
GAUSSIAN ELIMINATION - REVISITED

Consider solving the linear system

2x1 + x2 − x3 + 2x4 = 5
4x1 + 5x2 − 3x3 + 6x4 = 9
−2x1 + 5x2 − 2x3 + 6x4 = 4
4x1 + 11x2 − 4x3 + 8x4 = 2

by Gaussian elimination without pivoting. We denote

this linear system by Ax = b. The augmented matrix

for this system is

[A | b] =


2 1 −1 2
4 5 −3 6
−2 5 −2 6
4 11 −4 8

¯̄̄̄
¯̄̄̄
¯
5
9
4
2


To eliminate x1 from equations 2, 3, and 4, use mul-

tipliers

m2,1 = 2, m3,1 = −1, m4,1 = 2



To eliminate x1 from equations 2, 3, and 4, use mul-

tipliers

m2,1 = 2, m3,1 = −1, m4,1 = 2

This will introduce zeros into the positions below the

diagonal in column 1, yielding
2 1 −1 2
0 3 −1 2
0 6 −3 8
0 9 −2 4

¯̄̄̄
¯̄̄̄
¯

5
−1
9
−8


To eliminate x2 from equations 3 and 4, use multipli-

ers

m3,2 = 2, m4,2 = 3

This reduces the augmented matrix to
2 1 −1 2
0 3 −1 2
0 0 −1 4
0 0 1 −2

¯̄̄̄
¯̄̄̄
¯

5
−1
11
−5





To eliminate x3 from equation 4, use the multiplier

m4,3 = −1
This reduces the augmented matrix to

2 1 −1 2
0 3 −1 2
0 0 −1 4
0 0 0 2

¯̄̄̄
¯̄̄̄
¯

5
−1
11
6


Return this to the familiar linear system

2x1 + x2 − x3 + 2x4 = 5
3x2 − x3 + 2x4 = −1

−x3 + 4x4 = 11
2x4 = 6

Solving by back substitution, we obtain

x4 = 3, x3 = 1, x2 = −2, x1 = 1



There is a surprising result involving matrices asso-

ciated with this elimination process. Introduce the

upper triangular matrix

U =


2 1 −1 2
0 3 −1 2
0 0 −1 4
0 0 0 2


which resulted from the elimination process. Then

introduce the lower triangular matrix

L =


1 0 0 0

m2,1 1 0 0
m3,1 m3,2 1 0
m4,1 m4,2 m4,3 1

 =


1 0 0 0
2 1 0 0
−1 2 1 0
2 3 −1 1


This uses the multipliers introduced in the elimination

process. Then

A = LU
2 1 −1 2
4 5 −3 6
−2 5 −2 6
4 11 −4 8

 =


1 0 0 0
2 1 0 0
−1 2 1 0
2 3 −1 1



2 1 −1 2
0 3 −1 2
0 0 −1 4
0 0 0 2





In general, when the process of Gaussian elimination

without pivoting is applied to solving a linear system

Ax = b, we obtain A = LU with L and U constructed

as above.

For the case in which partial pivoting is used, we ob-

tain the slightly modified result

LU = PA

where L and U are constructed as before and P is a

permutation matrix. For example, consider

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


Then

PA =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0



a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 =

A3,∗
A1,∗
A4,∗
A2,∗





PA =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0



a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



=


A3,∗
A1,∗
A4,∗
A2,∗


The matrix PA is obtained fromA by switching around

rows of A. The result LU = PA means that the LU-

factorization is valid for the matrix A with its rows

suitably permuted.



Consequences: If we have a factorization

A = LU

with L lower triangular and U upper triangular, then

we can solve the linear system Ax = b in a relatively

straightforward way.

The linear system can be written as

LUx = b

Write this as a two stage process:

Lg = b, Ux = g

The system Lg = b is a lower triangular system

g1 = b1
c2,1g1 + g2 = b2
c3,1g1 + c3,2g2 + g3 = b3

...
cn,1g1 + · · · cn,n−1gn−1 + gn = bn

We solve it by “forward substitution”. Then we solve

the upper triangular system Ux = g by back substi-

tution.



VARIANTS OF GAUSSIAN ELIMINATION

If no partial pivoting is needed, then we can look for

a factorization

A = LU

without going thru the Gaussian elimination process.

For example, suppose A is 4× 4. We write
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



=


1 0 0 0
c2,1 1 0 0
c3,1 c3,2 1 0
c4,1 c4,2 c4,3 1



u1,1 u1,2 u1,3 u1,4
0 u2,2 u2,3 u2,4
0 0 u3,3 u3,4
0 0 0 u4,4


To find the elements

n
ci,j

o
and

n
ui,j

o
, we multiply

the right side matrices L and U and match the results

with the corresponding elements in A.



