
CONSTRUCTING DIFFEOMORPHISMS BETWEEN SIMPLY
CONNECTED PLANE DOMAINS - PART 2

KENDALL ATKINSON∗, DAVID CHIEN† , AND OLAF HANSEN‡

Abstract. Consider a simply connected domain Ω ⊂ R2 with boundary ∂Ω that is given by a
smooth function ϕ : [a, b] �→ R2. Our goal is to calculate a polynomial P (n) : B2 �→ Ω of maximum
degree n such that P (n) is a diffeomorphism. Here B

2 is the open unit disk in R
2 and n has to be

chosen suitable large. The polynomial mapping P (n) is given as the L2 projection of a mapping Φ
that is only known for a discrete set of points in B

2. The construction of Φ was given in our previous
article [2]. Using P (n) we can transform boundary value problems from Ω to B2 using a Galerkin
method, see [1]. In §5 we give numerical examples demonstrating the use of P (n) to solve Dirichlet
problems for two example regions Ω.

Key words. domain mapping, multivariate polynomial, constrained minimization, nonlinear
iteration

AMS subject classification. 65D05, 49Q10

Keywords: domain transformations, constructing a diffeomorphism, multivariate
polynomials, Dirichlet problem

AMS: 65D05, 49Q10

1. Introduction. Consider being given a boundary curve Γ for a simply con-
nected region Ω in the plane R

2. This is usually given as a function ϕ : [a, b] → R
2 for

some interval [a, b]. For convenience we generally choose [a, b] = [0, 2π]. We want to
create a 1-1 function Φ from the closed unit disk B

2 onto Ω with Φ|
S1

≡ ϕ, S1 = ∂B2.
The curve Γ is assumed to be smooth, with ϕ ∈ C2 [0, 2π], and it is further assumed
that ϕ, ϕ′, ϕ′′ can be computed explicitly.

Creating Φ is a several step process which was described in [2]. We begin by find-
ing the arc length parameterization of Γ, call it L. For a given ρ, an equal subdivision
of Γ into ρ subintervals of equal arc length L/ρ is created. From it, we create a cubic
spline interpolant of Γ, using the nodes associated with the ρ subdivisions of Γ. We
then vary this spline function to reduce its variation to a circle of the same arc length.
We proposed two different approaches to do this. These methods produce a sequence
of boundaries, starting with Γ and going to a circle C of equal arc length L. Using
the reverse sequence of these boundaries, a mapping from the unit disk is created by
solving a suitable differential equation.

This problem was explored in [1, Chapter 3] and [3], but it was restricted mainly to
regions Ω that are starlike with respect to some point inside the region. Methods based
on interpolation of the boundary function ϕ were studied. In addition, an iterative
method was introduced in [3] to improve choices of Φ. The methods proposed in [2]
can also be used for regions that are not starlike. For other papers concerned with
this problem, see [8, 9, 10].

The transformation produced in [2] produces transformed values Φ (pi) for given
nodes {pi} ⊆ B

2. A more convenient form of a transformation is to have a polynomial

∗Depts of Mathematics & Computer Science, University of Iowa, Iowa City, IA 52242
†Dept of Mathematics, California State University at San Marcos, San Marcos, CA 92096
‡Dept of Mathematics, California State University at San Marcos, San Marcos, CA 92096

1

mapping defined on B
2, useful for the numerical methods given in [1] for solving

partial differential equations. In this paper we consider the construction of such a
polynomial. Examples are given later in this paper for more complicated regions
that are not starlike.

2. General Schema. Denote the set of polynomials in 2 variables of degree at
most n by Πn. Its dimension is

Nn =
1

2
(n+ 1) (n+ 2) .

Let {ϕi : i = 1, . . . , Nn} denote an orthonormal basis for Πn. We use the ’Xu polyno-
mials’ as they can be evaluated rapidly.

