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Abstract

Let 
 be an open, simply connected, and bounded region in Rd, d � 2,
and assume its boundary @
 is smooth. Consider solving an elliptic partial
di¤erential equation ��u + 
u = f over 
 with a Neumann boundary
condition. The problem is converted to an equivalent elliptic problem over
the unit ball B, and then a spectral Galerkin method is used to create
a convergent sequence of multivariate polynomials un of degree � n that
is convergent to u. The transformation from 
 to B requires a special
analytical calculation for its implementation. With su¢ ciently smooth
problem parameters, the method is shown to be rapidly convergent. For
u 2 C1

�


�
and assuming @
 is a C1 boundary, the convergence of

ku� unkH1 to zero is faster than any power of 1=n. Numerical examples
in R2 and R3 show experimentally an exponential rate of convergence.

1 INTRODUCTION

Consider solving the Neumann problem for Poisson�s equation:

��u+ 
(s)u = f(s); s 2 
 (1)

@u(s)

@ns
= g(s); s 2 @
: (2)

Assume 
 is an open, simply-connected, and bounded region in Rd, d � 2,
and assume that its boundary @
 is several times continuously di¤erentiable.
Similarly, assume the functions 
(s) and f(s) are several times continuously
di¤erentiable over 
, and assume that g(s) is several times continuously di¤er-
entiable over the boundary @
.
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There is a rich literature on spectral methods for solving partial di¤erential
equations. From the more recent literature, we cite [7], [8], [9], and [15]. Their
bibliographies contain references to earlier papers on spectral methods. The
present paper is a continuation of the work in [3] in which a spectral method is
given for a general elliptic equation with a Dirichlet boundary condition. Our
approach is somewhat di¤erent than the standard approaches. We convert the
partial di¤erential equation to an equivalent problem on the unit disk or unit
ball, and in the process we are required to work with a more complicated equa-
tion. Our approach is reminiscent of the use of conformal mappings for planar
problems. Conformal mappings can be used with our approach when working
on planar problems, although having a conformal mapping is not necessary.
In §2 we assume that (1)-(2) is uniquely solvable, and we present a spectral

Galerkin method for its solution. In §3 we extend the method to the problem
with 
(s) � 0 in 
. The problem is no longer uniquely solvable and we extend
our spectral method to this case. The implementation of the method is discussed
in §4 and it is illustrated in §5.

2 A spectral method for the uniquely solvable
case

We assume the Neumann problem (1)-(2) is uniquely solvable. This is true, for
example, if


 (s) � c
 > 0; s 2 
 (3)

for some constant c
 > 0. For functions u 2 H2 (
) ; v 2 H1 (
),Z



v(s) [��u(s) + 
(s)u] ds =
Z



[Ou(s) � Ov(s) + 
(s)u(s)v(s)] ds

�
Z
@


v (s)
@u(s)

@ns
ds:

(4)

Introduce the bilinear functional

A (v1; v2) =
Z



[Ov1(s) � Ov2(s) + 
(s)v1(s)v2(s)] ds: (5)

The variational form of the Neumann problem (1)-(2) is as follows: �nd u such
that

A (u; v) = `1(v) + `2 (v) ; 8v 2 H1 (
) (6)

with the linear functionals de�ned by

`1(v) =

Z



v(s)f(s) ds; (7)

`2 (v) =

Z
@


v (s) g(s) ds: (8)
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The norms we use for `1 and `2 are the standard operator norms when regarding
`1 and `2 as linear functionals on H1 (
). The functional `1 is bounded easily
on H1 (
),

j`1 (v)j � kfkL2kvkL2 � kfkL2kvkH1 : (9)

Ordinarily, we will use kvk1 in place of kvkH1 .
The functional `2 is bounded (at least for bounded domains 
). To show

this, begin by noting that the restriction � : H1(
) ! H1=2(@
) is continuous
[13, Th. 3.37] and the imbedding � : H1=2(@
) ,! L2(@
) is compact [13, Th.
3.27]. If we further denote by lg the continuous mapping

lg : u 7!
Z
@


u(s)g(s) ds; u 2 L2(@
)

then we see `2 = lg � � � �, and therefore `2 is bounded.
It is straightforward to show A is bounded,

jA (v; w)j � cA kvk1 kwk1 ;

cA = max f1; k
k1g :
(10)