Multiplying the first row of L times all of the columns

of U leads to

u1,j = a1,j, j = 1, 2, 3, 4

Then multiplying rows 2, 3, 4 times the first column

of U yields

ci,1u1,1 = ai,1, i = 2, 3, 4

and we can solve for
n
c2,1, c3,1, c4,1

o
. We can con-

tinue this process, finding the second row of U and

then the second column of L, and so on. For example,

to solve for c4,3, we need to solve for it in

c4,1u1,3 + c4,2u2,3 + c4,3u3,3 = a4,3

Why do this? A hint of an answer is given by this

last equation. If we had an n× n matrix A, then we

would find cn,n−1 by solving for it in the equation

cn,1u1,n−1+cn,2u2,n−1+· · ·+cn,n−1un−1,n−1 = an,n−1

cn,n−1 =
an,n−1 −

h
cn,1u1,n−1 + · · ·+ cn,n−2un−2,n−1

i
un−1,n−1



Embedded in this formula we have a dot product. This

is in fact typical of this process, with the length of the

inner products varying from one position to another.

Recalling §2.4 and the discussion of dot products, we
can evaluate this last formula by using a higher pre-

cision arithmetic and thus avoid many rounding er-

rors. This leads to a variant of Gaussian elimination

in which there are far fewer rounding errors.

With ordinary Gaussian elimination, the number of

rounding errors is proportional to n3. This reduces

the number of rounding errors, with the number now

being proportional to only n2. This can lead to major

increases in accuracy, especially for matrices A which

are very sensitive to small changes.



TRIDIAGONAL MATRICES

A =



b1 c1 0 0 · · · 0
a2 b2 c2 0
0 a3 b3 c3

...
. . .

... an−1 bn−1 cn−1
0 · · · an bn


These occur very commonly in the numerical solution

of partial differential equations, as well as in other ap-

plications (e.g. computing interpolating cubic spline

functions).

We factor A = LU , as before. But now L and U

take very simple forms. Before proceeding, we note

with an example that the same may not be true of the

matrix inverse.



EXAMPLE

Define an n× n tridiagonal matrix

A =



−1 1 0 0 · · · 0
1 −2 1 0
0 1 −2 1 ...

. . .
... 1 −2 1

0 · · · 1 −n−1
n


Then A−1 is given by³

A−1
´
i,j
= max {i, j}

Thus the sparse matrix A can (and usually does) have

a dense inverse.



We factor A = LU , with

L =



1 0 0 0 · · · 0
α2 1 0 0
0 α3 1 0 ...

. . .
... αn−1 1 0
0 · · · αn 1



U =



β1 c1 0 0 · · · 0
0 β2 c2 0
0 0 β3 c3

...
. . .

... 0 βn−1 cn−1
0 · · · 0 βn


Multiply these and match coefficients with A to find

{αi, γi}.



By doing a few multiplications of rows of L times

columns of U , we obtain the general pattern as fol-

lows.

β1 = b1 : row 1 of LU

α2β1 = a2, α2c1 + β2 = b2 : row 2 of LU
...

αnβn−1 = an, αncn−1 + βn = bn : row n of LU

These are straightforward to solve.

β1 = b1

αj =
aj

βj−1
, βj = bj − αjcj−1, j = 2, ..., n



To solve the linear system

Ax = f

or

LUx = f

instead solve the two triangular systems

Lg = f, Ux = g

Solving Lg = f :

g1 = f1

gj = fj − αjgj−1, j = 2, ..., n

Solving Ux = g:

xn =
gn

βn

xj =
gj − cjxj+1

βj
, j = n− 1, ..., 1

See the numerical example on page 278.



OPERATIONS COUNT

Factoring A = LU .

Additions: n− 1
Multiplications: n− 1
Divisions: n− 1

Solving Lz = f and Ux = z:

Additions: 2n− 2
Multiplications: 2n− 2
Divisions: n

Thus the total number of arithmetic operations is ap-

proximately 3n to factor A; and it takes about 5n to

solve the linear system using the factorization of A.

If we had A−1 at no cost, what would it cost to com-
pute x = A−1f?

xi =
nX

j=1

³
A−1

´
i,j
fj, i = 1, ..., n



MATLAB MATRIX OPERATIONS

To obtain the LU-factorization of a matrix, including

the use of partial pivoting, use the Matlab command

lu. In particular,

[L, U, P ] = lu(X)

returns the lower triangular matrix L, upper triangular

matrix U , and permutation matrix P so that

PX = LU


