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Abstract. A core calculus for Operational Type Theory (OPTT) is developed. OPTT is a new type
theory designed to support more general programming than directly supported in traditional total
type theories based on the Curry-Howard isomorphism. The theory accommodates functions which
might diverge or abort on some inputs, while retaining decidability of type checking and logical
consistency. For the latter, OPTT distinguishes proofs from programs, and formulas from types.
Proofs and other computationally irrelevant annotations are dropped during formal reasoning. This
greatly simplifies verification problems by reducing the need to reason about proofs and types when
reasoning about programs.

1. Introduction

Type theories based on the Curry-Howard isomorphism are of continuing appeal as providing a unified
formalism for writing and verifying programs. One well-known drawback is that partial functions must
be accommodated with care, for two reasons. First, naively allowing diverging terms renders the logic
unsound. Second, for type theories with a definitional equality which includes computation, diverging
terms can render type checking undecidable.

The present work is based on the observation that three roles for evaluation in type theory may be
distinguished, which are commonly unified, particularly under the Curry-Howard isomorphism. These
are evaluation for program execution, evaluation for proof normalization, and evaluation for definitional

∗Partially supported by NSF grant CCF-0448275.



2 A. Stump, E. Westbrook / A Core Operational Type Theory

equality. Distinguishing these roles for evaluation allows much greater control over the meta-theory of
the system. By devising different classification (type) systems for programs, proofs, and their classifiers,
we can vary the complexity of program execution, proof normalization, and definitional equality inde-
pendently. This paper presents one system based on this idea, called Operational Type Theory (OPTT).
This system allows possibly diverging or finitely failing programs, while keeping the logic first order
and definitional equality decidable. The focus here is on practical program verification. For formal-
ized mathematics, a higher-order logic and richer definitional equality might be more appropriate, and
could possibly be developed similarly to OPTT. Also, there is no need to keep the logic intuitionistic:
non-constructive reasoning could be permitted. The strict separation of programs and proofs ensures
that computations cannot depend on proofs, and hence non-constructive proofs cannot pose problems
for (constructive) computations. In practice, a need for non-constructive reasoning has not emerged in
verified programming with OPTT, and so we take OPTT’s logic to be intuitionistic in this paper.

Having separated proofs and programs, the critical technical challenge is to allow them nevertheless
to interact. The goal is to support a combination of internal and external verification [1]. With external
verification, proofs prove specificational statements about the observational behavior of programs. With
internal verification, specifications are expressed through rich typing of the programs, typically using
dependent function types and indexed datatypes. Each style has its advantages and disadvantages: the
former is more flexible, since additional properties can be proved after coding without modifying the
program; while the latter is closer to existing programming practice. The combination of internal and ex-
ternal verification leads to technical puzzles, such as how to state equalities between terms with provably
but not definitionally equal types [13]. One answer is heterogeneous equality [16]. Another is contextual
definitional equality [5].

OPTT combines internal and external verification in a different way by taking an untyped proposi-
tional equality on type-free terms, with all typing annotations dropped. Examples of such annotations are
type annotations, and proofs in explicit casts, which are used to establish type equivalences beyond def-
initional equality. Compilation to erased form typically drops such annotations. OPTT takes this a step
further, by allowing external reasoning in the theory about such type-free terms. The practical benefits
of this are significant, since it is no longer necessary to reason about the types of terms when reasoning
about the terms. Provable equality soundly captures joinability of untyped terms in the call-by-value
operational semantics of the language, thus giving OPTT its name.

Primary Contributions. The goal of the present paper is to establish in some detail the meta-theory
of a core OPTT. OPTT has been implemented in a tool called GURU, including a type/proof checker
and a compiler to efficient C code. Several medium-sized case studies (on the order of thousands of
lines of code and proof) have been carried out. Nevertheless, it is beyond the scope of this paper to
demonstrate the practical utility of OPTT. The focus here is on the meta-theory of a core calculus for
OPTT, and its benefits from a theoretical and meta-theoretical point of view. For this reason, we omit
consideration of numerous features implemented in GURU. Some of these are non-trivial extensions,
whose formal meta-theoretic consideration must remain to future work; while others would require less
significant meta-theoretic work, but distract from the study of OPTT’s essential features. We begin by
considering additional related work, and then proceed to the definition of the language, and its meta-
theoretic properties.
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2. Related Work

Intensional Type Theory. One approach to accommodating general recursive programs in intensional
type theory is to require such programs to take an additional input, which restricts the program to a subset
of its nominal domain on which it is uniformly terminating (see, e.g., [6]). Programs which truly might
fail to terminate are not allowed, and finite failure is usually not considered. Finite failure simplifies
code on inputs outside the intended domain, and is supported by all practical programming languages.
Another approach views potentially non-terminating computations as elements of a co-inductive type,
and combines such computations monadically [8]. This method accommodates general computations
indirectly, and requires co-inductive types. In contrast, the present work provides direct support for
general computations, and does not rely on co-inductive types.

Extensional Type Theory. In [11] and consequent literature, the NUPRL type theory is extended
to accommodate partial functions via liftings Ā of total types A. Possibly diverging terms may inhabit
Ā. Since NUPRL has an undecidable type checking problem, the technical problems encountered are
different than for intensional theories. Previous work adding lifted types to the Calculus of Constructions
sacrificed decidability of type checking [3]. Observational Type Theory (OTT) supports extensionality
while retaining decidable type checking [2]. OTT cannot directly accommodate truly non-terminating
functions, however, and has not yet been extended with co-inductive types.

Logics of Partial Terms. Logics of partial terms support reasoning about termination and non-
termination of partial recursive functions [22, 4]. These systems are not based on the Curry-Howard
isomorphism and hence do not suffer from the problems associated with supporting partial functions in
type theory. On the other hand, they lack the expressiveness and conceptual unity of type theory for
writing and verifying typed programs.

Dependent Types for Programming. EPIGRAM is a total type theory proposed for practical pro-
gramming with dependent types [17]. Xi’s ATS and a system proposed by Licata and Harper have similar
aims, but allow general recursion [15, 10]. Programs which can index types and which are subject to ex-
ternal reasoning, however, are required to be uniformly terminating. This is done via stratification: such
terms are drawn from a syntactic class distinct from that of program terms. Existing stratified systems re-
strict external verification to terms in the index domain. Similar approaches are taken in CONCOQTION

and ΩMEGA [19, 21]. Hoare Type Theory supports internal verification of possibly non-terminating,
imperative programs, but at present does not support external verification of such programs [18].

DFOL. A final piece of related work develops a dependently typed first-order logic (DFOL) [20].
The logic of OPTT improves upon this system by allowing both term constructors and computational
functions to accept proofs as arguments, while remaining first-order (in the sense of normalization com-
plexity).

3. Terms and Types

The syntax for OPTT terms and types is given in Figure 1. The syntax-directed classification rules for
terms are given in Figure 2, with those for types and kinds omitted for space reasons. All classification
rules in this paper compute a classifier as output for a given context Γ and expression as input. The rules
operate modulo definitional equality, defined below. The syntax-directed nature of these classification
rules, together with the proof rules presented subsequently, imply decidability of classification. A few
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points are needed before turning to an overview of the constructs.
Meta-variables. We write P for proofs, and F for formulas, defined in Section 4. We use x for

variables, c for term constructors, and d for type constructors. We occasionally use v for any variable
or term constructor. Variables are considered to be syntactically distinguished as either term-, type-,
or proof-level. This enables definitional equality to recognize which variables are proofs or types. A
reserved constant ! is used for erased annotations, including types (Section 3.2).