In addition, we assume A is strongly elliptic on H1 (
),

A (v; v) � cekvk21; v 2 H1 (
) (11)

with some ce > 0. This follows ordinarily from showing the unique solvability of
the Neumann problem (1)-(2). If (3) is satis�ed, then we can satisfy (11) with

ce = min f1; c
g

Under our assumptions on A, including the strong ellipticity in (11), the Lax-
Milgram Theorem implies the existence of a unique solution u to (6) with

kuk1 �
1

ce
[k`1k+ k`2k] : (12)

Our spectral method is de�ned using polynomial approximations over the
open unit ball in Rd, call it Bd. Introduce a change of variables

� : Bd
1�1�!
onto




with � a twice-di¤erentiable mapping, and let 	 = ��1 : 

1�1�!
onto

Bd. [We

comment later on the creation of � for cases in which only the boundary mapping
� : @Bd ! @
 is known.] For v 2 L2 (
), let

ev(x) = v (� (x)) ; x 2 Bd � Rd

and conversely,
v(s) = ev (	 (s)) ; s 2 
 � Rd:
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Assuming v 2 H1 (
), we can show

rxev (x) = J (x)T rsv (s) ; s = �(x)

with J (x) the Jacobian matrix for � over the unit ball Bd,

J(x) � (D�) (x) =
�
@�i(x)

@xj

�d
i;j=1

; x 2 Bd:

Similarly,
rsv(s) = K(s)Trxev(x); x = 	(s)

with K(s) the Jacobian matrix for 	 over 
. Also,

K (� (x)) = J (x)
�1
: (13)

Using the change of variables s = �(x), the formula (5) converts to

A (v1; v2) =
Z
Bd

f[K (� (x))T rxev1 (x)]T [K (� (x))T rxev2 (x)]
+ 
(� (x))v1(� (x))v2(� (x)g jdet [J(x)]j dx

=

Z
Bd

f[J (x)�T rxev1 (x)]T [J (x)�T rxev2 (x)]
+ e
(x)ev1(x)ev2(x)g jdet [J(x)]j dx

=

Z
Bd

frxev1 (x)T A(x)rxev2 (x) + e
(x)ev1(x)ev2(x)g jdet [J(x)]j dx
� eA (ev1; ev2) (14)

with
A(x) = J (x)

�1
J (x)

�T
:

We can also introduce analogues to `1 and `2 following a change of variables,
calling them è

1 and è2 and de�ned on H1 (Bd). For example,

è
1(ev) = Z

Bd

ev(x)f(�(x)) jdet [J(x)]j dx:
We can then convert (6) to an equivalent problem over H1 (Bd). The variational
problem becomes eA (eu; ev) = è1(ev) + è2 (ev) ; 8ev 2 H1 (Bd) : (15)

The assumptions and results in (6)-(11) extend to this new problem on H1 (Bd).
The strong ellipticity condition (11) becomeseA (ev; ev) � ecekevk21; ev 2 H1 (Bd) ; (16)

ece = ce minx2Bd
jdet J(x)j

max
h
1;maxx2Bd

kJ(x)k22
i
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where kJ(x)k2 denotes the operator matrix 2-norm of J(x) for Rd. Also,��� eA (ev; ew)��� � ecA kevk1 k ewk1 ;
ecA = �max

x2Bd

jdet [J(x)]j
�
max

�
max
x2Bd

kA(x)k2 ; k
k1
�
:

For the �nite dimensional problem, we want to use the approximating sub-
space �n � �dn. We want to �nd eun 2 �n such thateA (eun; ev) = è1(ev) + è2 (ev) ; 8ev 2 �n: (17)

The Lax-Milgram Theorem (cf. [4, §8.3], [5, §2.7]) implies the existence of un
for all n. For the error in this Galerkin method, Cea�s Lemma (cf. [4, p. 365],
[5, p. 62]) implies the convergence of un to u, and moreover,

keu� eunk1 � ecAece infev2�n keu� evk1: (18)

It remains to bound the best approximation error on the right side of this
inequality.
Ragozin [14] gives bounds on the rate of convergence of best polynomial

approximation over the unit ball, and these results are extended in [6] to si-
multaneous approximation of a function and some of its lower order derivatives.
Assume eu 2 Cm+1 �Bd�. Using [6, Theorem 1], we have

infev2�n keu� evk1 � c(u;m)

nm
!u;m+1

�
1

n

�
(19)

with

!u;m+1 (�) = sup
j�j=m+1

 
sup

jx�yj��
jD�eu (x)�D�eu (y)j! :

The notation D�eu (x) is standard derivative notation with � a multi-integer.
In particular, for � = (�1; : : : ; �d),

D�eu (x) = @j�jeu (x1; : : : ; xd)
@x�11 � � � @x�dd

:

When (19) is combined with (18), we see that our solutions eun converge faster
than any power of 1=n provided eu 2 C1 �Bd�.
3 A spectral method for ��u = f
Consider the Neumann problem for Poisson�s equation:

��u = f(s); s 2 
 (20)

@u(s)

@ns
= g(s); s 2 @
 (21)
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As a reference for this problem, see [5, §5.2].
As earlier in (4), we have for functions u 2 H2 (
) ; v 2 H1 (
),Z




v(s)�u(s) ds = �
Z



Ou(s) � Ov(s) ds+
Z
@


v (s)
@u(s)

@ns
ds (22)

If this Neumann problem (20)-(21) is solvable, then its solution is not unique:
any constant added to a solution gives another solution. In addition, if (20)-(21)
is solvable, thenZ




v(s)f(s) ds =

Z



Ou(s) � Ov(s) ds�
Z
@


v (s) g(s) ds (23)

Choosing v(s) � 1, we obtainZ



f(s) ds = �
Z
@


g(s) ds (24)

This is a necessary and su¢ cient condition on the functions f and g in order that
(20)-(21) be solvable. With this constraint, the Neumann problem is solvable.
To deal with the non-unique solvability, we look for a solution u satisfyingZ




u(s) ds = 0 (25)

Introduce the bilinear functional

A (v1; v2) =
Z



Ov1(s) � Ov2(s) ds (26)

and the function space

V =
�
v 2 H1 (
) :

Z



v(s) ds = 0

�
(27)

A is bounded,
jA (v; w)j � kvk1 kwk1 ; 8v; w 2 V:

From [5, Prop. 5.3.2] A (�; �) is strongly elliptic on V, satisfying

A (v; v) � cekvk21; v 2 V

for some ce > 0. The variational form of the Neumann problem (20)-(21) is as
follows: �nd u such that

A (u; v) = `1(v) + `2 (v) ; 8v 2 V (28)

with `1 and `2 de�ned as in (7)-(8). As before, the Lax-Milgram Theorem
implies the existence of a unique solution u to (28) with

kuk1 �
1

ce
[k`1k+ k`2k] :
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As in the preceding section, we transform the problem from being de�ned
over 
 to being over Bd. Most of the arguments are repeated, and we have

eA (ev1; ev2) = Z
Bd

frxev1 (x)T A(x)rxev2 (x)g jdet [J(x)]j dx:
The condition (25) becomesZ

B

ev(x) jdet [J(x)]j dx = 0:
We introduce the space

eV = �ev 2 H1 (B) :

Z
B

ev(x) jdet [J(x)]j dx = 0� : (29)

The Neumann problem now has the reformulation

eA (eu; ev) = è1(ev) + è2 (ev) ; 8ev 2 eV (30)

For the �nite dimensional approximating problem, we use

eVn = eV \�n (31)

Then we want to �nd eun 2 eVn such that
ea (eun; ev) = è1(ev) + è2 (ev) ; 8ev 2 eVn (32)

We can invoke the standard results of the Lax-Milgram Theorem and Cea�s
Lemma to obtain the existence of a unique solution eun, and moreover,

keu� eunk1 � c inf
v2eVn keu� vk1: (33)

for some c > 0. A modi�cation of the argument that led to (19) can be used
to obtained a similar result for (33). First, however, we discuss the practical
problem of choosing a basis for eVn.
3.1 Constructing a basis for eVn
Let

�
'j : 1 � j � Nd

n

	
denote a basis for �n (usually we choose

�
'j
	
to be an

orthogonal family in the norm of L2 (Bd)). We assume that '1(x) is a nonzero
constant function. Introduce the new basis elements

b'j = 'j � 1

C

Z
B

'j(x) jdet [J(x)]j dx; 1 � j � Nd
n (34)

with

C =

Z
B

jdet [J(x)]j dx � kdet [J ]kL1 (35)
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Then b'1 = 0 andZ
B

b'j(x) jdet [J(x)]j dx = Z
B

'j(x) jdet [J(x)]j dx

� 1

C

�Z
B

'j(x) jdet [J(x)]j dx
� �Z

B

jdet [J(x)]j dx
�

= 0

Thus
�b'j : 2 � j � Nd

n

	
is a basis of eVn and we can use it for our Galerkin

procedure in (32).

