
FIXED POINT ITERATION

We begin with a computational example. Consider

solving the two equations

E1: x = 1 + .5 sinx
E2: x = 3 + 2 sinx

Graphs of these two equations are shown on accom-

panying graphs, with the solutions being

E1: α = 1.49870113351785
E2: α = 3.09438341304928

We are going to use a numerical scheme called ‘fixed

point iteration’. It amounts to making an initial guess

of x0 and substituting this into the right side of the

equation. The resulting value is denoted by x1; and

then the process is repeated, this time substituting x1

into the right side. This is repeated until convergence

occurs or until the iteration is terminated.

In the above cases, we show the results of the first 10

iterations in the accompanying table. Clearly conver-

gence is occurring with E1, but not with E2. Why?
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E1: x = 1 + .5 sinx
E2: x = 3 + 2 sinx

E1 E2
n xn xn
0 0.00000000000000 3.00000000000000
1 1.00000000000000 3.28224001611973
2 1.42073549240395 2.71963177181556
3 1.49438099256432 3.81910025488514
4 1.49854088439917 1.74629389651652
5 1.49869535552190 4.96927957214762
6 1.49870092540704 1.06563065299216
7 1.49870112602244 4.75018861639465
8 1.49870113324789 1.00142864236516
9 1.49870113350813 4.68448404916097
10 1.49870113351750 1.00077863465869



The above iterations can be written symbolically as

E1: xn+1 = 1 + .5 sinxn
E2: xn+1 = 3 + 2 sinxn

for n = 0, 1, 2, ... Why does one of these iterations
converge, but not the other? The graphs show similar
behaviour, so why the difference.

As another example, note that the Newton method

xn+1 = xn −
f(xn)

f ′(xn)

is also a fixed point iteration, for the equation

x = x− f(x)

f ′(x)

In general, we are interested in solving equations

x = g(x)

by means of fixed point iteration:

xn+1 = g(xn), n = 0, 1, 2, ...

It is called ‘fixed point iteration’ because the root α
is a fixed point of the function g(x), meaning that α
is a number for which g(α) = α.



EXISTENCE THEOREM

We begin by asking whether the equation x = g(x)
has a solution. For this to occur, the graphs of y = x
and y = g(x) must intersect, as seen on the earlier
graphs. The lemmas and theorems in the book give
conditions under which we are guaranteed there is a
fixed point α.

Lemma: Let g(x) be a continuous function on the
interval [a, b], and suppose it satisfies the property

a ≤ x ≤ b ⇒ a ≤ g(x) ≤ b (#)

Then the equation x = g(x) has at least one solution
α in the interval [a, b]. See the graphs for examples.

The proof of this is fairly intuitive. Look at the func-
tion

f(x) = x− g(x), a ≤ x ≤ b
Evaluating at the endpoints,

f(a) ≤ 0, f(b) ≥ 0

The function f(x) is continuous on [a, b], and there-
fore it contains a zero in the interval.



Theorem: Assume g(x) and g′(x) exist and are con-

tinuous on the interval [a, b]; and further, assume

a ≤ x ≤ b ⇒ a ≤ g(x) ≤ b

λ ≡ max
a≤x≤b

∣∣∣g′(x)
∣∣∣ < 1

Then:

S1. The equation x = g(x) has a unique solution α

in [a, b].

S2. For any initial guess x0 in [a, b], the iteration

xn+1 = g(xn), n = 0, 1, 2, ...

will converge to α.

S3.

|α− xn| ≤
λn

1− λ
|x1 − x0| , n ≥ 0

S4.

lim
n→∞

α− xn+1

α− xn
= g′(α)

Thus for xn close to α,

α− xn+1 ≈ g′(α) (α− xn)



The proof is given in the text, and I go over only a

portion of it here. For S2, note that from (#), if x0

is in [a, b], then

x1 = g(x0)

is also in [a, b]. Repeat the argument to show that

x2 = g(x1)

belongs to [a, b]. This can be continued by induction

to show that every xn belongs to [a, b].

We need the following general result. For any two

points w and z in [a, b],

g(w)− g(z) = g′(c) (w − z)

for some unknown point c between w and z. There-

fore,

|g(w)− g(z)| ≤ λ |w − z|

for any a ≤ w, z ≤ b.



