx, ny, nz)
T =

(sin(φ) cos(θ), sin(φ) sin(θ), cos(φ))T in rectangular coordinates, we define affine transformations AS , BS :
R3 → R3 by

ASq = U(q − v0), q ∈ R3, (31)

and

BSr = v0 + UT r, r ∈ R3, (32)

where U is an unitary transformation defined by

U =





cos(θ) cos(φ) cos(φ) sin(θ) − sin(φ)
− sin(θ) cos(θ) 0

cos(θ) sin(φ) sin(θ) sin(φ) cos(φ)



 .

Note that UnS = (0, 0, 1)T . It is because the unitary transformation U rotates nS with respect to z-axis by −
θ degrees first, and then it rotates the vector with respect to y-axis by φ degrees. Since U is an unitary matrix, it
is clear that

ASBS = BSAS = IR3 . (33)

By construction,AS(S) ⊂ {(s, t, 0) | s, t ∈ R} ⊂ R2. That is, the affine transformation AS puts the n-polygon
S into the xy-plane with the property that AS(v0) = 0.

Given p ∈ R3, the normal np at p, and the n-polygon S ⊂ R3, we consider the following integration:

Ku(p) =

∫

S

〈p− q, nq〉 〈q − p, np〉
‖p− q‖4

u(q)dSq . (34)

If we use the change of variable q = BSr and (33), then (34) becomes

Ku(p) =

∫

AS(S)

〈p−BSr, BS(0, 0, 1)〉 〈BSr − p, np〉
‖ASp− r‖4

u(BSr)dSr . (35)

= 〈p−BSr, BS(0, 0, 1)〉 I1 − 〈p−BSr, BS(0, 0, 1)〉 I2, (36)

with

I1 :=

∫

AS(S)

〈BSr, np〉
‖ASp− r‖4

u(BSr)dSr (37)

I2 :=

∫

AS(S)

〈p, np〉
‖ASp− r‖4

u(BSr)dSr . (38)

This uses the result that 〈p−BSr, BS(0, 0, 1)〉 = 〈p− q, nq〉 is constant as q varies overS. It suffices to consider
the integration I1 and I2 for a triangular region S in R3, since an arbitrary n-polygon S can always be divided
into triangles.
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3.2 Affine Transformation into a Standard Integral Domain

The affine transformation AS maps triangles in R3 into triangles in R2. Now, we use the affine transformation
defined in the following to transform a triangle in R2 into triangles that are standard integral domains.

Definition 3.2 Let S be a triangle in R2 labelled by the vertices v0 = 0, v1, v2 counterclockwise, and let ψ
∈ [0, 2π) be the angle between the x-axis and vertex v1. Then we can define the rotation, RS : R3 −→ R3, by

p 7→ RSp, p ∈ R3,

RS =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1



 .

By definition, the vertex RS(v0) = 0 and the vertex RS(v1) is on the positive x-axis.
Using the rotations RS and BS , the integration I1 becomes

I1 = 〈v0, np〉
∫

RAs(S)AS(S)

1
∥

∥RAs(S)ASp− s
∥

∥

4 u(BSR
−1
As(S)s)dSs

+

∫

RAs(S)AS(S)

〈

UTR−1
As(S)s, np

〉

∥

∥RAs(S)ASp− s
∥

∥

4u(BSR
−1
As(S)s)dSs. (39)

In this, the vertex v0 is the vertex described in (31) and (32) . Similarly, the integration I2 becomes

I2 = 〈p, np〉
∫

RAs(S)AS(S)

1
∥

∥RAs(S)ASp− s
∥

∥

4u(BSR
−1
As(S)s)dSs. (40)

By combining (39) with (40), we get

Ku(p) = c1I3 + c2I4, (41)

with

I3 :=

∫

RAs(S)AS(S)

1
∥

∥RAs(S)ASp− s
∥

∥

4 u(BSR
−1
As(S)s)dSs (42)

I4 :=

∫

RAs(S)AS(S)