3.2 The rate of convergence of eun
Now we estimate infv2eVn keu � vk1; see (33). Recalling (34), we consider the
linear mapping P : L2(Bd)! L2(Bd) given by

(P eu)(x) = eu(x)� 1

C

Z
B

jdet[J(y)]j eu(y) dy;
C = kdet[J ]kL1 ;

see (35). The mapping P is a projection

P (P eu)(x) = (P eu)(x)� 1

C

Z
B

jdet[J(y)]j (P eu)(y) dy
= eu(x)� 1

C

Z
B

jdet[J(y)]j eu(y) dy��
1

C

Z
B

jdet[J(y)]j
�eu(y)� 1

C

Z
B

jdet[J(z)]j eu(z)� dy

�
= eu(x)� 1

C

Z
B

jdet[J(y)]j eu(y) dy � 1

C

Z
B

jdet[J(y)]j eu(y) dy
+
1

C2

Z
B

jdet[J(y)]j dy| {z }
=C

Z
B

jdet[J(z)]j eu(z) dz
= eu(x)� 1

C

Z
B

jdet[J(y)]j eu(y) dy
= (P eu)(x)
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So P 2 = P and P is a projection with kPkL2!L2 � 1 and

kP euk2 = keu� 1

C

Z
B

jdet[J(y)]j eu(y) dykL2
� keukL2 + 1

C

����Z
B

jdet[J(y)]j eu(y) dy���� k1kL2
� keukL2 + 1

C
kdet[J ]kL2keukL2

s
�d=2

�
�
1 + 1

2d
� (Cauchy-Schwarz)

=

 
1 +

s
�d=2

�
�
1 + 1

2d
� kdet[J ]kL2
kdet[J ]kL1

!
keukL2

= cP keukL2
which shows kPkL2!L2 � cP and eV := P (H1(Bd)), see (29). For eu 2 H1(Bd)
we also have P eu 2 H1(Bd) and here we again estimate the norm of P :

kP euk2H1 = kP euk22 + kr(P eu)k22
� c2P keuk22 + kreuk22

since r(P eu) = reu. Furthermore cP � 1, so
kP euk2H1 � c2P keuk2L2 + c2P kreuk2L2

= c2P (keuk2L2 + kreuk2L2)
= c2P keuk2H1

kP eukH1 � cP keukH1

and we have also kPkH1!H1 � cP . For eu 2 eV = P (H1(B)) we can now estimate
the minimal approximation error

minep2eVn keu� epkH1 = minep2eVn kP eu� epkH1
P is a projection
and eu 2 image(P )

= min
p2�n

kP eu� PpkH1
because eVn = P (�n)

� min
p2�n

kPkH1!H1keu� pkH1

� cP min
p2�n

keu� pkH1

and now we can apply the results from [6].

4 Implementation

Consider the implementation of the Galerkin method of §2 for the Neumann
problem (1)-(2) over 
 by means of the reformulation in (15) over the unit ball
Bd. We are to �nd the function eun 2 �n satisfying (15). To do so, we begin by
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selecting a basis for �n, denoting it by f'1; : : : ; 'Ng, with N � Nn = dim�n.
Generally we use a basis that is orthonormal in the norm of L2 (B2). It would
be better probably to use a basis that is orthonormal in the norm of H1 (Bd);
for example, see [18]. We seek

eun(x) = NX
k=1

�k'k(x) (36)

Then (17) is equivalent to

NX
k=1

�k

Z
Bd

24 dX
i;j=1

ai;j(x)
@'k(x)

@xj

@'`(x)

@xi
+ 
(x)'k(x)'`(x)

35 jdet [J(x)]j dx
=

Z
Bd

f (x)'` (x) jdet [J(x)]j dx (37)

+

Z
@Bd

g (x)'` (x) jJbdy(x)j dx; ` = 1; : : : ; N

The function jJbdy(x)j arises from the transformation of an integral over @
 to
one over @Bd, associated with the change from `2 to è2 as discussed preceding
(15). For example, in one variable the boundary @
 is often represented as a
mapping

� (�) = (�1 (�) ; �2 (�)) ; 0 � � � 2�:

In that case, jJbdy(x)j is simply j�0 (�)j and the associated integral isZ 2�

0

g (� (�))'` (� (�)) j�0 (�)j d�

In (37) we need to calculate the orthonormal polynomials and their �rst partial
derivatives; and we also need to approximate the integrals in the linear system.
For an introduction to the topic of multivariate orthogonal polynomials, see
Dunkl and Xu [10] and Xu [17]. For multivariate quadrature over the unit ball
in Rd, see Stroud [16].
For the Neumann problem (20)-(21) of §3, the implementation is basically

the same. The basis f'1; : : : ; 'Ng is modi�ed as in (34), with the constant C
of (35) approximated using the quadrature in (42), given below.

