
A Type-Based Approach to
Verified Software

Aaron Stump
Dept. of Computer Science

The University of Iowa
Iowa City, Iowa, USA

Aaron Stump Types for Verified Software Iowa State, 2011



Acknowledgments

Ting Zhang for this invitation.
U. Iowa Computational Logic Center:

I Faculty: AS, Cesare Tinelli.
I Postdocs: Garrin Kimmell, Tehme Kahsai.
I Doctoral: F. Fu, T. Liang, J. McClurg, C. Oliver, D. Oe, A. Reynolds.
I Master’s: E. Bavier, H. Eades, T. Jensen, A. Laugesen, CJ Palmer.
I Undergraduates: JJ Meyer.

http://clc.cs.uiowa.edu

NSF: CAREER, Trellys grant.

Aaron Stump Types for Verified Software Iowa State, 2011

http://clc.cs.uiowa.edu


About This Talk

Part 1: The Verification Renaissance.
Part 2: Type-based Verification in GURU.
Part 3: versat, a Verified Modern SAT Solver.
Part 4: Glimpse Ahead.

Aaron Stump Types for Verified Software Iowa State, 2011



Verification Reborn

Language-Based Verification Will Change the World ,
T. Sheard, A. Stump, S. Weirich, FoSER 2010.

Aaron Stump Types for Verified Software Iowa State, 2011



Computing systems are doing so much:

Why can’t we guarantee they work?

Aaron Stump Types for Verified Software Iowa State, 2011



Why not just use testing?

+ Integrates well with programming.
+ No new languages, tools required.
+ Conclusive evidence for bugs.

– Difficult to assess coverage.
– Cannot demonstrate absence of bugs.
– No guarantees for safety-critical systems.

Alternative: Formal Verification

Aaron Stump Types for Verified Software Iowa State, 2011



Why not just use testing?

+ Integrates well with programming.
+ No new languages, tools required.
+ Conclusive evidence for bugs.

– Difficult to assess coverage.
– Cannot demonstrate absence of bugs.
– No guarantees for safety-critical systems.

Alternative: Formal Verification

Aaron Stump Types for Verified Software Iowa State, 2011



Instead of tests, use proofs.
Deduction and proof provide universal guarantees.
Prove that software has specified properties.
From this...

“seL4: formal verification of an OS kernel”, Klein et al., SOSP 2009.

Aaron Stump Types for Verified Software Iowa State, 2011



To this:

“Astrée: From Research to Industry”, D. Delmas et al., SAS 2007.

Aaron Stump Types for Verified Software Iowa State, 2011



Proofs and Size of Systems

seL4 microkernel (mobile phones):
I Around 9,000 lines of code.
I 200,000 lines of computer-checked proof, written by hand.
I Isabelle proof tool.
I My estimate: 1 line of proof = 10 lines of code.
I So equivalent to 2M lines of code.

Airbus A380:
I Millions of lines of code.
I cf. Mercedes S-class: 100M lines of code.
I Astrée can analyze 100Kloc programs.

Why the difference in scale?

Aaron Stump Types for Verified Software Iowa State, 2011



Traditionally, Two Kinds of Computer Proof

1 Automated Theorem Proving (Astrée).

I Fully automatic.

I Shallow reasoning, but

I Large formulas.

Φ

Logic Solver

Valid Invalid
2 Computer-Checked Manual Proof (Isabelle)

I Written by hand.

I Needed for deep reasoning.

I Use solvers to fill in easy parts.

Aaron Stump Types for Verified Software Iowa State, 2011



Large formulas (50 megabytes or more).

Logic Solver

Valid Invalid

Aaron Stump Types for Verified Software Iowa State, 2011



Large formulas (50 megabytes or more).

Logic Solver

Valid Invalid

Aaron Stump Types for Verified Software Iowa State, 2011



Programs as Proofs?

Solvers test huge formulas.
So solvers must be very efficient.
So solvers must be complicated.
What if the solver is wrong?
Who watches the watchers?

We will return to this with versat.

Aaron Stump Types for Verified Software Iowa State, 2011



Programs as Proofs?

Solvers test huge formulas.
So solvers must be very efficient.
So solvers must be complicated.
What if the solver is wrong?
Who watches the watchers?

We will return to this with versat.

