
INTERPOLATION

Interpolation is a process of finding a formula (often
a polynomial) whose graph will pass through a given
set of points (x, y).

As an example, consider defining

x0 = 0, x1 =
π

4
, x2 =

π

2
and

yi = cosxi, i = 0, 1, 2

This gives us the three points

(0, 1) ,
µ
π
4 ,

1
sqrt(2)

¶
,

³
π
2 , 0

´
Now find a quadratic polynomial

p(x) = a0 + a1x+ a2x
2

for which

p(xi) = yi, i = 0, 1, 2

The graph of this polynomial is shown on the accom-
panying graph. We later give an explicit formula.
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PURPOSES OF INTERPOLATION

1. Replace a set of data points {(xi, yi)} with a func-
tion given analytically.

2. Approximate functions with simpler ones, usually

polynomials or ‘piecewise polynomials’.

Purpose #1 has several aspects.

• The data may be from a known class of functions.
Interpolation is then used to find the member of

this class of functions that agrees with the given

data. For example, data may be generated from

functions of the form

p(x) = a0 + a1e
x + a2e

2x + · · ·+ ane
nx

Then we need to find the coefficients
n
aj
o
based

on the given data values.



• We may want to take function values f(x) given
in a table for selected values of x, often equally

spaced, and extend the function to values of x

not in the table.

For example, given numbers from a table of loga-

rithms, estimate the logarithm of a number x not

in the table.

• Given a set of data points {(xi, yi)}, find a curve
passing thru these points that is “pleasing to the

eye”. In fact, this is what is done continually with

computer graphics. How do we connect a set of

points to make a smooth curve? Connecting them

with straight line segments will often give a curve

with many corners, whereas what was intended

was a smooth curve.



Purpose #2 for interpolation is to approximate func-

tions f(x) by simpler functions p(x), perhaps to make

it easier to integrate or differentiate f(x). That will

be the primary reason for studying interpolation in this

course.

As as example of why this is important, consider the

problem of evaluating

I =
Z 1
0

dx

1 + x10

This is very difficult to do analytically. But we will

look at producing polynomial interpolants of the inte-

grand; and polynomials are easily integrated exactly.

We begin by using polynomials as our means of doing

interpolation. Later in the chapter, we consider more

complex ‘piecewise polynomial’ functions, often called

‘spline functions’.



LINEAR INTERPOLATION

The simplest form of interpolation is probably the
straight line, connecting two points by a straight line.

Let two data points (x0, y0) and (x1, y1) be given.

There is a unique straight line passing through these

points. We can write the formula for a straight line
as

P1(x) = a0 + a1x

In fact, there are other more convenient ways to write

it, and we give several of them below.

P1(x) =
x− x1
x0 − x1

y0 +
x− x0
x1 − x0

y1

=
(x1 − x) y0 + (x− x0) y1

x1 − x0

= y0 +
x− x0
x1 − x0

[y1 − y0]

= y0 +

Ã
y1 − y0
x1 − x0

!
(x− x0)

Check each of these by evaluating them at x = x0
and x1 to see if the respective values are y0 and y1.



Example. Following is a table of values for f(x) =
tanx for a few values of x.

x 1 1.1 1.2 1.3
tanx 1.5574 1.9648 2.5722 3.6021

Use linear interpolation to estimate tan(1.15). Then

use

x0 = 1.1, x1 = 1.2

with corresponding values for y0 and y1. Then

tanx ≈ y0 +
x− x0
x1 − x0

[y1 − y0]

tanx ≈ y0 +
x− x0
x1 − x0

[y1 − y0]

tan (1.15) ≈ 1.9648 +
1.15− 1.1
1.2− 1.1 [2.5722− 1.9648]

= 2.2685

The true value is tan 1.15 = 2.2345. We will want

to examine formulas for the error in interpolation, to

know when we have sufficient accuracy in our inter-

polant.
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QUADRATIC INTERPOLATION

We want to find a polynomial

P2(x) = a0 + a1x+ a2x
2

which satisfies

P2(xi) = yi, i = 0, 1, 2

for given data points (x0, y0) , (x1, y1) , (x2, y2). One

formula for such a polynomial follows:

P2(x) = y0L0(x) + y1L1(x) + y2L2(x) (∗∗)
with

L0(x) =
(x−x1)(x−x2)
(x0−x1)(x0−x2), L1(x) =

(x−x0)(x−x2)
(x1−x0)(x1−x2)

L2(x) =
(x−x0)(x−x1)
(x2−x0)(x2−x1)

The formula (∗∗) is called Lagrange’s form of the in-

terpolation polynomial.