4.1 The planar case

The dimension of �n is

Nn =
1

2
(n+ 1) (n+ 2) (38)

For notation, we replace x with (x; y). How do we choose the orthonormal basis
f'`(x; y)g

N
`=1 for �n? Unlike the situation for the single variable case, there are

many possible orthonormal bases over Bd = D, the unit disk in R2. We have
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chosen one that is particularly convenient for our computations. These are the
"ridge polynomials" introduced by Logan and Shepp [12] for solving an image
reconstruction problem. We summarize here the results needed for our work.
Let

Vn = fP 2 �n : (P;Q) = 0 8Q 2 �n�1g
the polynomials of degree n that are orthogonal to all elements of �n�1. Then
the dimension of Vn is n+ 1; moreover,

�n = V0 � V1 � � � � � Vn (39)

It is standard to construct orthonormal bases of each Vn and to then combine
them to form an orthonormal basis of �n using the latter decomposition. As
an orthonormal basis of Vn we use

'n;k(x; y) =
1p
�
Un (x cos (kh) + y sin (kh)) ; (x; y) 2 D; h =

�

n+ 1
(40)

for k = 0; 1; : : : ; n. The function Un is the Chebyshev polynomial of the second
kind of degree n:

Un(t) =
sin (n+ 1) �

sin �
; t = cos �; �1 � t � 1; n = 0; 1; : : : (41)

The family
�
'n;k

	n
k=0

is an orthonormal basis of Vn. As a basis of �n, we order�
'n;k

	
lexicographically based on the ordering in (40) and (39):

f'`g
N
`=1 =

�
'0;0; '1;0; '1;1; '2;0; : : : ; 'n;0; : : : ; 'n;n

	
To calculate the �rst order partial derivatives of 'n;k(x; y), we need U

0

n(t). The
values of Un(t) and U

0

n(t) are evaluated using the standard triple recursion
relations

Un+1(t) = 2tUn(t)� Un�1(t)
U

0

n+1(t) = 2Un(t) + 2tU
0

n(t)� U
0

n�1(t)

For the numerical approximation of the integrals in (37), which are over B
being the unit disk, we use the formulaZ

B

g(x; y) dx dy �
qX
l=0

2qX
m=0

g

�
rl;

2�m

2q + 1

�
!l

2�

2q + 1
rl (42)

Here the numbers !l are the weights of the (q + 1)-point Gauss-Legendre quadra-
ture formula on [0; 1]. Note thatZ 1

0

p(x)dx =

qX
l=0

p(rl)!l;

for all single-variable polynomials p(x) with deg (p) � 2q+1. The formula (42)
uses the trapezoidal rule with 2q+1 subdivisions for the integration over Bd in
the azimuthal variable. This quadrature is exact for all polynomials g 2 �2q.
This formula is also the basis of the hyperinterpolation formula discussed in
[11].
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4.2 The three dimensional case

In the three dimensional case the dimension of �n is given by

Nn =

�
n+ 3

3

�
and we choose the following orthogonal polynomials on the unit ball

'm;j;�(x) = cm;jp
(0;m�2j+ 1

2 )
j (2kxk2 � 1)S�;m�2j (x)

= cm;jkxkm�2jp
(0;m�2j+ 1

2 )
j (2kxk2 � 1)S�;m�2j

�
x

kxk

�
; (43)

j = 0; : : : ; bm=2c; � = 0; 1; : : : ; 2(m� 2j); m = 0; 1; : : : ; n

The constants cm;j are given by cm;j = 2
5
4+

m
2 �j ; and the functions p

(0;m�2j+ 1
2 )

j

are the normalized Jacobi polynomials. The functions S�;m�2j are spherical
harmonic functions and they are orthonormal on the sphere S2 � R3. See
[10, 3] for the de�nition of these functions. In [3] one also �nds the quadrature
methods which we use to approximate the integrals over B1(0) in (14) and (15).
The functional è2 in (15) is given by

è
2(v) =

Z �

0

Z 2�

0

g(�(�(1; �; �))) (44)

�k(� ��)�(1; �; �)� (� ��)�(1; �; �)k v(�(�(1; �; �)))d� d�

where
�(�; �; �) := � (sin(�) cos(�); sin(�) sin(�); cos(�)) (45)

is the usual transformation between spherical and Cartesian coordinates and the
indices denote the partial derivatives. For the numerical approximation of the
integral in (44) we use traezoidal rules in the � direction and Gauß-Legendre
formulas for the � direction.

