SYSTEMS OF ODES

Consider the pendulum shown below. Assume the rod
is of neglible mass, that the pendulum is of mass m,
and that the rod is of length /. Assume the pendulum
moves in the plane shown, and assume there is no
friction in the motion about its pivot point. Let 6(x)
denote the position of the pendulum about the vertical
line thru the pivot, with 6 measured in radians and x
measured in units of time. Then Newton’s second
law implies
d%0

mE@ = —mgsin (0 (z))




Introduce Yi(z) = 0(x) and Ys(z) = 60'(z). The
function Y5(x) is called the angular velocity. We can

now write
Y{(z) = Ya(x), Y1(0) = 6(0)
Yy(x) =~ sin (Yi(a)), Y2(0) = 0/(0)

This is a simultaneous system of two differential equa-

tions in two unknowns.

We often write this in vector form. Introduce

ve={ 1)

Then

/ Yo(z)
Y'(z) = { _%sin (Y1(z)) ]

v [n0) ] _ e
Y0) = Yo—lyi(m]—[e’m)]



Introduce

B Z2 _ | *1
f(zlj,Z)—{—”Zsin(zl)]7 Z_[Z2]

Then our differential equation problem

/ Yo(z)
Y'(z) = { _%sin (Y1(z)) ]

v [ ] _ ] e
Yoy = YO‘[&%@)]—[@’(O)]

can be written in the familiar form
Y'(z) =f(z,Y(x)), Y(0)=Yy (1)

We can convert any higher order differential equation
into a system of first order differential equations, and

we can write them in the vector form (1).



Lotka-Volterra predator-prey model.

Yl’ = AY1[1 — BY3], Y71(0) = Y10 (2)
Y2’ = CY5[DY1 — 1], Y5(0) = Y20
with A, B,C,D > 0. = denotes time, Yi(z) is the
number of prey (e.g., rabbits) at time z, and Y5(x)
the number of predators (e.g., foxes). If there is only a

single type of predator and a single type of prey, then
this model is often a good approximation of reality.

Again write

Y() = | 1)

and define

| Az1[1 — Bzo] | oz
f(x’z)_[Cz;[Dzl—i]]’ Z_[z;]

although there is no explicit dependence on x. Then
system (2) can be written as

Y'(z) =f(z,Y(2)), Y(0)=Yo



GENERAL SYSTEMS OF ODES

An initial value problem for a system of m differential
equations has the form

Y{(z) = fiz,Yi(z), ..., Ym(z)), Yi(=zo) = Y1

Y (2) = fnlz,Yi(@),...,Ym(z)), Yim(z0) = Yimo

(3)
Introduce
- Yi(z) | [ Yio
Y(:B) = E ) YO =
i Ym(z) | i Ym,O |
fl(xa 22 ERRE Zm)
f(zx,z) = ;
(T, 21,0005 2m) |

Then (3) can be written as

Y'(z) = f(z,Y(z)), Y(0)=Y,



LINEAR SYSTEMS

Of special interest are systems of the form

Y'(z) = AY(2) + G(z), Y(0)=Y, (4)

with A a square matrix of order m and G(z) a col-
umn vector of length m with functions G;(z) as com-
ponents. Using the notation introduced for writing
systems,

f(z,2) = Az + G(z), zcR™

This equation is the analogue for studying systems of
ODEs that the model equation

y = Ay + g(z)

is for studying a single differential equation.



EULER'S METHOD FOR SYSTEMS

Consider
Y'(x) =f(z,Y(x)), Y(0) =Y

to be a systems of two equations

Yll(flj) = fl(a:, Yl(a:), Y2(:B)), Yl(O) = Yl,O
Yy(x) = fa(x, Yi(x), Ya(x)), Y2(0) =Y
Denote its solution be [Y1(z), Ya(x)].

Following the earlier derivations for Euler's method,
we can use Taylor's theorem to obtain

(5)

h2
Yi(zn+1) = Yi(zn) + Af1(zn, Y1(zn), Yo(2n)) + ?Yf/(fn)

(6)

2
Valttn 1) = Yalan) + hfa(en, Va(en), Yaan) + o VE(C)

Dropping the remainder terms, we obtain Euler's method
for problem (5),

Yin+1 = Y10+ hf1(Zn, Y10, Y2.n), ¥1.0= Y10
Y2 nt1 = Y2.n + hfo(Zn, y1.n,Y2.n), Y20 = Y20
forn=0,1,2,...