LAGRANGE BASIS FUNCTIONS

The functions

L0(x) =
(x−x1)(x−x2)
(x0−x1)(x0−x2), L1(x) =

(x−x0)(x−x2)
(x1−x0)(x1−x2)

L2(x) =
(x−x0)(x−x1)
(x2−x0)(x2−x1)

are called ‘Lagrange basis functions’ for quadratic in-

terpolation. They have the properties

Li(xj) =

(
1, i = j
0, i 6= j

for i, j = 0, 1, 2. Also, they all have degree 2. Their

graphs are on an accompanying page.

As a consequence of each Li(x) being of degree 2, we

have that the interpolant

P2(x) = y0L0(x) + y1L1(x) + y2L2(x)

must have degree ≤ 2.



UNIQUENESS

Can there be another polynomial, call it Q(x), for
which

deg(Q) ≤ 2
Q(xi) = yi, i = 0, 1, 2

Thus, is the Lagrange formula P2(x) unique?

Introduce

R(x) = P2(x)−Q(x)

From the properties of P2 and Q, we have deg(R) ≤
2. Moreover,

R(xi) = P2(xi)−Q(xi) = yi − yi = 0

for all three node points x0, x1, and x2. How many
polynomials R(x) are there of degree at most 2 and
having three distinct zeros? The answer is that only
the zero polynomial satisfies these properties, and there-
fore

R(x) = 0 for all x

Q(x) = P2(x) for all x



SPECIAL CASES

Consider the data points

(x0, 1), (x1, 1), (x2, 1)

What is the polynomial P2(x) in this case?

Answer: We must have the polynomial interpolant is

P2(x) ≡ 1
meaning that P2(x) is the constant function. Why?
First, the constant function satisfies the property of
being of degree ≤ 2. Next, it clearly interpolates the
given data. Therefore by the uniqueness of quadratic
interpolation, P2(x) must be the constant function 1.

Consider now the data points

(x0,mx0), (x1,mx1), (x2,mx2)

for some constant m. What is P2(x) in this case? By
an argument similar to that above,

P2(x) = mx for all x

Thus the degree of P2(x) can be less than 2.



HIGHER DEGREE INTERPOLATION

We consider now the case of interpolation by poly-
nomials of a general degree n. We want to find a
polynomial Pn(x) for which

deg(Pn) ≤ n
Pn(xi) = yi, i = 0, 1, · · · , n (∗∗)

with given data points

(x0, y0) , (x1, y1) , · · · , (xn, yn)
The solution is given by Lagrange’s formula

Pn(x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x)

The Lagrange basis functions are given by

Lk(x) =
(x− x0) ..(x− xk−1)(x− xk+1).. (x− xn)

(xk − x0) ..(xk − xk−1)(xk − xk+1).. (xk − xn)

for k = 0, 1, 2, ..., n. The quadratic case was covered
earlier.

In a manner analogous to the quadratic case, we can
show that the above Pn(x) is the only solution to the
problem (∗∗).



In the formula

Lk(x) =
(x− x0) ..(x− xk−1)(x− xk+1).. (x− xn)

(xk − x0) ..(xk − xk−1)(xk − xk+1).. (xk − xn)

we can see that each such function is a polynomial of

degree n. In addition,

Lk(xi) =

(
1, k = i
0, k 6= i

Using these properties, it follows that the formula

Pn(x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x)

satisfies the interpolation problem of finding a solution

to

deg(Pn) ≤ n
Pn(xi) = yi, i = 0, 1, · · · , n



EXAMPLE

Recall the table

x 1 1.1 1.2 1.3
tanx 1.5574 1.9648 2.5722 3.6021

We now interpolate this table with the nodes

x0 = 1, x1 = 1.1, x2 = 1.2, x3 = 1.3

Without giving the details of the evaluation process,

we have the following results for interpolation with

degrees n = 1, 2, 3.

n 1 2 3
Pn(1.15) 2.2685 2.2435 2.2296
Error −.0340 −.0090 .0049

It improves with increasing degree n, but not at a very

rapid rate. In fact, the error becomes worse when n is

increased further. Later we will see that interpolation

of a much higher degree, say n ≥ 10, is often poorly

behaved when the node points {xi} are evenly spaced.



A FIRST ORDER DIVIDED DIFFERENCE

For a given function f(x) and two distinct points x0
and x1, define

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

This is called a first order divided difference of f(x).

By the Mean-value theorem,

f(x1)− f(x0) = f 0(c) (x1 − x0)

for some c between x0 and x1. Thus

f [x0, x1] = f 0(c)
and the divided difference in very much like the deriv-

ative, especially if x0 and x1 are quite close together.

In fact,

f 0
µ
x1 + x0
2

¶
≈ f [x0, x1]

is quite an accurate approximation of the derivative

(see §5.4).