5 Numerical examples

The construction of our examples is very similar to that given in [3] for the
Dirichlet problem. Our �rst two transformations � have been so chosen that
we can invert explicitly the mapping �, to be able to better construct our test
examples. This is not needed when applying the method; but it simpli�es
the construction of our test cases. Given �, we need to calculate analytically
the matrix

A(x) = J (x)
�1
J (x)

�T
: (46)
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Figure 1: Images of (47), with a = 0:5, for lines of constant radius and constant
azimuth on the unit disk.

5.1 The planar case

For our variables, we replace a point x 2 Bd with (x; y), and we replace a point
s 2 
 with (s; t). De�ne the mapping � : B ! 
 by (s; t) = � (x; y),

s = x� y + ax2
t = x+ y

(47)

with 0 < a < 1. It can be shown that � is a 1-1 mapping from the unit disk B.
In particular, the inverse mapping 	 : 
! B is given by

x =
1

a

h
�1 +

p
1 + a (s+ t)

i
y =

1

a

h
at�

�
�1 +

p
1 + a (s+ t)

�i (48)

In Figure 1, we give the images in 
 of the circles r = j=10, j = 1; : : : ; 10 and
the azimuthal lines � = j�=10, j = 1; : : : ; 20.
The following information is needed when implementing the transformation

from ��u+ 
u = f on 
 to a new equation on B:

D� = J (x; y) =

�
1 + 2ax �1
1 1

�
det (J) = 2 (1 + ax)

13
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Figure 2: The function u(s; t) of (50)

J (x)
�1
=

1

2 (1 + ax)

�
1 1
�1 1 + 2ax

�
A = J (x)

�1
J (x)

�T
=

1

2 (1 + ax)
2

�
1 ax
ax 2a2x2 + 2ax+ 1

�
The latter are the coe¢ cients needed to de�ne eA in (14).
We give numerical results for solving the equation

��u (s; t) + es�tu (s; t) = f (s; t) ; (s; t) 2 
 (49)

As a test case, we choose

u (s; t) = e�s
2

cos (�t) ; (s; t) 2 
 (50)

The solution is pictured in Figure 2. To �nd f(s; t), we use (49) and (50). We
use the domain parameter a = 0:5, with 
 pictured in Figure 1.
Numerical results are given in Table 1 for even values of n. The integrations

in (37) were performed with (42); and the integration parameter q ranged from
10 to 30. We give the condition numbers of the linear system (37) as produced
in Matlab. To calculate the error, we evaluate the numerical solution and the
error on the grid

� (xi;j ; yi;j) = � (ri cos �j ; ri sin �j)

(ri; �j) =

�
i

10
;
j�

10

�
; i = 0; 1; : : : 10; j = 1; : : : 20

14



Table 1: Maximum errors in Galerkin solution un
n Nn ku� unk1 cond n Nn ku� unk1 cond
2 6 9:71E � 1 14:5 14 120 3:90E � 5 6227
4 15 2:87E � 1 86:1 16 153 6:37E � 6 10250
6 28 5:85E � 2 309 18 190 8:20E � 7 15960
8 45 1:16E � 2 824 20 231 9:44E � 8 23770
10 66 2:26E � 3 1819 22 276 1:06E � 8 34170
12 91 2:81E � 4 3527 24 325 1:24E � 9 47650

0 5 10 15 20 25
10­10

10­8

10­6

10­4

10­2

100

102

n

Figure 3: Errors from Table 1

The results are shown graphically in Figure 3. The use of a semi-log scale
demonstrates the exponential convergence of the method as the degree increases.
To examine experimentally the behaviour of the condition numbers for the

linear system (37), we have graphed the condition numbers from Table 1 in Fig-
ure 4. Note that we are graphing N2

n vs. the condition number of the associated
linear system. The graph seems to indicate that the condition number of the
system (37) is directly proportional to the square of the order of the system,
with the order given in (38).
For the Poisson equation

��u (s; t) = f (s; t) ; (s; t) 2 


with the same true solution as in (50), we use the numerical method given in §3.
The numerical results are comparable. For example, with n = 20, we obtain

15
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Figure 4: Condition numbers from Table 1

ku� unk1 = 9:90� 10�8 and the condition number is approximately 14980.

