
Proof Checking Technology for Satisfiability Modulo
Theories

Aaron Stump

Computer Science and Engineering
Washington University

St. Louis, Missouri, USA

Funding from NSF CRI grant.

Satisfiability Modulo Theories (SMT) Solvers

Support large formulas, expressive theories.
Used for discharging verification conditions.
Examples include Z3, YICES, CVC3, many others.
SMT-LIB, SMT-COMP, SMT-EXEC.

Φ

SMT Solver

Sat Unsat

Aaron Stump Proof Checking for SMT LFMTP 2008

Confirming Solver Results
SMT solvers large (50-100kloc), complex.
Hard to justify trusting.

One solution:

Have solvers emit proofs.
Check proofs with much simpler checker (2-4kloc).

Φ
SMT Solver

Pf

Proof Checker

Pf Ok Pf Bad

Aaron Stump Proof Checking for SMT LFMTP 2008

Fast, Flexible, Standardized

Speed required for large proofs (100MB to 100GB?).
Flexibility also critical.

I Different solving algorithms => different proof systems.
I At least premature to pick a single proof system.

A standard proof format very desirable.
I Provides common target for solvers.
I Opens door to exporting to interactive provers.
I Standardization important to the SMT-LIB initiative.

Aaron Stump Proof Checking for SMT LFMTP 2008

Proposal: Standardize with a Logical Framework

Start with Edinburgh Logical Framework (LF) [Harper+ 93].
LF provides flexibility.

I Logics described by a signature.
I One proof checker suffices for all logics.
I Relatively simple to check proofs.
I Good built-in support for binding constructs.

Challenge: efficient proof checking for large LF proofs.

Aaron Stump Proof Checking for SMT LFMTP 2008

Two Problems for SMT Proof Checking

1 Proofs may be too large for main memory.
I Traditionally: parse proof to AST, then check.
I Bad, because of large proofs.

2 Side conditions on inference rules.
I Some proof rules have computational side conditions.
I E.g., resolution, for clause learning in modern SAT/SMT solvers.
I In pure LF, explicit proofs of side conditions required.

Aaron Stump Proof Checking for SMT LFMTP 2008

Solutions

1 Incremental checking for large proofs.
I Intertwine parsing and checking.
I Avoid building ASTs whenever possible.
I Consume proof as it is produced.

2 LF with Side Conditions (LFSC).
I Allow declared signature constants to state side conditions.
I Side conditions written in simple functional programming language.
I Side conditions checked each time the constant is used.

Aaron Stump Proof Checking for SMT LFMTP 2008

Incremental Checking

Basic idea: intertwine parsing and checking.
Combine with bidirectional type checking.

I Synthesizing: Γ ` t ⇒ T .
I Checking: Γ ` t ⇐ T .

ASTs built for subterms iff they will appear in the type T .
E.g.,

(refl x+y) => x+y == x+y

I AST must be built for x+y.
I But not (refl x+y).

Note: orthogonal to signature compilation [Zeller+ 07].

Aaron Stump Proof Checking for SMT LFMTP 2008

Formalization: Judgments

Judgments extended to include input:

Γ | I ⇒c t : T | I′

I is initial list of input tokens.
I′ is rest of list, after synthesizing T for t .
c tells whether or not to create AST for t .
Similarly Γ | I ⇐c t : T | I′.

Aaron Stump Proof Checking for SMT LFMTP 2008

Formalization: Example Rules

Checking rule for λ-abstractions:

Γ, x : T1 | I ⇐c t : T2 | I′

Γ |λ, x , I ⇐c λx . t : Πx : T1. T2 | I′

Synthesizing rule for applications:

Γ | I ⇒c t1 : Πx : T1. T2 | I′ Γ | I′ ⇐c ∨ x∈FV(T2) t2 : T1 | I′′

Γ |@, I ⇒c (t1 t2) : [t2/x]T2 | I′′

I Here we update the flag c.
I This flag initially false for top-level checking of a term.
I For simply typed t1, avoid creating t2 (unless already needed).

Aaron Stump Proof Checking for SMT LFMTP 2008

Correctness and Implementation

Correctness established by erasure:

Γ | I ⇐c t : T | I′ 7→ Γ ` t ⇐ T
Γ | I ⇒c t : T | I′ 7→ Γ ` t ⇒ T

Implemented in C++.
I Around 2300 lines.
I Manual reference counting used for managing memory.
I Memory errors including leaks debugged with VALGRIND.
I Allows holes if determined by types of subsequent arguments.