The Xu polynomials of degree n are given by

(2.1) ϕn,k (x) =
1

hn,k
Ck+1

n−k (x1)
(
1− x2

1

) k
2 C

1
2

k

(
x2√
1− x2

1

)
, x ∈ B

2,

for n = 0, 1. . . . and k = 0, 1, . . . , n. The functions
{
Cλ

n (t)
}
are ‘Gegenbauer polyno-

mials’. They can be obtained using the following generating function:

(
1− 2rt+ r2

)−λ
=

∞∑
n=0

Cλ
n (t) rn, |r| < 1, |t| ≤ 1,

and their triple recursion relation is given by

(2.2) Cλ
n+1 (t) =

2 (n+ λ)

n+ 1
tCλ

n (t)− n+ 2λ− 1

n+ 1
Cλ

n−1 (t) , n ≥ 1.

The initial cases are

Cλ
0 (t) ≡ 1, Cλ

1 (t) = 2λt, Cλ
2 (t) = λ

(
2 (λ+ 1) t2 − 1

)
.

A general polynomial of degree n can be written as

(2.3) p (x) =

n∑
j=0

j∑
k=0

αj,kϕj,k (x)

This can be evaluated in

(2.4) 3n2 + 9n− 4

arithmetic evaluations, approximately 6 times the dimension of Πn. For details on
this, see [1, §2.3].

Let Φ denote an original transformation from B
2 onto Ω. For a given degree n,

denote a polynomial approximation of Φ by

(2.5) P (n) (x) =

Nn∑
j=1

αjϕj (x) ≈ Φ (x) .

Here the ϕj are a linear reordering of the polynomials ϕj,k in (2.3). The coefficients
αj ∈ R

2. We choose these coefficients by minimizing the least squares approximation
error

(2.6) En (x) =

∫
B2

{∣∣∣P (n)
1 (x)− Φ1 (x)

∣∣∣2 + ∣∣∣P (n)
2 (x)− Φ2 (x)

∣∣∣2} dx

2

In this, P
(n)
1 and P

(n)
2 denote the two components of P (n), and similarly for Φ1 and

Φ2. This leads to the linear system

(2.7)

Nn∑
j=1

α
(i)
j (ϕk, ϕj) = (Φi, ϕk) , k = 1, . . . , Nn, i = 1, 2

where αj =
[
α
(1)
j , α

(2)
j

]T
. Due to the orthonormality of {ϕj} over B2, we obtain from

(2.7) that

(2.8) αk = (Φ, ϕk) , k = 1, . . . , Nn.

The resulting polynomial P (n) is simply the truncation of the orthonormal expansion

Φ (x) =

∞∑
j=1

(Φ, ϕj)ϕj (x) , x ∈ B
2

to terms of degree ≤ n.
The integrals in (2.7) are approximated with a quadrature over B2 :

(ϕk, ϕj) ≈ (ϕk, ϕj)η = Iη (ϕk · ϕi) ,

(Φi, ϕk) ≈ (Φi, ϕk)η = Iη (Φi · ϕk) ,

for i = 1, 2. The quadrature formula we use is the well-known Gauss-Legendre formula

(2.9) I (g) ≡
∫
B2

g (x) dx ≈ Iη (g) ≡ 2π

2η + 1

η∑
l=0

2η∑
m=0

ωlrlg̃

(
rl,

2πm

2η + 1

)
,

in which g̃ (r, θ) ≡ g (r cos θ, r sin θ). The formula uses the trapezoidal rule with 2η+1
subdivisions for the integration over [0, 2π] in the azimuthal variable θ.The numbers rl
and ωl are, respectively, the nodes and weights of the (η + 1)-point Gauss-Legendre
quadrature formula on [0, 1]. This quadrature over B

2 is exact for all polynomials
g ∈ Π2η, see [1, §2.6]. Using this in (2.7), we would then get (ϕk, ϕj)η = δj,k. For the
numerical examples in §4 and §5 we used η = 80.