For S3, subtract xn+1 = g(xn) from α = g(α) to get

α− xn+1 = g(α)− g(xn)

= g′(cn) (α− xn) ($)

|α− xn+1| ≤ λ |α− xn| (*)

with cn between α and xn. From (*), we have that

the error is guaranteed to decrease by a factor of λ

with each iteration. This leads to

|α− xn| ≤ λn |α− x0| , n ≥ 0

With some extra manipulation, we can obtain the error

bound in S3.

For S4, use ($) to write

α− xn+1

α− xn
= g′(cn)

Since xn → α and cn is between α and xn, we have

g′(cn)→ g′(α).



The statement

α− xn+1 ≈ g′(α) (α− xn)

tells us that when near to the root α, the errors will

decrease by a constant factor of g′(α). If this is nega-

tive, then the errors will oscillate between positive and

negative, and the iterates will be approaching from

both sides. When g′(α) is positive, the iterates will

approach α from only one side.

The statements

α− xn+1 = g′(cn) (α− xn)

α− xn+1 ≈ g′(α) (α− xn)

also tell us a bit more of what happens when∣∣∣g′(α)
∣∣∣ > 1

Then the errors will increase as we approach the root

rather than decrease in size.



Look at the earlier examples

E1: x = 1 + .5 sinx
E2: x = 3 + 2 sinx

In the first case E1,

g(x) = 1 + .5 sinx
g′(x) = .5 cosx∣∣g′(α∣∣ ≤ 1

2

Therefore the fixed point iteration

xn+1 = 1 + .5 sinxn

will converge for E1.

For the second case E2,

g(x) = 3 + 2 sinx
g′(x) = 2 cosx
g′(α) = 2 cos (3.09438341304928)

.
= −1.998

Therefore the fixed point iteration

xn+1 = 3 + 2 sinxn

will diverge for E2.



Corollary: Assume x = g(x) has a solution α, and

further assume that both g(x) and g′(x) are contin-

uous for all x in some interval about α. In addition,

assume ∣∣∣g′(α)
∣∣∣ < 1 (**)

Then any sufficiently small number ε > 0, the interval

[a, b] = [α − ε, α + ε] will satisfy the hypotheses of

the preceding theorem.

This means that if (**) is true, and if we choose x0

sufficiently close to α, then the fixed point iteration

xn+1 = g(xn) will converge and the earlier results

S1-S4 will all hold. The corollary does not tell us how

close we need to be to α in order to have convergence.



NEWTON’S METHOD

For Newton’s method

xn+1 = xn −
f(xn)

f ′(xn)

we have it is a fixed point iteration with

g(x) = x− f(x)

f ′(x)

Check its convergence by checking the condition (**).

g′(x) = 1− f
′(x)

f ′(x)
+
f(x)f ′′(x)

[f ′(x)]2

=
f(x)f ′′(x)

[f ′(x)]2

g′(α) = 0

Therefore the Newton method will converge if x0 is

chosen sufficiently close to α.



HIGHER ORDER METHODS

What happens when g′(α) = 0? We use Taylor’s

theorem to answer this question.

Begin by writing

g(x) = g(α) + g′(α) (x− α) +
1

2
g′′(c) (x− α)2

with c between x and α. Substitute x = xn and

recall that g(xn) = xn+1 and g(α) = α. Also assume

g′(α) = 0.

Then

xn+1 = α+ 1
2g
′′(cn) (xn − α)2

α− xn+1 = −1
2g
′′(cn) (xn − α)2

with cn between α and xn. Thus if g′(α) = 0, the

fixed point iteration is quadratically convergent or bet-

ter. In fact, if g′′(α) 6= 0, then the iteration is exactly

quadratically convergent.



ANOTHER RAPID ITERATION

Newton’s method is rapid, but requires use of the

derivative f ′(x). Can we get by without this. The

answer is yes! Consider the method

Dn =
f(xn + f(xn))− f(xn)

f(xn)

xn+1 = xn −
f(xn)

Dn

This is an approximation to Newton’s method, with

f ′(xn) ≈ Dn. To analyze its convergence, regard it

as a fixed point iteration with

D(x) =
f(x+ f(x))− f(x)

f(x)

g(x) = x− f(x)

D(x)

Then we can, with some difficulty, show g′(α) = 0

and g′′(α) 6= 0. This will prove this new iteration is

quadratically convergent.



