
Constructing diffeomorphisms between simply

connected plane domains

Kendall Atkinson∗ David Chien Olaf Hansen†

March 3, 2021

Abstract

Consider a simply connected domain Ω ⊂ R2 with boundary ∂Ω that
is given by a smooth function ϕ : [a, b] 7→ R2. Our goal is to calculate a
diffeomorphism Φ : B1(0) 7→ Ω, B1(0) the open unit disk in R2. We present
two different methods, both methods are able to handle boundaries ∂Ω
that are not star shaped. The first method is based on an optimization
algorithm that optimizes the curvature of the boundary and the second
method is based on the physical principle of minimizing potential energy.
Both methods construct first a homotopy between the boundary ∂B1(0)
and ∂Ω and then extend the boundary homotopy to the inside of the
domains. Numerical examples show that the method is applicable to a
wide variety of domains Ω.

Keywords: domain transformations, constructing diffeomophisms, shape blend-
ing

AMS: 65D05, 49Q10

1 Introduction

Consider being given a boundary curve Γ for a simply-connected region Ω in the
plane R2. This is usually given as a function ϕ : [a, b] → R2 for some interval
[a, b]. We want to create a 1-1 function Φ from the unit disk B2 onto Ω with
Φ|Γ ≡ ϕ. In addition, we want to approximate the first derivatives of Φ and its
Jacobian. The curve Γ is assumed to be smooth, with ϕ ∈ C2 [a, b], and it is
further assumed that ϕ, ϕ′, ϕ′′ can be computed explicitly.

Creating Φ is a several step process. We begin by finding the arc length pa-
rameterization of Γ. For a given n, an equal subdivision of Γ into n subintervals

∗University of Iowa (kendall-atkinson@uiowa.edu)
†California State University San Marcos ({chien,ohansen}@csusm.edu)

1

of equal arc length is created. From it, we create a cubic spline interpolant of
Γ, using the nodes associated with the n subdivisions of Γ. This is discussed in
Section 2. We then vary this spline function to reduce its variation from a circle
of the same arc length. We propose two different approaches to do this, to be
discussed in Sections 3 and 4. These methods produce a sequence of boundaries,
starting with Γ and going to a circle C of equal arc length. Using the reverse
sequence of these boundaries, a mapping from the unit disk is created by solving
a suitable differential equation; cf. Section 5.

This problem was explored earlier in [1, Chapter 3] and [2], but it was
restricted mainly to regions Ω that are starlike with respect to some point in
the region. Methods based on interpolation of the boundary function ϕ were
studied. In addition, an iterative method was introduced to improve choices of
Φ. The methods proposed in this paper can also be used for regions that are
not starlike. For other papers concerned with this problem, see [9, 10, 11]. In
[4] the optimization of geometries with respect to certain criteria are discussed.
This is kind of an opposite problem to the one presented here as the final shape
(a circle) is known, but still a transformation has to be constructed.

In the book [1], boundary value problems for partial differential equations
are solved over regions that can be transformed to a unit disk. This requires
being able to carry out such a transformation, and the present paper shows how
to do this. In a further paper, the ideas of this paper will be applied to the
solution of partial differential equations.

2 Boundary preliminaries

Let the boundary Γ be given by ϕ ∈ C [a, b]. To calculate its circumference,
apply numerical integration to

(1) L ≡
∫ b

a

|ϕ′ (u) | du.

The trapezoidal rule is a logical choice because of the periodicity of the integrand
over the interval [a, b].

Let σ denote the arc length as a function of the given parameterization
variable τ :

σ (τ) ≡
∫ τ

a

|ϕ′ (u) | du, a ≤ τ ≤ b.

Let ψ ∈ C2 [0, L] denote the inverse of σ. It satisfies

t = σ (ψ (t)) =

∫ ψ(t)

a

|ϕ′ (u) | du, 0 ≤ t ≤ L.

Differentiating,
1 = |ϕ′ (ψ (t)) |ψ′ (t) .

2

-1 0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u

Figure 1: Graph of B(u)

Thus ψ (t) is the solution of the initial value problem

ψ′ (t) =
1

|ϕ′ (ψ (t)) |
, 0 ≤ t ≤ L,

with ψ (0) = 0. An ode solver (say ode113 or rfk45 within Matlab) is used
to evaluate the solution at n evenly spaced points, with h = L/n the arc length
between adjacent evenly spaced nodes. Denote these nodes by x0, x1, . . . , xn,
with xn = x0, and let {t0, t1, . . . , tn} denote the corresponding arc lengths from
x0 of the nodes. These are extended periodically, e.g. xj = xj±n; and let {tj}
also be extended periodically, e.g. tj±n = tj ± L.

