
LEAST SQUARES DATA FITTING

Experiments generally have error or uncertainty in mea-
suring their outcome. Error can be human error, but it is
more usually due to inherent limitations in the equipment
being used to make measurements. Uncertainty can be
due to lack of precise de�nition or of human variation
in what is being measured. (For example, how do you
measure how much you like something?)

We often want to represent the experimental data by
some functional expression. Interpolation is often un-
satisfactory because it fails to account for the error or
uncertainty in the data.

We may know from theory that the data is taken from a
particular form of function (e.g. a quadratic polynomial),
or we may choose to use some particular type of formula
to represent the data.



EXAMPLE

Consider the following data.

Table 1: Empirical data

xi yi xi yi
1:0 �1:945 3:2 0:764
1:2 �1:253 3:4 0:532
1:4 �1:140 3:6 1:073
1:6 �1:087 3:8 1:286
1:8 �0:760 4:0 1:502
2:0 �0:682 4:2 1:582
2:2 �0:424 4:4 1:993
2:4 �0:012 4:6 2:473
2:6 �0:190 4:8 2:503
2:8 0:452 5:0 2:322
3:0 0:337

From the following Figure 1 it appears to be approxi-
mately linear.



Figure 1: The plot of empirical data

An experiment seeks to obtain an unknown functional
relationship

y = f(x) (1)

involving two related variables x and y. We choose vary-
ing values of x, say, x1; x2; : : : ; xn. Then we measure
a corresponding set of values for y. Let the actual mea-
surements be denoted by y1; : : : ; yn, and let

�i = f(xi)� yi
denote the unknown measurement errors. We want to
use the points (x1; y1); : : : ; (xn; yn) to determine the
analytic relationship (1) as accurately as possible.



Often we suspect that the unknown function f(x) lies
within some known class of functions, for example, poly-
nomials. Then we want to choose the member of that
class of functions that will best approximate the unknown
function f(x), taking into account the experimental er-
rors f�ig.

As an example of such a situation, consider the data in
Table 1 and the plot of it in Figure 1. From this plot,
it is reasonable to expect f(x) to be close to a linear
polynomial,

f(x) = mx+ b (2)

Assuming this to be the true form, the problem of deter-
mining f(x) is now reduced to that of determining the
constants m and b.

We can choose to determine m and b in a number of
ways. We list three such ways.



1. Choose m and b so as to minimize the quantity

1

n

nX
i=1

jf(xi)� yij

which can be considered an average approximation error.

2. Choose m and b so as to minimize the quantityvuut1
n

nX
i=1

[f(xi)� yi]2

which can also be considered an average approximation
error. It is called the root mean square error in the ap-
proximation of the data f(xi; yi)g by the function f(x).

3. Choose m and b so as to minimize the quantity

max
1�i�n

jf(xi)� yij

which is the maximum error of approximation.



All of these can be used, but #2 is the favorite, and we
now comment on why. To do so we need to understand
more about the nature of the unknown errors f�ig.

Standard assumption: Each error �i is a random vari-
able chosen from a normal probability distribution. Intu-
itively, such errors satisfy the following.
(1) If the experiment is repeated many times for the same
x = xi, then the associated unknown errors �i in the em-
pirical values yi will be likely to have an average of zero.
(2) For this same experimental case with x = xi, as the
size of �i increases, the likelihood of its occurring will
decrease rapidly.

This is the normal error assumption. We also assume
that the individual errors �i, 1 � i � n, are all random
variables from the same normal probability distribution
function, meaning that the size of �i is unrelated to the
size of xi or yi.



Assume f(x) is in a known class of functions, call it C.
An example is the assumption that f(x) is linear for the
data in Table 1.

Then among all functions bf(x) in C, it can be shown
that the function bf� that is most likely to equal f will
also minimize the expression

E =

vuut1
n

nX
i=1

h bf(xi)� yii2 (3)

among all functions bf in C.
This is called the root-mean-square error in the approx-
imation of the data fyig by bf(x). The function bf�(x)
that minimizes E relative to all bf in C is called the least
squares approximation to the data f(xi; yi)g.



EXAMPLE

Return to the data in Table 1, pictured in Figure 1. The
least squares approximation is given by

bf�(x) = 1:06338x� 2:74605 (4)

It is illustrated graphically in Figure 2.

Figure 2: The linear least squares �t bf�(x)



CALCULATING THE LEAST SQUARES
APPROXIMATION

How did we calculate bf�(x)? We want to minimize
E �

vuut1
n

nX
i=1

[f(xi)� yi]2

when considering all possible functions
f(x) = mx + b. Note that minimizing E is equivalent
to minimizing the sum, although the minimum values will
be di¤erent. Thus we seek to minimize

G(b;m) =
nX
i=1

[mxi + b� yi]2 (5)

as b and m are allowed to vary arbitrarily.

