
Towards an SMT Proof Format

Aaron Stump and Duckki Oe

Dept. of Computer Science
The University of Iowa
Iowa City, Iowa, USA

Funding from NSF CRI grant.



Proofs and SMT

SMT solvers large (50-100kloc), complex.
To increase trust, have solvers emit proofs.
Check proofs with much simpler checker (2-4kloc).

Φ
SMT Solver

Pf

Proof Checker

Pf Ok Pf Bad

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Standardized, Flexible, Fast

A standard proof format very desirable.
I Provides common target for solvers.
I Opens door to exporting to interactive provers.
I Build on standardization successes of SMT-LIB initiative.

Flexibility also important.
I A single proof system is useful for standardization.
I But: different solving algorithms => different proof systems.
I Can we let solver implementors modify or develop their own?

Speed required for large proofs (10s to 100s MB).

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Proposal: Standardize with a Logical Framework

Start with Edinburgh Logical Framework (LF) [Harper+ 93].
LF provides flexibility.

I Logics described by a signature.
I One proof checker suffices for all logics.
I Relatively simple to check proofs.
I Good built-in support for binding constructs (no de Bruijn indices).

Challenge: side conditions.
I Some proof rules have computational side conditions.
I E.g., resolution, used for clause learning.
I In pure LF, explicit proofs of side conditions required.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Today’s Talk: LF with Side Conditions (LFSC)

Extension of LF to support computational side conditions.
Side conditions written in simple functional language.
Proofs clearly divided into declarative, computational parts.
Continuum of proof systems thus supported.
Example: checking resolution proofs from a SAT solver.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Introduction to LF

LF is a type theory, used as a meta-logic.
An object logic is declared via type declarations.
Proofs in that logic are terms, judgments are types.
Proof checking is implemented by LF type checking.
LF is mostly weaker and simpler than theories like Coq.
Stronger in its built-in support for variable binding.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Encoding Propositional Clauses

(declare var type)

(declare lit type)
(declare pos (! x var lit))
(declare neg (! x var lit))

(declare clause type)
(declare cln clause)
(declare clc (! x lit (! c clause clause)))

P ∨ ¬Q encoded as:

(clc (pos P) (clc (neg Q) cln))

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Propositional Resolution

Consider binary propositional resolution with factoring.
Resolve clauses C and D on variable v to E iff

1 C contains v positively.
2 D contains v negatively.
3 Removing all positive v from C yields C′.
4 Removing all negative v from D yields D′.
5 Appending C′ and D′ yields E .
6 May also drop duplicate literals from E .

Explicit proof seems to be of size Θ(|C| + |D|).
Side condition proofs would dominate the rest of the proof.
More natural as a program than declaratively.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



LF with Side Conditions (LFSC)

Side conditions associated with proof rules.
Checked every time rule is applied.
Simply typed, call-by-value functional code.

I Pattern matching, recursion, explicit failure.
I Imperative feature: marking LF variables.

Syntax for side condition code:

C ::= x || c || N || (� C1 · · · Cn+1) || (c C1 · · · Cn+1)

|| (match C (P1 C1) · · · (Pn+1 Cn+1)) || (do C1 · · · Cn+1)

|| (let x C1 C2) || (markvar C) || (ifmarked C1 C2 C3) || (fail T )

P ::= (c x1 · · · xn+1) || c

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Encoding Resolution in LFSC

(declare holds (! c clause type))

(program resolve ((c1 clause) (c2 clause) (v var)) clause
(let pl (pos v)
(let nl (neg v)
(do (in pl c1)

(in nl c2)
(let d (append (remove pl c1) (remove nl c2))

(dropdups d))))))

(declare R (! c1 clause (! c2 clause (! c3 clause
(! u1 (holds c1)
(! u2 (holds c2)
(! v var
(! r (^ (resolve c1 c2 v) c3)
(holds c3)))))))))

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



An Example Resolution Proof
Variables: V1, V2, V3

Clauses: ¬V1 ∨ V2, ¬V2 ∨ V3, ¬V3 ∨ ¬V2, V1 ∨ V2

V1 ∨ V2 ¬V1 ∨ V2

V2

¬V2 ∨ V3 ¬V3 ∨ ¬V2

¬V2

empty

($ v1 var ($ v2 var ($ v3 var
($ x0 (holds (clc (neg v1) (clc (pos v2) cln)))
($ x1 (holds (clc (neg v2) (clc (pos v3) cln)))
($ x2 (holds (clc (neg v3) (clc (neg v2) cln)))
($ x3 (holds (clc (pos v1) (clc (pos v2) cln)))
(R _ _ _ (R _ _ _ x3 x0 v1) (R _ _ _ x1 x2 v3) v2)))))))) :