Multi-arity notations. We write fun x(x̄ : Ā) : T. t for fun x(x1 : A1) · · · (xn : An) : T. t, with
n > 0. Also, in the fun typing rule, we use judgment Γ ` x̄ : Ā:

Γ ` A : sort(A) Γ, x : A ` x̄ : Ā

Γ ` x, x̄ : A, Ā Γ ` · : ·

Here and in several other rules, sort is a meta-level function assigning a sort to every expression. The
possible sort of a type is type, of type is kind, and of a formula is formula.

The Terminates judgment. Specificational arguments are required to be terminating, using a
Terminates side condition. This is also used in quantifier proof rules below. Terminating terms here
are just inactive terms, of the following form:

I ::= x || c || T || P || (c I1 · · · In) || cast I by P || fun x(x̄1 : A1) · · · (x̄n : An) : T. t ||
falsee term T P

Inactive terms are like values as defined for the operational semantics below (Section 3.3)), except that
annotations are retained: terms, types, and casts are allowed in inactive terms. While terminating terms
are just the inactive terms for purposes of this paper, it is possible to expand the terminates judgment to
include features like termination casts, where a proof of totality is supplied to show the type checker that
a term is terminating. Such extensions are beyond the scope of this paper, however.

Conditions on match. The match typing rule has one premise for each case of the match expression
(indicated using meta-level bounded universal quantification in the premise). The premise requiring T
to be a type is to ensure it does not contain free pattern variables. The rule also has several conditions
not expressed in the figure. First, the term constructors c1, · · · , cn are all and only those of the type
constructor d, and n must be at least one (matches with no cases are problematic for type computation
without an additional annotation). Second, the context ∆i is the one assigning to pairwise distinct vari-
ables x̄i the types required by the declaration of the constructor ci. Third, the type Ti is the return type
for constructor ci, where the pattern variables have been substituted for the input variables of ci. Fourth,
the type constructor is allowed to be 0-ary, in which case 〈d X̄〉 should be interpreted here as just d. The
uninformative formalization of these conditions is omitted.

3.1. Overview of Constructs

Our cast-terms witness to the type checker that a term may be viewed as having an equal type. Note
that we do not require that the cast type is classifiable. This simplifies the system and is more convenient
to use in practice. The cost is that Γ ` t : T does not imply Γ ` T : type. Instead, we have that there is
a T ′ provably equal to T such that Γ ` T ′ : type. For the benefit of casts, match-terms bind variables
for assumptions of equalities in the cases. Specifically, assumption variables x and y are bound (just) in
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t ::= x || c || fun x(x̄ : Ā) : T. t || (t X) || cast t by P || abort T || falsee term T P ||
let x = t by y in t′ || match t by x y with c1 s̄1 x̄1 => t1| · · · |cn s̄n x̄n => tn end

T ::= x || d || ! || Fun(x : A). T || 〈T Y 〉
X ::= t|| T || P
Y ::= t || T
A ::= T || type || F

Figure 1. Terms (t) and Types (T )

Γ(v) = A

Γ ` v : A

Γ ` T : type
Γ ` abort T : T

Γ ` T : type Γ ` P : False
Γ ` falsee term T P : T

Γ ` t : T1 Γ ` P : {T1 = T2}
Γ ` cast t by P : T2

Γ ` x̄ : Ā Γ, x̄ : Ā, x : Fun(x̄ : Ā). T ` t : T x, x̄ 6∈ FV(T )
Γ ` fun x(x̄ : Ā) : T. t : Fun(x̄ : Ā). T

Γ ` t : 〈d X̄〉 ∀ i ≤ n. (Γ,∆i, x : {t = (ci x̄i)}, y : {〈d X̄〉 =Ti} ` si : T )
Γ ` match t by x y with c1 s̄1 x̄1=>s1| . . . |cn s̄n x̄n=>sn end : T

Γ ` t : Fun(x : A). T Γ ` X : A

Γ ` (t X) : [X/x]T

Γ ` t : A Γ, x : A, y : {x = t} ` t′ : T x, y 6∈ FV(T )
Γ ` let x = t by y in t′ : T

Figure 2. Term Classification
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the bodies of the cases, and serve as assumptions of different equalities in each case: the former that the
scrutinee equals the pattern, and the latter that the scrutinee’s type equals the pattern’s type. The same
assumption variables (x and y) are assigned different classifiers in the different cases. These variables are
in principle sufficient for casts in the cases. We omit consideration here of a term construct that witnesses
that a case cannot be used due to inconsistency of the context. While such a construct is implemented in
GURU, it is less critical in OPTT than in total type theories. We must anyway prove totality externally
in OPTT if it is needed: there is no automatic termination checker for fun-terms (though of necessity
there is for induction-proofs, discussed below). In practice, some form of automatic type refinement
can greatly reduce the annotation burden on the programmer. GURU implements a simple form of type
refinement using first-order matching (modulo definitional equality) of the type of the pattern and the
type of the scrutinee. We exclude this feature from consideration here in our core OPTT.

In fun-abstractions, the bound variable x immediately following the fun keyword can be used for
recursive calls in the body of the abstraction. It may be omitted, in which case the type annotation
following the fun-term’s declarations can also be omitted. Recursive multi-arity fun-terms as described
in Figure 1 cannot always be translated into nested unary fun-terms, due to the dependent typing. The
abort term cancels all pending evaluation. It is annotated with a type to facilitate type computation.
A related construct, not otherwise mentioned, is impossible P T . This is definitionally equal to an
abort, but documents via a proof P of a contradiction that execution cannot reach this point.

Our let-terms are as usual, except that like match-terms, they also bind an assumption variable. In
a let-term, the variable y, bound in the body of the let-term, serves as an assumption of the equality
x = t. GURU includes a mechanism for local macro definitions at the term, type, formula, and proof
levels, not considered here.

We omit consideration of a term-level existential elimination (existse term), which is necessary to
make use of proved existentials in code. While this is a critical feature for programming with existential
proofs, it requires a consideration of computationally irrelevant (or specificational) data. This is because
we do not wish to permit the result of computation to depend on the value of a piece of data proven to
exist (and introduced into code with existse term). Otherwise, we would not be justified in dropping
proofs from code at runtime. While GURU implements specificational data and existse term, a formal
consideration of the meta-theory of this feature is beyond the scope of this paper.

We must include a term-level False elimination constructr (falsee term), for the benefit of proofs
below. This is not used in practice, but is necessary for our meta-theoretic development.

