Proof Checking Technology for Satisfiability Modulo
Theories

Aaron Stump

Computer Science and Engineering
Washington University
St. Louis, Missouri, USA

Funding from NSF CRI grant.

Satisfiability Modulo Theories (SMT) Solvers

@ Support large formulas, expressive theories.

@ Used for discharging verification conditions.

@ Examples include Z3, YICcES, CVC3, many others.
@ SMT-LIB, SMT-COMP, SMT-EXEC.

Sat Unsat

Aaron Stump Proof Checking for SMT

LFMTP 2008

Confirming Solver Results

@ SMT solvers large (50-100kloc), complex.
@ Hard to justify trusting.
One solution:

@ Have solvers emit proofs.
@ Check proofs with much simpler checker (2-4kloc).

¢
!

SMT Solver
Pf
\ Proof Checker \

Pf Ok PfBad

Aaron Stump Proof Checking for SMT LFMTP 2008

Fast, Flexible, Standardized

@ Speed required for large proofs (100MB to 100GB?).
@ Flexibility also critical.
» Different solving algorithms => different proof systems.
» At least premature to pick a single proof system.
@ A standard proof format very desirable.

» Provides common target for solvers.
» Opens door to exporting to interactive provers.
» Standardization important to the SMT-LIB initiative.

Aaron Stump Proof Checking for SMT LFMTP 2008

Proposal: Standardize with a Logical Framework

@ Start with Edinburgh Logical Framework (LF) [Harper+ 93].
@ LF provides flexibility.

» Logics described by a signature.

» One proof checker suffices for all logics.

» Relatively simple to check proofs.

» Good built-in support for binding constructs.

@ Challenge: efficient proof checking for large LF proofs.

Aaron Stump Proof Checking for SMT LFMTP 2008

Two Problems for SMT Proof Checking

@ Proofs may be too large for main memory.

» Traditionally: parse proof to AST, then check.
» Bad, because of large proofs.

@ Side conditions on inference rules.

» Some proof rules have computational side conditions.
» E.g., resolution, for clause learning in modern SAT/SMT solvers.
» In pure LF, explicit proofs of side conditions required.

Aaron Stump Proof Checking for SMT LFMTP 2008

Solutions

@ Incremental checking for large proofs.
» Intertwine parsing and checking.
» Avoid building ASTs whenever possible.
» Consume proof as it is produced.
© LF with Side Conditions (LFSC).
» Allow declared signature constants to state side conditions.
» Side conditions written in simple functional programming language.
» Side conditions checked each time the constant is used.

Aaron Stump Proof Checking for SMT LFMTP 2008

Incremental Checking

@ Basic idea: intertwine parsing and checking.
@ Combine with bidirectional type checking.

» Synthesizing: T+ t=T.
» Checking: THt«< T.

@ ASTs built for subterms iff they will appear in the type T.

E.g.,

(refl x+y) => xt+ty == x+y

» AST must be built for x+y.
» Butnot (refl x+y).

@ Note: orthogonal to signature compilation [Zeller+ 07].

Aaron Stump Proof Checking for SMT

LFMTP 2008

Formalization: Judgments

Judgments extended to include input:

Ml =ct:T|F

@ /is initial list of input tokens.

@ /' is rest of list, after synthesizing T for t.
@ c tells whether or not to create AST for t.
@ Similarly I'|/ <¢ t: T|/.

Aaron Stump Proof Checking for SMT LFMTP 2008

Formalization: Example Rules

@ Checking rule for A-abstractions:

r,XZT-]‘/ ¢ tiTg’lI
FAx, < M. t:Nx:Ty. To |V

@ Synthesizing rule for applications:

F|I =C ly o TMx: T1.T2 ‘ I F]I’ <:CVX€FV(T2) b : T1 ‘ "
Mo,/ = (tht): [L/x]T2| V"

» Here we update the flag c.
» This flag initially false for top-level checking of a term.
» For simply typed #;, avoid creating £, (unless already needed).

Aaron Stump Proof Checking for SMT LFMTP 2008

Correctness and Implementation

@ Correctness established by erasure:

Ml <Ct:T|I +— TFteT
Ml =Ct:T|I w— TFt=T

@ Implemented in C++.

Around 2300 lines.

