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About This Talk

Part 1: The GURU dependently typed programming language.
Part 2: Case study on versat, verified modern SAT solver.
Part 3: Glimpse ahead.
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GURU and Dependent Types

1. Verified Programming in Guru, PLPV 2009.
2. Resource Typing in Guru, PLPV 2010.
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What is the Appeal of Dependent Types?

Lots of tour-de-force verification happening.
I CompCert verified C compiler (42kloc COQ).
I seL4 verified microkernel (200kloc ISABELLE).
I Metatheory of Standard ML (30kloc TWELF).
I Total correctness of a modern SAT solver (Marić, 25kloc ISABELLE).

Dependent types are much lighter.
I versat only 7.8K GURU, verified sound.

Why?
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Internal vs. External Verification

External verification:

append : Fun(A:type)(l1 l2 : <list A>). <list A>

length_append :
Forall(A:type)(l1 l2:<list A>).
{ (length (append l1 l2)) = (plus (length l1) (length l2)) }

Internal verification:

<vec A n> – type for lists of As of length n.

append :
Fun(A:type)(spec n m:nat)(l1 : <vec A n>)(l2 : <vec A m>).
<vec A (plus n m)>
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Advantage: Dependent Types

Annotate instead of prove.
I Sprinkle annotations just where needed.
I External proofs must consider even irrelevant code.

Verify less.
I Theorem provers usually require totality.
I Can be a major proof obligation (or even false).
I Dependently typed PLs do not.

Control usage.
I Dependent types great for software protocols.

F open (read|write)* close.
F cf. FINE [Chen, Swamy, Chugh, PLDI 2010]
F also ensuring in-bounds array access: read a i P.

I No so easy to verify externally.
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Verification: Less is More

Tour-de-force verification is powerful, extremely costly.
Verification is much more than tour-de-force!
Verification of lighter properties can go mainstream.
Continuum of correctness:

Type
Safety

Tour-de-force
Verification

High Quality

Let programmer find the sweet spot.
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Anatomy of a Dependently Typed PL

Programs vs. proofs.
General recursion.
Specificational data.
Equality.
Mutable state.
Compilation.
Automation.

Consider GURU’s approach.

www.guru-lang.org
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Programs and Proofs
Need notation for proofs.

I Sometimes external theorem is most natural.
I For example, associativity of append.
I Also for type equivalences.

One solution: Curry-Howard.

proofs programs=

Cute, but not a good idea.
I Not every program makes sense as a proof.

F loop : False
I Not every proof makes sense as a program.

F non-constructive proofs cannot be executed.
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Proofs and Programs in GURU

proofs programs6=

Polymorphic higher-order functional programs.
I Indexed algebraic datatypes, pattern-matching.
I Dependent types.
I General recursion.

First-order proofs with induction.
I Structural induction on datatypes.
I Quantify over program types, not formulas.
I Includes some non-constructive principles.

F case split on termination of a term.
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Equality and Casts

Can change type of a term with a cast.

Γ ` t : T1 Γ ` P : T1 = T2
Γ ` cast t by P : T2

Example:
I Have l : <vec A (x+y)>
I Want <vec A (y+x)>
I Use:

cast l by cong <vec A *> [plus_comm x y]

Casts erased during compilation.
Also for proving equations.

I Avoids need for axiom K, proving proofs equal.
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Mutable State

How to incorporate mutable state (like arrays)?
Simple idea: functional modeling.

I Define inefficient functional model.
I Swap out during compilation.

Arrays modeled as vectors.

<array A w> =⇒ <vec A (word_to_nat w)>

Require proofs for array accesses.
How to ensure soundness with destructive update?

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Resource Typing

Additional analysis beyond regular type-checking.
Tracks all memory statically: no GC!
Limitations:

I Dag-like immutable state: OK.
I Unaliased mutable state: OK.
I Aliased mutable state: No.

Reference counting for dag-like data.
Linear restriction for mutable data.
Notion of pinning helps:

I If x:T and y pointing into memory reachable from x.
I Then y:<x>T.
I y is pinning x.
I Must consume y before x.
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The GURU Compiler (www.guru-lang.org)

CARRAWAY Layer

Guru source code

Parser

Type/proof-checker

Pull out λs

Resource analysis

Linearization

Compile datatypes

C target code No GC!
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versat

A Verified Modern SAT Solver

Main developer: Duckki Oe

Under review for SAT 2011.
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versat Overview

Modern SAT solver with all the trimmings.
I clause learning.
I watched literals.
I optimized conflict analysis.
I non-chronological backtracking.