3.2. Definitional Equality

Proofs, type annotations, and specificational data are of interest only for type checking, and are dropped
during evaluation. Our definitional equality takes this into account. It also takes into account safe
renaming of variables, and replacement of defined constants by the terms they are defined to equal.
Flattening of left-nested applications, and right-nested fun-terms and Fun-types is also included. More
formally, definitional equality is the least congruence relation which makes (terms or types) Y ≈ Y ′

when any of these conditions holds:

1. Y =α Y ′ (Y and Y ′ are identical modulo safe renaming of bound variables).

2. Y ≡ Y ∗[c] and Y ′ ≡ Y ∗[tc], where c is defined non-recursively at the top level to equal tc (see
Section 3.4 below). Here and below, contexts Y + for are Y entities containing a hole ∗.
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fun x() : T . t ⇒ t fun x(x̄ : Ā) : T− . t ⇒ fun x(x̄ : Ā) : ! . t

P− ⇒ ! (t T−) ⇒ (t !)
(t spec X) ⇒ (t !) (t !) ⇒ t

cast t by P ⇒ t abort T− ⇒ abort !

existse term P t ⇒ t (x̄ : Ā−) ⇒ (x̄ : !)
(spec x̄ : Ā−) ⇒ · falsee term T P falsee term ! !

Figure 3. Dropping Annotations

3. Nested applications and abstractions in Y and Y ′ flatten to the same result, as mentioned above.

4. Y ⇒ Y ′, using the first-order term rewriting system of Figure 3 (where we temporarily view
abstractions as first-order terms).

The rules of Figure 3 drop annotations in favor of the special constant !, mentioned above. There, we
temporarily write P− for a proof P which is not !, and similarly for T− and A−. The rules also operate
on members of the list of input declarations in a fun-term, as first class expressions. Such lists can be
emptied by dropping specificational inputs (hence the first rule in the figure). We temporarily consider
patterns in match terms as applications, and hence apply the rules for rewriting applications to them.
The rules are locally confluent and terminating, so confluent by Newman’s Lemma. We can thus define
a function | · | to return the unique normal form of any expression under the rules. Notice that types are
dropped only where used in terms. So |T | is not ! for any type T . Note that dropping annotations is
defined on both typeful and type-free expressions.

Definitional equality is easily decided by, for example, considering the unannotated expansions of
the expressions in question. These expansions result from replacing all constants with their definitions,
then dropping all annotations using | · |, and then putting terms into an α-canonical form. The distinction
between terms, types, proofs, and formulas provides a simple principled basis for adopting different
definitional equalities in different settings (e.g., one definitional equality for use in type checking a
proof, and a different one for terms). While this turns out to be a valuable feature in practice, exploring
it further is beyond the scope of this paper.

3.3. Operational Semantics

Evaluation in OPTT is call-by-value. A small-step evaluation relation is defined in a standard way in
Figure 4 on terms with annotations dropped. The definition uses evaluation contexts E and values V .
The latter are like values as traditionally used in operational semantics of programming languages, but
allow variables. Variables can occur during partial evaluation, used below in proof checking. In the rule
for applications of fun-terms, it is assumed that there are as many arguments (V̄ ) as parameters (x̄);
and similarly in the match rule. Terms of the form falsee term ! ! cannot arise during evaluation
in the empty context, as a consequence of meta-theoretic results below. They can arise during partial
evaluation, however, in which case they are treated like values.
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E[(F V̄ )] ; E[[V̄ /x̄, F/x]t]
F ≡ fun x(x̄ : !̄) : ! .t

E[match (ci V̄ ) by x y with c1 x̄1=>s1| . . . |cn x̄n=>snend] ; E[[V̄ /x̄i]si]

E[let x = V by y in t] ; E[[V/x]t]

E[abort !] ; abort !

where:
E ::= ∗ || (E X) || (V E) || let x = E by y in t ||

match E by x y with c1 x̄1 => t1| . . . |cn x̄n => tn end

V ::= x || c || ! || T || P || (c V1 · · · Vn) || fun x(x̄ : !) : !. t || falsee term ! !

Figure 4. Small-step Evaluation

Inductive d : K := c1 : D1 | . . . | ck : Dk .

where
D ::= Fun(ȳ : Ā).〈d Y1 . . . Yn〉
K ::= type || Fun(x : B). K

B ::= type || T

Figure 5. Commands

3.4. Datatypes

We avoid the uninformative formalization of a typing signature declaring and defining constants, and
instead specify informally the kinds of datatypes that may be declared, thus adding type and term con-
structors to the signature. The syntax of datatype declarations is given in Figure 5. Here, K is for kinds.
Datatypes may be both term- and type-indexed. We additionally restrict input types A to a (term) con-
structor so that if d occurs in A, it does so only if A is a type application with d as the head. More liberal
forms of datatypes are of interest in practice, but for simplicity we consider just such algebraic datatypes.
Also, we impose the additional restriction that input types may not contain quantification or functional
abstraction over types. The syntax also prohibits type constructors from accepting proofs as arguments.
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4. Proofs and Formulas

The syntax of OPTT formulas and selected proof constructs is given in Figure 6. For reasons that will
be explained below, it is helpful to view implications as degenerate forms of universal quantifications.
For symmetry, we similarly view conjunctions as existential quantifications. We find we do not need
disjunction (not to be confused with the boolean or operation) for any of a broad range of program
verification examples, so we exclude it for simplicity. The syntax-directed classification rules are given
in Figures 7, 8, and 9. Classification of proofs and formulas, as of terms and types, is easily seen to be
decidable. Note that proofs may contain term- and type-level variables, so the first rule of Figure 8 is
indeed needed. There are several additional points to mention:

Formulas. Equations are formed between type-free terms, as well as between types. Instead of
allowing any untyped terms, one could require some form of approximate typing, but this is not essential
nor required in practice. For a large number of program verification examples logical disjunction (not to
be confused with the boolean operation “or”) is unnecessary, and indeed, GURU does not implement it.
Omitting it from the formal treatment simplifies, as is well known, the strong normalization argument.
Existential quantification, which also poses complications for that argument, is included, because it truly
is needed for practical program verification. Implication and conjunction are viewed here as degenerate
forms of universal and existential quantification, respectively. This is actually implemented in GURU,
as it provides a more compact syntax for long sequences of universal variables and hypotheses. This
treatment plays a more fundamental role in the present work, in the treatment of existential elimination
in the cut elimination proof (Section 6).

Contexts and Holes. Holes (h in Figure 6) are numbered by n, a natural number, for the benefit of
the injectivity rule. The notation C[Ī] is for the result of substituting the I1, . . . , In for the first n holes
of C. Similarly, C[Y, Ȳ ] in the injectivity rule denotes the result of substitution Y for hole ∗0 and then Ȳ
for the next holes. For congruence, we stipulate that Y ∗ has at least one occurrence of the hole ∗0, and no
occurrences of other holes. The holes may occur anywhere in Y ∗. This unrestricted form of congruence
is needed for type preservation of term reduction (Section 8 below). Insertion of an expression into a
hole is capture-avoiding. This disallows truly extensional reasoning about fun-terms and Fun-types. The
classification rule for clash records disjointness of the range of constructors: two constructor terms are
disequal if their heads are disequal, where the head of (c h̄) is c and 〈d h̄〉 is d. For purposes of this rule,
we treat a constructor by itself as a 0-ary application.