5.2 The three dimensional case

To illustrate that the proposed spectral method converges rapidly, we �rst use
a simple test example. We choose the linear transformation

s := �1(x) =

0@ x1 � 3x2
2x1 + x2

x1 + x2 + x3

1A ;
so that B1(0) is transformed to an ellipsoid 
1; see �gure 5. For this transfor-
mation D�1 and J1 = det(D�1) are constant functions. For a test solution, we
use the function

u(s) = s1e
s2 sin(s3) (51)

which is analytic in each variable.
Table 2 shows the errors and the development of the condition numbers for

the solution of (1) on 
1. The associated graphs for the errors and condition
numbers are shown in �gures 6 and 7, respectively. The graph of the error is
consistent with exponential convergence; and the condition number seems to
have a growth proportional to the square of the number of degrees of freedom
Nn.
Next we study domains 
 which are star shaped with respect to the origin,


2 = fx 2 R3 j x = �(�; �; �); 0 � � � R(�; �)g: (52)

16
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1

See (45) for the de�nition of �, and R : S2 ! (0;1) is assumed to be a
C1 function. In this case we can construct arbitrarily smooth and invertible
mappings � : B1(0) ! 
2 as we will show now. First we de�ne a function
t : [0; 1]! [0; 1]

t(�) :=

�
0; 0 � � � 1

2 ;
2es(�� 1

2 )
es ; 1

2 < � � 1:
(53)

the parameter es 2 N determines the smoothness of t 2 Ces�1[0; 1]. For the
following we will assume that R(�; �) > 1, for all � and �; this follows after an
appropriate scaling of the problem. With the help of t we de�ne the functioneR which is monotone increasing from 0 to R(�; �) on [0; 1] and equal to the

Table 2: Maximum errors in Galerkin solution un
n Nn ku� unk1 cond n Nn ku� unk1 cond
1 4 9:22E + 00 8 9 220 4:15E � 04 1964
2 10 5:25E + 00 31 10 286 6:84E � 05 2794
3 20 1:92E + 00 79 11 364 1:11E � 05 3862
4 35 5:80E � 01 167 12 455 1:60E � 06 5211
5 56 1:62E � 01 314 13 560 2:06E � 07 6888
6 84 4:53E � 02 540 14 680 2:60E � 08 8937
7 120 1:03E � 02 871 15 816 3:01E � 09 11415
8 165 2:31E � 03 1335 16 969 3:13E � 10 14376
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identity on [0; 1=2],

eR(�; �; �) := t(�)R(�; �) + (1� t(�))�
Because

@

@�
eR(�; �; �) = t0(�)(R(�; �)� �) + (1� t(�)) > 0; � 2 [0; 1]

the function eR is an invertible function of � of class Ces�1. The transformation
�2 : B1(0)! 
2 is de�ned by

�2(x) := �( eR(�; �; �); �; �); x = �(�; �; �) 2 B1(0)

The properties of eR imply that �2 is equal to the identity on B 1
2
(0) and the

outside shell B1(0) nB 1
2
(0) is deformed by �2 to cover 
2 nB 1

2
(0).

For a test surface, we use

R(�; �) = 2 +
3

4
cos(2�) sin(�)2(7 cos(�)2 � 1) (54)

es = 5;

see �gures 8-9 for pictures of @
2. For our test example, we use u from (51).
The term cos(2�) sin(�)2(7 cos(�)2�1) is a spherical harmonic function which

shows R 2 C1(S2), and the factor 3=4 is used to guarantee R > 1. For the

18



0 0.5 1 1.5 2 2.5

x 104

0

5000

10000

15000

C
on

di
tio

n 
nu

m
be

r

Nn
2

Figure 7: Conditions numbers from Table 2

transformation �2 we get �2 2 C4(B1(0)), so we expect a convergence of order
O(n�4). Our spectral method will now approximate u � �2 on the unit ball,
which varies much more than the function in our �rst example.
We also note that one might ask why we do not further increase es (see (53))

to get a better order of convergence. It is possible to do this, but the price one
pays is in larger derivatives of u��2, and this may result in larger errors for the
range of n values where we actually calculate the approximation. The search
for an optimal es is a problem on its own, but it also depends on the solution
u. So we have chosen es = 5 in order to demonstrate our method, showing that
the qualitative behaviour of the error is the same as in our earlier examples.
The results of our calculations are given in table 3, and the associated graphs

of the errors and condition numbers are shown in �gures 10 and 11, respectively.
The graph in Figure 11 shows that the condition numbers of the systems grow
more slowly than in our �rst example, but again the condition numbers appear
to be proportional to N2

n. The graph of the error in Figure 10 again resembles
a line and this implies exponential convergence; but the line has a much smaller
slope than in the �rst example so that the error is only reduced to about 0:02
when we use degree 16. What we expect is a convergence of order O(n�4), but
the graph does not reveal this behavior in the range of n values we have used.
Rather, the convergence appears to be exponential. In the future we plan on
repeating this numerical example with an improved extension � of the boundary
given in (54).
When given a mapping ' : @B ! @
, it is often nontrivial to �nd an
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extension � : B 1�1�!
onto


 with �j@B = ' and with other needed properties. For

example, consider a star-like region 
 whose boundary surface @
 is given by

� = R(�; �)

with R : S2 ! @
. It might seem natural to use

� (�; �; �) = �R(�; �); 0 � � � 1; 0 � � � �; 0 � � � 2�

However, such a function � is not continuously di¤erentiable at � = 0. We
are exploring this general problem, looking at ways of producing � with the
properties that are needed for implementing our spectral method.