〈

UTR−1
As(S)s, np

〉

∥

∥RAs(S)ASp− s
∥

∥

4 u(BSR
−1
As(S)s)dSs. (43)

In here, c1 = 〈p−BSr, BS(0, 0, 1)〉 〈v0 − p, np〉 and c2 = 〈p−BSr, BS(0, 0, 1)〉 .
In order to evaluate integrals I3 and I4 for various types of triangles inR3, we classifyRAs(S)AS(S) according

to the relative position of its vertices. Suppose RAs(S)AS(S) is the triangle with vertices v0 = (0, 0), v1 =
(x1, 0), and v2 = (x2, y2). Then the type of the triangle RAs(S)AS(S) is determined by x2. If 0 < x2 < x1,
then the triangle is a triangle of type A. If x2 ≤ 0, then the triangle is a triangle of type B. If x2 > x1, then
the triangle is a triangle of type C. If x2 = x1, then the triangle is a triangle of type D. Note that any triangle of
type D is a standard integral domain. We show that the triangles of type A, type B, and type C can be split and
transformed affinely into two triangles of type D.

First, let’s consider the evaluation of the integration I3 for various types of triangles.
Type A triangle for I3. If the triangle RAs(S)AS(S) is the triangle of type A, it can be split into two

subtriangles T1 and T2 as shown in Figure 1. Then, we have

I3 =

∫

T1

1
∥

∥RAs(S)ASp− s
∥

∥

4u(BSR
−1
As(S)s)dSs (44)

+

∫

T2

1
∥

∥RAs(S)ASp− s
∥

∥

4 u(BSR
−1
As(S)s)dSs. (45)
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v0 v1

v2

T1 T2

x-axis

y-axis

Fig. 1 Two subtriangles T1 and T2 of triangle type A

Note that triangle T1 in (44) is already a triangle of type D. In order to transform the triangle T2 into a triangle
of type D, we use the following affine transformation.

Definition 3.3 For a triangle T in R2 with vertices v0 = 0, v1, and v2, we define Mi,T : R2 → R2 by

s 7→Mi,T (s), for s ∈ R2,

Mi,T (s) = RT−vi(s− vi), (46)

where the triangle T − vi is the triangle T translated by −vi .

For example, the affine transform M2,T2 (T2) of T2 is given by

M2,T2s =





0 −1 0
1 0 0
0 0 1



 (s− v2),

in matrix form since ψ = 2π
3 if RAs(S)AS(S) is a triangle of type A.

Using the change of variable s = M−1
2,T2

(t), the integration in (45) becomes
∫

M2,T2 (T2)

1
∥

∥

∥
M2,T2

RAs(S)ASp− t
∥

∥

∥

4u(BSR
−1
As(S)M

−1
2,T2

t)dSt.

It is clear that the triangle M2,T2(T2) is of type D.
Type B triangle for I3. If the domain D is the triangle RAs(S)AS(S) of type B, we first affine transform the

triangle into a triangle of type A using M1,D. Since M1,D(D) is a triangle of type A, we have

I3 =

∫

M1,D(D)

1
∥

∥M1,DRAs(S)ASp− (t)
∥

∥

4u(BSR
−1
As(S)M

−1
1,D(t))dSs. (47)

using the change of variable t = M1,D(s). Once we have the integration(47) over M1,D (D) , a triangle of type
A, we can follow the same algorithm that is described in the above to handle the triangle of type A.

Type C triangle for I3. Similarly, if the domain D is the triangle RAs(S)AS(S) of type C, we first affine
transform the triangle into a triangle of type A using M2,D. Since M2,D(D) is a triangle of type A, we have

I3 =

∫

M2,D(D)

1
∥

∥M2,DRAs(S)ASp− t
∥

∥

4u(BSR
−1
As(S)M

−1
2,D(t))dSt. (48)

using the change of variable t = M2,D(s). Once we have the integration(48) over M2,D (D) , a triangle of type
A, we can follow the same algorithm that is described in the above to handle the triangle of type A.