Injectivity. Various injectivity rules are required. The basic inj-inference allows equating corre-
sponding subterms of terms headed by the same constructor, disregarding some other, possibly different,
subterms. We require those other subterms to be terminating to allow for non-trivial equation of diverg-
ing terms. This is not done in the core OPTT, but could be allowed. In such a case, unsoundness could
result if the other subterms were diverging, since strictness would equate the two constructor terms on
the basis of the diverging subterms. The terms equated by inj might not, then, be truly equal. We further
stipulate that in a use of inj, we cannot pass from an equality on terms in the premise to an equality
on types in the conclusion. This is needed for soundness, since dropping annotations from terms in our
definitional equality allows, for example, (nil bool) and (nil nat) to be equated. Yet it would be
unsound to conclude from this that bool equals nat.

The other injectivity rules are not, so far, needed in practice, but are required for the meta-theory.
The somewhat unusual form of dom inj2 is chosen to avoid, at all costs, reasoning about equality of
formulas. Such reasoning quickly gives rise to casts on proofs, which could not be accomodated in an



10 A. Stump, E. Westbrook / A Core Operational Type Theory

obvious way by our reducibility argument for strong normalization of proof reductions (Section 6 below).
The form chosen here gives us enough information to simulate a cast on a proof at the critical point in
the strong normalization proof.

Evaluation. The rule evalstep axiomatizes the small-step operational semantics. As in other
theorem provers, higher-level tactics are needed in practice. GURU implements several of these, for
joining terms with multiple steps of reduction. They are not essential to the core theory, however, and
are not discussed further. Note that the use of | · | for obtaining the unannotated expansion of a term is
used in the premise of evalstep, because the operational semantics is defined only for terms without
annotations.

Terminates and Quantifiers. Forall-elimination and Exists-introduction require the instantiat-
ing and witnessing terms, respectively, to be typed terminating expressions. Quantifiers in OPTT range
over values (excluding non-terminating terms), and hence this restriction is required for soundness.

Induction. Classification for induction-proofs is not stated in the figure, for space reasons. These
proofs are similar to a combination of recursive fun-terms and match-terms. A third assumption variable
is bound in the cases, for the induction hypothesis. The last classifier in the list Ā (see Figure 6) is
required to be a datatype (i.e., of the form 〈d Ȳ 〉). The last variable in the list is thus the parameter of
induction. Earlier parameters may be needed due to dependent typing. Simple structural decrease at
recursive call sites is checked automatically. The classifier for the proof is then of the form Forall(x̄ :
Ā).F .

False elimination. We restrict falsee to introduce just an atomic formula (i.e., an equation) from
a contradiction. A simple meta-theoretic proof by induction on the structure of a formula F then shows
that from a contradiction, we can build a proof of F using falsee for atoms and the corresponding
introduction rule for each other form of formula. This requires falsee term in the existential case.
Since we can derive any formula F from a contradiction, we are justified in restricting falsee to atomic
formulas. This, in turn, simplifies the meta-theory.

5. Advantages of Weak Definitional Equality

Before presenting the meta-theoretic results, we consider some critical aspects of OPTT’s design at a
high level. OPTT’s definitional equality is unusual for a type theory in several respects. Most essen-
tially, as we have seen, it drops annotations from terms. This facilitates reasoning about operational
behavior, where annotations are irrelevant. But secondarily, it does not include β-reduction, or any simi-
lar computational reductions. This makes it much weaker than the conversion relations often used in type
theory, which include β-reduction, and even pattern-matching and structural recursion. This is the situa-
tion, for example, in COQ. In OPTT, we cannot include the operational semantics of the language in the
definitional equality, because the presence of general recursion would render testing definitional equality
undecidable. Pushing conversion reasoning out of definitional equality and into propositional equality
solves this problem. Taking propositional equality to operate on unannotated terms then mitigates the
consequences of this, namely that we must include more casts in terms.

There is a further critical benefit of using a weak definitional equality, which is applicable even for
type theories of total functions. It makes it much easier to implement other operations of the type theory
so that they work modulo definitional equality. Definitional equality is supposed to be provide certain
syntactic identities for free. Wherever it is used, it should abstract away completely from certain syntactic
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F ::= Quant(x : A). F || {Y1
?= Y2} || False

Quant ∈ {Forall, Exists}
?= ∈ {=, !=}

P ::= x || ! || foralli(x : A). P || [P X1 · · ·Xn] || existsi t F ∗ P || existse P P ′ ||
refl Y || symm P || trans P P ′ || cong Y ∗ P̄ || clash I1 I2 || falsee P ||
induction(x̄ : Ā) by x y z return F with c1 x̄1 => P1| · · · |cn x̄n => Pn end ||
inj C P || dom inj1 P || dom inj2 P || ran inj X P || fclash Fun(x : A).B 〈T Y 〉 ||
evalstep t t′

C ::= (c h̄) || 〈d h̄〉
h ::= ∗n

Figure 6. Formulas (F ) and Proofs (P )

Γ ` False : formula
Γ ` A : sort(A) Γ, x : A ` F : formula

Γ ` Quant(x : A). F : formula

Γ ` {t1
?= t2} : formula Γ ` {T1

?= T2} : formula

Figure 7. Formula Classification



12 A. Stump, E. Westbrook / A Core Operational Type Theory

Γ(x) = A

Γ ` x : A
Γ ` P : False

Γ ` falsee P Y1 Y2 : {Y1 = Y2}

Γ ` A : sort(A) Γ, x : A ` P : F

Γ ` foralli(x : A). P : Forall(x : A). F

Γ ` P : Forall(x : A). F Γ ` X : A Terminates X

Γ ` [P X] : [X/x]F

Γ ` P : F ∗[X] Γ ` X : A Terminates X

Γ ` existsi X F ∗ P : Exists(x : A).F ∗[x]

Γ ` P : Exists(x : A).F ∗[x] Γ ` P ′ : Forall(x : A)(u : F ∗[x]).C x, u 6∈ FV(C)
Γ ` existse P P ′ : C

Figure 8. Logical Inferences

I ≡ C[Ī] I ′ ≡ C ′[Ī ′] head(C) 6≡ head(C ′)
Γ ` clash I I ′ : {I != I ′}

Γ ` P : {Y = Y ′}
Γ ` cong Y ∗ P : {Y ∗[Y ] = Y ∗[Y ′]}

Γ ` P1 : {Y1 = Y2} Γ ` P2 : {Y2
?= Y3}

Γ ` trans P1 P2 : {Y1
?= Y3}

Γ ` P : {Y ?= Y ′}

Γ ` symm P : {Y ′ ?= Y }

Γ ` P : {C[Y, Ȳ ] = C[Y ′, Ȳ ′]} Terminates Ȳ , Ȳ ′

Γ ` inj C P : {Y = Y ′}
|t| ; |t′|

Γ ` evalstep t : {t = t′}

Γ ` P : {Fun(x : T ).B = Fun(x : T ′).B′}
Γ ` dom inj1 P : {T = T ′}

Γ ` P : {Fun(x : A).B = Fun(x : A′).B′}
Γ ` ran inj X P : {[X/x]B = [X/x]B′}

Γ ` refl Y : {Y = Y }
Γ ` P1 : {Y1 = Y2} Γ ` P2 : {Y1 != Y2}

Γ ` contra P1 P2 : False

Γ ` P : {Fun(x : F ∗[t, t̄]).B = Fun(x : F ∗[t′, t̄′]).B′} ∗0 not in a term in F ∗

Γ ` dom inj2 F ∗ P : {t = t′}

Γ ` fclash Fun(x : A).B 〈T Y 〉 : {Fun(x : A).B != 〈T Y 〉}

Figure 9. Equational Inferences
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differences in expressions, so that these differences are eliminated for purposes of other operations. Let
us say that a family of judgments J , such as typing judgments, satisfies definitional transparency iff
whenever J [e] holds for some judgment J , then J [e′] also holds, when e and e′ are definitionally equal.
In a more refined fashion, we could speak about which argument positions to a judgment like typing
satisfy definitional transparency.