ACKNOWLEDGEMENTS. The authors would like to thank Professor Weimin
Han for his careful proofreading of the manuscript.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover
Publications, Inc., New York, 1965.

[2] K. Atkinson. An Introduction to Numerical Analysis, 2nd ed., John Wiley,
New York, 1989.

20



­1.5
­1

­0.5
0

0.5
1

1.5

­2­1012

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

Y
X

Z

Figure 9: Another view of @
2

[3] K. Atkinson, D. Chien, and O. Hansen, A Spectral Method for Elliptic
Equations: The Dirichlet Problem, Advances in Computational Mathemat-
ics, DOI: 10.1007/s10444-009-9125-8, to appear.

[4] K. Atkinson and W. Han. Theoretical Numerical Analysis: A Functional
Analysis Framework, 2nd ed., Springer-Verlag, New York, 2005.

[5] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Meth-
ods, Springer-Verlag, 1994.

[6] T. Bagby, L. Bos, and N. Levenberg, Multivariate simultaneous approxi-
mation, Constructive Approximation, 18 (2002), pp. 569-577.

Table 3: Maximum errors in Galerkin solution un
n Nn ku� unk1 cond n Nn ku� unk1 cond
1 4 2:322 3 9 220 0:268 475
2 10 1:321 10 10 286 0:231 701
3 20 1:085 19 11 364 0:151 987
4 35 1:152 44 12 455 0:116 1350
5 56 1:010 73 13 560 0:068 1809
6 84 0:807 125 14 680 0:053 2406
7 120 0:545 203 15 816 0:038 3118
8 165 0:404 318 16 969 0:022 3967

21



0 2 4 6 8 10 12 14 16
10­2

10­1

100

101

n

er
ro

r

Figure 10: Errors from table 3

[7] C. Canuto, A. Quarteroni, My. Hussaini, and T. Zang, Spectral Methods in
Fluid Mechanics, Springer-Verlag, 1988.

[8] C. Canuto, A. Quarteroni, My. Hussaini, and T. Zang, Spectral Methods -
Fundamentals in Single Domains, Springer-Verlag, 2006.

[9] E. Doha and W. Abd-Elhameed. E¢ cient spectral-Galerkin algorithms for
direct solution of second-order equations using ultraspherical polynomials,
SIAM J. Sci. Comput. 24 (2002), 548-571.

[10] C. Dunkl and Y. Xu. Orthogonal Polynomials of Several Variables, Cam-
bridge Univ. Press, Cambridge, 2001.

[11] O. Hansen, K. Atkinson, and D. Chien. On the norm of the hyperinterpo-
lation operator on the unit disk and its use for the solution of the nonlinear
Poisson equation, IMA J. Numerical Analysis, 29 (2009), pp. 257-283,
DOI: 10.1093/imanum/drm052.

[12] B. Logan. and L. Shepp. Optimal reconstruction of a function from its
projections, Duke Mathematical Journal 42, (1975), 645�659.

[13] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,
Cambridge Univ. Press, 2000.

[14] D. Ragozin. Constructive polynomial approximation on spheres and pro-
jective spaces, Trans. Amer. Math. Soc. 162 (1971), 157-170.

22



0 0.5 1 1.5 2 2.5

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

C
on

di
tio

n 
nu

m
be

r

Nn
2

Figure 11: Condition numbers from table 3

[15] J. Shen and L. Wang. Analysis of a spectral-Galerkin approximation to the
Helmholtz equation in exterior domains, SIAM J. Numer. Anal. 45 (2007),
1954-1978.

[16] A. Stroud. Approximate Calculation of Multiple Integrals, Prentice-Hall,
Inc., Englewood Cli¤s, N.J., 1971.

[17] Yuan Xu. Lecture notes on orthogonal polynomials of several variables, in
Advances in the Theory of Special Functions and Orthogonal Polynomials,
Nova Science Publishers, 2004, 135-188.

[18] Yuan Xu. A family of Sobolev orthogonal polynomials on the unit ball, J.
Approx. Theory 138 (2006), 232-241.

23


