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Abstract

The Lagrange representation of the interpolating polynomial can be rewritten
in two more computationally attractive forms: a modified Lagrange form and a
barycentric form. We give an error analysis of the evaluation of the interpolating
polynomial using these two forms. The modified Lagrange formula is shown to
be backward stable. The barycentric formula has a less favourable error analysis,
but is forward stable for any set of interpolating points with a small Lebesgue
constant. Therefore the barycentric formula can be significantly less accurate than
the modified Lagrange formula only for a poor choice of interpolating points. This
analysis provides further weight to the argument of Berrut and Trefethen that
barycentric Lagrange interpolation should be the polynomial interpolation method
of choice.
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1 Introduction

The Lagrange polynomial interpolation formula is widely regarded as being of mainly
theoretical interest, as reference to almost any numerical analysis textbook reveals. Yet
several authors, including Henrici [5], Rutishauser [9], Salzer [10], Werner [11] and Win-
rich [12], have noted that certain variants of the Lagrange formula are indeed of practical
use. Berrut and Trefethen [1] have recently collected and explained the attractive fea-
tures of two modified Lagrange formulas. They argue convincingly that interpolation via
a barycentric Lagrange formula ought to be the standard method of polynomial inter-
polation. A question raised but not answered by Berrut and Trefethen is the effect of
rounding errors on the two formulas. The purpose of this work, which was begun after
reading a draft of [1], is to answer this question.

∗This work was supported by Engineering and Physical Sciences Research Council grant GR/R22612
and by a Royal Society-Wolfson Research Merit Award.

†Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/~higham/).
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We begin, in Section 2, by deriving a condition number for polynomial interpolation.
Error analyses of the modified Lagrange formula and barycentric formula are given in
Sections 3 and 4, respectively. The modified Lagrange formula is shown to be backward
stable and the barycentric formula forward stable for sets of interpolation points with
a small Lebesgue constant. We give numerical experiments to illustrate the potential
difference in accuracy of the two formulas in Section 5 and then present conclusions in
Section 6.

Ours is not the first numerical investigation of the modified Lagrange formula. Rack
and Reimer [7] give a rounding error analysis that concludes with a weaker bound than
(6) below and they do not identify the backward stability of the formula.

We restrict our attention to the effect of rounding errors on barycentric interpolation.
For full details of the many interesting properties of barycentric interpolation the reader
should consult Berrut and Trefethen [1].

2 Condition Number

We are interested in the problem of finding the polynomial pn(x) of degree at most
n that interpolates to the data fj at the distinct points xj, j = 0: n. We consider
fixed interpolation points xj, a fixed evaluation point x, and a varying vector f . We
will therefore also denote pn(x) by pf (x). Inequalities between vectors are interpreted
componentwise.

To aid the interpretation of our error bounds we need to define and evaluate a condi-
tion number for pn. Recall that the Lagrange form of pn(x) is

pn(x) =
n∑

j=0

fj`j(x), `j(x) =

n∏

k=0, k 6=j

(x − xk)

n∏

k=0, k 6=j

(xj − xk)

. (1)

Definition 2.1 The condition number of pn at x with respect to f is

cond(x, n, f) = lim
ε→0

sup

{ ∣∣∣∣
pf (x) − pf+∆f (x)

εpf (x)

∣∣∣∣ : |∆f | ≤ ε|f |

}
.

In the notation cond(x, n, f) the term “n” indicates the dependence of cond on the points
xj.

Lemma 2.2

cond(x, n, f) =

∑n

j=0 |`j(x)fj|

|pn(x)|
≥ 1, (2)

and for any ∆f with |∆f | ≤ ε|f | we have

|pf (x) − pf+∆f (x)|

|pf (x)|
≤ cond(x, n, f)ε.
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Proof. From

pf (x) − pf+∆f (x) =
n∑

j=0

`j(x)∆fj

it is immediate that the claimed expression is an upper bound for cond(x, n, f), and it is
clearly at least 1. Equality is attained for ∆fj = ε sign(`j(x))|fj|. The inequality follows
trivially.