SECOND ORDER DIVIDED DIFFERENCES

Given three distinct points x0, x1, and x2, define

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

This is called the second order divided difference of

f(x).

By a fairly complicated argument, we can show

f [x0, x1, x2] =
1

2
f 00(c)

for some c intermediate to x0, x1, and x2. In fact, as

we investigate in §5.4,
f 00 (x1) ≈ 2f [x0, x1, x2]

in the case the nodes are evenly spaced,

x1 − x0 = x2 − x1



EXAMPLE

Consider the table

x 1 1.1 1.2 1.3 1.4
cosx .54030 .45360 .36236 .26750 .16997

Let x0 = 1, x1 = 1.1, and x2 = 1.2. Then

f [x0, x1] =
.45360− .54030

1.1− 1 = −.86700

f [x1, x2] =
.36236− .45360

1.1− 1 = −.91240

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

=
−.91240− (−.86700)

1.2− 1.0 = −.22700
For comparison,

f 0
µ
x1 + x0
2

¶
= − sin (1.05) = −.86742

1

2
f 00 (x1) = −1

2
cos (1.1) = −.22680



GENERAL DIVIDED DIFFERENCES

Given n + 1 distinct points x0, ..., xn, with n ≥ 2,

define

f [x0, ..., xn] =
f [x1, ..., xn]− f [x0, ..., xn−1]

xn − x0

This is a recursive definition of the nth-order divided

difference of f(x), using divided differences of order

n. Its relation to the derivative is as follows:

f [x0, ..., xn] =
1

n!
f (n)(c)

for some c intermediate to the points {x0, ..., xn}. Let
I denote the interval

I = [min {x0, ..., xn} ,max {x0, ..., xn}]
Then c ∈ I, and the above result is based on the

assumption that f(x) is n-times continuously differ-

entiable on the interval I.



EXAMPLE

The following table gives divided differences for the

data in

x 1 1.1 1.2 1.3 1.4
cosx .54030 .45360 .36236 .26750 .16997

For the column headings, we use

Dkf(xi) = f [xi, ..., xi+k]

i xi f(xi) Df(xi) D2f(xi) D3f(xi) D4f(xi)
0 1.0 .54030 -.8670 -.2270 .1533 .0125
1 1.1 .45360 -.9124 -.1810 .1583
2 1.2 .36236 -.9486 -.1335
3 1.3 .26750 -.9753
4 1.4 .16997

These were computed using the recursive definition

f [x0, ..., xn] =
f [x1, ..., xn]− f [x0, ..., xn−1]

xn − x0



ORDER OF THE NODES

Looking at f [x0, x1], we have

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
=

f(x0)− f(x1)

x0 − x1
= f [x1, x0]

The order of x0 and x1 does not matter. Looking at

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

we can expand it to get

f [x0, x1, x2] =
f(x0)

(x0 − x1) (x0 − x2)

+
f(x1)

(x1 − x0) (x1 − x2)
+

f(x2)

(x2 − x0) (x2 − x1)

With this formula, we can show that the order of the

arguments x0, x1, x2 does not matter in the final value

of f [x0, x1, x2] we obtain. Mathematically,

f [x0, x1, x2] = f [xi0, xi1, xi2]

for any permutation (i0, i1, i2) of (0, 1, 2).



We can show in general that the value of f [x0, ..., xn]

is independent of the order of the arguments {x0, ..., xn},
even though the intermediate steps in its calculations

using

f [x0, ..., xn] =
f [x1, ..., xn]− f [x0, ..., xn−1]

xn − x0

are order dependent.

We can show

f [x0, ..., xn] = f [xi0, ..., xin]

for any permutation (i0, i1, ..., in) of (0, 1, ..., n).



COINCIDENT NODES

What happens when some of the nodes {x0, ..., xn}
are not distinct. Begin by investigating what happens

when they all come together as a single point x0.

For first order divided differences, we have

lim
x1→x0

f [x0, x1] = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= f 0(x0)

We extend the definition of f [x0, x1] to coincident

nodes using

f [x0, x0] = f 0(x0)



For second order divided differences, recall

f [x0, x1, x2] =
1

2
f 00(c)

with c intermediate to x0, x1, and x2.