Aaron Stump Proof Checking for SMT LFMTP 2008

Empirical Results for Incremental Checking

Same benchmarks as in [Zeller+ 07].
Here, proofs from a simple proof-producing QBF solver.
Compare with custom checker emitted by signature compilation.
Also compare with Twelf, for third party tool.
All times in seconds, timeout 30 minutes.

benchmark size incr custom Twelf
cnt01e 179 KB 0.25 0.28 4.0
tree-exa2-10 381 KB 0.35 0.50 6.1
cnt01re 267 KB 0.23 0.39 7.4
toilet_02_01.2 1.1 MB 0.92 1.3 150
1qbf-160cl.0 1.5 MB 0.98 1.1 750
tree-exa2-15 4.3 MB 3.7 5.8 timeout
toilet_02_01.3 8.2 MB 7.1 11.5 timeout

Aaron Stump Proof Checking for SMT LFMTP 2008

Resolution and its Side Conditions

Our proof format must support rules like resolution.
Simple e.g.: binary propositional resolution with factoring.
Resolve clauses C and D on variable v to E iff

1 C contains v positively.
2 D contains v negatively.
3 Removing all positive v from C yields C′.
4 Removing all negative v from D yields D′.
5 Appending C′ and D′ yields E .
6 May also drop duplicate literals from E .

Explicit proof seems to be of size Θ(|C|+ |D|).
Side condition proofs will dominate the rest of the proof.

Aaron Stump Proof Checking for SMT LFMTP 2008

LF with Side Conditions (LFSC)

Extend LF to allow computational side conditions.
Declared signature constants can state these.
Side conditions written with simply typed functional code.

I Pattern matching, general recursion, finite failure allowed.
I Call-by-value reduction.
I Limited mutable state: marking LF variables.

Code for computing resolvent in linear time easily implemented.

Aaron Stump Proof Checking for SMT LFMTP 2008

Checking Proofs from a Modern SAT Solver

Incremental checker supports LFSC.
LFSC signature for binary propositional resolution with factoring.
Test with the CLSAT SAT solver.

I Implemented mostly by Duckki Oe.
I Competitive with MINISAT, TINISAT.
I Produces resolution proofs in LFSC format.
I Lemmas emitted for all learned clauses.
I Run on benchmarks from SAT Race 2008 Test Set 1.

Care needed to allow tail recursion when checking these proofs.

Aaron Stump Proof Checking for SMT LFMTP 2008

Empirical Results for LFSC

benchmark size (MB) num R (k) check (s) overhead
E-sr06-par1 35 14.3 14.75 11.54
E-sr06-tc6b 8.4 8.7 11.68 32.26
M-c10ni_s 43 4.6 10.90 2.55
M-c6nid_s 33 72.9 48.35 3.63
M-f6b 30 1018.6 3237.22 202.24
M-f6n 26 847.6 2848.03 233.42
M-g6bid 27 797.5 1165.57 75.05
M-g7n 28 1006.8 1707.43 151.93
V-eng-uns-1.0-04 41 1692.7 5913.22 305.57
V-sss-1.0-cl 9.8 416.2 553.30 193.92

size: size of proof (megabytes).
num R: number of resolutions (thousands).
check: time to check the proof (seconds).
overhead: ratio of proof production + checking time to solving time.

Aaron Stump Proof Checking for SMT LFMTP 2008

Future Work.

1 Improve speed with compilation.
I 90% of runtime going to interpreting side conditions.
I So combine with signature compilation.
I Close gap with fast but ad hoc solution by M. Moskal.

2 Extend CLSAT proofs from SAT to SMT.
I CLSAT solves integer difference logic (QF_IDL).
I CNF conversion a little tricky due to formula renaming.

3 Implement verified version.
I Developing dependently typed PL called GURU.
I Supports input/output and mutable state using uniqueness types.
I Case study: incremental LF checker (“GOLFSOCK”).
I Statically verify character input parsed to type-correct LF.
I Mapping from symbol table trie to typing context almost verified.

Aaron Stump Proof Checking for SMT LFMTP 2008