3 Modified Lagrange Formula

A trivial rewriting of (1) is

pn(x) = `(x)
n∑

j=0

wj

x − xj

fj, (3)

where

`(x) =
n∏

j=0

(x − xj)

and

wj =
1∏

k 6=j(xj − xk)
. (4)

This is called the “first form of the barycentric interpolation formula” by Rutishauser [9].
For our error analysis we use the standard model of floating point arithmetic [6,

Sec. 2.2]:
fl(x op y) = (x op y)(1 + δ)±1, |δ| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff. Our bounds are expressed in terms of the constant

γk =
ku

1 − ku
.

We also employ the relative error counter, 〈k〉:

〈k〉 =
k∏

i=1

(1 + δi)
ρi , ρi = ±1, |δi| ≤ u. (5)

For clarity, we will write 〈k〉j to denote that the k rounding errors in question depend
on j. We will use the fact that |〈k〉 − 1| ≤ γk = ku/(1 − ku) [6, Lem. 3.1]. Finally, we
assume that the xi, fi and x are floating point numbers.

Lemma 3.1 The computed weights ŵj satisfy

ŵj = wj〈2n〉, j = 0: n,

while the computed ̂̀(x) satisfies

̂̀(x) = `(x)〈2n + 1〉.
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Proof.

fl

(
∏

k 6=j

(xj − xk)

)
= fl

(
∏

k 6=j

fl(xj − xk)

)

= fl

(
∏

k 6=j

(xj − xk)〈1〉

)

= 〈n − 1〉〈n〉
∏

k 6=j

(xj − xk)

= 〈2n − 1〉
∏

k 6=j

(xj − xk),

where n rounding errors come from additions and n − 1 from multiplications. The final
division contributes one further rounding error. The expression for ̂̀ is derived similarly,
since ` involves n + 1 subtractions and n multiplications.

Theorem 3.2 The computed p̂n(x) from (3) satisfies

p̂n(x) = `(x)
n∑

j=0

wj

x − xj

fj 〈5n + 5〉j.

Proof. We have

p̂n(x) = ̂̀(x)〈1〉
n∑

j=0

ŵj

x − xj

fj 〈3〉j 〈n〉j,

where the factor 〈3〉 accounts for the subtraction in the denominator, the division and
the multiplication, and the factor 〈n〉 accounts for the errors in summation, no matter
which ordering is used [6, Chap. 4]. Using Lemma 3.1 we obtain

p̂n(x) = `(x)〈2n + 2〉
n∑

j=0

wj 〈2n〉j
x − xj

fj 〈3〉j 〈n〉j,

which yields the result on collecting the rounding error terms.

This is an extremely strong result: it says that p̂n(x) is the exact value at x of the
interpolant of a perturbed problem in which the perturbations are small relative changes
in the data f . In other words, formula (3) is a backward stable means of evaluating
pn(x). We can hardly expect better: these errors are of the same form, and only O(n)
times larger than, the errors in rounding the fj to floating point form.

A forward error bound follows trivially from Lemma 2.2:

|pn(x) − p̂n(x)|

|pn(x)|
≤ γ5n+5 cond(x, n, f). (6)

It is easy to see that there exist rounding errors such that this bound is approximately
attained. Theorem 3.2 and (6) justify the use of the formula (3) by Dutt, Gu and Rokhlin
[4].
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If the xj or x are not floating point numbers then there can be large relative errors in
the differences fl(fl(xj)− fl(xk)) and fl(fl(x)− fl(xj)). However, the computed p̂n(x)
can nevertheless be interpreted as the exact result corresponding to slightly perturbed x
and points xj (namely, the rounded values) and slightly perturbed points fj; so if p̂n(x)
has a large relative error then the problem itself must be ill conditioned with respect to
variations in x and the xj and fj.

4 Barycentric Formula

The function values fi ≡ 1 are obviously interpolated by pn(x) = 1, and hence (3) gives
1 = `(x)

∑n

j=0 wj/(x − xj). Using this equation to eliminate `(x) in (3) yields

pn(x) =

n∑

j=0

wj

x − xj

fj

n∑

j=0

wj

x − xj

, (7)

which is called the “second (proper) form of the barycentric formula” by Rutishauser [9].
Since this formula is obtained by using a mathematical identity that does not neces-

sarily hold in floating point arithmetic, this second formula might be expected to have
different stability properties to the first.