To approximate (2.8), we need to evaluate Φ (x) at the Mη ≡ (η + 1) (2η + 1)
nodes used in (2.9). Denote these nodes by {pj : j = 1, . . . ,Mη} . We use the codes
from [2] to do this evaluation of {Φ (pj)}. A more detailed explanation is given in
the following §3. After calculating the coefficients {αj} of P , we need to evaluate its
accuracy in reproducing the boundary Γ. We also want to insure it is 1-1 over B2, and
to aid in this we evaluate the Jacobian of P (n) over B

2, checking that it is nonzero
everywhere. These calculations are illustrated in §4.

3. Evaluating Φ. Here we describe briefly the construction of the mapping
Φ : B2 	→ Ω. A more detailed description can be found in [2].

As mentioned in the introduction we start with a sequence of ρ points ω0,j =
ϕ(uj), j = 0, . . . , ρ, 0 = u0 < u1 < . . . , < uρ = 2π, where the uj are chosen such that
the arclength along ϕ between the points ω0,j is approximately equal to L/ρ. L the
length of the curve Γ, see introduction.

In [2] we describe two methods to iteratively deform the points (ω0,j)j=0...ρ into
a sequence of points (ωk,j)j=0...ρ, k = 1, . . . ,K. The idea is that each set of points

3

Table 3.1
Boundary errors of ˜Γ for various ρ values

ρ Max. Distance (amoeba) Max. Distance (pacman)
100 4.345× 10−2 1.563× 10−3

200 3.012× 10−3 4.323× 10−4

300 1.733× 10−3 9.919× 10−5

400 6.612× 10−4 2.292× 10−5

(ωk,j)j=0...ρ is located along the boundary of a domain Ωk that develops from the
original domain Ω0 = Ω to a disk ΩK :

Γ
 (ω0,j)j=0...ρ → (ω1,j)j=0...ρ → . . . → (ωK,j)j=0...ρ ∈ C

The final set of points (ωK,j)j=0...ρ is located along the boundary of a circle C. Dur-
ing this process the arclength between the points (ωk,j)j=0...ρ is kept approximately
constant. To simplify our presentation we will assume that this circle C is the unit
circle C = S

1. In our programs we use an additional affine linear transformation to
transform C to S

1.
Now we define a tensor product spline Ψ(τ, σ) with (τ, σ) ∈ [0,K]× [0, 2π] by the

interpolation condition

(3.1) Ψ(k,
2π

ρ
j) = ωK−k,j , k = 0, . . . ,K, j = 0, . . . , ρ.

See [4, Chapter XVII] for the definition of tensor product splines. We use cubic
periodic splines in the σ variable and cubic splines with a not–a–knot condition for
the τ variable.

In (3.1) one sees that we reverse the k variable so

S̃
1 := {Ψ(0, σ) | 0 ≤ σ ≤ 2π} ≈ S

1

is a spline approximation to the unit circle and

Γ̃ := {Ψ(K,σ) | 0 ≤ σ ≤ 2π} ≈ Γ

is a spline approximation to the boundary Γ of Ω. Table 3.1 shows how close Γ̃ is to
Γ, by giving the maximum distance between Γ̃ and Γ for various ρ values of the spline
Ψ(K, ·).

One can think of Z = {Ψ(τ, σ) | 0 ≤ τ ≤ K, 0 ≤ σ ≤ 2π} as a cylinder that
connects S1 with Γ. The spline Ψ defines our mapping Φ on the boundary S

1:

Φ(Ψ(0, σ)) = Ψ(K,σ), σ ∈ [0, 2π]

This formula also shows that we actually don’t map S
1 onto Γ but the approximation

S̃
1 onto the approximation Γ̃.

The next step is to extend this mapping in a smooth way to the interior of S̃1 in
such a way that the mapping is bijective onto the interior Ω̃ of Γ̃.