The core typing judgments of a traditional type theory like, for example, the Calculus of Inductive
Constructions (CIC) used in COQ, all satisfy definitional transparency, by design. But many extra op-
erations are implemented in a tool like COQ beyond those core judgments. The difficulty with using
a strong definitional equality is that it becomes very difficult to ensure that those other judgments also
satisfy definitional transparency. This leads to a non-uniformity in the system: certain judgments are
definitionally transparent, and certain others are not. This non-uniformity can lead to confusion for at
least new users of such systems, and may be considered a design flaw. For example, consider the prob-
lem of applying a rewrite rule to a term modulo definitional equality. This operation is provided by the
rewrite tactic in COQ. If definitional equality includes even just β-reduction of simply typed redexes,
as it does in CIC, then applying the rule modulo definitional equality requires higher-order matching,
only just recently proved decidable in general [23]. Indeed, rewrite does not work modulo definitional
equality. In contrast, rewriting can be performed easily modulo OPTT’s definitional equality, without
higher-order matching, by operating on unannotated expansions of terms.

In systems like COQ, many tactics intended to aid users in the construction of proofs do not work
modulo definitional equality. Rewriting tactics are a good example. Indeed, many tactics are designed to
allow the user to change a goal formula into a different but definitionally equal one! Thus, the untrusted
theorem proving environment, which is, as it should be by the de Bruijn criterion, the biggest part of
the system, does not satisfy definitional transparency. It is then small consolation that the core typing
judgments do. In contrast, the weakness of OPTT’s definitional equality makes it possible to implement
all typical theorem proving operations like rewriting or unification in a definitionally transparent way.
We must just note that while the classification judgments of OPTT satisfy definitional transparency for
the classifiers and contexts without qualification, for classified terms they do so only under replacement
by classifiable expressions. That is, if Γ ` e[e1] : T holds for any classified expression e containing e1,
then we have Γ ` e[e2] : T if and only if e1 ≡ e2 and e2 is classifiable in Γ. Omitting classifiability of
e2 here is not possible, since annotations are required in general for expressions to be classified, though
not for expressions to be classifiers.

This critique of conversion must be qualified by one note. If definitional equality replaces all ad-
ditional theorem proving operations, the lack of definitional transparency can be avoided. This sounds
like a radical option, but it is being explored in the context of the Calculus of Congruent Inductive Con-
structions (CCIC), where definitional equality is extended to include decision procedures operating with
hypotheses from the context [5]. Viewed from the perspective of definitional transparency, this impres-
sive work can be viewed as a high-stakes gamble: if all theorem proving operations can be subsumed
in definitional equality, then definitional transparency is retained. But if not, then any that remain will
almost certainly be impossible to implement modulo the now highly complex definitional equality. Fi-
nally, we note that N. de Bruijn also advocates the use of a weak definitional equality, although in his
case this still includes β-reduction (but not pattern matching or recursion) [7].
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6. Logical Cut Elimination

Our goal is to prove consistency of OPTT’s logic in a standard way, via analysis of canonical forms of
closed proofs of atomic formulas. Proofs in this form are obtained via a 2-stage process. In the first stage,
we eliminate logical cuts: that is patterns of introduction followed by elimination inferences, where the
inferences in question are logical ones (Figure 8). For logical cut elimination, we prove our stage 1
reduction process is strongly normalizing (SN). The second stage of the process is considered in the next
section.

By design, and as one of its main benefits, OPTT has a simple consistency proof, in both a qualitative
and proof-theoretic sense, despite accomodating programs of intolerable proof-theoretic strength (i.e., di-
verging ones). The SN proof is based on a standard one, namely that given by Girard for Gödel’s System
T (which we refer to below as the PaT proof) [12]. The necessary adaptations are (1) accomodation of
existentials and (2) treatment of a richer class of datatypes.

6.1. A Modified System for Existentials

It is well known that existential elimination does not fit the pattern of other elimination rules for minimal
natural deduction, since the result of the elimination is an arbitrary formula unrelated to the principal
formula of the elimination. For the convenient accomodation of existentials, we use a modified proof
system with a different treatment of existential elimination. Replace existse P P ′ everywhere in proofs
with [P ′ existse1P existse2 P ], and add these rules:

Γ ` P : Exists(x : A).F ∗[x]
Γ ` existse1 P : A

Γ ` P : Exists(x : A).F ∗[x]
Γ ` existse2 P : F ∗[existse1 P ]

For this, we naturally must extend the syntax of our terms (t), types (T ), and proofs (P ) to include
existse1 P , and of proofs to include existse2 P . Also, we extend our notion of inactive expressions
I (that is, terminating expressions) and values V (from the operational semantics) to allow existse1 P .
Less trivially, we must modify our definitional equality, specifically our notion of dropping annotations.
Now, we do not automatically discard all proofs. Instead, we discard them everywhere except imme-
diately under existse1. There they must be retained to distinguish different entities proved to exist.
We must also add an inference existse redex F ∗ P stating that from P : F ∗[t], we may conclude
F ∗[existse1 existsi t F ′∗ P ′], if P ′ : F ′∗[t]. This is needed for preservation of types during logical
reduction. Also, in inferences existsi X F ∗ P , we forbid F ∗ to use its hole beneath existse1 if X
is a proof. So existse1 terms may not depend on existential variables which range over proofs. This
restriction is used in Section 6.3 below (for the definition of Cast).

The reader may wonder how the eigenvariable condition on existse in the original system is en-
forced in the new system. In the new system, the dependence of a conclusion on variables introduced
by an existential whose proof P depends on hypotheses is tracked explicitly by existse1 P , which is
used instead of an eigenvariable. The classification rule for proof-level application (i.e., universal elimi-
nation) ensures that these dependencies are updated appropriately when the set of hypotheses supporting
an existse1-term changes. For example, consider this proof term:
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foralli(u:Exists(x:nat).
Exists(v:{ (lt x 3) = tt }).

{ (lt 0 x) = tt }).
[lt_S existse1 u 3 existse2 existse2 u]

Call this proof term P . Assuming that lt S proves monotonicity of successor w.r.t. less-than (lt) (and
assuming decimal notation for unary natural numbers), P proves

Forall(u:Exists(x:nat).
Exists(v:{ (lt x 3) = tt }).

