
Building Verified Software with Dependent Types

Aaron Stump

Dept. of Computer Science
The University of Iowa
Iowa City, Iowa, USA



Acknowledgments

Sriram for this invitation.
U. Iowa Computational Logic Center:

I Faculty: AS, Cesare Tinelli.
I Postdocs: Garrin Kimmell, Tehme Kahsai.
I Doctoral: F. Fu, T. Liang, J. McClurg, C. Oliver, D. Oe, A. Reynolds.
I Master’s: E. Bavier, H. Eades, T. Jensen, A. Laugesen, CJ Palmer.
I Undergraduates: JJ Meyer.

http://clc.cs.uiowa.edu

NSF: CAREER, Trellys grant, StarExec grant.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011

http://clc.cs.uiowa.edu


About This Talk

Part 1: The GURU dependently typed programming language.
Part 2: Case study on versat, verified modern SAT solver.
Part 3: Glimpse ahead.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



GURU and Dependent Types

1. Verified Programming in Guru, PLPV 2009.
2. Resource Typing in Guru, PLPV 2010.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



What is the Appeal of Dependent Types?

Lots of tour-de-force verification happening.
I CompCert verified C compiler (42kloc COQ).
I seL4 verified microkernel (200kloc ISABELLE).
I Metatheory of Standard ML (30kloc TWELF).
I Total correctness of a modern SAT solver (Marić, 25kloc ISABELLE).

Dependent types are much lighter.
I versat only 7.8K GURU, verified sound.

Why?

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Internal vs. External Verification

External verification:

append : Fun(A:type)(l1 l2 : <list A>). <list A>

length_append :
Forall(A:type)(l1 l2:<list A>).
{ (length (append l1 l2)) = (plus (length l1) (length l2)) }

Internal verification:

<vec A n> – type for lists of As of length n.

append :
Fun(A:type)(spec n m:nat)(l1 : <vec A n>)(l2 : <vec A m>).
<vec A (plus n m)>

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Advantage: Dependent Types

Annotate instead of prove.
I Sprinkle annotations just where needed.
I External proofs must consider even irrelevant code.

Verify less.
I Theorem provers usually require totality.
I Can be a major proof obligation (or even false).
I Dependently typed PLs do not.

Control usage.
I Dependent types great for software protocols.

F open (read|write)* close.
F cf. FINE [Chen, Swamy, Chugh, PLDI 2010]
F also ensuring in-bounds array access: read a i P.

I No so easy to verify externally.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Verification: Less is More

Tour-de-force verification is powerful, extremely costly.
Verification is much more than tour-de-force!
Verification of lighter properties can go mainstream.
Continuum of correctness:

Type
Safety

Tour-de-force
Verification

High Quality

Let programmer find the sweet spot.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Anatomy of a Dependently Typed PL

Programs vs. proofs.
General recursion.
Specificational data.
Equality.
Mutable state.
Compilation.
Automation.

Consider GURU’s approach.

www.guru-lang.org

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011

www.guru-lang.org


Programs and Proofs
Need notation for proofs.

I Sometimes external theorem is most natural.
I For example, associativity of append.
I Also for type equivalences.

One solution: Curry-Howard.

proofs programs=

Cute, but not a good idea.
I Not every program makes sense as a proof.

F loop : False
I Not every proof makes sense as a program.

F non-constructive proofs cannot be executed.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Programs and Proofs
Need notation for proofs.

I Sometimes external theorem is most natural.
I For example, associativity of append.
I Also for type equivalences.

One solution: Curry-Howard.

proofs programs=

Cute, but not a good idea.
I Not every program makes sense as a proof.

F loop : False
I Not every proof makes sense as a program.

F non-constructive proofs cannot be executed.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Proofs and Programs in GURU

proofs programs6=

Polymorphic higher-order functional programs.
I Indexed algebraic datatypes, pattern-matching.
I Dependent types.
I General recursion.

First-order proofs with induction.
I Structural induction on datatypes.
I Quantify over program types, not formulas.
I Includes some non-constructive principles.

F case split on termination of a term.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Equality and Casts

Can change type of a term with a cast.

Γ ` t : T1 Γ ` P : T1 = T2
Γ ` cast t by P : T2

Example:
I Have l : <vec A (x+y)>
I Want <vec A (y+x)>
I Use:

cast l by cong <vec A *> [plus_comm x y]

Casts erased during compilation.
Also for proving equations.

I Avoids need for axiom K, proving proofs equal.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Mutable State

How to incorporate mutable state (like arrays)?
Simple idea: functional modeling.

I Define inefficient functional model.
I Swap out during compilation.

Arrays modeled as vectors.

<array A w> =⇒ <vec A (word_to_nat w)>

Require proofs for array accesses.
How to ensure soundness with destructive update?

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Resource Typing

Additional analysis beyond regular type-checking.
Tracks all memory statically: no GC!
Limitations:

I Dag-like immutable state: OK.
I Unaliased mutable state: OK.
I Aliased mutable state: No.