(! v1 var (! v2 var (! v3 var
(! x0 (holds (clc (neg v1) (clc (pos v2) cln)))
...
(! x3 (holds (clc (pos v1) (clc (pos v2) cln)))
(holds cln))))))

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Checking Proofs from a Modern SAT Solver

Prototype LFSC checker.
I Supports incremental checking (combine parsing and checking).
I Not yet signature compilation (compile sig. to customized checker).

Signature for propositional resolution
Test with the CLSAT SAT solver.

I Implemented mostly by Duckki Oe.
I Competitive with MINISAT, TINISAT.
I Produces resolution proofs in LFSC format.
I Lemmas emitted for all learned clauses.
I Run on benchmarks from SAT Race 2008 Test Set 1.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Empirical Results for LFSC
benchmark pf (s) size (MB) num R (k) check (s) overhead
E-sr06-par1 4.56 35 14.3 14.75 11.54
E-sr06-tc6b 0.96 8.4 8.7 11.68 32.26
M-c10ni_s 6.62 43 4.6 10.90 2.55
M-c6nid_s 15.58 33 72.9 48.35 3.63
M-f6b 20.76 30 1018.6 3237.22 202.24
M-f6n 16.59 26 847.6 2848.03 233.42
M-g6bid 20.05 27 797.5 1165.57 75.05
M-g7n 16.12 28 1006.8 1707.43 151.93
V-eng-uns-1.0-04 25.04 41 1692.7 5913.22 305.57
V-sss-1.0-cl 4.18 9.8 416.2 553.30 193.92

pf: time to solve and produce proof (seconds).
size: size of proof (megabytes).
num R: number of resolutions (thousands).
check: time to check the proof (seconds).
overhead: ratio of proof production + checking time to solving time.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Discussion

90% checking time used for interpreting side conditions.
So compile side condition code.
Enabled by separating declarative, computational parts.

I Not separated in Moskal’s proposal (reduction under λ).
I Despite his good performance, may limit speed.

CNF conversion, theory reasoning must be implemented.
I Introduction of new variables supported directly by LF.
I Ad hoc solution required in Moskal’s approach.
I LFSC checker already includes support for arithmetic.
I Can check rules like

(declare not<=<=
(! x (term Int) (! y (term Int) (! c mpz (! d mpz
(! u (th_holds (not (<= (- x y) (an_int c))))
(! r (^ (mpz_add ( mpz_neg c) (~ 1)) d)
(th_holds (<= (- y x) (an_int d))))))))))

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Towards an SMT Standard?

SMT-LIB could provide:
I Fast LFSC checker (with signature compilation).
I Example signature(s) and proofs.

Solver implementors have several options:
I Use the example signatures directly.
I Modify or extend these.
I Write their own.

Proof checking enthusiasts can implement own checkers.
LFSC provides basis for exporting (to Coq, Isabelle, et al.).
Exported (example) signatures => exported proofs.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Other Future Work.

1 Improve speed with compilation.
2 Extend CLSAT proofs from SAT to SMT.
3 Implement verified version.

I Developing dependently typed PL called GURU.
I Like Coq but supports general recursion, mutable state.
I Case study: incremental LF checker (“GOLFSOCK”).
I Statically verify character input parsed to type-correct LF.

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008



Comparing clsat

benchmark size (MB) CLSAT MINISAT TINISAT

E-sr06-par1 8.4 1.54 1.46 1.43
E-sr06-tc6b 1.9 0.38 0.22 0.34
M-c10ni_s 10 4.94 43.42 7.14
M-c6nid_s 7.4 13.81 162.01 93.56
M-f6b 1.7 16.03 4.02 5.41
M-f6n 1.7 12.22 4.57 6.58
M-g6bid 1.8 15.59 3.60 3.99
M-g7n 1.1 11.27 2.75 6.46
V-uns-1.0-04 1.0 19.37 5.19 5.63
V-1.0-cl 0.18 2.86 0.41 0.21

Aaron Stump and Duckki Oe Towards SMT Proofs SMT 2008