For every σ ∈ [0, 2π] the mapping

τ 	→ uσ(τ) = Ψ(τ, σ), τ ∈ [0,K],

4

is a trajectory that connects Ψ(0, σ) ∈ S̃
1 with Ψ(K,σ) ∈ Γ̃ along the cylinder Z.

The function uσ defines a vector field ν along the cylinder Z:

ν(τ, σ) =
d

dτ
uσ(τ)

This vector field can be smoothly extended to the inside of the cylinder Z by using a
technique, called transfinite interpolation, see [6, 5]. We call the resulting vector field
ν̂(τ, x), which is now defined inside the cylinder Z.

This vector field defines a dynamical system that maps the interior of S̃1 to Ω̃.
For each of the quadrature points {pj : j = 1, . . . ,Mn} we solve numerically the
initial value problem

uj(0) = pj

u′
j(τ) = ν̂(τ, uj(τ)), 0 < τ ≤ K

and define

Φ(pj) = uj(K)

(actually the numerical approximation to uj(K)). As reported in [2] we use Runge–
Kutta codes with step size control for this approximation.

Because the spline boundary S̃
1 is not equal to the boundary of the unit circle

S
1 it might happen that some quadrature points pj are outside of S̃1. Especially,

because the Gauss–Legendre points are concentrated towards the boundary points
0 and 1. For this reason we modify the quadrature points {pj : j = 1, . . . ,Mn}
by multiplying them with the constant to guarantee that all points are inside of S̃1.
The disadvantage of this approach is that the Xu–polynomials are only approximately
orthonormal. Then the solution of system (2.7) may be better. This effect is reduced
for larger values of ρ when Ψ(0, σ) approximates the unit circle better. In none of the
examples that are presented in the next section did we need to modify the quadrature
points.

4. Numerical Examples. We illustrate our ideas with two curves - a ‘pacman’
curve and an ‘amoeba’ curve. Use the parametrization interval 0 ≤ t ≤ 2π.

Amoeba: Define

(4.1) x =

[
(5 + sin t− 1.5 sin (3t)− cos (5t)) cos t
(5 + sin t+ 1.5 sin (3t)− 2 cos (5t)) sin t

]
See Figure 4.1.

Pacman: Define

(4.2) x =

[
(1 + h cos t) cos (f sin t)
(1 + h cos t) sin (f sin t)

]
with f = π − 0.2, h = 0.5. See Figure 4.2.

4.1. Calculations for the amoeba. In the formula (2.9), let η = 80. This
leads to M80 = 81 × 161 points pj in B

2, Q80 ≡ {pj : j = 1, . . . ,M80}. The method
in §3 produces the transformation Φ of B2 to Ω at these points. The transforma-
tion uses the cubic spline interpolation of the curve Γ. We use ρ = 100, 200, 300, 400
equal arclength subdivisions of the curve Γ for defining the cubic spline interpolant.

5

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

x

y

Fig. 4.1. Amoeba (4.1)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

Fig. 4.2. Pacman (4.2)

With this transformation, we look at polynomials P (n) (x) of degrees n = 32, 48, 64,
produced using Φ evaluated at the nodes in Q80, using these values to evaluate the
needed coefficients (2.8) with the quadrature formula (2.9). In Table 4.1 BE denotes
the maximum error in P (n) (x) as x varies over S

1 as when compared to the true
boundary Γ. The point of maximum deviation occurs at a point of maximum curva-
ture. Figures 4.3 and 4.4 show more detail for n = 64 and ρ = 400. The true curve
in Figure 4.3 is shown in red and the approximating curve is shown in a black dotted
line. As can be seen, the two curves are essentially identical. The point of maximum

6

Table 4.1
Boundary errors

ρ n BE (amoeba) BE (pacman)
100 32 0.0778 0.0149

48 0.0493 0.00488
64 0.0465 0.00187

200 32 0.0615 0.0146
48 0.0261 0.00492
64 0.0127 0.00185

300 32 0.0602 0.0139
48 0.0248 0.00466
64 0.0116 0.00177

400 32 0.0593 0.0123
48 0.0233 0.00411
64 0.00892 0.00154

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

x

y

Fig. 4.3. Showing the point of maximum deviation of the degree 64 approximating polynomial
to the amoeba with ρ = 400.

error is denoted by a square �. The deviation over [0, 2π] is shown in Figure 4.4. See
Figure 4.5 for a graph of the Jacobian.