The evaluation of the integration I4 for various domains types can also be handled in the similar way. For
details, see [38].
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4 Analytic Evaluation of Hm,n,p

In this section, we study an analytic evaluation of the integrations that are needed for the setup of collocation
methods for the radiosity equation.

Definition 4.1 For m,n, p ≥ 0, we define a function

Hm,n,p : R3 → R

by

Hm,n,p(x, y, z) =

∫ ∫

∆

ξmηn

((x− ξ)2 + (y − η)2 + z2)p/2
dσ(ξ, η). (49)

In this, the region ∆ is a triangular region bounded by ξ = a, η = 0, and η = b
aξ.

The analytic evaluation of this function when p is an odd integer is given in [22]. In this section, we consider
the analytic evaluation of Hm,n,4(x, y, z) given in (49) for various m and n since these integers are the cases we
need in order to evaluate exactly the integrals needed in implementing piecewise polynomial collocation methods.
For piecewise polynomial collocation of degree r ≥ 0, we need to evaluate Hm,n,4(x, y, z) for m,n ≤ r + 1. If
p = 4, then we will use the notation Hm,n instead of Hm,n,4.

In most cases, we are interested in evaluating the integration Hm,n(x, y, z) for z 6= 0, but we allow the use of
very small z > 0. If the value of z is large enough, then the integrand (50)

k(x, y, z, ξ, η) =
ξmηn

((x − ξ)2 + (y − η)2 + z2)2
(50)

is well-behaved and the integral (49) is not hard to evaluate numerically. However, if the value of z is very small,
then the denominator of the integrand (50) can be very small depending on the location x and y. In this case,
the integrand k(x, y, z, ξ, η) behaves like it has a singularity at (ξ, η) = (x, y) making it difficult to evaluate
numerically. For instance, if m = 0 and n = 0, then

k(ξ, η, z, ξ, η) =
1

z 4
.

and a slight change in z makes a dramatic difference in the value of k(x, y, z, ξ, η) for (ξ, η) near (x, y) .

4.1 Analytic Evaluation of Hm,n for m,n = 0, 1

First, we consider the evaluation of H0,0(x, y, z). By definition, we have

H0,0(x, y, z) =

∫ a

0

∫ b
a ξ

0

1

((x− ξ)2 + (y − η)2 + z2)2
dηdξ.

Then,

H0,0(x, y, z) =
1

2

∫ a

0

b
aξ − y

((x− ξ)2 + z2) ((x− ξ)2 + z2 + ( b
aξ − y)2)

dξ (51)

+
1

2

∫ a

0

y

((x− ξ)2 + z2) ((x− ξ)2 + z2 + y2)
dξ (52)

+
1

2

∫ a

0

arctan(
b
a ξ−y√

((x−ξ)2+z2)
)

((x− ξ)2 + z2)
3
2

dξ (53)

+
1

2

∫ a

0

arctan( y√
((x−ξ)2+z2)

)

((x− ξ)2 + z2)
3
2

dξ. (54)
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The integrations in (51), (52), (53) and (54) can be evaluated analytically using symbolic calculators such as
Mathematica or Maple. For further explanation of these, refer to [38].

Next, let’s consider the analytic evaluation of H1,0(x, y, z). By definition, we have

H1,0(x, y, z) =

∫ ∫

∆

ξ

((x− ξ)2 + (y − η)2 + z2)2
dσ.

Then,

xH0,0(x, y, z)−H1,0(x, y, z) (55)

=

∫ a

0

∫ b
a ξ

0

(x− ξ)1
((x− ξ)2 + (y − η)2 + z2)2

dηdξ. (56)

Setting u = x− ξ and v = y − η, the integration (56) becomes

∫ x−a

x

u ( b
a (u− x) + y)

2(u2 + ( b
a (u− x) + y)2 + z2)(u2 + z2)

du (57)

−
∫ x−a

x

u y

2(u2 + y2 + z2)(u2 + z2)
du (58)

+

∫ x−a

x

u

2(u2 + z2)
3
2

arctan(
b(u− x) + ay

a
√
u2 + z2

) du (59)

−
∫ x−a

x

u

2(u2 + z2)
3
2

arctan(
y√

u2 + z2
) du. (60)

With the help of Mathematica, we can obtain the analytic evaluation of these integrals in (57) , (58) , (59) and
(60) . For further explanation of these, refer to [38]. Thus, we can analytically evaluate H1,0(x, y, z) using (55)
and (56).