We replace the parameterization of Γ with a periodic cubic spline that in-
terpolates Γ at the nodes. Denote this cubic spline by η ∈ C2

p [0, L], a periodic
C2 function on (−∞,∞),

η (ti) = xi, i = 0, 1, . . . , n.

The equal spacing of the arc length parameters {ti} leads to a simple represen-
tation for η.

Introduce the cubic B-spline

B (u) =
1

6

{
(4− u)

3
+ − 4 (3− u)

3
+ + 6 (2− u)

3
+ − 4 (1− u)

3
+ + (0− u)

3
+

}
where

(y)
3
+ =

{
y3, y ≥ 0,
0, y < 0.

See Figure 1. The support of B (t) is (0, 4). Introduce

B (x, j;h) = B ((x− tj) /h) , −∞ < x <∞, j = 0,±1,±2, . . .

3

The support of B (x, j, h) is (tj , tj+4).
We want a function

(2) p (x) =

∞∑
j=−∞

αjB (x, j;h) .

To make this periodic with period L = nh, We make the coefficients {αj}
periodic in j with period n,

αj+n = αj , j = 0,±1,±2, . . .

Consider interpolation of a periodic function f (t) at the nodes {tj}, with L an
integer multiple of the period of f . We must solve the linear system

(3)

∞∑
j=−∞

αjB (ti, j;h) = f (ti) , i = 0,±1,±2, . . .

We need consider only the case of i = 1, . . . , n because of periodicity. The
resulting linear system for {α1, . . . , αn} is diagonally dominant with diagonal
elements 2

3 and the off-diagonal elements in each equation summing to 1
3 . The

matrix of coefficients is

1

6

4 1 0 · · · 0 1
1 4 1 0 · · · 0
0 1 4 1 0 · · · 0
...

. . .

. . .

0 · · · 0 1 4 1
1 0 · · · 0 1 4

This proves the existence of a unique solution p (x;h) to the interpolation prob-
lem, and it will be periodic. It will also be a cubic spline function with knots
{t0, t1, . . . , tn}. The cost of solving the system (3) is O (n).

This spline interpolation is applied to both components of the parameteri-
zation ϕ (ψ (t)), 0 ≤ t ≤ L.

3 Moving toward a circle by using optimization

Before we discuss two different methods to connect the boundary Γ to a circle
C with the same arc length in the current and following section we like to
remark, why we did not choose to use the ’obvious’ way of connecting the two
curves. By the obvious way we denote the following homotopy: Assume that
p(x), x ∈ [0, L] is an arclength parametrization of Γ and q(x), x ∈ [0, L], is an
arclength parametrization of the circle C. Then one can define the homotopy
H(t, x), (t, x) ∈ [0, 1]× [0, L], by

H(t, x) = (1− t)p(x) + tq(x)

4

It turns out that this approach has two problems. First, it is not clear that
the intermediate curves H(t, ·), 0 < t < 1, are simple closed curves that enclose
an open domain. Second, when we used this transformation to construct a
mapping of the disk to Ω the resulting mapping for the enclosed region, see
Section 5, seem to show a wide variation of the Jacobian. Therefore we looked
at alternative methods to map C to Γ and two methods that we discovered are
presented below.

Consider perturbing the coefficients in (2), producing a new spline formula:

(4) p (x; δ) =

∞∑
j=−∞

(αj + δj)B (x, j;h)

with the {δj} periodic in j with period n. Proceed by making the curvature
closer to that of a circle with circumferance L, which has constant curvature

(5)
2π

L
.

Calculate the curvature of the modified curve at each xj as

κ (xj ; δ) =
p′ (xj ; δ)1 p

′′ (xj ; δ)2 − p
′ (xj ; δ)2 p

′′ (xj ; δ)1(
p′ (xj ; δ)

2
1 + p′ (xj ; δ)

2
2

)3/2

Note the use of subscripts for the 2-vector p (x; δ). The distance between nodes
is maintained by requiring

(6) |p (xj−1; δj−1)− p (xj ; δj) | = h, j = 1, . . . , n.