{ (lt 0 x) = tt }).
{ (lt (S existse1 u) 4) = tt }

Instantiating this universal quantifier with a P ′ containing free assumption variables will result in a proof
term with classifier:

{ (lt (S existse1 P’) 4) = tt }

The dependence of this fact on the assumptions in P ′ is thus tracked by the type system.
The scheme just described preserves the property that Γ ` P : F implies Γ ` F : formula, while

replacing the meta-theoretically problematic existential elimination with a much more tractable variant.
We omit a full soundness proof.

6.2. An Ordering on Classifiers

For the adaption of the (unary) logical relation used in the PaT proof, it is necessary to define a well-
founded partial order on classifiers. First, let < be a standard subterm (partial) ordering on classifiers,
where as usual we include instances of quantified formulas as subterms. This includes instantiating a
formula with an existse1-term. In OPTT, there is no quantification over formulas, so this is well-
founded. Now, extend this ordering < by additionally making 〈d X̄〉 bigger than all classifiers which
lack Fun-abstraction or quantification over type, and which mention just datatypes d′ also mentioned in
the datatype declaration for d. We must exclude abstraction and quantification over type in input types
to term constructors, since otherwise our definition could make instances of a type like Fun(A : type).A
isomorphic to that type (the instance is smaller as an instance, but bigger if the Fun-type can be used as
the type of an argument to a term constructor for the instance). Finally, take the transitive closure of the
resulting relation. This yields a well-founded partial order on classifiers, sufficient for the needs of our
SN proof below.

6.3. Cast Shifting

Reduction for proofs and also for terms requires cast shifting, used also in work by Chapman [9]. Cast
shifting is defined by these rules, which are to be applied only if they preserve typability:



16 A. Stump, E. Westbrook / A Core Operational Type Theory

(cast t by P t′) ⇒ cast (t cast t′ by dom inj P ) by ran inj t′ P

(cast t by P P ′) ⇒ cast (t Cast F ∗ P ′ P1 · · · Pn) by ran inj P ′ P

see text for Cast F ∗ P ′ P1, . . . , Pn.

(cast t by P T ) ⇒ cast (t T ) by ran inj T P

cast cast t by P by P ′ ⇒ cast t by trans P P ′

These rules may fail to preserve typability if the type of t (before being cast) is not a Fun-type. In that
case, as stipulated, the rules are not applied. We will see that this situation cannot arise in the empty
context, which is sufficient for our consistency proof. We further stipulate that after normalization with
these rules, if the scrutinized term in an induction-redex is not a cast term, then a trivial cast of the
form cast t by refl T , where T is the type of t, is inserted. This allows induction-redex reduction
to be expressed in a uniform way. The rules are locally confluent and, since they reduce the sum of the
depths of cast terms applied as functions, also terminating. Hence, this reduction relation is convergent.

We must now explain the Cast F ∗ P ′ P1 · · · Pn in the second cast shifting rule. The goal is to
simulate casting the proof P ′, without actually introducing a construct for casting proofs. We suppose
here that P proves two Fun-types equal, with domains F ∗[t̄] and F ∗[t̄′], respectively, for some formula
context F ∗ whose holes do not occur in terms, and sequences of terms t̄ and t̄′. If P does not prove two
such Fun-types equal, the reduction is not performed. Using dom inj2, we may construct proofs Pi of
{ti = t′i}. Figure 10 then defines the meta-level function Cast, which computes a proof of F ∗[t̄] from
the proof P ′ of F ∗[t̄′], and the proofs equating the t̄ with the t̄′. To simplify the presentation, we assume
variables come with their types, and thus dispense with a typing context. In the definition, we assume
that t̄ and t̄′ are always such that Pi : {ti = t′i}. Note that we must reverse the equations via symm P̄ in the
first premise of the rule for Forall. The rather complex expression given to existsi in the Exists rule
is to turn F ∗ into a suitable context for existential introduction, while reflecting the fact that it contains
the t̄. In the rule for types T ∗, we write cong A∗ P̄ for a proof of {T ∗[t̄] = T ∗[t̄′]} built transitively
using cong with the P̄ consecutively.

The algorithm maintains the invariant that in each call Γ ` Cast A∗ X P̄ = X ′, we have X : A∗[t̄′]
and X ′ : A∗[t̄]. This can be easily checked for the Forall rule. For the existential rule, the reasoning
is more subtle. The P ′ we get back from the recursive call to Cast has classifier [existse1 P/x]F ∗[t̄].
The difficulty here is that for our existsi inference, we need that classifier to be definitionally equal
to [X/x]F ∗[t̄]. This holds, however, because if A∗ is a formula, then our restriction in Section 6.1
prohibits any other existse1-term from depending on this proof existse1 P . Proofs are otherwise
all definitionally equal, so the desired definitional equality holds in that case. In case A∗ is a type or
type, we may confirm that Cast always produces a definitionally equal expression. The rather complex
transformation for the case of ?=-formulas happens to work for both equations and disequations.

6.4. Reduction for Proofs

Figure 11 specifies the reduction relation on proofs which we shall prove is strongly normalizing. The
reduction of induction-proof redexes (specified by the first rule of Figure 11) is to be done modulo
normalization of the scrutinized argument by the cast shifting relation just defined. The scrutinized
argument is the one corresponding to the parameter of induction.
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Cast A∗ x symm P̄ = X Cast [X/y]F ∗ [P X] P̄ = P ′

Cast Forall(y : A∗).F ∗ P P̄ = foralli(x : A∗[t̄]).P ′

CastA∗existe1 P P̄ = X Cast [existse1 P/x]F ∗ existse2 P P̄ = P ′

Cast Exists(x : A∗).F ∗ P P̄ = existsi X ([∗0/x]F ∗)[∗0, t̄] P ′

Cast {Y ∗
1

?= Y ∗
2 } P P̄ =

symm trans cong Y ∗
2 P̄

symm trans cong Y ∗
1 P̄ P

Cast T ∗ t P̄ = cast t by symm cong T ∗ P̄

Cast type T P̄ = T

Figure 10. Definition of Cast

Our reduction relation is then the compatible closure of the rules in Figure 11. A few further notes
are required. First, the rather complex form of an induction-proof redex (determined by the first rule
in the figure) is to accomodate casts on the scrutinized term. For type preservation, we must substitute
proofs for the assumption variables y1 and y2. Second, we consider reduction only for well-classified
proofs. We must, of course, prove that classifiers are preserved by reduction.

6.5. Classifier Preservation for Proof Reduction

Before proving normalization of the proof reduction defined above, we first prove classifier preservation
for proof reduction. That is:

Theorem 6.1. (Type Preservation for Proof Reduction)
If X∗[R] ; X∗[C] for a context X∗, a redex R, and contractum C, and if X∗[R] : A for a classifier A;
then X∗[C] : A.

The presence of reductions for existse1 necessitates the more general form of this statement: other-
wise, we could phrase it in terms of proof contexts P ∗ and formula contexts F ∗, in place of X∗ and
A∗, respectively. The theorem will not go through without the following extension of the system. We
stipulate that definitional equality is expanded to include the equational theory determined by the reduc-
tions above. This is for the benefit of accomodating contracted proofs beneath existse1 in the formula
proved, and also of accomodating contractions of existse1 in the type of the reduced proof. This mod-
ification may mean, a priori, that definitional equality is no longer decidable. Since this change is done
solely for the benefit of this meta-theoretic argument, it is not necessary to retain a decidable definitional
equality.

