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Abstract. Parametric curves are frequently used in computer an-
imation and virtual environments to control the movements of syn-
thetic objects. In many of these applications it is essential to effi-
ciently relate parameter values to the arc length of the curve. Cur-
rent approaches to compute arc length or to construct an arc-length
parameterized curve are impractical to use in real-time applications.
This paper presents a simple and efficient technique to generate ap-
proximately arc-length parameterized spline curves that closely match
spline curves typically used to model roads in high-fidelity driving sim-
ulators.

§1. Introduction
Parametric cubic splines are the curves of choice for many applications
of computer graphics. They are widely used in computer animation and
virtual environments to define motion paths [6]. As the parameter vari-
able ranges over the interval of definition, the computed position traces
a smooth curve in space. Naively, one might compute position using the
parameter variable directly. However, it is difficult to regulate the speed
of traversal in this way because the parameter variable and curve length
are not, in general, linearly related. (For example, see the left graph in
Figure 1.) Motion control is simple if object trajectories are parameter-
ized by arc length. To move an object at a constant speed along a path of
an arc-length parameterized curve, the controller need only evaluate the
parametric function at parameter values separated by the speed times the
inter-frame time interval.

Let us assume we have a parametric representation of a cubic spline
curve

Q(t) = (x(t), y(t), z(t)),
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Fig. 1. A spiral curve (left) with the points at constant parameter interval (‘*’)
and constant arc-length interval (‘o’) and its curvature (right).

where t is from t0 to tn, n is the number of spline segments, and {t0, t1, t2,
· · ·, tn} are the break points. The arc-length parameterization of a curve
can be constructed from any other differentiable parameterization by the
following two-step process [2]:

• Compute arc length s as a function of parameter t: s = A(t). Since s
is a strictly increasing function of t, there is a one-to-one correspon-
dence between s and t.

• Compute t = A−1(s), the inverse of the arc length function. This
function is well defined and monotonically increasing for cubic splines.
By substituting t = A−1(s) into Q(t), we get a curve parameterized
by arc length s, P (s) = (x(A−1(s)), y(A−1(s)), z(A−1(s))), where
s ∈ [0, L] and L is the total length of the curve.

The arc length is a geometric integration,

A(t) =
∫ t

t0

(
(x′(t))2 + (y′(t))2 + (z′(t))2

)1/2
dt, (1)

where for a cubic spline,




x(t) = ax,i(t − ti)3 + bx,i(t − ti)2 + cx,i(t − ti) + dx,i

y(t) = ay,i(t − ti)3 + by,i(t − ti)2 + cy,i(t − ti) + dy,i

z(t) = az,i(t − ti)3 + bz,i(t − ti)2 + cz,i(t − ti) + dz,i,

where t ∈ [ti, ti+1], i = 0, 1, 2, ..., n − 1, the values for x, y ,and z are
of class C2 on [0, L]. In general, the integral (1) cannot be computed
analytically. Therefore, the arc-length parameterization for cubic spline
curves cannot be expressed as a combination of elementary functions and
must be evaluated numerically.
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§2. Previous Work

A number of researchers have developed numerical methods to compute
approximate arc-length parameterizations of curves. The integral formula
(1) to compute arc length, A(t), can be approximated with conventional
numerical integration methods such as Gaussian quadrature or Simpson’s
rule. In order to provide a means to control the accuracy of the approx-
imation, Guenter et al. [3] introduced a multi-step method called adap-
tive Gaussian integration. The adaptive Gaussian integration method di-
vides the interval of integration in half and separately integrates each
sub-interval. The sum of the integrals computed on the two sub-intervals
is compared with the value computed over the entire interval. If the differ-
ence between them is less than the desired accuracy, then the procedure
returns the sum of the two halves; otherwise it recursively applies the
procedure on the sub-intervals.

Cubic spline curves are typically composed of a sequence of cubic
segments. To compute the arc-length A(t) of a composite curve Q(t), the
arc lengths of the component cubic segments are first computed. A table
of parameter t against accumulated arc length at the segment boundaries
is then constructed from the segment lengths. To compute arc length,
A(t), the index of the table entry on which t lies is calculated. Then the
arc length in a small interval inside the segment is computed. The sum
of the accumulated arc length and the arc length on the small interval is
computed as the final result.

The bisection method is commonly used to find A−1(s). The bisec-
tion method begins with a table search. Given an arc length value sa, the
table is searched to locate the starting parameter interval [ti, ti+1] corre-
sponding to the arc-length interval [A(ti), A(ti+1)] containing sa. While
the bisection method can achieve high accuracy, it converges too slowly
for many real-time applications.