This places n constraints on the 2n real variables {δj}. To restrict the growth
of δ, size restrictions are placed on {δ1, . . . , δn},

(7) |δj | ≤ A, j = 1, . . . , n

for some A > 0. Finally, the restriction

(8) δ0 = 0

is used to fix the curve with respect to the node x0.
To make the curvature closer to that of (5), introduce the function

(9) f (δ) =

√√√√ n∑
j=1

wj

(
κ (xj ; δ)−

2π

L

)2

with {wj} positive weights summing to 1. We use both equal weights and
weights proportional to the curvature of the original curve Γ. The choice of
δ in (4) comes from optimizing f (δ) subject to the constraints (6)-(8) In our
examples, we have used fmincon from the Matlab optimization library. For

5

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Figure 2: Pacman ϕ (u) over [0, 2π]. ’*’ denotes maximum curvature.

the weights {wj}, we alternate between equal weights and weights proportional
to the absolute value of the curvature on the original curve at the nodes {xj}.
This alternation has led experimentally to a more robust iteration. Using just
one choice of {wj} also converges, although not as rapid.

As will be explained further in Section 5, we need a sequence of changes in
Γ with an ‘easy change’ from each member of the sequence to the next element
of the sequence. We control this in part by our choice of the constant A in (7).
However, too small a choice for A often slows the iteration a great deal.

Example 1 Consider the ’pacman’ boundary given by

ϕ (u) = (1 + a cos(u))

[
cos (f sinu)
sin (f sinu)

]
, 0 ≤ u ≤ 2π.

with a = 0.5 and f = π−0.2. It is shown in Figure 2 with n = 100 nodes created
using subdivisions according to arc length, denoted by o. The curvature with re-
spect to arc length is shown in Figure 3. The arc length (1) was approximated
using the trapezoidal rule with m = 300 subdivisions; the arc length is approx-
imately L

.
= 12.2356817. The maximum deviation of the interpolatory spline

from the true curve was 0.00463, although it was much less at most points. The
deviation was greatest at the points of maximum curvature. The region interior
to Γ is not starlike with respect to any point, and therefore, the ideas in [2] are
not applicable.

Apply the optimization method associated with (6)-(9), and use A = 1.0 for
the bound on the perturbations in δ. The iterates are shown in Figure 4. The
equally spaced points on the final circle are shown with o. The iterations have

6

0 2 4 6 8 10 12

-2

0

2

4

6

8

10

12

Figure 3: Curvature of pacman curve

the repeating pattern of red, green, and blue. The final iterate is a circle of
approximate radius

R =
L

2π

.
=

12.2356817

2π

.
= 1.94737.

The curvature of the final circle should be 1/R
.
= 0.51351, and the curvature of

the final circular curve in Figure 4 varies over [0.5125, 0.5145].

Example 2 Consider the boundary Γ given by

(10) ϕ (u) =

[
(5 + sinu− 1.5 sin (3u)− cos (5u)) cosu
(5 + sinu+ sin (3u)− 3 cos (5u)) sinu

]
, 0 ≤ u ≤ 2π.

It is shown in Figure 5 with n = 100 nodes created using subdivisions according
to arc length, denoted by o. It will be referred to as an amoeba boundary. The
arc length (1) was approximated using the trapezoidal rule with m = 300 sub-
divisions; the arc length is approximately L

.
= 57.253363. The curvature with

respect to arc length is shown in Figure 6. The maximum deviation of the in-
terpolatory spline from the true curve was 0.063, although it was much less at
most points. The deviation was greatest at the points of maximum curvature.
The region interior to Γ is not starlike with respect to any point, and therefore,
the ideas in [2] are not applicable.

Apply the optimization method associated with (6)-(9). Equal weights {wj}
are used in (9). Use A = 2.0 for the bound on the perturbations in δ and
n = 100. The iterates are shown in Figure 7. The iterations have the repeating

7

-3 -2 -1 0 1 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 4: Iterations for pacman curve

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

x

y

Figure 5: Amoeba ϕ (u) over [0, 2π]. ’*’ denotes maximum curvature.

8

0 10 20 30 40 50 60

Arc length

-12

-10

-8

-6

-4

-2

0

2

4

6

8
Curvature of original curve

Figure 6: Curvature of (10) with respect to arc length.