The proof is by induction on the structure of the context X∗. If X∗ is just the context’s hole, then we
must just consider each redex reduction. The existse1 and existse2 cases are obvious. The foralli
case follows from the following Substitution Lemma.
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[Q X̄ s] ; [X̄/x̄, s/x, X̄ ′/x̄′, refl (ci X̄ ′)/y1, symm P/y2, Q/y3]Pi

where:
1. Q ≡ induction(x̄ : Ā)(x : d) by y1 y2 y3 return F with C1| · · · |Cn end

2. s ≡ cast(ci X̄ ′) by P

3. ∀i.(Ci ≡ ci x̄′ ⇒ Pi)

[foralli(x : A).P X] ; [X/x]P

existse1 existsi X F ∗ P ; X

existse2 existsi X F ∗ P ; P

Figure 11. Reductions for Proofs

Lemma 6.1. (Substitution)
If Γ, x : A1,Γ′ ` X2 : A2, Γ ` X1 : A1, and TerminatesX1, then Γ, [X1/x]Γ′ ` [X1/x]X2 :
[X1/x]A2; and similarly for Γ, x : A1,Γ′ ` F : formula.

The proof is by induction on the structure of the derivation of the first assumed classification. The
requirement of termination is needed just for cases like proof-level application. Without this requirement,
we might be substituting a term not judged terminating by Terminates for a variable (which is judged
terminating by Terminates). That would cause the substitution instance to be untypable. Since both
values and terms introduced by existsi are terminating terms, this restriction to terminating terms still
enables the Substitution Lemma to be applied in the cases where it is needed, namely here and for type
preservation for term reduction.

To return to the proof of Theorem 6.1: the case for induction-proofs also follows from the Substi-
tution Lemma. The restriction imposed by the classification rule for proof-level application ensures that
X̄ and (ci X̄ ′) are terminating, so Substitution can be applied. Note that refl (ci X̄ ′) does prove, mod-
ulo definitional equality, that s (the instance of x) equals (ci X̄ ′) (the instance of the pattern). Similarly,
symm P proves that the type of the instance of x equals the type of the instance of the pattern.

This concludes the base case of the induction on the form of the context X∗. We must now prove
the step case. The only problematic cases are when a reduction happens in an argument to a proof-level
application, and when a reduction happens in a proof given to existse2. For the first case, we have P1

applied to P ∗
2 [R], which reduces to P1 applied to P ∗

2 [C]. Thanks to our extension of definitional equality
to include proof reductions, the types of the arguments are still definitionally equal, so the application is
still typable with a definitionally equal type. Similarly, the type of the reduced existse2-proof is also
definitionally equal to the original.



A. Stump, E. Westbrook / A Core Operational Type Theory 19

6.6. Strong Normalization

We may now adapt the PaT SN proof for OPTT’s proof reduction. First, we stipulate that an induction-
proof starting with induction(x̄ : Ā) proves a universal of the form Forall((x̄ : Ā)), where the double
parentheses are special notation indicating that the given arguments must be supplied simultaneously.
Any partial application of an induction-proof or its third assumption variable (for the induction hy-
pothesis) can be modified to be type correct with respect to this new typing of induction-proofs, by
η-expansion. So we assume this done, and hence all uses of induction-proofs are fully applied to their
arguments. So we are considering induction-redexes only, and need not define reducibility for the
types of induction-proofs. Similarly, we insist that all term constructors are fully applied. Following
PaT, we further assume each variable is labeled with exactly one type, and we dispense with a typing
context. The set of reducible expressions X of classifier A with data bound n, denoted REDn

A, is then
defined by recursion on norm (A,n) with respect to the lexicographic combination of the above defined
classifier ordering (for A) and the usual natural number ordering (for natural number n), as follows:

1. Call A atomic iff it is an equation, False, or type. Then for atomic A, X ∈ REDn
A iff X is

strongly normalizing.

2. If A is a type T , then X ∈ RED(S n)
A iff X is strongly normalizing and whenever (c X̄) is a normal

form of X for term constructor c, then for each Xi we have Xi ∈ REDn
A′ , where Xi has classifier

A′.

3. If A ≡ Exists(x : A′).F , then X ∈ REDn
A iff there exists n′ such that existse1 X ∈ REDn′

A′

and existse2 X ∈ REDn′
F ′ , where F ′ ≡ [existse1 X/x]F .

4. If A ≡ Forall(x : A′).F , then X ∈ REDn
A iff for all n′, and for all X ′ ∈ REDn′

A′ , there exists n′′

with (X X ′) ∈ REDn′′
F ′ , where F ′ ≡ [X ′/x]F .

The data bound is used to ensure well-foundedness in the second case, for Xi classified by a type. The
issue is that we need to stipulate that if X normalizes to (ci X̄), the Xi are all reducible, since some
of these may be proofs of non-atomic formulas. This situation does not arise for Gödel’s System T,
where data cannot contain functions. But then, we cannot just insist that the Xi are reducible at their
types, since a piece of data of type list, for example, can easily contain subdata of the same type. The
definition of reducibility would fail to be well-founded. The data bound gets around this difficulty.

We call an expression reducible with classifier A (without the data bound) if there exists a data bound
such that the expression is reducible of classifier A with that data bound. Recall that our well-founded
classifier ordering makes instances of a quantified formula (like the instance F ′ in the clause above for
existentials) smaller than the quantified formula. We have also made datatypes smaller than all non-type
classifiers that their constructors can depend on. So this definition of RED is well-founded. Note that the
definition differs from the PaT in its treatment of datatypes. This is to allow term constructors to take
proofs as arguments. The corresponding property is not allowed by Gödel’s System T.

We now define the neutral expressions to be variables and logical eliminations, namely proof-level
applications, induction-redexes, and existential eliminations. Closely following PaT, we must now
prove the three critical properties:

1. If X ∈ REDA, then X is strongly normalizing.
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2. If X ∈ REDA and X ; X ′, then X ′ ∈ REDA.

3. If X∗[R] is neutral, R ; C, and X∗[C] ∈ REDA; then X ∈ REDA.

The three properties are established by the same (easy) reasoning for atomic classifiers, existentials, and
universals as in PaT, with existentials handled by the same reasoning as for product types. For types,
the properties follow easily, as in the case for atomic classifiers. Again using the same reasoning as
in PaT, we may then show that existsi and foralli preserve reducibility. Application of term and
type constructors are also easily seen to preserve reducibility. Cast terms also preserve reducibility. The
critical point there is that we cannot cast from a type to a non-type classifier, or vice versa, and so if t is
reducible of type T , then it is also reducible of type T ′. If there were a possibility to cast from a type to,
say, a Forall-formula, the proof would not go through at this point.

