BINARY INTEGERS

A binary integer x is a finite sequence of the digits 0 and 1, which we write symbolically as

$$x = (a_m a_{m-1} \cdots a_2 a_1 a_0)_2$$

where I insert the parentheses with subscript $(\cdot)_2$ in order to make clear that the number is binary. The above has the decimal equivalent

$$x = a_m 2^m + a_{m-1} 2^{m-1} + \cdots + a_1 2^1 + a_0$$

For example, the binary integer $x = (110101)_2$ has the decimal value

$$x = 2^5 + 2^4 + 2^2 + 2^0 = 53$$

The binary integer $x = (111 \cdots 1)_2$ with m ones has the decimal value

$$x = 2^{m-1} + \cdots + 2^1 + 1 = 2^m - 1$$
DECIMAL TO BINARY INTEGER CONVERSION

Given a decimal integer x we write

\[x = (a_m a_{m-1} \cdots a_2 a_1 a_0)_2 = a_m 2^m + a_{m-1} 2^{m-1} + \cdots + a_1 2^1 + a_0 \]

Divide x by 2, calling the quotient x_1. The remainder is a_0, and

\[x_1 = a_m 2^{m-1} + a_{m-1} 2^{m-2} + \cdots + a_1 2^0 \]

Continue the process. Divide x_1 by 2, calling the quotient x_2. The remainder is a_1, and

\[x_2 = a_m 2^{m-2} + a_{m-1} 2^{m-3} + \cdots + a_2 2^0 \]

After a finite number of such steps, we will obtain all of the coefficients a_i, and the final quotient will be zero.

Try this with a few decimal integers.
EXAMPLE

The following shortened form of the above method is convenient for hand computation. Convert \((11)_10\) to binary.

\[
\begin{align*}
\lfloor 2\sqrt{11} \rfloor &= 5 &= x_1 & a_0 = 1 \\
\lfloor 2\sqrt{5} \rfloor &= 2 &= x_2 & a_1 = 1 \\
\lfloor 2\sqrt{2} \rfloor &= 1 &= x_3 & a_2 = 0 \\
\lfloor 2\sqrt{1} \rfloor &= 0 &= x_4 & a_3 = 1
\end{align*}
\]

In this, the notation \(\lfloor b \rfloor\) denotes the largest integer \(\leq b\), and the notation \(2\sqrt{n}\) denotes the quotient resulting from dividing 2 into \(n\). From the above calculation, \((11)_10 = (1011)_2\).
A binary fraction x is a sequence (possibly infinite) of the digits 0 and 1:

$$x = (a_1a_2a_3 \cdots a_m \cdots)_2$$

$$= a_12^{-1} + a_22^{-2} + a_32^{-3} + \cdots$$

For example, $x = (.1101)_2$ has the decimal value

$$x = 2^{-1} + 2^{-2} + 2^{-4}$$

$$= .5 + .25 + .0625 = 0.8125$$

BINARY FRACTIONS
Recall the formula for the geometric series

\[\sum_{i=0}^{n} r^i = \frac{1 - r^{n+1}}{1 - r}, \quad r \neq 1 \]

Letting \(n \to \infty \) with \(|r| < 1 \), we obtain the formula

\[\sum_{i=0}^{\infty} r^i = \frac{1}{1 - r}, \quad |r| < 1 \]

Using this,

\[(.010101010101010\cdots)_2 = 2^{-2} + 2^{-4} + 2^{-6} + \cdots \]

\[= 2^{-2} (1 + 2^{-2} + 2^{-4} + \cdots) \]

which sums to the fraction \(1/3 \).

Also,

\[(.11001100110011\cdots)_2 \]

\[= 2^{-1} + 2^{-2} + 2^{-5} + 2^{-6} + \cdots \]

and this sums to the decimal fraction \(0.8 = \frac{8}{10} \).
DECIMAL TO BINARY FRACTION CONVERSION

In
\[x_1 = (a_1a_2a_3\cdots a_m\cdots)_2 = a_12^{-1} + a_22^{-2} + a_32^{-3} + \cdots \]
we multiply by 2. The integer part will be \(a_1\); and after it is removed we have the binary fraction
\[x_2 = (a_2a_3\cdots a_m\cdots)_2 = a_22^{-1} + a_32^{-2} + a_42^{-3} + \cdots \]
Again multiply by 2, obtaining \(a_2\) as the integer part of \(2x_2\). After removing \(a_2\), let \(x_3\) denote the remaining number. Continue this process as far as needed.

For example, with \(x = \frac{1}{5}\), we have
\[x_1 = .2; \quad 2x_1 = .4; \quad x_2 = .4 \text{ and } a_1 = 0 \]
\[2x_2 = .8; \quad x_3 = .8 \text{ and } a_2 = 0 \]
\[2x_3 = 1.6; \quad x_4 = .6 \text{ and } a_2 = 1 \]
Continue this to get the pattern
\[(.2)_{10} = (.00110011001100\cdots)_2 \]
ADDITION TABLE

<table>
<thead>
<tr>
<th>+</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>100</th>
<th>101</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td></td>
</tr>
</tbody>
</table>

MULTIPLICATION TABLE

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>100</th>
<th>101</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>1010</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>110</td>
<td>1000</td>
<td>1010</td>
<td>10100</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>110</td>
<td>1001</td>
<td>1100</td>
<td>1111</td>
<td>11001</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1000</td>
<td>1100</td>
<td>10000</td>
<td>10100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td>1010</td>
<td>1111</td>
<td>10100</td>
<td>11001</td>
<td></td>
</tr>
</tbody>
</table>