
Algebraic Proof Mining
for Fast Decision Procedures

Aaron Stump

Computer Science and Engineering
Washington University

St. Louis, Missouri, USA

CSE Retreat ’05

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



CAREER: Semantic Programming

Develop language-based approaches to program verification.

Programmer knows why code is right.

Provide language constructs to encode that knowledge formally.

“Programming with proofs”:
Code intertwined with proofs.
Functions input proofs of pre-conditions.
They output proofs of post-conditions.
Proofs built by hand, with automated help.

Goal: make provably correct coding a practical reality!

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Case Study: Decision Procedures

Decision procedures (DPs) check validity of logical formulas.

Can handle background theories: arithmetic, arrays, bitvectors.

Used for algorithmic verification.

Good case study for programming with proofs:
Relations between proofs and DPs well understood.
Proofs independently valuable.
Proofs are about data (formulas), not executions.
Proofs can be enormous, so good engineering required.

Leverages PI expertise in the area.

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Decision Procedures: Hot Topic

Decision procedures are hot in verification.

Increasing submissions at CAV and TACAS.

Barrett, de Moura, and Stump organize SMT-COMP 2005:
“Satisfiability Modulo Theories” Competition.
Satellite event of CAV 2005, Edinburgh, Scotland.
12 solvers from Europe and U.S.
Spurred collection of 1338 benchmarks, in 7 theories.
Hot tools: Barcelogic Tools (T.U. Catalonia), Yices (SRI).
Industrial interest from Intel Strategic CAD Labs, NEC Labs.

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Inside a Decision Procedure

SAT solver: ANDs, ORs, and NOTs.

Theory solver: 3x + y < z, write(a, i , v) = b, or just a = b.

SAT solver satisfies boolean structure, then calls theory solver.

SAT solver
Theory Reasoner

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Inside a Decision Procedure

SAT solver: ANDs, ORs, and NOTs.

Theory solver: 3x + y < z, write(a, i , v) = b, or just a = b.

SAT solver satisfies boolean structure, then calls theory solver.

SAT solver
Theory Reasonera = b

d = b
b = c
a 6= c

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Inside a Decision Procedure

SAT solver: ANDs, ORs, and NOTs.

Theory solver: 3x + y < z, write(a, i , v) = b, or just a = b.

SAT solver satisfies boolean structure, then calls theory solver.

SAT solver
Theory Reasonera = b

d = b
b = c
a 6= c

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Inside a Decision Procedure

SAT solver: ANDs, ORs, and NOTs.

Theory solver: 3x + y < z, write(a, i , v) = b, or just a = b.

SAT solver satisfies boolean structure, then calls theory solver.

SAT solver
Theory Reasonera = b ∧

b = c ∧
a 6= c ⇒ false

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Inside a Decision Procedure

SAT solver: ANDs, ORs, and NOTs.

Theory solver: 3x + y < z, write(a, i , v) = b, or just a = b.

SAT solver satisfies boolean structure, then calls theory solver.

SAT solver
Theory Reasoner

Conflict clause:
a 6= b ∨ b 6= c ∨ a = c

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Conflict Clauses

Conflict clauses prune later search.

Smaller clauses aren’t always better [Malik et al. 2001].

A subset of a clause is always better.

Recent work: subsets of conflict clauses for EUF solvers
[Nieuwenhuis and Oliveras 2005, Stump and Tan 2005, de
Moura et al. 2004].

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Proof Mining [Barrett,Dill,Stump 2002]

Suppose theory solver produces proof of contradiction.

Just return the assumptions used in that proof.

Assumptions: a = b, d = b, b = c, a 6= c.

Proof:

a = b b = c
a = c Trans a 6= c

false Contra

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Proof Mining [Barrett,Dill,Stump 2002]

Suppose theory solver produces proof of contradiction.

Just return the assumptions used in that proof.

Assumptions: a = b, d = b, b = c, a 6= c.

Proof:

a = b b = c
a = c Trans a 6= c

false Contra

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Proof Mining [Barrett,Dill,Stump 2002]

Suppose theory solver produces proof of contradiction.

Just return the assumptions used in that proof.

Assumptions: a = b, d = b, b = c, a 6= c.

Proof:

a = b b = c
a = c Trans a 6= c

false Contra

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Flabby Proofs from Union-Find

Assumptions: a = b, a = c, a 6= c.

Union-find structure: Action:

a

b

c

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Flabby Proofs from Union-Find

Assumptions: a = b, a = c, a 6= c.

Union-find structure: Action: union(a,b)

a

b

c

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Flabby Proofs from Union-Find

Assumptions: a = b, a = c, a 6= c.

Union-find structure: Action: union(a,c)

a

b

c

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Flabby Proofs from Union-Find

Assumptions: a = b, a = c, a 6= c.

Union-find structure: find(a) = b, find(c) = b

a

b

c

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Flabby Proofs from Union-Find

Assumptions: a = b, a = c, a 6= c.