Reference counting for dag-like data.
Linear restriction for mutable data.
Notion of pinning helps:

I If x:T and y pointing into memory reachable from x.
I Then y:<x>T.
I y is pinning x.
I Must consume y before x.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



The GURU Compiler (www.guru-lang.org)

CARRAWAY Layer

Guru source code

Parser

Type/proof-checker

Pull out λs

Resource analysis

Linearization

Compile datatypes

C target code No GC!

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011

www.guru-lang.org


versat

A Verified Modern SAT Solver

Main developer: Duckki Oe

Under review for SAT 2011.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



versat Overview

Modern SAT solver with all the trimmings.
I clause learning.
I watched literals.
I optimized conflict analysis.
I non-chronological backtracking.

Implemented in GURU.
Statically verified sound.

I If versat says unsat
I Then input clause is contradictory.

Efficient.
I Uses standard efficient data structures.
I Can handle formulas on modern scale (10k vars, 100k clauses).
I Not competitive with state of the art yet.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Main Specification

The solve function has type:

Fun(nv:word)
(nv_ub:{ (ltword nv var_upper_bound) = tt })
(F:formula).

<answer F>

formula is list of list-based clauses.
answer records proof for unsat case:

Inductive answer : Fun(F:formula).type :=
sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F (nil lit)>).
<answer F>

pf is a simple indexed datatype of resolution proofs.
We have proved that a resolution proof exists.
Not constructed at run-time.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Other Properties

Verified:

Connection between array-based, list-based clauses.
Array-accesses in bounds.
No leaks, double deletes (resource typing).

Not verified:

Completeness.
Termination.

I Would have to show recursions terminate.
I Also that some run-time checks never fail.
I Would be very difficult.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Verifying Optimized Conflict Analysis

Compute useful learned clause from contradiction.
Done by optimized resolution.

I Table-based algorithm.
I No intermediate clauses.
I Most difficult verification in versat.
I Around 6 invariants.

Example theorem: efficient table-cleanup.

Define cl_has_all_vars_implies_clear_vars_like_new :
Forall (nv:word)

(vt:<array assignment nv>)
(c:clause)
(u:{ (cl_valid nv c) = tt })
(r:{ (cl_has_all_vars c vt) = tt })

.{ (clear_vars vt c) = (array_new nv UN) } := ...

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Empirical Evaluation

Benchmark File Size Answer versat minisat tinisat
AProVE09-07 442K S 125.26 8.53 0.89
countbitsrotate016 82K U 114.20 34.17 29.61
een-tipb-sr06-par1 8.8M U 7.06 0.74 0.59
een-tipb-sr06-tc6b 2M U 2.71 0.18 0.13
grieu-vmpc-s05-24s 905K S 756.54 8.56 20.04
grieu-vmpc-s05-25 0.9M S 372.37 19.29 186.77
gss-14-s100 1.5M S 673.45 29.02 6.71
gus-md5-04 4.0M U 35.69 2.27 7.81
icbrt1_32 494K U 30.66 7.41 30.51
manol-pipe-c10id_s 9.4M U 800.27 1.23 3.01
manol-pipe-c10ni_s 11M U 13.81 2.02 6.83
stric-bmc-ibm-10 6.1M S 730.29 0.53 0.78
vange-col-inithx.i.1-cn-54 8.9M S 48.42 1.10 1.90

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Next Steps for versat

Performance improvements.
Prove some remaining lemmas.

I Currently proved 112 lemmas.
I 79 unproved.
I About specificational functions.

What can you do with a verified SAT solver?
I One idea: compress SAT part of SMT proofs.
I Others?

On Duckki Oe’s homepage (Projects – versat):
I GURU code for versat-0.4.
I Generated C code.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Glimpse Ahead

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Trellys

U. Penn. Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg
Iowa AS, Harley Eades, Frank Fu
PSU Tim Sheard, Ki Yung Ahn, Nathan Collins

Large NSF project, 2009-2013.
New dependently typed PL called TRELLYS.
Improves on GURU, related languages:

I Much more powerful type system for programs.
I Much more expressive logic.
I Aiming for elegant surface language.

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Blaise
Garrin Kimmell, JJ Meyer, Austin Laugesen.
Resource typing for aliased mutable state.

I Goal: no GC!
I Approach: statically enforce a memory-usage protocol.
I Spanning tree on every data structure.
I Reciprocal back pointer for every alias pointer.
I Clean up aliasing cells on deletion.

head

d1 · · · dn

Why is GC bad?
I Performance hit.
I Nightmare to engineer in compiler (see HASKELL).

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011



Conclusion

Verified programming with dependent types.
GURU language design.
Case study: versat.
First verification of efficient modern SAT solver.
Future work: keep exploring this rich area!
Slides online at my blog, QA9:

queuea9.wordpress.com

Thank you again!

Aaron Stump Verified Software with Dependent Types CU Boulder, 2011

queuea9.wordpress.com