-15 -10 -5 0 5

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 7: Iterations due to minimizing (9).

9

pattern of red, green, and blue. The final iterate is a circle of approximate radius

R =
L

2π

.
=

57.253363

2π

.
= 9.11216.

The curvature of the final circle should be 1/R
.
= 0.109744, and the curvature

of the final circular curve in Figure 7 varies over [0.10960, 0.10983].

4 Moving toward a circle by minimizing energy

As in the previous Section 3 we assume that the boundary Γ is given by a
function p(x), see (2), and 0 ≤ x ≤ L is the arc length parameter. So the points
pi = p(iL/n) have an approximately equal spacing

|pi − pi+1| ≈
L

n
.

In practice this condition is better satisfied if n is increased, but we will assume

|pi − pi+1| =
L

n
≡ ∆.

in the following to simplify the presentation of the algorithm. Figure 2 shows
an example of the pacman boundary Γ and pi, i = 1, . . . , 100.

The idea for our algorithm comes from a physical experiment. Assume that
we have a flexible closed conductor loop in the shape of Γ that is charged
sufficiently high, then the loop will unfold and take the shape of a circle to
minimize the potential energy. A discrete version of this experiment is that we
have metallic pearls attached equidistantly along a string in the shape of Γ and
the pearls all carry the same electrical charge. We call these pearls charges in the
following. The connection between two charges is rigid, so the distance between
the charges is fixed. If the charges can move and the charge is sufficiently high
the charges will move into the positions of a regular n–gon to minimize the
energy.

The algebraic differential equation (DAE) for this situation is the following:

(11)
p′′i (t) =

n∑
j=1, j 6=i

1

|pi(t)− pj(t)|3
(pi(t)− pj(t)),

i = 1, . . . , n, t > 0

(12) ∆2 =

{
|pi − pi+1|2, i = 1, . . . , n− 1
|pn − p1|2.

Here we assume that the position pi of the charge i depends on time t ≥ 0 and
we have set all physical constants equal to 1. The initial conditions pi(0) are
given by their initial position along Γ, as in the above Figure 2.

10

There are two problems with the above formulation. First equation (11)
conserves energy, so if the charges pi move towards their position along the
regular n–gon they have an excess of kinetic energy and will be oscillating around
their position in the n–gon. To remove energy from the above system we will
include a friction term that is defined by a constant α > 0 that will determine
how fast the charges will loose their kinetic energy.

Second the final position of the n–gon is determined by the differential equa-
tion (11), but once the charges are in the final position the energy is not changed
if we move the n–gon or rotate it. Numerically we will need to ensure (12) by
using Newton’s method. Our numerical experiments showed that eliminating
these two degrees of freedom (straight movement and rotation) simplifies the
numerical implementation. We remove these two degrees of freedom by fixing
the positions of p1(t) (no straight movements anymore) and pn(t) (no rota-
tional freedom anymore). Instead of p1 and pn we could have chosen any other
neighboring pair of charges.

These two modifications lead to our final DAE

(13)
p′′i (t) =

n∑
j=1, j 6=i

1

|pi(t)− pj(t)|3
(pi(t)− pj(t))− αp′i(t),

i = 2, . . . , n− 1, t > 0

∆2 = |pi − pi+1|2, i = 1, . . . , n− 1

To simplify the notation we introduce a vector of all movable charge positions
(from now on we consider p1 and pn as constants):

P (t) = (p2(t), . . . , pn−1(t))T ∈ R2(n−2)

and the function

g(P (t)) = (|p1 − p2(t)|2 −∆2, |p2(t)− p3(t)|2 −∆2, . . .

. . . , |pn−1(t)− pn|2 −∆2)T ∈ Rn−1

Now the above differential algebraic system can be written as

P ′′(t) = F (P (t), P ′(t)), t > 0

g(P (t)) = 0 ∈ Rn

with initial condition P (0) = P0 = (p2, . . . , pn−1) and F defined according to
(13).

We use Euler–Lagrange formulation, see [7, VI.5] and add constraint forces
that will enforce g(P (t)) = 0:

P ′′(t) = F (P (t), P ′(t))−GT (P (t))λ(t), t > 0g(P (t)) = 0 ∈ Rn−2

where G(P (t)) = (∂gi(P (t))
∂pj

)i,j is the Jacobi matrix and λ = (λ1(t), . . . , λn−1(t))

are Lagrange multipliers.