Aaron Stump Types for Verified Software Iowa State, 2011



Type-Based Verification in
GURU

1. Resource Typing in Guru, PLPV 2010.
2. Verified Programming in Guru, PLPV 2009.

Aaron Stump Types for Verified Software Iowa State, 2011



Between Heaven

and Hell



If you dislike proofs:

Heaven Fully automatic solvers
Hell Manual proof

If you like specification:

Heaven Expressive language, rich specifications
Hell Impoverished language

Earth :

Rich specifications => manual proof.
Automatic solvers => weak specifications.

Aaron Stump Types for Verified Software Iowa State, 2011



If you dislike proofs:

Heaven Fully automatic solvers
Hell Manual proof

If you like specification:

Heaven Expressive language, rich specifications
Hell Impoverished language

Earth :

Rich specifications => manual proof.
Automatic solvers => weak specifications.

Aaron Stump Types for Verified Software Iowa State, 2011



How can we combine solvers and
rich specifications?

Two traditional answers:
1 Use solvers for easy parts of manual proofs (ISABELLE, COQ).
2 Pose intermediate lemmas, to prove automatically (ACL2).

Aaron Stump Types for Verified Software Iowa State, 2011



How can we combine solvers and
rich specifications?

Two traditional answers:
1 Use solvers for easy parts of manual proofs (ISABELLE, COQ).
2 Pose intermediate lemmas, to prove automatically (ACL2).

Aaron Stump Types for Verified Software Iowa State, 2011



Manual Proof as External Verification

Manual proof:

program proof

2 artifacts: proof and program.

Proof is external to program.

Aaron Stump Types for Verified Software Iowa State, 2011



An Alternative

External verification:

program proof

Internal verification:

program

1 artifact: program with proofs inside.

Proof is internal to program.

Aaron Stump Types for Verified Software Iowa State, 2011



An Alternative

External verification:

program proof

Internal verification:

program

1 artifact: program with proofs inside.

Proof is internal to program.

Aaron Stump Types for Verified Software Iowa State, 2011



External verification:

append : Fun(A:type)(l1 l2 : <list A>). <list A>

length_append :
Forall(A:type)(l1 l2:<list A>).
{ (length (append l1 l2)) = (plus (length l1) (length l2)) }

Internal verification:

<vec A n> – type for lists of As of length n.

append :
Fun(A:type)(spec n m:nat)(l1 : <vec A n>)(l2 : <vec A m>).
<vec A (plus n m)>

These are dependent types .

Aaron Stump Types for Verified Software Iowa State, 2011



Advantage: Internal Verification

Annotate instead of prove.
I Sprinkle annotations just where needed.
I External proofs must consider even irrelevant code.

Verify less.
I Theorem provers usually require totality.
I Can be a major proof obligation (or even false).
I Dependently typed PLs do not.

Control usage.
I Dependent types great for software protocols.

F open (read|write)* close.
F cf. FINE [Chen, Swamy, Chugh, PLDI 2010]
F also ensuring in-bounds array access: read a i P.

I No so easy to verify externally.

Aaron Stump Types for Verified Software Iowa State, 2011



Verification: Less is More

Tour-de-force verification is powerful, extremely costly.
Verification is much more than tour-de-force!
Internal verification of lighter properties can go mainstream.
Continuum of correctness:

Type
Safety

Tour-de-force
Verification

High Quality

Let programmer find the sweet spot.

Aaron Stump Types for Verified Software Iowa State, 2011



Proofs and Programs in GURU

programs proofs6=
Polymorphic higher-order functional programs.

I Indexed algebraic datatypes, pattern-matching.
I Dependent types.
I General recursion.

First-order proofs with induction.
I Structural induction on datatypes.
I Quantify over program types, not formulas.
I Includes some non-constructive principles.

F case split on termination of a term.

Aaron Stump Types for Verified Software Iowa State, 2011



Mutable State

How to incorporate mutable state (like arrays)?
Simple idea: functional modeling.

I Define inefficient functional model.
I Swap out during compilation.

Arrays modeled as vectors.

<array A w> =⇒ <vec A (word_to_nat w)>

Require proofs for array accesses.
How to ensure soundness with destructive update?
Resource typing: statically track memory, no GC.