4.2. Calculations for the pacman. The calculations are the same as described
for the amoeba. Again, the figures are for degree 64 and ρ = 400 subdivisions of the
boundary. Graphs analogous to those given for the amoeba region are shown in
Figures 4.6, 4.7, and 4.8.

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9
10-3

t

Fig. 4.4. Deviation of approximate boundary from true amoeba boundary for degree n = 64
and ρ = 400

Fig. 4.5. Jacobian for amoeba polynomial transformation of degree 64.

5. Application to Solving A Dirichlet Problem. We apply the above ideas
to solving the standard Dirichlet problem

(5.1)
−Δu (s, t) + d (s, t)u (s, t) = f (s, t) , (s, t) ∈ Ω,

u (s, t) = 0, (s, t) ∈ Γ.

We use polynomials such as those illustrated in §4. As is illustrated in Table 4.1, the
polynomial mapping does not precisely map B

2 onto Ω. The table shows there is a

8

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

x

y

Fig. 4.6. Showing the point of maximum deviation of the degree 64 approximating polynomial
to the pacman with ρ = 400.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
10-3

t

Fig. 4.7. Deviation of approximate boundary from true pacman boundary for n = 64 and
ρ = 400.

small error in reproducing the boundary Γ. For a general analysis of how this affects
the accuracy in solving (5.1), see the study [7]. In short and over-simplifying, if the
boundary Γ is perturbed by an amount ε, then the solution of (5.1) is perturbed by
O (ε). The numerical method is Galerkin’s method as described in [1, Chaps. 1,4].
We give a numerical example over each region.

9

Fig. 4.8. Jacobian for pacman polynomial transformation of degree 64.

5.1. Example for amoeba region. For Ω the amoeba region, we solve

−Δu (s, t) + es−tu (s, t) = f (s, t) , (s, t) ∈ Ω,

u (s, t) = 0, (s, t) ∈ ∂Ω.(5.2)

The function f is so chosen that the true solution is

(5.3) u (s, t) =
(
1− x2 − y2

)
e0.15t cos (0.15πs) ,

where (s, t) ∈ Ω corresponds to (x, y) ∈ B
2 under our polynomial transformation of

degree n = 64. The polynomial transformation is derived from a spline interpolation
of the boundary with ρ = 400 subdivisions. The order of the associated Galerkin
linear system is Nn. The solution (5.3) is shown in Figure 5.1. The maximum errors
are shown in Figure 5.2. The straight line is a linear least squares fit to the data
[(n, logme) : n = 6, . . . , 35] whereme denotes the maximum error associated with each
degree n. Empirically the maximum error behaves like O (n−2.94

)
or exp (−0.165n),

the latter indicating an exponential rate of convergence to zero of the error. The
condition number of the associated Galerkin linear system is experimentally O (n1.02

)
.

5.2. Example for pacman region. The problem being solved is again (5.2),
but now the function f is so chosen that the true solution is

(5.4) u (s, t) =
(
1− x2 − y2

)
e0.5t cos (0.5πs) ,

where (s, t) ∈ Ω corresponds to (x, y) ∈ B
2. The polynomial transformation of degree

n = 64 was constructed for the pacman region in the same manner as previously for
the amoeba region. The solution (5.4) is shown in Figure 5.3. The maximum errors
are shown in Figure 5.4. Empirically the maximum error behaves like O (n−5

)
or

exp (−0.25n), the latter indicating an exponential rate of convergence to zero of the
error. The condition number of the associated Galerkin linear system is experimen-
tally O (n3.4

)
. It is unknown why it is so much worse than for the amoeba region.