11

Lastly we transform the above system in a system of order 1, by introducing
the velocity vector Q(t):

Q(t) = P ′(t)

Then the above second order differential algebraic system can be written as

P ′(t) = Q(t)(14)

Q′(t) = F (P (t), Q(t))−GT (P (t))λ(t), t > 0(15)

g(P (t)) = 0

This is DAE of index 3, see [7]. Before we start to solve numerically this
equation, there are two questions: What value we use for α and on which time
interval [0, T] we solve the DAE (14), (15).

In our experiments we found that a range of α ∈ [1, 20] leads to a fast
convergence of P (t) to a regular n–gon. In general a larger α means it takes
longer to reach the n–gon position, but a larger α also leads to a smoother
movement of the charges towards their final position.

To determine T we monitor how far away from a circle the charges P (t) are.
Once we find a circle such that all points in P (t) are within ε > 0 of the circle
we stop the time integration. In our experiments we use ε = 0.01. We have
implemented this in the following way. Given a set of points pi, i = 1, . . . , n, we
calculate the center

C =
1

n

n∑
i=1

pi

of the points and an average radius

R =
1

n

n∑
i=1

|pi − C|

We stop the time integration once

n
max
i=1
||pi − C| −R| ≤ ε

To solve the DAE (14), (15) we use a backward difference method (BDF of
order 2, see [6, III.6]) with a Newton method to solve the nonlinear equation
system in each step. The stepwidth is variable such that the estimated local in-
tegration error is smaller than a given tolerance τ , τ = 0.001 in our experiments.
At the end of the numerical integration we have a sequence P̃ (ti), i = 0, . . . , NT ,
t0 = 0, tNT = T .

Then we get a numerical approximation P̃ (t), t ∈ [0, T], for P (t). Here we
can use again spline interpolation or piecewise linear interpolation to extend
P̃ (ti) to the interval [0, T]. As in Section 3 the final movement from the circle

P̃ (T) to Γ that corresponds to P̃ (0) is given by time reversal P̃ (T−t), t ∈ [0, T].

Figure 8 and 9 show the trajectories of P̃ (t), that move the points from Γ
in Figure 2 to a circle C, here the the friction parameter are α = 5 in Figure 8

12

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 8: The trajectories of 100 points moving from the pacman curve to a
circle, friction coefficient α = 5.

and α = 15 in Figure 9. For a fixed t, 0 < t < T , we have a sequence of points
in P̃ (T − t) that represent an intermediate curve between a circle, t = 0, and
Γ, t = T . By using spline interpolation we can expand the points at T − t to
a continuous curve. Together with the above mention interpolation in time we
have found a homotopy between a circle and Γ which we will denote by

H(t, x), (t, x) ∈ [0, T]× [0, L]

Where for a constant iL/n, H(·, iL/n), is given by, for example, piecewise linear

interpolation in time of the values of P̃ (ti), and for a fixed t, H(t, ·) is given by
periodic spline interpolation of the H(t, iL/n), i = 0, . . . , n.

The numerical function H depends on n, the discretization of Γ, α, ε, and
τ , but we will in general not indicate this dependence.

Similar to this section the optimization method described in Section 3 also
leads to a homotopy H(t, x). In the previous Section 3 the optimization function

produced a sequence of boundary curves Γ̃0 to Γ̃N (in opposite order). Each

curve Γ̃i is given by a spline function pi(x) with arclength parameter x ∈ [0, L].

Remember Γ̃0 is a circle and Γ̃N = ∂Ω. Typical N is much smaller that then

13

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 9: The trajectories of 100 points moving from the pacman curve to a
circle, friction coefficient α = 15.

the number NT of intermediate curves of the current section. By choosing A,
see 7, small enough we can assume that all curves Γ̃i, i = 1, . . . , N , are simple
and can be connected without self intersection. The connecting curves can be,
for example, given by straight lines or splines. We introduce an artificial time
t, 0 ≤ t ≤ N and this defines a homotopy

H̃(t, x), (t, x) ∈ [0, N]× [0, L]

between Γ̃0 and ∂Ω = Γ̃N . We will denote H̃ also by H in the following sections
and write T instead of N .

In conclusion, we have now described two algorithms that lead to a homotopy
between a circle C of circumference L and a given curve Γ of length L. These
homotopies H will be the foundation for the algorithm in Section 5 where we
will construct a mapping between the disk with boundary C and the domain Ω
that is bounded by Γ.