Working in the same way as in the proof of Theorem 3.2, we find that

p̂n(x) =

n∑

j=0

wj〈2n〉j
x − xj

fj〈n + 3〉j

n∑

j=0

wj〈2n〉j
x − xj

〈n + 2〉j

〈1〉

=

n∑

j=0

wj

x − xj

fj〈3n + 4〉j

n∑

j=0

wj

x − xj

〈3n + 2〉j

.

This result does not admit any useful interpretation in terms of backward error. But it
does lead readily to a forward error bound, which is stated in the next result. We note
first that the equality (2) can be rewritten

cond(x, n, f) =

n∑

j=0

∣∣∣∣
wjfj

x − xj

∣∣∣∣
∣∣∣∣∣

n∑

j=0

wjfj

x − xj

∣∣∣∣∣

.
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Theorem 4.1 The computed p̂n(x) from (7) satisfies

|pn(x) − p̂n(x)|

|pn(x)|
≤ (3n + 4)u

∑n

j=0

∣∣∣ wj

x−xj
fj

∣∣∣
∣∣∣
∑n

j=0
wj

x−xj
fj

∣∣∣
+ (3n + 2)u

∑n

j=0

∣∣∣ wj

x−xj

∣∣∣
∣∣∣
∑n

j=0
wj

x−xj

∣∣∣
+ O(u2)

= (3n + 4)ucond(x, n, f) + (3n + 2)u

∑n

j=0

∣∣∣ wj

x−xj

∣∣∣
∣∣∣
∑n

j=0
wj

x−xj

∣∣∣
+ O(u2) (8)

= (3n + 4)ucond(x, n, f) + (3n + 2)ucond(x, n, 1) + O(u2), (9)

where the argument “1” denotes the function with constant value 1. There exist rounding

errors such that this bound is approximately attained.

We see from (8) that the forward error bound for the barycentric formula contains an
extra term not present in that for the first formula: a term that measures the amount of
cancellation in the denominator. Since the denominator is independent of f , it is clear
that for suitable choices of f and the xj, the bound (8) can be arbitrarily larger than
cond(x, n, f)u. For example, if we take f1 = 1 and fj = 0 for j > 1, then cond(x, n, f) =
1, while for suitable choice of the xj the second term in (8) can be arbitrarily large.
However, from (9) we see that the error bound is significantly larger than that for the
modified Lagrange formula only if cond(x, n, 1) À cond(x, n, f): a circumstance that
intuitively seems unlikely.

To gain more insight, we assume that the points xj lie in [−1, 1] and express the
bound in terms of Λn, the Lebesgue constant associated with the points xj, defined by
[8, Chap. 4]

Λn = sup
f∈C([−1,1])

‖Pnf‖

‖f‖
,

where Pn is the operator mapping f to its interpolating polynomial at the xj, ‖f‖ =
maxx∈[−1,1] |f(x)|, and C([−1, 1]) is the space of all continuous functions on [−1, 1]. It
can be shown that [3, Chap. 2]

Λn = sup
x∈[−1,1]

n∑

j=0

|`j(x)|.

Noting that cond(x, n, 1) =
∑n

j=0 |`j(x)|, we can weaken (9) to obtain the following result.

Corollary 4.2 The computed p̂n(x) from (7) satisfies

|pn(x) − p̂n(x)|

|pn(x)|
≤ (3n + 4)ucond(x, n, f) + (3n + 2)uΛn + O(u2). (10)

For the Chebyshev points of the first kind (the zeros of the degree n + 1 Chebyshev
polynomial) and the Chebyshev points the second kind (the extreme points of the degree
n Chebyshev polynomial),

Λn ≤
2

π
log(n + 1) + 1.