FIXED POINT INTERATION: ERROR

Recall the result

lim
n→∞

α− xn
α− xn−1

= g′(α)

for the iteration

xn = g(xn−1), n = 1, 2, ...

Thus

α− xn ≈ λ (α− xn−1) (***)

with λ = g′(α) and |λ| < 1.

If we were to know λ, then we could solve (***) for

α:

α ≈ xn − λxn−1

1− λ



Usually, we write this as a modification of the cur-

rently computed iterate xn:

α ≈ xn − λxn−1

1− λ

=
xn − λxn

1− λ
+
λxn − λxn−1

1− λ

= xn +
λ

1− λ
[xn − xn−1]

The formula

xn +
λ

1− λ
[xn − xn−1]

is said to be an extrapolation of the numbers xn−1

and xn. But what is λ?

From

lim
n→∞

α− xn
α− xn−1

= g′(α)

we have

λ ≈ α− xn
α− xn−1



Unfortunately this also involves the unknown root α

which we seek; and we must find some other way of

estimating λ.

To calculate λ consider the ratio

λn =
xn − xn−1

xn−1 − xn−2

To see this is approximately λ as xn approaches α,

write

xn − xn−1

xn−1 − xn−2
=
g(xn−1)− g(xn−2)

xn−1 − xn−2
= g′(cn)

with cn between xn−1 and xn−2. As the iterates ap-

proach α, the number cn must also approach α. Thus

λn approaches λ as xn → α.



We combine these results to obtain the estimation

x̂n = xn+
λn

1− λn
[xn − xn−1] , λn =

xn − xn−1

xn−1 − xn−2

We call x̂n the Aitken extrapolate of {xn−2, xn−1, xn};
and α ≈ x̂n.

We can also rewrite this as

α− xn ≈ x̂n − xn =
λn

1− λn
[xn − xn−1]

This is called Aitken’s error estimation formula.

The accuracy of these procedures is tied directly to

the accuracy of the formulas

α−xn ≈ λ (α− xn−1) , α−xn−1 ≈ λ (α− xn−2)

If this is accurate, then so are the above extrapolation

and error estimation formulas.



EXAMPLE

Consider the iteration

xn+1 = 6.28 + sin(xn), n = 0, 1, 2, ...

for solving

x = 6.28 + sinx

Iterates are shown on the accompanying sheet, includ-

ing calculations of λn, the error estimate

α−xn ≈ x̂n−xn =
λn

1− λn
[xn − xn−1] (Estimate)

The latter is called “Estimate” in the table. In this

instance,

g′(α)
.

= .9644

and therefore the convergence is very slow. This is

apparent in the table.





AITKEN’S ALGORITHM

Step 1: Select x0

Step 2: Calculate

x1 = g(x0), x2 = g(x1)

Step3: Calculate

x3 = x2 +
λ2

1− λ2
[x2 − x1] , λ2 =

x2 − x1

x1 − x0

Step 4: Calculate

x4 = g(x3), x5 = g(x4)

and calculate x6 as the extrapolate of {x3, x4, x5}.
Continue this procedure, ad infinatum.

Of course in practice we will have some kind of er-

ror test to stop this procedure when believe we have

sufficient accuracy.



EXAMPLE

Consider again the iteration

xn+1 = 6.28 + sin(xn), n = 0, 1, 2, ...

for solving

x = 6.28 + sinx

Now we use the Aitken method, and the results are

shown in the accompanying table. With this we have

α− x3 = 7.98× 10−4, α− x6 = 2.27× 10−6

In comparison, the original iteration had

α− x6 = 1.23× 10−2



GENERAL COMMENTS

Aitken extrapolation can greatly accelerate the con-

vergence of a linearly convergent iteration

xn+1 = g(xn)

This shows the power of understanding the behaviour

of the error in a numerical process. From that un-

derstanding, we can often improve the accuracy, thru

extrapolation or some other procedure.

This is a justification for using mathematical analyses

to understand numerical methods. We will see this

repeated at later points in the course, and it holds

with many different types of problems and numerical

methods for their solution.