14

5 Mapping the disk to Ω

Following Section 3 and 4 we have now a homotopy H(t, x) that connects the
circle

Γ0 = {H(0, x) | 0 ≤ x ≤ L}

and Γ = ∂Ω, with x denoting arc length. Let D denote the open disk whose
boundary is the circle associated with Γ0, as obtained in the preceding two
sections. It is straightforward to map the unit disk B2 to the disk D with a
smooth bijective function Φ0. So, once we have constructed a smooth bijective
function Φ1 from D to Ω as a continuous extension of the homotopy H we have
found the desired mapping

Φ : B2 → Ω

as the composition Φ = Φ1◦Φ0. The function H defines a sequence of boundary
curves

Γt = {H(t, x) | 0 ≤ x ≤ L}, 0 ≤ t ≤ T,

with ΓT = Γ = ∂Ω. We denote the interior of Γt by Dt, so D0 = D and DT = Ω.
For a fixed x ∈ [0, L] the function ψ(t) = H(t, x) defines a trajectory that

start at a point α = H(0, x) ∈ Γ0 and ends at a point β = H(T, x) ∈ ΓT . The
function ψ(t) can be considered to be the solution of the initial value problem.

ψ̇(t) = V (t, ψ(t)), 0 < t ≤ T,
ψ(0) = α ∈ Γ0

with the vector field

V (t, ξ) =
∂H(t,xt(ξ))

∂t

given along Γt, t ∈ [0, T]. Here xt(ξ) is the function that assigns to a ξ ∈ Γt
the arc length value x with ξ = H(t, x). Figure 8 and 9 illustrate some of the
ψ(t) (various initial values α) for the pacman curve and Figure 4 illustrates
a sequence of Dt. To indicate the dependence of ψ(t) on the starting point
α = H(0, x) we will use the notation ψα(t) from now on.

We follow the approach of [5, Section 5, Th. 5.13] and continuously ex-
tend the vector field V to a vector field V on Dt by ‘k–transfinite barycentric
interpolation’,

(16) V(t, ξ) =
1∫

Γt
1

|η−ξ|k dsη

∫
Γt

V (t, η)

|η − ξ|k
dsη, ξ ∈ Dt, 0 ≤ t ≤ L,

where k > 1 is a parameter. It is shown in [5] that V is continuous on R2 and
that V(t, ξ) = V (t, ξ) for ξ ∈ Γt, see [5, Theorem 3.5].

This vector field allows us to define trajectories ψα(t) to all α ∈ D0 by
defining ψα(t) as the solution of initial value problem

ψ̇α(t) = V(t, ψα(t)), 0 < t ≤ T,(17)

ψα(0) = α ∈ D0(18)

15

This defines a smooth mapping Φ1(α) = ψα(T) that maps D0 to DT = Ω. By
our construction Φ1 maps Γ0 1-1 into Γ = ∂Ω, because the solutions to the
initial value problems are (17),(18) are unique.

As ΓT = ∂Ω is the boundary of Ω and

H(0, x)
Φ17→ H(T, x), x ∈ [0, L],

maps the boundary of the disk D0 to the boundary of Ω = DT the mapping
degree, see [3], d(Φ1,D0, y) = 1 for every y ∈ Ω = DT . So, the mapping
Φ1 : D0 7→ DT is surjective. This shows that Ψ1 is a bijective mapping from the
closed disk D0 to DT = Ω.

Because our goal is to use the mapping Φ1 for the solution of boundary
value problems on Ω, see [1], we will also need to approximate the Jacobi matrix
J(α) = (Ji,j(α))i,j=1,2 with

Ji,j(α) =
∂Φ1,i

∂xj
(α)

where we denote two components of Φ1 by Φ1,1 and Φ1,2. The Jacobi matrix
J(α) is given by J(α) = Yα(T). Here Yα(t) is the solution of the initial value
problem

Ẏα(t) = DV(t, ψα(t)) · Yα(t), 0 < t ≤ T,(19)

Yα(0) = I2,2(20)

with I2,2 the identity matrix and DV the Jacobi matrix of V that is determined
by the derivatives of the boundary integral in (16). See [8, Section 3.1] for a
derivation of (19), (20).