Implemented in GURU.
Statically verified sound.

I If versat says unsat
I Then input clause is contradictory.

Efficient.
I Uses standard efficient data structures.
I Can handle formulas on modern scale (10k vars, 100k clauses).
I Not competitive with state of the art yet.
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Main Specification

The solve function has type:

Fun(nv:word)
(nv_ub:{ (ltword nv var_upper_bound) = tt })
(F:formula).

<answer F>

formula is list of list-based clauses.
answer records proof for unsat case:

Inductive answer : Fun(F:formula).type :=
sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F (nil lit)>).
<answer F>

pf is a simple indexed datatype of resolution proofs.
We have proved that a resolution proof exists.
Not constructed at run-time.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Other Properties

Verified:

Connection between array-based, list-based clauses.
Array-accesses in bounds.
No leaks, double deletes (resource typing).

Not verified:

Completeness.
Termination.

I Would have to show recursions terminate.
I Also that some run-time checks never fail.
I Would be very difficult.
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Verifying Optimized Conflict Analysis

Compute useful learned clause from contradiction.
Done by optimized resolution.

I Table-based algorithm.
I No intermediate clauses.
I Most difficult verification in versat.
I Around 6 invariants.

Example theorem: efficient table-cleanup.

Define cl_has_all_vars_implies_clear_vars_like_new :
Forall (nv:word)

(vt:<array assignment nv>)
(c:clause)
(u:{ (cl_valid nv c) = tt })
(r:{ (cl_has_all_vars c vt) = tt })

.{ (clear_vars vt c) = (array_new nv UN) } := ...
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Empirical Evaluation

Benchmark File Size Answer versat minisat tinisat
AProVE09-07 442K S 125.26 8.53 0.89
countbitsrotate016 82K U 114.20 34.17 29.61
een-tipb-sr06-par1 8.8M U 7.06 0.74 0.59
een-tipb-sr06-tc6b 2M U 2.71 0.18 0.13
grieu-vmpc-s05-24s 905K S 756.54 8.56 20.04
grieu-vmpc-s05-25 0.9M S 372.37 19.29 186.77
gss-14-s100 1.5M S 673.45 29.02 6.71
gus-md5-04 4.0M U 35.69 2.27 7.81
icbrt1_32 494K U 30.66 7.41 30.51
manol-pipe-c10id_s 9.4M U 800.27 1.23 3.01
manol-pipe-c10ni_s 11M U 13.81 2.02 6.83
stric-bmc-ibm-10 6.1M S 730.29 0.53 0.78
vange-col-inithx.i.1-cn-54 8.9M S 48.42 1.10 1.90
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Next Steps for versat

Performance improvements.
Prove some remaining lemmas.

I Currently proved 112 lemmas.
I 79 unproved.
I About specificational functions.

What can you do with a verified SAT solver?
I One idea: compress SAT part of SMT proofs.
I Others?

On Duckki Oe’s homepage (Projects – versat):
I GURU code for versat-0.4.
I Generated C code.
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Glimpse Ahead
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Trellys

U. Penn. Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg
Iowa AS, Harley Eades, Frank Fu
PSU Tim Sheard, Ki Yung Ahn, Nathan Collins

Large NSF project, 2009-2013.
New dependently typed PL called TRELLYS.
Improves on GURU, related languages:

I Much more powerful type system for programs.
I Much more expressive logic.
I Aiming for elegant surface language.
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Blaise
Garrin Kimmell, JJ Meyer, Austin Laugesen.
Resource typing for aliased mutable state.

I Goal: no GC!
I Approach: statically enforce a memory-usage protocol.
I Spanning tree on every data structure.
I Reciprocal back pointer for every alias pointer.
I Clean up aliasing cells on deletion.

head

d1 · · · dn

Why is GC bad?
I Performance hit.
I Nightmare to engineer in compiler (see HASKELL).
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Conclusion

Verified programming with dependent types.
GURU language design.
Case study: versat.
First verification of efficient modern SAT solver.
Future work: keep exploring this rich area!
Slides online at my blog, QA9:

queuea9.wordpress.com

Thank you again!
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