In Guenter et al. [3], the inverse arc-length computation is formulated
as a Newton-Raphson root finding method. As in the bisection method,
the first step is to search the table to find the interval [ti, ti+1] such that
sa ∈ [A(ti), A(ti+1)]. The parameter value at arc length sa is computed
by finding a root t ∈ [ti, ti+1] of the equation f(t) = sa − A(t) = 0.
The Newton-Raphson method iteratively generates a sequence of estimates
{rk}, k = 1, 2, ..., where rk = rk−1 − f(rk−1)

f ′(rk−1)
. On the first iteration, the

value r0 is computed by linearly interpolating ti and ti+1.
Several problems may arise with this approach. One complication

is that rk may lie outside the interval [ti, ti+1]. If rk lies off interval, the
computation must be terminated. Perhaps the most severe impediment for
real-time applications is that the Newton-Raphson method sometimes con-
verges very slowly or even diverges. Hard real-time applications demand
that computations meet stringent scheduling requirements. Computations
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must be completed in a fixed time interval. While the Newton-Raphson
method is normally very efficient, the unpredictable occurrences of rare
failures can have disastrous consequences in real-time environments.

As an alternative to computationally intensive table look-up and inte-
gration techniques, Walter et al. [4] present an approximate closed-form so-
lution to compute arc length directly from the parametric variable. Their
method computes a Bézier curve that relates the length of the curve to the
parametric variable. They assume that a one-span or a two-span Bézier
curve L(t) has sufficient flexibility to accurately represent a large range of
“arc length vs. parameter” curves. The great advantage of this approach
is that A(t) can be very quickly estimated from the cubic curve L(t) lo-
cally approximating A(t). The method can also be applied in reverse to
estimate t from s by approximating the curve t = A−1(s).

The approximation curve L(t) introduces sources of error that are
difficult to analyze and control. The error inherent in the numerical inte-
gration required to estimate the control points of the Bézier curve is ex-
aggerated by misfits between interpolation curve and the true arc-length
curve. There are two additional disadvantages of this approach for our
application. The first is that to accurately compute arc length for a com-
posite curve, an approximation curve would have to be calculated for every
segment of the composite curve. Since the arc lengths at the boundaries of
the composite curve are unevenly spaced, a table search would be required
to locate the segment on which t resides for the inverse mapping from s
to t. The second disadvantage is that two separate sets of approximation
curves are computed to serve the forward mapping from t to s and its
inverse mapping. Our application requires frequent mapping in both di-
rections. Both the complexity of maintaining separate forward and inverse
mapping functions and the potential inconsistencies that could arise from
accumulation of errors through alternately evaluating forward and inverse
mapping functions are problematic.

The aim of our work is to efficiently model road geometry for real-
time driving simulation. The road model is used to control motions of
synthetic traffic. In addition to being used for motion guidance, the road
model provides a coordinate system in which the relative positions of ob-
jects on the roadway are defined. Arc-length parameterized piecewise cu-
bic splines are attractive for road modeling because of their tangent and
curvature continuity. However, the methods presented above are too slow
and insufficiently robust for real-time simulations.

§3. Computing an Approximate Arc-Length Parameterized
Curve

Our method computes the approximation curve in three steps. First, the
arc lengths of all the cubic segments in the input spline curve, Q(t), are



Arc-Length Parameterization 391

computed and summed to determine the arc length L of Q(t). The second
step is to find m+ 1 points equally spaced along Q(t). The third step is
to compute a new spline curve using the equally spaced points as knots.
The result is an approximately arc-length parameterized piecewise spline
curve divided into m cubic segments.

The arc length of each spline segment on the input curve is

li =
∫ ti+1

ti

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt,

where i varies from 0 to n − 1 and n is the number of spline segments in
the original curve. Thus, the arc length of the whole curve is L =

∑n−1
i=0 li.

Using the bisection method, we compute m+1 equally spaced points
on Q(t) located at distances 0, l̃, 2 · l̃, ...,m · l̃ from the start of the curve,
where l̃ = L/m is the length of each segment in the output curve. These
points are defined by the parameter values t̃0, t̃1, ..., t̃m, which satisfy the
following integration, ∫ t̃i

t0

ds

dt
dt = i · l̃, (2)

where i = 0, 1, ...,m, s is arc length, and t is the parameter of the spline
functions.

The value of t̃i can be computed in two steps. The first step is to find
a spline segment indexed by j which satisfies

∑j−1
p=0 lp ≤ i · l̃ <

∑j
p=0 lp.