The choices of b andm that minimizeG(b;m) will satisfy

@G(b;m)

@b
= 0;

@G(b;m)

@m
= 0 (6)



Use

@G

@b
=

nX
i=1

2 [mxi + b� yi]

@G

@m
=

nX
i=1

2 [mxi + b� yi]xi =
nX
i=1

2
h
mx2i + bxi � xiyi

i
This leads to the linear system

nb+

0@ nX
i=1

xi

1Am =
nX
i=1

yi0@ nX
i=1

xi

1A b+
0@ nX
i=1

x2i

1Am =
nX
i=1

xiyi

(7)

This is uniquely solvable if the determinant is nonzero,

n
nX
i=1

x2i �

0@ nX
i=1

xi

1A2 6= 0 (8)

This is true unless

x1 = x2 = � � � = xn = constant

and this is false for our case.



For our example in Table 1,

nX
i=1

xi = 63:0
nX
i=1

x2i = 219:8

nX
i=1

yi = 9:326
nX
i=1

xiyi = 60:7302

Using this in (7), the linear system becomes

21b+ 63:0m = 9:326

63:0b+ 219:8m = 60:7302

The solution is

b
:
= �2:74605 m

:
= 1:06338

bf�(x) = 1:06338x� 2:74605
The root-mean-square-error in bf�(x) is

E
:
= 0:171

Recall the graph of bf�(x) is given in Figure 2.



GENERALIZATION

To represent the data f(xi; yi) j 1 � i � ng, let

bf(x) = a1'1(x) + a2'2(x) + � � �+ am'm(x) (9)

a1; a2; : : : ; am arbitrary numbers, '1(x); : : : ; 'm(x) given
functions.

If bf(x) is to be a quadratic polynomial, write
bf(x) = a1 + a2x+ a3x2 (10)

'1(x) � 1; '2(x) = x; '3(x) = x
2

Under the normal error assumption, the function bf(x) is
to be chosen to minimize the root-mean-square error

E =

vuut1
n

nX
i=1

h bf(xi)� yii2



Consider m = 3. Then

bf(x) = a1'1(x) + a2'2(x) + a3'3(x)
Choose a1, a2, a3 to minimize

G(a1; a2; a3) =
nX
j=1

[a1'1(xj)+a2'2(xj)+a3'3(xj)�yj]2

At the minimizing point (a1; a2; a3),

@G

@a1
= 0;

@G

@a2
= 0;

@G

@a3
= 0

This leads to the three equations. For i = 1; 2; 3,

0 =
@G

@ai
=

nX
j=1

2[a1'1(xj)+a2'2(xj)+a3'3(xj)�yj]'i(xj)

24 nX
j=1

'1(xj)'i(xj)

35 a1 +
24 nX
j=1

'2(xj)'i(xj)

35 a2
+

24 nX
j=1

'3(xj)'i(xj)

35 a3 = nX
j=1

yj'i(xj); (11)



Apply this to the quadratic formula

bf(x) = a1 + a2x+ a3x2
'1(x) � 1; '2(x) = x; '3(x) = x

2

Then the three equations are

na1 +

24 nX
j=1

xj

35 a2 +
24 nX
j=1

x2j

35 a3 = nX
j=1

yj24 nX
j=1

xj

35 a1 +
24 nX
j=1

x2j

35 a2 +
24 nX
j=1

x3j

35 a3 = nX
j=1

yjxj

(12)24 nX
j=1

x2j

35 a1 +
24 nX
j=1

x3j

35 a2 +
24 nX
j=1

x4j

35 a3 = nX
j=1

yjx
2
j

This can be shown a nonsingular system due to the as-
sumption that the points fxjg are distinct.



Generalization. Let

bf(x) = a1'1(x) + a2'2(x) + � � �+ am'm(x)
The root-mean-square error E in (3) is minimized with
the coe¢ cients a1; : : : ; am satisfying

mX
k=1

ak

24 nX
j=1

'k(xj)'i(xj)

35 = nX
j=1

yj'i(xj) (13)

for i = 1; : : : ;m. For the special case of a polynomial
of degree (m� 1),

bf(x) = a1 + a2x+ a3x2 + � � �+ amxm�1
write

'1(x) = 1; '2(x) = x; '3(x) = x
2;

: : : ; 'm(x) = x
m�1 (14)

System (13) becomes

mX
k=1

ak

24 nX
j=1

xi+k�2j

35 = nX
j=1

yjx
i�1
j ; i = 1; 2; : : : ;m

(15)
Whenm = 3, this yields the system (12) obtained earlier.



ILL-CONDITIONING

This system (15) is nonsingular (for m < n). Unfortu-
nately it is increasingly ill-conditioned as the degreem�1
increases.

The condition number for the matrix of coe¢ cients can
be very large for fairly small values of m, say, m = 4.