ERROR ANALYSIS

If Y1(z), Yo(x) are twice continuously differentiable,
and if the functions fi(x, 21, 22) and fo(x, 21, z2) are
sufficiently differentiable, then it can be shown that
Y- — < ch
max, 1(zn) —y1n| < c

(7)

max |Yo(xp) — < ch
ro<r<b 2( n) Y2.n| >

for a suitable choice of ¢ > 0.

The theory depends on generalizations of the proof
used with Euler’'s method for a single equation. One
needs to assume that there is a constant K > 0 such
that

£ (z,2) —f (2, W)lloo < Klz =Wl  (8)

for xg < x < b, z,w € R2. Recall the definition of
the norm ||-|| ., from Chapter 6.



The role of df(x,z)/0z in the single variable theory
is replaced by the Jacobian matrix

[ Of1(x, 21,22) Of1(x, 21,22)
— 87:1 (922
F@.2) = | app(e,21,2) 9falw, 21, 22) )
i 0z1 0zo |

It is possible to show that

K = F
max [F(z.2)]|

zcR?

is suitable for showing (8).

All of this work generalizes to problems of any order
m > 2. Then we require

[f(z,2) —f (2, W)l < K|z — Wl (10)
with zg < z < b, z,w € R"™. The choice of K is

often obtained using

K = a F(x. z
max [F(z,2)]|.
zZcR™M

where F(z,z) is the m x m generalization of (9).



The Euler method in all cases can be written in the
dimensionless form

Yn+1 = Yn + h(zn,yn), n >0
with yg = Y.

It can be shown that if (10) is satisfied, and if Y (x)
is twice-continuously differentiable on [zg, b], then

Y () — < ch 11
Jmax (1Y (zn) = ynllos < ¢ (11)

for some ¢ > 0 and for all small values of h.

In addition, we can show there is a vector function
D(x) for which

Y(z) — yp(z) = D(@)h + O(h?),  wp <an <b

for £ = xg,x1,...,b. Here yp(x) shows the depen-
dence of the solution on h, and y,(x) = yn for
x = xg + nh. This justifies the use of Richardson
extrapolation, leading to

Y (z) — yu(z) = yu(z) — yon(z) + O(h?)



NUMERICAL EXAMPLE. Consider solving the initial
value problem

Y +3Y" +3Y'+Y = —4sin(x),

Y(0)=Y'(0)=1, Y"(0)=-1 (12)
Reformulate it as
Yl’ = Y5 Y1(0) = 1
Y2’ = Y3 Y>(0) = 1
Y:,f = —Y7 —3Y> — 3Y3 —4sin(x), Y3(0) = (—12)

The solution of (12) is Y (x) = cos(x) + sin(x), and
the solution of (13) can be generated from it using
Yi(x) = Y (x).



The results for Y1 (x) = sin(x)+cos(x) are given in the
following table, for stepsizes 2h = 0.1 and A = 0.05.

The Richardson error estimate is quite accurate.

x y(x)  y(z) —you(z) yl(z) —yp(z) Ratio

2 0.49315 —8.78E —2  —425E -2 2.1
4 —1.41045 1.39E — 1 6.86E — 2 2.0
6 0.68075 5.19E — 2 2.49E — 2 2.1
3 0.84386 —156E—-1 —7.56E -2 2.1
10 —1.38309 8.39E — 2 4.14E — 2 2.0

T y(x) y(x) —yn(x) yp(x) — yop(x)
2 0.49315 —4.25E — 2 —4 53 — 2

4 —1.41045 6.86E — 2 7.05E — 2
6 0.68075 2.49E — 2 2.70E — 2
8 0.84386 —7.56E — 2 —7.99E — 2
10 —1.38309 4.14E — 2 4.25E — 2




OTHER METHODS

Other numerical methods apply to systems in the same
straightforward manner. by using the vector form

Y'(z) =f(z,Y(2)), Y(0)=Yo (14)

for a system, there is no apparent change in the nu-
merical method. For example, the following Runge-
Kutta method for solving a single differential equation,

h
Yn+1 — yn‘|‘§[f(f’3na yn)‘|‘f(37n+1a Yyn+hf(zn,yn)),

n > 0, generalizes as follows for solving (14):

h
Vil = yn+§[f(wn, yn)+f(xpt1, yn+hE(zn, yn))l,

n > 0. This can then be decomposed into compo-
nents if needed. For a system of order 2, we have
h
Yin+l = Yjn + E [fj(wna Yl,ns y2,n)
_|_fj ($n+1, Yln + hfl(xﬂn Yl,n y2,n)7

y2,n + hfo(@n,y1,n, yz,n))]
forn>0and 5 =1,2.