For other “good” sets of points, Λn is also slowly growing. For equally spaced points, Λn

grows exponentially at a rate proportional to 2n/(n log n). For details of these results see
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Brutman [2] or Cheney and Light [3, Chap. 3]. We can conclude that while the barycentric
formula is not forward stable in general, it can be significantly less accurate than the
modified Lagrange formula only for a poor choice of interpolating points and special f .
More specifically, for both sets of Chebyshev points the barycentric formula is guaranteed
to be forward stable—that is, it produces relative errors bounded by g(n)ucond(x, n, f),
with g a slowly growing function of n.

The barycentric formula has two practical advantages over the modified Lagrange
formula noted by Berrut and Trefethen. First, since the wj appear linearly in both the
numerator and denominator they can be rescaled (wj ← αwj) to avoid overflow and
underflow; see [1] for a suggested general scaling. Second, for both sets of Chebyshev
points, simple explicit formulas are known for the wj [1], [10].

5 Numerical Experiments

We report an experiment whose purpose is to verify the conclusions of the error analysis
and also to provide a comparison between the formulas analyzed here and the Newton
divided difference form. The computations were performed in MATLAB, for which u ≈
10−16.

We take 30 equally spaced points xj on [−1, 1] (thus n = 29) and set fj = 0 for
j = 0: n and fn=1. We evaluate the interpolant at 100 equally spaced points on [−1 +
103ε, 1 − 103ε], where ε = 2u (MATLAB’s eps). The “exact” values were obtained by
computing in high precision using MATLAB’s Symbolic Math Toolbox. Figure 1 plots
the errors for the modified Lagrange formula, (3), the barycentric formula, (7), and the
Newton divided difference form, with the latter form evaluated by nested multiplication.
In this figure the xj are in increasing order. In Figure 2 the xj have been re-ordered to
be in decreasing order.

In this example, cond(x, n, f) ≡ 1, so a forward stable method should give a computed
p̂n(x) with relative error of order u. In Figure 1 we see that the modified Lagrange
formula, (3), performs stably, as it must do in view of our error analysis. The barycentric
formula, (7), performs unstably, and given that Λn = 3×106, we see that the bound (10)
is fairly sharp at the ends of the interval. The same comments apply to Figure 2 (note the
different scales on the y-axes). The Newton divided difference formula performs stably
in Figure 1 but very unstably in Figure 2.

Finally, to balance this very extreme example we give a more typical one. This
example differs from the first only in that the function values come from the Runge
function f(x) = 1/(1 + 25x2) and the points xj are the Chebyshev points of the first
kind. Here, maxx cond(x, n, f) = 7.7. As Figure 3 shows, both the modified Lagrange
formula and the barycentric formula behave in a forward stable way, while the Newton
divided difference formula becomes very unstable as x decreases from 0 to −1.

6 Conclusions

The modified Lagrange formula (3) for polynomial interpolation is backward stable with
respect to perturbations in the function values. The barycentric formula (7) is not back-
ward stable, but it is forward stable for any set of interpolating points with a small
Lebesgue constant, which roughly means points that are clustered towards the end of

7



−1 −0.5 0 0.5 1

10
−16

10
−14

10
−12

10
−10

Modified Lagrange
Barycentric
Newton

Figure 1: Relative errors in computed pn(x) for 30 equally spaced points xi in increasing
order.

−1 −0.5 0 0.5 1

10
−15

10
−10

10
−5

10
0

10
5

Modified Lagrange
Barycentric
Newton

Figure 2: Relative errors in computed pn(x) for 30 equally spaced points xi in decreasing
order.
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Figure 3: Relative errors in computed pn(x) for 30 Chebyshev points xi of the first kind
and f(x) = 1/(1 + 25x2).

the interval rather than equally spaced. Our analysis therefore provides support for the
argument of Berrut and Trefethen [1] that barycentric Lagrange interpolation should be
the interpolation method of choice.

We are not aware of any error analysis for construction and evaluation of the Newton
divided difference formula at arbitrary points. The rounding error analysis in [6, Sec. 5.3],
which covers construction followed by evaluation at the interpolation points only, could
be extended to handle arbitrary points. However, it is clear from the analysis in [6,
Sec. 5.3] and from the experiments reported here that the errors from the Newton form
are very dependent on the ordering and can be unacceptably large even for Chebyshev
points.
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