We can evaluate H0,1(x, y, z) in a similar manner to get

H0,1(x, y, z) = yH0,0(x, y, z)−
a

2
√
α+ a2z2

arctan

(

ax+ by√
α+ a2z2

)

+
a

2
√
α+ a2z2

arctan

(

ax+ by − a2 − b2√
α+ a2z2

)

+
1

2
√

y2 + z2
arctan

(

x
√

y2 + z2

)

− 1

2
√

y2 + z2
arctan

(

x− a
√

y2 + z2

)

.

Finally, we consider the analytic evaluation of H1,1(x, y, z). For that, we use the following identity.

∫ ∫

∆

(x − ξ)(y − η)
((x− ξ)2 + (y − η)2 + z2)2

dσ (61)

= xyH0,0 − xH0,1 − yH1,0 +H1,1. (62)

Since we know the analytic evaluations of H0,0(x, y, z), H1,0(x, y, z) and H0,1(x, y, z), it suffices to find the
analytic evaluation of (61) to find the analytic evaluation of H1,1(x, y, z).

Using the same change of variable that has been used to find the analytic evaluation of (56), we can find the
analytic evaluation of (61) . Therefore, the analytic evaluation of H1,1 can be found by solving (61) and (62) for
H1,1.
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4.2 Analytic Evaluation of Hm,n for general m and n

For larger values of m,n, we use recursion to aid in evaluating Hm,n(x, y, z). This will work for most but
not all values of m,n, leading to formulas of the type given above. For certain special values of m,n, e.g.
(m,n) = (2, 0), we will need to use yet another technique. We begin our consideration of larger values of m,n
with the following recursion formula; a proof is given in [38]

Lemma 4.2 Suppose ∆ is a right triangle and ν the outward normal vector at a point on the boundary ∂∆ of
the triangle. Then, we have

∫

∂∆

ξm−1ηn

(x− ξ)2 + (y − η)2 + z2
cos(ν, ξ)dl (63)

= (m− 1)Hm−2,n,2(x, y, z) + 2xHm−1,n(x, y, z)− 2Hm,n(x, y, z),

and
∫

∂∆

ξmηn−1

(x− ξ)2 + (y − η)2 + z2
cos(ν, η)dl (64)

= (n− 1)Hm,n−2,2(x, y, z) + 2yHm,n−1(x, y, z)− 2Hm,n(x, y, z).

In here, cos(ν, ξ) is the cosine angle between the vector ν and ξ − axis. Similarly, cos(ν, η) is the cosine angle
between the vector ν and η − axis

In general, the analytic evaluation of Hm,n(x, y, z) for m ≥ 2 or n ≥ 2 can be simplified by using the above
lemma. As long as we can find the analytic evaluations of integrals (63), (64), Hm,n−2,2 and Hm−2,n,2, we can
find the analytic evaluation ofHm,n(x, y, z). It is relatively easy to evaluate (63) and (64) analytically since they
are line integrals. The main difficulty comes from evaluatingHm,n−2,2 and Hm−2,n,2.

As an example of Lemma 4.2, we discuss an evaluation method for H2,0(x, y, z). By use of (63), we have

H2,0(x, y, z) =
1

2
H0,0,2(x, y, z) + xH1,0(x, y, z)

− 1

2

∫

∂∆

ξ1

(x− ξ)2 + (y − η)2 + z2
νξdl . (65)

Thus, we can evaluate H2,0(x, y, z) analytically if we can find an analytic evaluation of H0,0,2(x, y, z) and the
line integral in (65)

The analytic evaluation of (65) can be simplified by using the assumption that the integration domain ∂∆ is
the boundary of a right triangle. Thanks to this assumption, we have that νξ = 1 on ev and νξ = 0 on eh. That is,
the integral in (65) becomes

νξ

∫

ed

ξ

(x− ξ)2 + (y − η)2 + z2
dl (66)

+

∫

ev

ξ

(x− ξ)2 + (y − η)2 + z2
dl. (67)

where eh, ev , and ed are horizontal, vertical, and diagonal edge of the triangle ∆, respectively. The integrations
in (66) and (67) can be evaluated analytically.