Finally, we must show that induction-redexes preserve reducibility. We must observe that cast
shifting preserves reducibility (in particular, Cast does). So we assume that the body Pi of each case
in the induction proof is reducible, for all reducible values that can be substituted for the pattern
variables. As in the PaT proof (Section 7.2 of [12]), we prove that all terms reachable in one reduction
step are reducible. The third property then allows us to conclude the induction-redex is reducible. We
reason by induction on a different norm than the one used in the PaT proof, to accomodate our richer
datatypes. The norm is the lexicographic combination of (a) the maximum number of constructors in the
normal forms (we do not assume confluence) of the scrutinized term and (b) the sum of the maximum
lengths of the normalization sequences for the arguments to the induction-proof and those lengths for
the bodies of the cases. The essential case is when the induction-redex itself reduces, in which case
new induction-redexes may be created. But their norms are smaller, since the first component has
decreased. By the definition of reducibility for types, all the subdata of the (normal) scrutinized term are
reducible, so reducibility of the body of the taken case follows.

From these considerations, it is now straightforward to conclude, by a similar inductive argument as
in PaT:

Theorem 6.2. (Strong Normalization)
All well-typed expressions are reducible, and hence by the first property, strongly normalizing.

7. Equational Soundness and Consistency

Having eliminated logical cuts, we proceed now to show consistency of the system. This will be done
with the help of a characterization of equalities and disequalities provable in equational contexts: that is,
the only free variables allowed (in the typing context) are ones proving equations. We simultaneously
prove the following three assertions.

Theorem 7.1. (Consistency)
For all proofs P classifiable in the empty context and in normal form with respect to the proof reduction
of the previous section, the following hold.

1. P does not prove False.

2. If P proves an equation {t = t′} or {T =T ′}, then one of the following is true:
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(a) t and t′ are both diverging.

(b) t and t′ are joinable at a value or stuck term.

(c) T and T ′ are of the forms R[t̄] and R[t̄′] for some type expression R with holes in any non-
binding position, and lists of terms t̄ and t̄′, with corresponding elements provably equal.

3. If P proves a disequation {t != t′} or {T !=T ′}, then one of the following holds:

(a) t and t′ evaluate to values of the form C[I1, Ī] and C ′[I2, Ī
′], where C and C ′ have different

heads.

(b) T and T ′ are of the forms C[I1, Ī] and C ′[I2, Ī
′], where C and C ′ have different heads and

again some of the Ī , Ī ′ may be stuck.

(c) T is a functional type and T ′ is of the form 〈d Ȳ 〉, or vice versa.

The proof is by induction on the structure of P in normal form. We must first observe that P cannot
be a stuck induction-redex. Such could in principle arise if the scrutinized argument contained an
intervening cast that could not be shifted. A cast can fail to be shifted if the term t being cast to functional
type does not itself have functional type. But in that case, the cast’s proof P ′ would have to prove that
some non-functional type is equal to a functional type. In the empty context, that cannot happen unless
the non-functional type is a type application 〈d Ȳ 〉. By induction, P ′ cannot prove an equation of this
form, as it violates the characterization of equations provable in the empty context. Also, an existse1-
term cannot cause an induction-redex to be stuck, since in the empty context, such could only be
applied to an existsi-proof, violating the assumption that P is normal. So normal P cannot be a stuck
induction-redex. Similar standard reasoning shows that P cannot prove False if it ends in a logical
elimination rule, and it obviously cannot prove False if it ends in a logical elimination rule. It could a
priori prove False if it ends in a contra inference, but the disjointness of our characterizations of the
pairs of provably equal terms (or types) and the pairs of provably disequal ones prevents, by induction,
such an inference. This shows the first part of the Theorem.

For the second and third parts, we simply observe that the characterization is preserved by our equa-
tional inferences (Figure 9), and that by induction, P cannot end in falsee. The trans case, of course,
has the most subcases to check. For example, suppose we are going from {t1 = t2} and {t2 != t3} to
{t1 != t3}. An example subcase is then if t2 and t3 evalute to differently headed inactive terms I1 and
I2. It cannot happen that t1 and t2 are diverging, so it must be that they are joinable at a value. By
determinism of the operational semantics, this value must be the same as the I1, and hence differently
headed from I2. Thus the characterization is maintained for the derived disequation {t1 != t3}. This
concludes the proof.

8. Type Soundness for Typed Term Reduction

We now prove type soundness for a typed version of the operational semantics (Figure 4) of OPTT. Rules
for reducing redexes in this typed operational semantics are given in Figure 12, and rules for reduction
in context are given in Figure 13. Only well-typed terms are to be evaluated, and only in the empty
context. All rules are to be applied modulo cast shifting, defined just as above for proof reduction. By
Theorem 7.1, cast shifting cannot get stuck, because all types provably equal in the empty context have
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(F V̄ ) ; [V̄ /x̄, F/x]t
F ≡ fun x(x̄ : Ā) : T .t

match cast (ci V̄ ) by P by x y with C1| . . . |Cnend ; [V̄ /x̄i, refl (ci V̄ )/x, symm P/y]si

∀i.(Ci ≡ ci x̄i=>si)

let x = V by y in t ; [V/x, refl V/y]t

where:

V ::= x || c || T || P || (c V1 · · · Vn) || fun x(x̄ : Ā) : T. t || cast V by P

Figure 12. Typed Redex Reductions for Terms

the same top-level form. We cannot equate a type-level application and a Fun-type, by Theorem 7.1.
Also, in the empty context, we also cannot cast a term using an equation between a type variable and
another expression. The only values of functional type are (casts of) fun-terms, and the only values of
type 〈d Ȳ 〉 are (casts of) applications of constructors for d. So term-level eliminations cannot get stuck
(modulo cast shifting) in the empty context.

We may verify by induction that if t ; t′ in this typed operational semantics, then |t| ; |t′| in
the untyped operational semantics (Figure 4). This justifies the use of evalstep in the first rule of
Figure 13. That rule is present, of course, to account for dependence of the type of a term on a redex in
it. We may then easily verify type preservation by induction on the structure of the ;-derivation. These
considerations justify:

Theorem 8.1. (Type Preservation)
If t ; t′ with t : T , then t′ : T .

Theorem 8.2. (Progress)
If t : T , then either t is a value or there exists t′ with t ; t′.

9. Conclusion

Operational Type Theory combines a dependently typed programming language with a first-order theory
of its untyped evaluation. By separating proofs and programs, contrary to the Curry-Howard isomor-
phism, we free programs to include constructs like general recursion which are problematic for proofs;
and provide a principled basis for proofs to reason about programs with type annotations dropped, via
untyped operational equality. This paper has studied the meta-theory of a core OPTT. As designed, the
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t2 ; t′2 V : Fun(x : A).T ∗[x]
(V t2) ; cast (V t′2) by cong T ∗ evalstep t2 t′2

t ; t′

E[t] ; E[t′]

E ::= ∗ || (E X) || let x = E by y in t ||
match E by x y with c1 x̄1 => t1| . . . |cn x̄n => tn end

Figure 13. Typed Reductions for Terms

meta-theoretic development is simple, in the proof theoretic sense. Future work includes further exten-
sions to the language to accomodate more features of practical programming languages such as mutable
state, input/output, and global variables. Non-functional features can be accomodated using functional
modeling. A functional model for the non-functional feature is devised and used for formal reasoning
about programs. This model is replaced during compilation with the efficient non-functional imple-
mentation. Correctness of this replacement is outside the verification environment, and must be trusted.
Soundness of the approach can be enforced using linear types to control resource usage. A similar idea
is proposed in [24].
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