Manual reference counting used for managing memory.
Memory errors including leaks debugged with VALGRIND.
Allows holes if determined by types of subsequent arguments.

v

v vy

Aaron Stump Proof Checking for SMT LFMTP 2008

Empirical Results for Incremental Checking

@ Same benchmarks as in [Zeller+ 07].
@ Here, proofs from a simple proof-producing QBF solver.

@ Compare with custom checker emitted by signature compilation.
@ Also compare with Twelf, for third party tool.

@ All times in seconds, timeout 30 minutes.

benchmark size incr | custom | Twelf
cntOle 179 KB | 0.25 | 0.28 4.0
tree-exa2-10 381 KB | 0.35 | 0.50 6.1
cntOire 267 KB | 0.23 | 0.39 7.4
toilet 02 01.2 | 1.1 MB | 0.92 | 1.3 150
1gbf-160cl.0 15MB | 0.98 | 1.1 750
tree-exa2-15 43MB | 3.7 5.8 timeout
toilet_02_01.3 | 82MB | 7.1 11.5 timeout

Aaron Stump

Proof Checking for SMT

LFMTP 2008

Resolution and its Side Conditions

@ Our proof format must support rules like resolution.

@ Simple e.g.: binary propositional resolution with factoring.
@ Resolve clauses C and D on variable v to E iff

@ C contains v positively.

@ D contains v negatively.

© Removing all positive v from C yields C'.

© Removing all negative v from D yields D'.

@ Appending C’ and D’ yields E.

@ May also drop duplicate literals from E.
@ Explicit proof seems to be of size ©(|C| + |DJ).

@ Side condition proofs will dominate the rest of the proof.

Aaron Stump Proof Checking for SMT LFMTP 2008

LF with Side Conditions (LFSC)

@ Extend LF to allow computational side conditions.

@ Declared signature constants can state these.
@ Side conditions written with simply typed functional code.

» Pattern matching, general recursion, finite failure allowed.
» Call-by-value reduction.
» Limited mutable state: marking LF variables.

@ Code for computing resolvent in linear time easily implemented.

Aaron Stump Proof Checking for SMT LFMTP 2008

Checking Proofs from a Modern SAT Solver

@ Incremental checker supports LFSC.

@ LFSC signature for binary propositional resolution with factoring.
@ Test with the CLSAT SAT solver.

» Implemented mostly by Duckki Oe.

» Competitive with MINISAT, TINISAT.

» Produces resolution proofs in LFSC format.

» Lemmas emitted for all learned clauses.

» Run on benchmarks from SAT Race 2008 Test Set 1.

@ Care needed to allow tail recursion when checking these proofs.

Aaron Stump Proof Checking for SMT LFMTP 2008

Empirical Results for LFSC

benchmark size (MB) | num R (k) | check (s) | overhead
E-sr06-par1 35 14.3 14.75 11.54
E-sr06-tc6b 8.4 8.7 11.68 32.26
M-c10ni_s 43 4.6 10.90 2.55
M-c6énid_s 33 72.9 48.35 3.63
M-féb 30 1018.6 3237.22 | 202.24
M-f6n 26 847.6 2848.03 233.42
M-g6bid 27 797.5 1165.57 | 75.05
M-g7n 28 1006.8 1707.43 | 151.93
V-eng-uns-1.0-04 | 41 1692.7 5913.22 305.57
V-sss-1.0-cl 9.8 416.2 553.30 193.92

@ size: size of proof (megabytes).

@ num R: number of resolutions (thousands).

@ check: time to check the proof (seconds).

@ overhead: ratio of proof production + checking time to solving time.

Aaron Stump Proof Checking for SMT LFMTP 2008

Future Work.

@ Improve speed with compilation.

» 90% of runtime going to interpreting side conditions.

» So combine with signature compilation.

» Close gap with fast but ad hoc solution by M. Moskal.
@ Extend CLSAT proofs from SAT to SMT.

» CLSAT solves integer difference logic (QF_IDL).

» CNF conversion a little tricky due to formula renaming.
© Implement verified version.

» Developing dependently typed PL called GURU.
Supports input/output and mutable state using uniqueness types.
Case study: incremental LF checker (“GOLFSOCK”).

Statically verify character input parsed to type-correct LF.
Mapping from symbol table trie to typing context almost verified.

v vy vYyy

Aaron Stump Proof Checking for SMT LFMTP 2008