Next, we discuss the analytic evaluation of H0,0,2. By definition, we have

H0,0,2(x, y, z) =

∫ ∫

∆

1

(x− ξ)2 + (y − η)2 + z2
dσ(ξ, η) (68)

=

∫ ∫

Σ

1

u2 + v2 + z2
dσ(u, v) (69)

for u = ξ − x and v = η − y. The integration domain Σ is shown in Figure 2 that we can get after translating
the original integration domain ∆ by (x, y). Since there is no rotation involved, Σ always has the vertical and
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horizontal edges. In order to evaluate this integration analytically, we split the integration (69) into three parts as
shown in Figure 2.

H0,0,2(x, y, z) = sign(Σd)

∫ ∫

Σd

1

u2 + v2 + z2
dσ(u, v) (70)

+ sign(Σh)

∫ ∫

Σh

1

u2 + v2 + z2
dσ(u, v) (71)

+ sign(Σv)

∫ ∫

Σv

1

u2 + v2 + z2
dσ(u, v) (72)

In this, Σd is the triangle formed by connecting (0, 0) and the two vertices of the hypotenuse of the right triangle
Σ. The triangles Σv and Σh are formed similarly by connecting (0, 0) and the vertical and horizontal edges of
the triangle Σ respectively. The values of sign(Σh), sign(Σv), and sign(Σd) take on either−1, 0 or 1. They are
determined so as to hold the equality in (70). For specific determination of these values, refer to the table given
on page 106 in [38].

We first consider the integration over Σd in order to evaluate H0,0,2(x, y, z). Let’s suppose p(θ) is a point on
the hypotenuse whose angle is θ with respect to x axes and v1 = (x1, y1) and v2 = (x2, y2) are the two vertices
of the hypotenuse of the right triangle Σ. The angle θ1, and θ2 are the angles that v1 and v2 make with respect
to x axes respectively. Define r(θ) to be the distance from the origin to p(θ). See Figure 2. Then, by setting
u = r cos(θ) and v = r sin(θ), we have

∫ ∫

Σd

1

u2 + v2 + z2
dσ(u, v) =

1

2

∫ θ2

θ1

log(r(θ)2 + z2)dθ − log(z)(θ2 − θ1). (73)

In order to find the analytic evaluation of (73), it suffices to find the analytic evaluation of

1

2

∫ θ2

θ1

log(r(θ)2 + z2)dθ. (74)

First, we define s(θ) as

s(θ) =
‖v1 − p(θ)‖
‖v1 − v2‖

.

Then, we have

p(θ) = (x1 + s(θ)(x2 − x1), y1 + s(θ)(y2 − y1)). (75)
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For all points p(θ) on the hypotenuse, the value of s(θ) is between 0 and 1. By (75), we have

tan(θ) =
y1 + s(θ)(y2 − y1)
x1 + s(θ)(x2 − x1)

, (76)

θ = arctan(
y1 + s(θ)(y2 − y1)
x1 + s(θ)(x2 − x1)

), (77)

dθ =
x1y2 − x2y1

r(θ)2
ds. (78)

We can also derive the following relation between r(θ) and s(θ).

r(θ)2 = [(x1 + s(θ)(x2 − x1))
2 + (y1 + s(θ)(y2 − y1))2] (79)

By (78) and (79) , the integration (74) becomes

(x1y2 − x2y1)

2

∫ 1

0

log( αs2 + βs+ γ )

αs2 + βs+ γ
ds (80)

where

α = (x2 − x1)
2 + (y2 − y1)2,

β = 2 (x1(x2 − x1) + y1(y2 − y1)) ,
γ = x2

1 + y2
1 + z2.