This condition ensures that tj ≤ t̃i < tj+1. Formula (2) is written as,

∫ t̃i

t0

ds

dt
dt =

∫ tj

t0

ds

dt
dt +

∫ t̃i

tj

ds

dt
dt =

j−1∑
p=0

lp +
∫ t̃i

tj

ds

dt
dt = i · l̃.

The second step is to compute t̃i such that

∫ t̃i

tj

ds

dt
dt = i · l̃ −

j−1∑
p=0

lp,

where t̃i is on the cubic spline segment starting with parameter value tj .
The second step is accomplished with the bisection method. We suppose
tleft = tj and tright = tj+1. The interval [tleft, tright] contains the solu-
tion t̃i. This interval is bisected into two subintervals [tleft, tmiddle] and
[tmiddle, tright], where tmiddle = (tleft+ tright)/2. We can calculate the arc
length between [tj , tmiddle] as 	s =

∫ tmiddle

tj

ds
dt dt. The solution lies in the

upper subinterval [tmiddle, tright] if 	s < i · l̃ − ∑j−1
p=0 lp. Otherwise, the

solution lies in the lower subinterval [tleft, tmiddle]. This bisection process
is repeated until a required error tolerance for arc length is achieved.
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With the above bisection method, we get t̃0,t̃1,...,t̃m that divide the
original curve into equal arc-length segments. Using the original cubic
spline function, we then compute the evenly spaced points (x̃0, ỹ0, z̃0),
(x̃1, ỹ1, z̃1), ..., (x̃m, ỹm, z̃m) at arc-lengths s0 = 0, s1 = l̃, s2 = 2 · l̃, ...,
sm = m · l̃. We reparameterize the spline curve by interpolating [(s0, x̃0),
(s1, x̃1), ..., (sm, x̃m)], [(s0, ỹ0), (s1, ỹ1), ..., (sm, ỹm)] and [(s0, z̃0), (s1, z̃1),
..., (sm, z̃m)]. In this interpolation, we interpolate x, y and z to arc length
s and get the cubic spline functions in formula (3). Our goal is to have
the following result for s ∈ [0, L]:

√
(x̃′(s))2 + (ỹ′(s))2 + (z̃′(s))2 = 1.0.

Therefore, the magnitude of the beginning tangent vector and the magni-
tude of the ending tangent vector should be 1.0. The new curve is




x̃(s) = ãx,i(s − si)3 + b̃x,i(s − si)2 + c̃x,i(s − si) + d̃x,i

ỹ(s) = ãy,i(s − si)3 + b̃y,i(s − si)2 + c̃y,i(s − si) + d̃y,i

z̃(s) = ãz,i(s − si)3 + b̃z,i(s − si)2 + c̃z,i(s − si) + d̃z,i,

(3)

where s ∈ [si, si+1], i = 0, 1, 2, ...,m − 1, and the values for x̃, ỹ, and z̃
are of class C2 on [0, L]. The tangent vectors of the derived curve at the
beginning point and the ending point are set to be equal to the normalized
tangent vectors of the original curve at the beginning point and the ending
point, respectively.

This is an arc-length parameterized spline curve. It has m equal-
length spline segments. Our technique avoids the high cost of arc-length
parameterization by generating a new curve that accurately approximates
the input curve and is approximately parameterized by arc length. A sub-
stantial advantage of this approach is that the heavy burden of computa-
tion is pushed into off-line preprocessing steps. The payoff is that on-line
computations can be completed very quickly. Moreover, the precision of
the on-line computations can be predetermined during the preprocessing
stage by selecting the granularity of the approximation curve. The major
on-line cost accrued by increasing the accuracy of the approximation is in
the number of coefficients of the spline functions that must be stored.

§4. Error Analysis

The derived curve is an arc-length parameterized approximation of the
initial spline curve in two senses:

• The shape of the derived curve approximately matches the shape of
the input curve. We call the misfit of the derived curve from the input
curve the match error.
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• The derived curve is approximately arc-length parameterized. We call
the deviation from arc-length parametrization the parameterization
error.

Match and parameterization errors are related to one another. If the
derived curve precisely matches the input curve, then the parameterization
error will be minimal. In this case, the principal source of parameterization
error will be from errors in estimating the points t̃1, t̃2, ..., t̃m−1 that
divide the original curve into equal length intervals. A desirable property
of our method is that these points are pre-computed, and therefore we can
afford to spend considerable computational effort in finding very accurate
estimates. The bisection method used to solve equation (2) allows us to
estimate t̃i with any desired accuracy.