Union-find structure: find(a) = b, find(c) = b

a

b

c

Resulting flabby proof:

a = b

a = b
b = aSymm a = c

b = c Trans

a = c Trans a 6= c
false Contra

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Flabby Proofs from Union-Find

Assumptions: a = b, a = c, a 6= c.

Union-find structure: find(a) = b, find(c) = b

a

b

c

Resulting flabby proof:

a = b

a = b
b = aSymm a = c

b = c Trans

a = c Trans a 6= c
false Contra

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Algebraic Proof Mining [Stump and Tan 2005]

Idea: transform proofs to get rid of flab.

Algebraic: transformations based on equations between proofs.

D1

a = b
D2

b = c
a = c Trans

D3

c = d
a = d ∼=

D1

a = b

D2

b = c
D3

c = d
b = d Trans

a = d

a = aRefl
D

a = b
a = b Trans ∼=

D
a = b

D
a = b
b = aSymm

D
a = b

b = b Trans ∼= b = bRefl

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



An Equational Theory On Proof Terms

Equations
Trans(Trans(d1,d2),d3) ∼= Trans(d1,Trans(d2,d3))

Trans(Refl,d) ∼= d

Trans(Symm(d),d) ∼= Refl

Which equational theory is it?

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



This Is Equational Group Theory

Compare these equations:
Trans(Trans(d1,d2),d3) ∼= Trans(d1,Trans(d2,d3))
Trans(Refl,d) ∼= d
Trans(Symm(d),d) ∼= Refl

With the group axioms:
(d1 ∗ d2) ∗ d3

∼= d1 ∗ (d2 ∗ d3)
1 ∗ d ∼= d
d−1 ∗ d ∼= 1

Trans is ∗, Symm is ()−1, and Refl is 1.

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Transforming Equality Proofs

Theorem (Knuth-Bendix, 1970)
These rules put every group term into canonical form:

1. (x ∗ y) ∗ z → x ∗ (y ∗ z)
2. x−1 ∗ x → 1
3. x ∗ x−1 → 1
4. x ∗ (x−1 ∗ y) → y
5. x−1 ∗ (x ∗ y) → y
6. (x ∗ y)−1 → y−1 ∗ x−1

7. 1 ∗ x → x
8. x ∗ 1 → x
9. 1−1 → 1
10. (x−1)−1 → x

Rewrite proofs to remove flab.
Better: mine assumptions without actually rewriting.

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Empirical Results in CVC

Benchmark dec. orig time orig (s) dec. mining time mining (s)
dlx-regfile 2807 2.1 2430 2.5
dlx-dmem 1336 1.0 1048 0.9
pp-regfile 115197 295.7 44547 121.9
pp-dmem 25928 68.1 11899 23.7
pp-bloaddata 4060 1.7 3461 2.1
pp-TakenBranch 15364 26.1 11928 24.6

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Conclusion

Decision procedures: case study for programming with proofs.

Algebraic proof mining: mine info from transformed proofs.

For equality proofs, use rewrite rules for free group theory.

2x performance improvement on large benchmarks observed.

Future work: apply to other theories.

Future work: RVC decision procedure, written in RSP.

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Congruence Rules

Congruence rules are commuting endomorphisms.

These proofs prove the same theorem:

a = b b = c
a = c Trans

f (a, d) = f (c, d)
Congf ,1

a = b
f (a, d) = f (b, d)

Congf ,1
b = c

f (b, d) = f (c, d)
Congf ,1

f (a, d) = f (c, d)
Trans

Commutativity is also required:

Trans(Congf ,1(d1),Congf ,2(d2)) ∼= Trans(Congf ,2(d2),Congf ,1(d1))

Aaron Stump Algebraic Proof Mining CSE Retreat ’05



Rules for Commuting Endomorphisms

1. (x ∗ y) ∗ z → x ∗ (y ∗ z)
2. x−1 ∗ x → 1
3. x ∗ x−1 → 1
4. x ∗ (x−1 ∗ y) → y
5. x−1 ∗ (x ∗ y) → y
6. (x ∗ y)−1 → y−1 ∗ x−1

7. 1 ∗ x → x
8. x ∗ 1 → x
9. 1−1 → 1
10. (x−1)−1 → x

11. f (1) → 1
12. (f (x))−1 → f (x−1)
13. f (x) ∗ f (y) → f (x ∗ y)
14. f (x) ∗ (f (y) ∗ z) → f (x ∗ y) ∗ z
15. g(1) → 1
16. (g(x))−1 → g(x−1)
17. g(x) ∗ g(y) → g(x ∗ y)
18. g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z
19. f (x) ∗ g(y) → g(y) ∗ f (x)
20. f (x) ∗ (g(y) ∗ z) → g(y) ∗ (f (x) ∗ z)

Aaron Stump Algebraic Proof Mining CSE Retreat ’05