The functional behavior of the integrand of (80) can be understood by considering the discriminantD and the
minimum value of αs2 + βs+ γ for s, 0 ≤ s ≤ 1. Let us consider the discriminant D given by

D

4
= − (x1y2 − y1x2)

2 − ‖v1 − v2‖2 z2.

Since ‖v1 − v2‖2 z2 > 0, we have D
4 < 0. Thus, we can say

αs2 + βs+ γ > 0 (81)

for all s ∈ [0, 1] because α > 0, γ > 0 .
By setting v1 = (r1 cos(θ1), r1 sin(θ1)) and v2 = (r2 cos(θ2), r2 sin(θ2)) the minimum value of αs2 +βs+γ

is given by

4αγ − β2

4α
=

(r1r2)
2 sin2(θ2 − θ1)
‖v1 − v2‖2

+ z2 ≥ z2 (82)

This means the minimum of the quadratic equation αs2 + βs+ γ becomes close to z2 as the difference between
angles of the vertices v1 and v2 becomes small. Thus, we can say the integrand

log( αs2 + βs+ γ )

αs2 + βs+ γ
(83)

in (80) is smooth by (81), but becomes increasingly ill-behaved as the aspect ratio of the triangle Σd becomes
smaller since log(x)

x → −∞ as x approaches to 0. See Figure 3.
We can use a symbolic calculator such as Mathematica to evaluate the integral in (80) analytically. This is

more difficult to use practically since it involves integration in the complex domain and the use of the dilogarithm
function. See [38]. In complex geometries used in practical computer graphics, most triangulation schemes such
as Delaunay triangulation avoid the use of triangles with low aspect ratio. Thus, it could be practically more
desirable to use a numerical scheme to evaluate (80).
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5 Numerical Experiments for Sample Models

For our numerical experiments, we have chosen three different surface models. These models are the configu-
ration that are most commonly encountered in computer graphics to make up bigger scene, cf. [19], [23], and
[10]. Using these models and properly chosen test solutions, we have tested timing, accuracy, and the effect of
different subdivision schemes. We first introduce the models.

• Model 1. This first model is made of two rectangles, denoted by S1 and S2 as illustrated in Figure 4. The
dimensions of S1 and S2 are given by

S1 = {(x, y, 0) | 0 ≤ x ≤ 200, 0 ≤ y ≤ 100} ,

S2 =
{(

x, y,
y

2

)

| 0 ≤ x, y ≤ 200
}

.

The surfaces S1 and S2 joins with each other along a common edge at an angle θ = 26.5651◦. This angle is
the result of choosing two rectangles S1 and S2 with integer vertex coordinates that are easier to render on
the computer screen coordinate.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



18 Jaehoon Seol and Kendall E. Atkinson: Analytic Evaluation of Collocation Integrals for the Radiosity Equation.
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Fig. 5 Four planes with discontinuity line.

• Model 2. This model is made of two perpendicular surfaces, denoted by S1 and S2. This is like model 1,
but with θ = 90◦. The dimensions of S1 and S2 are given by

S1 = {(x, y, 0) | 0 ≤ x ≤ 200, 0 ≤ y ≤ 100} ,
S2 = {(x, 0, z) | 0 ≤ x, z ≤ 200} .

• Model 3. This model is made of four surfaces, denoted by S1, S2, S3, and S4 as illustrated in Figure 5. The
dimensions of S1, S2, S3, and S4 are given by

S1 = {(x, 240, z) | 0 ≤ x ≤ 120, 0 ≤ z ≤ 280} ,
S2 = {(x, 120, z) | 0 ≤ x ≤ 120, 0 ≤ z ≤ 280} ,
S3 = {(x, 120, z) | 0 ≤ x ≤ 120, 0 ≤ z ≤ 280} ,
S4 = {(x, 0, z) | 120 ≤ x ≤ 400, 0 ≤ z ≤ 280} .