Aaron Stump Types for Verified Software Iowa State, 2011



The GURU Compiler (www.guru-lang.org)

CARRAWAY Layer

Guru source code

Parser

Type/proof-checker

Pull out λs

Resource analysis

Linearization

Compile datatypes

C target code No GC!

Aaron Stump Types for Verified Software Iowa State, 2011

www.guru-lang.org


versat

A Verified Modern SAT Solver

Main developer: Duckki Oe

Aaron Stump Types for Verified Software Iowa State, 2011



versat Overview

Modern SAT solver with all the trimmings.
I clause learning.
I watched literals.
I optimized conflict analysis.
I non-chronological backtracking.

Implemented in GURU.
Statically verified sound.

I If versat says unsat
I Then input formula is contradictory.

Efficient.
I Uses standard efficient data structures.
I Can handle formulas on modern scale (10k vars, 100k clauses).
I First efficient verified solver.

Around 8kloc code and proofs.
I Cf. Paper by Filip Marić 2010, 25kloc ISABELLE.

Aaron Stump Types for Verified Software Iowa State, 2011



Main Specification

The solve function has type:

Fun(F:formula)(...).<answer F>

formula is list of list-based clauses.
answer records proof for unsat case:

Inductive answer : Fun(F:formula).type :=
sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F (nil lit)>).
<answer F>

pf is a simple indexed datatype of resolution proofs.
We have proved that a resolution proof exists.
Not constructed at run-time.

Aaron Stump Types for Verified Software Iowa State, 2011



Other Properties

Verified:

Connection between array-based, list-based clauses.
Array-accesses in bounds.
No leaks, double deletes (resource typing).

Not verified:

Completeness.
Termination.

I Other approaches require this.
I Uninteresting in practice, due to NP-completeness.

Aaron Stump Types for Verified Software Iowa State, 2011



Empirical Evaluation

Benchmark File Size Answer versat minisat tinisat
AProVE09-07 442K S 125.26 8.53 0.89
countbitsrotate016 82K U 114.20 34.17 29.61
een-tipb-sr06-par1 8.8M U 7.06 0.74 0.59
een-tipb-sr06-tc6b 2M U 2.71 0.18 0.13
grieu-vmpc-s05-24s 905K S 756.54 8.56 20.04
grieu-vmpc-s05-25 0.9M S 372.37 19.29 186.77
gss-14-s100 1.5M S 673.45 29.02 6.71
gus-md5-04 4.0M U 35.69 2.27 7.81
icbrt1_32 494K U 30.66 7.41 30.51
manol-pipe-c10id_s 9.4M U 800.27 1.23 3.01
manol-pipe-c10ni_s 11M U 13.81 2.02 6.83
stric-bmc-ibm-10 6.1M S 730.29 0.53 0.78
vange-col-inithx.i.1-cn-54 8.9M S 48.42 1.10 1.90

Aaron Stump Types for Verified Software Iowa State, 2011



Next Steps for versat

Performance improvements.
Prove some remaining lemmas.

I Currently proved 136 lemmas.
I 68 unproved.
I About specificational functions.

What can you do with a verified SAT solver?
On Duckki Oe’s homepage (Projects – versat):

I GURU code for versat-0.4.
I Generated C code.

Aaron Stump Types for Verified Software Iowa State, 2011



Glimpse Ahead

1. Termination Casts: A Flexible Approach to Termination with General Recursion.
2. Equality, Quasi-Implicit Products, and Large Eliminations.

Aaron Stump Types for Verified Software Iowa State, 2011



Trellys

U. Penn. Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg
Iowa AS, Harley Eades, Frank Fu
PSU Tim Sheard, Ki Yung Ahn, Nathan Collins

Large NSF project, 2009-2013.
New dependently typed PL called TRELLYS.
Improves on GURU, related languages:

I Much more powerful type system for programs.
I Eliminate even more termination requirements.
I Aiming for elegant surface language.

Aaron Stump Types for Verified Software Iowa State, 2011



Conclusion

Type-based approach to verified software.
GURU verified-programming language.
Case study: versat.
First verification of efficient modern SAT solver.
Future work: keep exploring this rich area!
Slides online at my blog, QA9:

queuea9.wordpress.com

Thank you again!

Aaron Stump Types for Verified Software Iowa State, 2011

queuea9.wordpress.com