The magnitude of the match error is related to the curvature of the
input curve. At the knot points, t̃0, t̃1, ..., t̃m, the derived curve inter-
polates the input curve. Between two adjacent knot points, the derived
curve approximates the input curve with a cubic. For an arc of a circle,
the match error decreases precipitously as the number of knot points on
the approximation curve increases. For curves with smooth variation cur-
vature, the maximum error tends to be highest in regions of high curvature
(as we demonstrate below in the results of experiments with spiral curves.)

§5. Experimental Results

We demonstrate the properties of our arc-length parameterization method
by testing the method on a cubic spline constructed by interpolating points
sampled from the spiral curve drawn in the left graph in Figure 1. Our
choice of a spiral is motivated by our interest in using the technique to
model roads for real-time driving simulation. Modern highways are de-
signed according to standards that specify road layout to meet safety and
drivability criteria. A highway is composed of a sequence of segments
of constant curvature interconnected by transition spirals that smoothly
join segments of differing curvature. Roads designed in this fashion have
the desirable property that the change in curvature is always smooth. In
addition to being an important curve in road modeling, a spiral curve is
useful for testing because it contains a continuous range of curvature (as
shown in the right graph in Figure 1) and thus permits us to examine
the relationship between curvature and errors. Figure 2 shows the cubic
arc-length parameterized curves (solid) generated from the spline curve in
the left graph in Figure 1 with the number of spline segments m = 5 and
m = 10. The input spline curve (dashed) is overlaid in both cases.

The match error can be measured by the offset of the generated arc-
length parameterized curve from the original curve. We can compute
this error in the following way. We traverse the arc-length parameterized
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Tab. 1. The relationship between the number of spline segments and the maxi-
mum error in the derived arc-length parameterized curve.

curve and the original curve at the same time. For a point on the arc-
length parameterized curve computed with the arc-length parameter s ∈
[0, L], we locate the point on the original curve with the arc length value
equal to the corresponding arc-length parameter s. We compute the offset
between the corresponding points. Figure 3 shows the match error in the
approximation curves form = 5 andm = 10. Comparing the match errors
in Figure 3 to the curvature displayed in the right graph in Figure 1, we
see the magnitude of match error is related to the curvature of the input
curve. High curvature regions require fine-grained sampling to capture the
turn of the curve. By setting the sampling distance to be small enough
to well represent a circle with radius equal to 1/max curvature of the
spiral, we can keep the error in a tolerable range. As a rule of thumb, the
sampling distance should be at least 1/(4 max curvature).

Figure 4 shows the arc-length parameterization error measured by the
formula

√
(x̃′(s))2 + (ỹ′(s))2 + (z̃′(s))2−1.0. From the graphs in Figure 4

we can see the magnitude of arc-length parameterization error is also re-
lated to the curvature of the curve. When the curvature becomes smaller,
the match error becomes smaller.

As with match error, the quality of arc-length parameterization im-
proves when we increase the number of spline segments in the derived
arc-length parameterized curve. Table 1 shows the relationship between
the number of spline segments and the maximum error. We observe that
the match error decreases about 10 times, and the arc-length parameteri-
zation error decreases more than 5 times for each doubling of the number
of spline segments in the arc-length parameterized curve.

§6. Conclusion
The technique presented for constructing an approximately arc-length pa-
rameterized approximation curve is well adapted for a variety of real-time
applications. For example, driving simulators commonly need to com-
pute distance queries at very high frequencies such as finding a point at a
particular distance on a curve. This query is important for the behavior
code that guides autonomous vehicles on synthetic roadways. Using the
method introduced, a point at a particular distance along the curve can
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Fig. 2. The arc length parameterized curve (solid with knot points marked by
‘o’) and the original curve (dashed with knot points marked by ‘*’) for
m = 5 in the left panel and m = 10 in the right panel.
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Fig. 3. Match error in the arc-length parameterized curve for m = 5 in the left
panel and m = 10 in the right panel.
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Fig. 4. Parameterization error in the arc-length parameterized curve for m = 5
in the left panel and m = 10 in the right panel.

be determined with a single evaluation of a cubic. Most techniques for
computing arc length from a parameter value or for computing the pa-
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rameter value at a specific arc length require a table search be performed
on a composite curve. Because our segments all have the same length, we
can very efficiently map to the correct segment without a table search.

An attractive property of our approach is that the precision of the
computations (measured as either match error or parameterization error)
is determined solely by computations performed off-line, prior to running
a simulation. We can achieve a desired error tolerance by refining the
estimate of the equally-spaced sample points on the input curve and by
increasing the number of intervals in the derived curve. The only run-time
cost accrued is in the space need to store a larger number of coefficients
of cubic spline functions.
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