The dimensions of the models are chosen to be compatible with computer graphics applications. That is why
we use relatively high values like 120, 200, and the angle θ = 26.5651. These numbers are easy to render in
computer graphics. Even if the surfaces S2 and S3 have the same dimension, we assume that the normal vector
of S2 is (0, 1, 0), directed upward, and the normal vector of S3 is (0,−1, 0), directed downward.

We applied both the analytic integration method developed in the previous sections and a numerical integration
scheme to evaluate

∫

∆

cos(θp) cos(θq)

‖p− q‖2
dq. (84)

This integration is needed to setup the matrix of the centroid collocation method. The numerical method that we
used for comparison to the analytic evaluation method is based on converting the integral to a new integral of the
form

∫

σ

g(s, t)dσ,

over the unit simplex σ = {(s, t) : 0 ≤ s, t, s+ t ≤ 1}.
Among a number of well-known numerical approximations to such integrals, we use a composite method that

uses the following integration scheme:

∫

σ

g(s, t)dσ ≈
7
∑

j=1

wjg(ρj).
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Analytic 7-point
n Ta T3 En T5 En

4 0 0 4.4138E − 4 0.016 6.8343E − 8
16 0.031 0.016 1.1786E − 4 0.25 3.5253E − 8
64 0.532 0.22 5.8931E − 5 4.499 1.7629E − 8
256 34.73 4.416 3.58934E − 5 68.323 8.74784E − 9

Table 1 Matrix setup error and timing comparison for model 1

Analytic 7-point
n Ta T3 En T5 En

4 0 0 4.9683E − 6 0.016 9.4203E − 10
16 0 0.016 3.8486E − 6 0.281 4.7163E − 10
64 0.765 0.33 1.9255E − 6 4.155 2.3612E − 10
256 28.181 4.526 8.7804E − 7 69.324 1.18182E − 10

Table 2 Matrix setup error and timing comparison for model 2

In this, the weights wj and nodes ρj taken from the formula T2:5-1 of Stroud [42]. This numerical integration
scheme has degree of precision 5. In order to improve the accuracy of this method, we use the 7-point method
over 4µ smaller triangles that we obtain by applying µ levels of subdivisions to ∆. We refer to this composite
scheme as the 7-point method with µ levels of subdivision.

We present matrix setup timing in seconds and error comparisons for models 1 and 2 in Tables 2 and 1,
respectively. The number n is the number of elements that we use for the test, and Ta, T3, and T5 are the times
taken by the analytic integration method, the 7-point method with µ = 3 levels and the 7-point method with µ = 5
levels, respectively, to evaluate the integration (84). The errorEn is the averaged sum of all the differences of the
analytic evaluation and numerical evaluation of the integration (84) at the node points. By studying Tables 2 and
1, we observe that the analytic method is faster than the 7-point method with level µ = 5, but is more expensive
than the 7-point method with level µ = 3. Even if 7-point method with level µ = 3 is better than the analytic
method in terms of speed, it shows a significant error when compared to the analytic evaluation method. The
error becomes worse as the angle θ between the two surfaces becomes smaller.

In these tests, it should be noted that the analytic method is implemented in C++ using STL template classes,
whereas the 7-point method is implemented in Fortran. It is a generally well-known fact that the C++ imple-
mentation with STL templates is slower than a Fortran implementation. Considering this, the analytic method
shows relatively good performance over the 7-point method. The timings were done on HP Compaq D530 CMT
Desktop with a 3.0 GHz Pentium 4 CPU and 512 MB RAM running the Windows XP Professional operating
system. The Fortran programs that we used are part of BIEPACK [1].

Next, we use models 2 and 3 with properly chosen true solutions u to test the accuracy of the approximate
solution un obtained using the analytic method to solve the radiosity equation.

In order to test the collocation method, we choose a true function u(x, y, z) and we then calculate the emis-
sivity E using highly accurate numerical integration. The collocation method is applied to find the approximate
solution un, that is then compared to the known true solution u.

