
Verified Software Construction

Aaron Stump

Computational Logic Center
Computer Science Department

The University of Iowa

UI Students: Andrew Reynolds, Duckki Oe.

Funding from NSF.



Engineering Perfection

Engineering is judged by its artifacts.
Criteria: cost, reliability, aesthetics, durability, etc.
Most basic criterion: correct function.
Beautiful cheap airplanes must fly, ugly chainsaws ok if they work.

Aaron Stump Verified Software Construction Computational Logic Center



A Great Engineering Example

Aaron Stump Verified Software Construction Computational Logic Center



The St. Louis Arch

Construction took 2.5 years, finished in 1965.
Tallest national monument in U.S.
Two legs constructed simultaneously, then joined.
Margin of error for this was 1/64 of an inch.
Truly an incredible example of very precise engineering.

Aaron Stump Verified Software Construction Computational Logic Center



From Very Precise to Flawless

Physical objects can never be absolutely perfect.
Virtual objects are different.
Software can be tested, debugged, to low margins of error.
But we can go beyond this.

Aaron Stump Verified Software Construction Computational Logic Center



Verified Software

Verification applies formal reasoning to software.
Prove that code is correct.

I No low-level bugs: null pointer access, array bounds violation.
I Richer specifications: sorting returns sorted list for any input.

Many different approaches developed over 40+ year history.
Algorithmic verification attacks existing code.

I Goal: completely automatic verification.
I Targets existing languages like C/C#/Java.
I Great success with finite-state systems (model checking).
I Obstacle: verification requiring ingenuity beyond automation.

Alternative: language-based verification.

Aaron Stump Verified Software Construction Computational Logic Center



Languages of the Future

Design new programming languages for verification.
The time is ripe.

I Pressure for correctness high.
I Design space wide open.

Surpass fully automatic approaches.
I Greater expressiveness.
I Can design away from problematic language features (e.g., C).

Verification empowers programmers!
I Write flawless code!
I Attempt more complex, riskier techniques!

Aaron Stump Verified Software Construction Computational Logic Center



The GURU Programming Language

A verified programming language.
Combines a functional programming language and a logic.
Can write code, prove properties about it.
Type/proof checker, compiler to efficient C.
Growing standard library, case studies (20kloc GURU).
Internal and external verification:

sort : Fun(A:type)(cmp:Fun(a b:A).bool)(l:<list A>).
<list A>.

sorted : Fun(A:type)(cmp:Fun(a b:A).bool)(l:<list A>).bool
sort_sorts : Forall(A:type)(cmp:Fun(a b:A).bool)(l:<list A>).

{ (sorted cmp (sort cmp l)) = tt }.

vs.

sort : Fun(A:type)(cmp:Fun(a b:A).bool)(l:<list A>).
<sorted_list cmp A>.

Aaron Stump Verified Software Construction Computational Logic Center



Computational Logic Center

New collaboration beginning this fall.
Faculty: AS, Cesare Tinelli, Hantao Zhang.
Goal: foster research and student, faculty development in CL.
Main topics: verification, automated theorem proving.
Activities: reading group this fall.

I Meeting 10-11:30am Thursdays in MacLean B13.
I Topic: categorical semantics for type theory.
I Only prereq. is some mathematical maturity.
I Talk to me if interested.

Aaron Stump Verified Software Construction Computational Logic Center



2008-2009 Teaching

This fall: CS 185, “Programming Language Foundations”.
I Semantics of imperative programs.
I Nondeterminism and concurrency.
I Untyped lambda calculus.
I Functional programming.
I Type systems.

Spring: “Verified Software Construction”.
I Goal: collaborate to build a non-trivial piece of verified software.
I Will use the GURU verified programming language.
I Course will be divided between lecture and studio time.
I Software will be released as open-source at end of class.

Aaron Stump Verified Software Construction Computational Logic Center