For this reason, it is seldom advisable to use

'1(x) = 1; '2(x) = x; '3(x) = x
2;

: : : ; 'm(x) = x
m�1

to do a least squares polynomial �t, except for
degree � 2.



To do a least squares �t to data f(xi; yi) j 1 � i � ng
with a higher degree polynomial bf(x), write

bf(x) = a1'1(x) + � � �+ am'm(x)
with '1(x); : : : ; 'm(x) so chosen that the matrix of co-
e¢ cients in

mX
k=1

ak

24 nX
j=1

'k(xj)'i(xj)

35 = nX
j=1

yj'i(xj)

is not ill-conditioned.

There are optimal choices of these functions 'j(x), with
deg('j) = j� 1 and with the coe¢ cient matrix becom-
ing diagonal.



IMPROVED BASIS FUNCTIONS

A nonoptimal but still satisfactory choice in general can
be based on the Chebyshev polynomials fTk(x)g of Sec-
tion 5.5, and a somewhat better choice is the Legendre
polynomials of Section 5.7.

Suppose that the nodes fxig are chosen from an interval
[�; �]. Introduce modi�ed Chebyshev polynomials

'k(x) = Tk�1

 
2x� �� �
� � �

!
; � � x � �; k � 1

(16)
Then degree ('k) = k � 1; and any polynomial bf(x)
of degree (m � 1) can be written as a combination of
'1(x); : : : ; 'm(x).



EXAMPLE

Consider the following data.

Table 2: Data for a cubic least squares �t

xi yi xi yi
0:00 0:486 0:55 1:102
0:05 0:866 0:60 1:099
0:10 0:944 0:65 1:017
0:15 1:144 0:70 1:111
0:20 1:103 0:75 1:117
0:25 1:202 0:80 1:152
0:30 1:166 0:85 1:265
0:35 1:191 0:90 1:380
0:40 1:124 0:95 1:575
0:45 1:095 1:00 1:857
0:50 1:122

From the following Figure 3 it appears to be approxi-
mately cubic. We begin by usingbf(x) = a1 + a2x+ a3x2 + a4x3 (17)



Figure 3: The plot of data of Table 2

The resulting linear system (15), denoted here by
La = b, is given by

L =

26664
21 10:5 7:175 5:5125
10:5 7:175 5:5125 4:51666
7:175 5:5125 4:51666 3:85416
5:5125 4:51666 3:85416 3:38212

37775
a = [a1; a2; a3; a4]

T

b = [24:1180; 13:2345; 9:46836; 7:55944]T



The solution is

a = [0:5747; 4:7259; �11:1282; 7:6687]T

The condition number is

cond(L) = kLk kL�1k := 22000 (18)

This is very large; it may be di¢ cult to obtain an accurate
answer for La = b.

To verify this, perturb b above by adding to it the per-
turbation

[0:01; �0:01; 0:01; �0:01]T

This will change b in its second place to the right of the
decimal point, within the range of possible perturbations
due to errors in the data. The solution of the new per-
turbed system is

a = [0:7408; 2:6825; �6:1538; 4:4550]T

This is very di¤erent from the earlier result for a.



The main point here is that use of

bf(x) = a1 + a2x+ a3x2 + a4x3
leads to a rather ill-conditioned system of linear equations
for determining fa1; a2; a3; a4g.

A better basis.

Use the modi�ed Chebyshev functions of (16) on
[�; �] = [0; 1]:

f(x) = a1'1(x) + a2'2(x) + a3'3(x) + a4'4(x)

'1(x) = T0(2x� 1) � 1
'2(x) = T1(2x� 1) = 2x� 1
'3(x) = T2(2x� 1) = 8x2 � 8x+ 1
'4(x) = T3(2x� 1) = 32x3 � 48x2 + 18x� 1

The values fa1; a2; a3; a4g are completely di¤erent than
in the representation (17).



The linear system (13) is again denoted by La = b:

L =

26664
21 0 �5:6 0
0 7:7 0 �2:8336

�5:6 0 10:4664 0
0 �2:8336 0 11:01056

37775
b = [24:118; 2:351; �6:01108; 1:523576]T

The solution is

a = [1:160969; 0:393514; 0:046850; 0:239646]T

The linear system is very stable with respect to the type
of perturbation made in b with the earlier approach to
the cubic least squares �t, using (17).

This is implied by the small condition number of L.

cond(L) = kLk kL�1k := (26:6)(0:1804) := 4:8

Relatively small perturbations in b will lead to relatively
small changes in the solution a.



The graph of bf(x) is shown in Figure 4.

Figure 4: The cubic least squares �t for Table 2

To give some idea of the accuracy of bf(x) in approxi-
mating the data in Table 2, we easily compute the root-
mean-square error from (3) to be

E
:
= 0:0421

a fairly small value when compared with the function val-
ues of bf(x).