The true solution that we will use for model 2 is given by

u(x, y, z) =

{

0 otherwise
zβ y = 0

. (85)

That is, u(x, y, z) = 0 on S2 and u(x, y, z) = zβ on S1. This test solution is chosen since it is proven in [32]
that for most given emissivity functionsE, u has the behavior

u(x, 0, z) = g(z) +O(zβ), z → 0 (86)
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metric= ‖ · ‖1 /n metric=‖ · ‖∞
n En Ratio En Ratio

4 0.5178890 1.1241126
16 0.2097839 2.4687 1.0240879 1.0976
64 0.0845805 2.4802 0.7981865 1.2830
256 0.0332735 2.5419 0.5772808 1.3827
1024 0.0125731 2.6464 0.4086213 1.4128

Table 3 Centroid collocation errors of u with β = 0.5 and uniform meshing on model 2

metric= ‖ · ‖1 /n metric=‖ · ‖∞
n En Ratio En Ratio

4 4.1403802 8.5621539
16 1.3010115 3.1824 6.5596009 1.3052
64 0.4049425 3.2128 3.9413914 1.6642
256 0.1237672 3.2718 2.1854562 1.8038
1024 0.0366162 3.3801 1.1736712 1.8621

Table 4 Centroid collocation errors of u with β = 0.9 and uniform meshing on model 2

with a smooth function g(z) and β, 0 < β < 1, at the common edge. If the solution u satisfies (86) , we can
prove that

‖u− Pnu‖∞ = O(hβ).

We use the solution (85) for model 2 with β = 0.5 and 0.9 to test the effect of an algebraic singularity along the
common edge.

The test results for β = 0.5 are given in Table 3 for uniform meshing. In the case of uniform meshing, the
expected rate of convergence is O(h0.5) as explained in the above. Table 3 shows that the rate of convergence
is getting close to O(h0.5) as the number of elements n increases. The column labelled ’Ratio’ denotes the ratio
En/4

En
. The test results for β = 0.9 are given in Table 4 for uniform meshing. In the case of uniform meshing, the

expected rate of convergence is O(h0.9). The test results in Table 4 show that the rate of convergence is getting
close to this theoretical expectation for β = 0.9 as we increase the number of elements n.

The true solution that we use for model 3 is given by

u(x, y, z) =

{

0 otherwise
e−γ(x−d)(x− d)β x > d and y = 0

, (87)

where d = 240. The line x = d on the xz-plane is the discontinuity line. To see the effect of a discontinuity in a
derivative of u along this line, we solve the radiosity equation for u given by (87) with β = 0.5 and γ = 0.02.

We present the numerical testing result for both uniform meshing and discontinuity meshing. Tables 5 and 6
shows the testing results for uniform meshing and discontinuity meshing, respectively. Table 5 reveals that the
rate of convergence with uniform meshing is higher than the theoretical expectation of O(h1.5) as given in [3].
We expect the higher rate of convergence will settle down eventually as the number of elements increases. We can
also observe that discontinuity meshing is no better than the uniform meshing as far as the rate of convergence is
concerned. For additional explanation of discontinuity meshing and numerical examples, see [3] and [23].
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metric= ‖ · ‖1 /n metric= ‖ · ‖∞
n En Ratio En Ratio

8 0.0175512 0.0733565
32 0.0404968 0.43340 0.0919982 0.79737
128 2.9749E − 3 1.36131 7.2977E − 3 1.26064
512 1.9097E − 4 15.57758 5.2234E − 4 13.97122
2048 6.2298E − 5 3.06543 1.9211E − 4 2.71896

Table 5 Centroid collocation errors of u with (β, γ) = (0.5, 0.02) and uniform meshing on model 3

metric= ‖ · ‖1 /n metric= ‖ · ‖∞
n En Ratio En Ratio

10 0.0024520 0.0080658
40 0.0078304 0.31314 0.0212920 0.37882
160 4.7525E − 4 1.64764 0.0132318 1.60915
640 1.9943E − 4 2.38304 6.0086E − 4 2.20214
2560 7.3112E − 5 2.72773 2.1996E − 4 2.73168

Table 6 Centroid collocation errors of u with (β, γ) = (0.5, 0.02) and discontinuity meshing on model 3.
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