LEAST SQUARES APPROXIMATION

Another approach to approximating a function f(x)
on an interval a < x < b is to seek an approximation
p(x) with a small ‘average error’ over the interval of
approximation. A convenient definition of the average
error of the approximation is given by
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This is also called the root-mean-square-error (de-
noted subsequently by RMSE) in the approximation
of f(x) by p(x). Note first that choosing p(x) to
minimize E(p; f) is equivalent to minimizing
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thus dispensing with the square root and multiplying
fraction (although the minimums are generally differ-
ent). The minimizing of (1) is called the least squares
approximation problem.



Example. Let f(x) = €%, let p(x) = ag + a1z, A,
a1 unknown. Approximate f(z) over [—1,1]. Choose

ap, 1 to minimize

s(o0.0) = [ [ —ap—analPde  (2)

g(ap, 1) = /
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Integrating,
g(ag, 1) = cla% - (3204% + c3agay + caag + ey + cg
with constants {c1,...,c6}, e.g.

c1 = 2, ce = (el - e_l) /2.

g is a quadratic polynomial in the two variables o,
a1. To find its minimum, solve the system
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It is simpler to return to (2) to differentiate, obtaining
1
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This simplifies to
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g = % = 1.1752

a1 = 3e1 = 1.1036
Using these values for ag and a1, we denote the re-
sulting linear approximation by
li(z) = ag + oy

It is called the best linear approximation to e* in the
sense of least squares. For the error,

T _y = 0.439
_max e 1()|



Errors in linear approximations of e*:

Approximation Max Error | RMSE
Taylor t1(x) 0.718 0.246
Least squares ¢1(x) 0.439 0.162
Chebyshev c1(x) 0.372 0.184
Minimax mq(x) 0.279 0.190
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The linear least squares approximation to e*



THE GENERAL CASE

Approximate f(x) on [a,b], and let n > 0. Seek p(x)
to minimize the RMSE. Write

p(x) = ag+arx+ - - + apx”

1 2
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Find coefficients ag, a1, ..., an to minimize this in-
tegral. The integral g(ag, a1,...,an) is a quadratic
polynomial in the n + 1 variables ag, a1, ..., an.

To minimize g(ag, a1, ..., an), invoke the conditions
dg
oo

This yields a set of n+1 equations that must be satis-

-0, i=0,1,....n

fied by a minimizing set g, a1, ..., an for g. Manip-
ulating this set of conditions leads to a simultaneous
linear system.



To better understand the form of the linear system,
consider the special case of [a,b] = [0, 1]. Differenti-
ating g with respect to each «;, we obtain

1
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Then the linear system is

n

1 .
= [ z'f(x)dx, t=0,1,...,n
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We will study the solution of simultaneous linear sys-
tems in Chapter 6. There we will see that this linear
system is ‘ill-conditioned’ and is difficult to solve ac-
curately, even for moderately sized values of n such as
n = 5. As a consequence, this is not a good approach
to solving for a minimizer of g(ag, a1, ..., an).



LEGENDRE POLYNOMIALS

Define the Legendre polynomials as follows.

Py(z) = 1
Pu(z) = n!lzn : d‘inn (2% - 1)”} o n=12...
For example,
Pi(z) =
Py(z) = % (32 —1)
Ps(z) = % (52° — 3x)

Py(z) = % (352* — 3027 + 3)

The Legendre polynomials have many special proper-

ties, and they are widely used in numerical analysis
and applied mathematics.
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Legendre polynomials of degrees 1, 2, 3,4



PROPERTIES

Introduce the special notation

(1.9)= [ F@)g(a) da

for general functions f(x) and g(x).

e Degree and normalization:

deg P, = n, Pn(1) =1, n >0

e Triple recursion relation: For n > 1,

2n+1 n
Pn—l—l(x) — n+ 1 zPn(z) — n -+ 1Pn—1(37)
e Orthogonality and size:
0, ¢#j
(P Fj) = 2 =

2i +1



e Zeroes:

All zeroes of Pp(x) are located in [—1,1];
all zeroes are simple roots of Pp(x)

e Basis: Every polynomial p(x) of degree < n can
be written in the form

p(z) = > B;Pj(x)
=0

with the choice of 3, 31, ..., 3, uniquely deter-
mined from p(x):

_wR)
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FINDING THE LEAST SQUARES
APPROXIMATION

We solve the least squares approximation problem on
only the interval [—1,1]. Approximation problems on
other intervals [a, b] can be accomplished using a lin-
ear change of variable.

We seek to find a polynomial p(x) of degree n that
minimizes

b
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This is equivalent to minimizing

We begin by writing p(z) in the form

p(z) = > B;Pj(x)
=0



p(z) = ) B;P;(x)
7=0
Substitute into (3), obtaining
.5(507617’“7571) (f_paf_p)
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Expand this into the following:

_ & (f, Py)?

= D o (f?P])]2
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Looking at this carefully, we see that it is smallest

when

(P;, Pj)’

Bj: :O,l,...,n



Looking at this carefully, we see that it is smallest

when
7P'
5]:M, j:O717'°'7n
(P, Pj)
The minimum for this choice of coefficients is
" (f, Pj)?
a=0H-> 1=
J;o (Pj, Pj)
We call
2 (f, )
bn(z) = Y < Pi(x) (4)
=0 (P, Pj)

the least squares approximation of degree n to f(x)
on [—1,1].

If 5,, = 0, then its actual degree is less than n.



Example. Approximate f(x) = e* on [—1,1]. We use
(4) with n = 3:

(P}, P;)

3
3(x) = Y BjPj(x), B;= (5)
j=0

The coefficients {3, 81, B2, B3} are as follows.

] 0 1 2 3
B, 235040 0.73576 0.14313 0.02013

Using (5) and simplifying,

(3(z) = 996294 + .997955z + 53672222 + 17613923

The error in various cubic approximations:

Approximation Max Error | RMSE
Taylor t3(x) .0516 .0145
Least squares /3(x) 0112 .00334
Chebyshev c3(x) .00666 | .00384
Minimax m3(x) .00553 | .00388
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Error in the cubic least squares approximation to e*