To approximate Φ1 numerically we can integrate the initial value problems
(17), (18) and (19), (20) simultaneously for a set of points α ∈ D0.

To numerically approximate Φ1(α) and J(α) we can use any method to
numerically integrate the initial value problems (17), (18) and (19), (20). We
have initially used an explicit Euler method and all examples in the following
section are generated with the explicit Euler method.

6 Numerical examples

In this last section we illustrate our algorithm by presenting the images of a
grid on the unit disk in the corresponding domains Ω.

On the unit disk we consider grids as shown in Figure 10, it has 82 radial
lines and 11 circumferential lines.

For every grid point α in Figure 10 we calculate a numerical approximation
ψ̃α,h,n to the trajectory ψα given by (17), (18). We have used k = 2 in (16) that
defines the right hand side of (17) for the examples in this section. As mentioned
in Section 5 the numerical solutions are calculated by using an explicit Euler
method with step width h. The resulting images of the grid for the two domains

16

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 10: Grid on unit disk.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 11: Grid on pacman.

17

-1 -0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 12: Grid on amoeba.

shown in Figures 2 and 5 are given in Figures 11 and 12. Here the image points
ψ̃α,h,n(T) are connected to mark their position and illustrate the deformation.

The stepwidth h for the calculation of ψ̃α,h,n was determined experimentally.
It was chosen small enough to guarantee that the image of the grids did not
overlap. In a similar way the parameter n ∈ N was determined in order to
approximate the vector field V in equation (17) sufficiently well. We used a
trapezoidal rule for both integral terms

V(t, ξ) ≈ Vn(t, ξ)

=
1

L
n

∑n−1
i=0

1
|H(t,iL/n)−ξ|k

L

n

n−1∑
i=0

H(t, iL/n)

|H(t, iL/n)− ξ|k
(21)

Remember that L is the length of the original boundary Γ of Ω and that the
parametrizations H(t, ·) are all paramaterized with respect to arclength. For-

mula (21) implies that numerical trajectory ψ̃α,h,n is the result of applying the
explicit Euler method to the initial value problem

ψ̇α(t) =

∑n−1
i=0

H(t,iL/n)
|H(t,iL/n)−ψα(t)|k∑n−1

i=0
1

|H(t,iL/n)−ψα(t)|k
, 0 < t ≤ T,

ψα(0) = α ∈ D0

Note that on a computer with parallel processors, these equations can be solved
independently for different choices of grid points α.

18

For the application of our method to the solution of boundary value problems
on Ω we will need to investigate the accuracy of ψ̃α,h,n as a function of h and n
further. This is the subject of a forthcoming paper.

References

[1] K. Atkinson, D. Chien, and O. Hansen, Spectral Methods Using Mul-
tivariate Polynomials On The Unit Ball, CRC Press, Boca Raton, USA,
2019.

[2] K. Atkinson, and O. Hansen, Creating domain mappings, Electronic
Transactions on Numerical Analysis, 39 (2012), pp. 202-230.

[3] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin Hei-
delberg New York Tokyo, 1985.

[4] M.C. Delfour, J.-P. Zolésio, Shapes and Geometries, SIAM Advances
in Control and Design, SIAM, Philadelphia, USA, 2011.

[5] M.C. Delfour, A. Garon, Transfinite Interpolations for Free and Moving
Boundary Problems, Pure and Applied Functional Analysis, 4 (2019), pp.
765-801.

[6] E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differen-
tial Equations I, Springer-Verlag, Berlin Heidelberg, Germany, 1987.

[7] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II,
Springer-Verlag, Berlin Heidelberg New York Tokyo, USA, 1991.

[8] E. Hille, Lecture on Ordinary Differential Equations, Addison–Wesley
Publishing Company, London, Great Britain, 1969.

[9] M. Saba, T. Schneider, K. Hormann, R. Scateni, Curvature–based
blending of closed planar curves, 5 (2014), pp. 263-272.

[10] T.W. Sederberg, P. Gao, G. Wang, H. Mu, 2–D Shape Blending: An
Intrinsic Solution to the Vertex Path Problem, ACM SIGGRAPH Computer
Graphics, (1993), pp. 15-18.

[11] T. Surazhsky, G. Elber, Metamorphosis of Plan Parametric Curves via
Curvature Interpolation, International Journal of Shape Modeling, 2 (2002),
pp. 201–216.

19