10

Fig. 5.1. Solution (5.3) over amoeba region.

5 10 15 20 25 30 35
10-4

10-3

10-2

10-1

M
ax

 E
rr

or

n

Fig. 5.2. Maximum error when solving (5.2) over amoeba for varying Galerkin degree

5.3. Example for pacman region, polynomial solution. The problem being
solved is again (5.2), but now the function f is chosen that the true solution is

(5.5) u (s, t) =
(
1− x2 − y2

)
(s+ t) ,

The polynomial transformation Φ of degree n = 16 was used for the pacman region
here for demonstration purposes. This implies that s(x, y) and t(x, y) are polynomials
of degree 16 on the unit disk. If we ensure that the quadrature error for the discrete

11

Fig. 5.3. Solution (5.4) over pacman region.

5 10 15 20 25 30 35
10-6

10-5

10-4

10-3

10-2

10-1

M
ax

 E
rr

or

n

Fig. 5.4. Maximum error when solving (5.2) over the pacman region for varying Galerkin
degree n

Galerkin equation system does not dominate the approximation then we expect a
sharp drop off of the error for approximation degree 16. If we would be able to
calculate the discrete Galerkin system exactly the error should be in the rounding
error range. But as one can see in [1, Section 4.2.1] the calculation of the Galerkin
matrix involves the integration of the inverse of the determinant of the Jacobian
matrix of the transformation mapping Φ. This can usually only be done with the

12

6 8 10 12 14 16 18 20
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

M
ax

 E
rr

or

n

Fig. 5.5. Maximum error when solving (5.2) with right hand side (5.5) over the pacman
regionfor varying Galerkin degree n

help of numerical integration.
The maximum errors are shown in Figure 5.5. We see the drop off of the error

for degree 16 and any further decrease of the error is due to the coupling of η in the
Gauss–Legendre-trapezoidal formula (2.9) to the approximation polynomial degree.
The order η of the Gauss–Legendre-trapezoidal formula in this example was 4 times
the order of the maximum polynomial degree of the trial functions.

REFERENCES

[1] K. Atkinson, D. Chien, and O. Hansen, Spectral Methods Using Multivariate Polynomials On
The Unit Ball, CRC Press, Boca Raton, USA, 2019.

[2] K. Atkinson, D. Chien, and O. Hansen, Constructing diffeomorphisms between simply connected
plane domains, Electronic Transactions on Numerical Analysis, 55 (2022), pp. 671-686.

[3] K. Atkinson, and O. Hansen, Creating domain mappings, Electronic Transactions on Numerical
Analysis, 39 (2012), pp. 202-230.

[4] C. de Boor, A Practical Guide to Splines, Springer, New York Heidelberg Berlin, USA, 1978.
[5] M.C. Delfour, J.-P. Zolésio, Shapes and Geometries, SIAM Advances in Control and Design,

SIAM, Philadelphia, USA, 2011.
[6] M.C. Delfour, A. Garon, Transfinite Interpolations for Free and Moving Boundary Problems,

Pure and Applied Functional Analysis, 4 (2019), pp. 765-801.
[7] D. Henry, Perturbation of the Boundary in Boundary-Value Problems of Partial Differential

Equations, Cambridge University Press, 2005.
[8] M. Saba, T. Schneider, K. Hormann, R. Scateni, Curvature–based blending of closed planar

curves, Graphical Models, 5 (2014), pp. 263-272.
[9] T.W. Sederberg, P. Gao, G. Wang, H. Mu, 2–D Shape Blending: An Intrinsic Solution to the

Vertex Path Problem, ACM SIGGRAPH Computer Graphics, (1993), pp. 15-18.
[10] T. Surazhsky, G. Elber, Metamorphosis of Plan Parametric Curves via Curvature Interpolation,

International Journal of Shape Modeling, 2 (2002), pp. 201–216.

13