Then as x1 → x0 and x2 → x0, we must also have

that c→ x0. Therefore,

lim
x1→x0
x2→x0

f [x0, x1, x2] =
1

2
f 00(x0)

We therefore define

f [x0, x0, x0] =
1

2
f 00(x0)



For the case of general f [x0, ..., xn], recall that

f [x0, ..., xn] =
1

n!
f (n)(c)

for some c intermediate to {x0, ..., xn}. Then

lim
{x1,...,xn}→x0

f [x0, ..., xn] =
1

n!
f (n)(x0)

and we define

f [x0, ..., x0| {z }]
n+1 times

=
1

n!
f (n)(x0)

What do we do when only some of the nodes are

coincident. This too can be dealt with, although we

do so here only by examples.

f [x0, x1, x1] =
f [x1, x1]− f [x0, x1]

x1 − x0

=
f 0(x1)− f [x0, x1]

x1 − x0
The recursion formula can be used in general in this

way to allow all possible combinations of possibly co-

incident nodes.



LAGRANGE’S FORMULA FOR

THE INTERPOLATION POLYNOMIAL

Recall the general interpolation problem: find a poly-

nomial Pn(x) for which

deg(Pn) ≤ n
Pn(xi) = yi, i = 0, 1, · · · , n

with given data points

(x0, y0) , (x1, y1) , · · · , (xn, yn)
and with {x0, ..., xn} distinct points.

In §5.1, we gave the solution as Lagrange’s formula
Pn(x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x)

with {L0(x), ..., Ln(x)} the Lagrange basis polynomi-
als. Each Lj is of degree n and it satisfies

Lj(xi) =

(
1, j = i
0, j 6= i

for i = 0, 1, ..., n.



THE NEWTON DIVIDED DIFFERENCE FORM

OF THE INTERPOLATION POLYNOMIAL

Let the data values for the problem

deg(Pn) ≤ n
Pn(xi) = yi, i = 0, 1, · · · , n

be generated from a function f(x):

yi = f(xi), i = 0, 1, ..., n

Using the divided differences

f [x0, x1], f [x0, x1, x2], ..., f [x0, ..., xn]

we can write the interpolation polynomials

P1(x), P2(x), ..., Pn(x)

in a way that is simple to compute.

P1(x) = f(x0) + f [x0, x1] (x− x0)
P2(x) = f(x0) + f [x0, x1] (x− x0)

+f [x0, x1, x2] (x− x0) (x− x1)
= P1(x) + f [x0, x1, x2] (x− x0) (x− x1)



For the case of the general problem

deg(Pn) ≤ n
Pn(xi) = yi, i = 0, 1, · · · , n

we have

Pn(x) = f(x0) + f [x0, x1] (x− x0)
+f [x0, x1, x2] (x− x0) (x− x1)
+f [x0, x1, x2, x3] (x− x0) (x− x1) (x− x2)
+ · · ·
+f [x0, ..., xn] (x− x0) · · · (x− xn−1)

From this we have the recursion relation

Pn(x) = Pn−1(x)+f [x0, ..., xn] (x− x0) · · · (x− xn−1)

in which Pn−1(x) interpolates f(x) at the points in
{x0, ..., xn−1}.



Example: Recall the table

i xi f(xi) Df(xi) D2f(xi) D3f(xi) D4f(xi)
0 1.0 .54030 -.8670 -.2270 .1533 .0125
1 1.1 .45360 -.9124 -.1810 .1583
2 1.2 .36236 -.9486 -.1335
3 1.3 .26750 -.9753
4 1.4 .16997

withDkf(xi) = f [xi, ..., xi+k], k = 1, 2, 3, 4. Then

P1(x) = .5403− .8670 (x− 1)
P2(x) = P1(x)− .2270 (x− 1) (x− 1.1)
P3(x) = P2(x) + .1533 (x− 1) (x− 1.1) (x− 1.2)
P4(x) = P3(x)

+.0125 (x− 1) (x− 1.1) (x− 1.2) (x− 1.3)
Using this table and these formulas, we have the fol-

lowing table of interpolants for the value x = 1.05.

The true value is cos(1.05) = .49757105.

n 1 2 3 4
Pn(1.05) .49695 .49752 .49758 .49757
Error 6.20E−4 5.00E−5 −1.00E−5 0.0



EVALUATION OF THE DIVIDED DIFFERENCE

INTERPOLATION POLYNOMIAL

Let

d1 = f [x0, x1]
d2 = f [x0, x1, x2]

...
dn = f [x0, ..., xn]

Then the formula

Pn(x) = f(x0) + f [x0, x1] (x− x0)
+f [x0, x1, x2] (x− x0) (x− x1)
+f [x0, x1, x2, x3] (x− x0) (x− x1) (x− x2)
+ · · ·
+f [x0, ..., xn] (x− x0) · · · (x− xn−1)

can be written as

Pn(x) = f(x0) + (x− x0) (d1 + (x− x1) (d2 + · · ·
+(x− xn−2) (dn−1 + (x− xn−1) dn) · · · )

Thus we have a nested polynomial evaluation, and

this is quite efficient in computational cost.


