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Knuth-Bendix completion is a technique for equational automated theorem
proving based on term rewriting. This classic procedure is parametrized by an
equational theory and a (well-founded) reduction order used at runtime to ensure
termination of intermediate rewriting systems. Any reduction order can be used in
principle, but modern completion tools typically implement only a few classes of
such orders (e.g., recursive path orders and polynomial orders). Consequently, the
theories for which completion can possibly succeed are limited to those compatible
with an instance of an implemented class of orders. Finding and specifying a com-
patible order, even among a small number of classes, is challenging in practice and
crucial to the success of the method.

In this thesis, a new variant on the Knuth-Bendix completion procedure is
developed in which no order is provided by the user. Modern termination-checking
methods are instead used to verify termination of rewriting systems. We prove the
new method correct and also present an implementation called Slothrop which
obtains solutions for theories that do not admit typical orders and that have not
previously been solved by a fully automatic tool.
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Typographic Conventions and

Software

Typographic Conventions We use the following typographic conventions, with

some exceptions, throughout the document. Term function symbols, constants,

variables and metavariables are lowercase italic letters; for function symbols we use

f, g, h; for constants we use a, b, c; for variables we use x, y, z; for metavariables we

use s, t, u, v. Sets, including term rewriting systems are capitalized italic letters:

A, B, C, . . .. Executions, substitutions and ordinals are all lowercase italic Greek

letters; for executions we generally use α, β, γ; for substitutions we use σ, τ, λ; for

ordinals we use ι, κ, µ. Inference systems are named with calligraphic capital letters

A,B, C, . . .; their transitions are labeled with words set in small caps.

Software Software developed during research for this thesis, including source

code, is available online at http://cl.cse.wustl.edu/. With luck, this will con-

tinue to be the case for perpetuity.

The name of the project, Slothrop, references the eponymous drifter pro-

tagonist of Thomas Pynchon’s 1973 novel Gravity’s Rainbow. Additionally, the quo-

tations that open each chapter are from that and other novels written by Mr. Pyn-

chon.

vi

http://cl.cse.wustl.edu/
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Chapter 1

Introduction

No, this is not a disentanglement from, but a progressive knotting into. . .

Gravity’s Rainbow

The field of automated theorem proving—which is also known as automated

deduction and which is considered a subfield of the more general area of automated

reasoning, itself an area of artificial intelligence—considers algorithms and tools

for proving or disproving (e.g., by counterexample) mathematical statements. An

automated theorem prover is a program that distinguishes among those formulas

that are theorems and those that are not. The field has developed historically along

two separate tacks, the first and oldest being general-purpose, uniform methods to

search for proofs of any sentence of first-order logic, and the second in which efficient

algorithms for solving problems in highly specialized domains are sought.

General methods of proving theorems of first-order logic arose in the 1950s,

e.g. with Newell, Shaw and Simon’s Logic Theory Machine [27], and today are

largely based on variants of the resolution method presented by Alan Robinson in

1965 [30]. Recently, however, it has come to be believed that the second approach,

involving tools sharpened for specific mathematical domains, has greater promise

[32]. After all, a simple, efficient and general method of proof would be almost too

good to be true, neatly fulfilling Leibniz’ dream of a calculus ratiocinator to settle

algorithmically disputes among philosophers. Consequently, attention has focused

on algorithms for answering questions about relatively small domains: perhaps for-

mulae with limited quantification or without variables, or that consider only simple,
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finitely axiomatiziable mathematics such as linear arithmetic (i.e., without multi-

plication) or other such modest algebraic structures. Individual tools for solving

these simpler questions can then be combined to build a robust theorem prover and

indeed this is the basic architecture taken by many of the most effective modern

systems [5, 7].

In this thesis, we focus on automated techniques for answering questions

about an ostensibly humble class of formulas containing only identities1 between

terms, written t1 ≈ t2. All we can ask of a prover for this domain is whether or

not a pair of terms are considered identical under the assumption that some other

identities hold,

u1 ≈ v1, u2 ≈ v2, . . . , un ≈ vn |= t1 ≈ t2.

We call these assumptions—the identities left of the turnstile above—a theory. The

question posed is called the word problem because we ask is whether or not two

words in a formal language are identified by a given theory. For example, to answer

questions about addition of natural numbers, our theory2 would consist of the two

identities 0+x ≈ x and x′+y ≈ x+y′. We could then ask whether the terms 0′+0′

and 0′′ are identified in this theory. Indeed they are, since 0′ + 0′ ≈ 0 + 0′′ by the

first assumption and 0 + 0′′ ≈ 0′′ by the second assumption.

The preceding two-step chain of reasoning illustrates the concept of proof.

When a mathematician distinguishes between theorems and non-theorems, he does

so by constructing proofs which can then be shared to convince others of the result.

Automated theorem provers proceed similarly, searching for proofs and responding

positively when such a proof is discovered that settles the question originally set

forth. If an algorithm implemented in a theorem prover is guaranteed to eventually

produce an affirmative when true mathematical statements are provided, then it

is a semidecision procedure. If an algorithm has the yet stronger property that

it also promises to eventually halt when non-theorems are provided, then it is a

decision procedure, so called because the algorithm can be trusted to decide any

question about a particular theory. Decision procedures are powerful tools, but

semidecision procedures somewhat less so — the user of a semidecision procedure

1We intentionally distinguish between identity ≈ and equality = throughout, the first relating
formulae that are assumed to hold (are universally quantified) and the second relating objects that
are one in the same.

2We write x′ to denote the successor of the natural number x.
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has no indication of whether a proof that a formula is a theorem will be found after

an hour or a year, or if one will never be found because the formula is not a theorem.

There are many areas of mathematics with decision procedures, such as

propositional logic, group theory, and arithmetic over the real number line. We

call these domains decidable. But unfortunately, not all mathematical domains are

decidable. For example, there is not and can never be a decision procedure for the

seemingly tame setting of integer arithmetic with addition and multiplication [18].

Nor is there a decision procedure for finding solutions to systems of Diophantine

equations (polynomials with integral coefficients) [9]. And there are certainly no de-

cision procedures for more sophisticated domains like set theory or Turing machines.

Such domains that can not have decision procedures are called undecidable.

Somewhat surprisingly, our restricted domain of identities falls into this sec-

ond class—the word problem is undecidable in general, and so there can be no

decision procedure for it. However, over thirty years ago Donald Knuth developed

a remarkably effective general technique for solving the word problem for a great

many theories, though of course not all. His technique, called completion, remains

the most effective tool for solving particular instances of the word problem today.

Its continual popularity is justified by its relative simplicity and efficiency, by the

breadth of questions that can be answered, and also because it is a semidecision

procedure. Although it can often disprove false statements, it cannot always do so.

It can however be reliably expected to find proofs of true statements regardless of

the theory.

Knuth’s completion procedure also has the nice property that successful exe-

cutions result not just in the answer to a question about a single identity in a theory,

but the ability to determine whether or not any pair of terms are identified by the

theory. Completion does this by generating what is called, somewhat confusingly,

a convergent completion. A convergent completion is a new set of identities, equiv-

alent to the original theory, but with the stronger, more useful property of being

oriented, of having a left-to-right sense. The convergent completion can be used to

rewrite terms by repeatedly replacing instances of a left-hand side in a term with an

instance of a right-hand side. This sort of process is of course possible with any set

of identities, but when performed with a convergent completion, it has the reassur-

ing quality of reliably terminating with the same result regardless of the manner in

which rules are applied. Accordingly, we use the convergent completion to solve the
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word problem by simply rewriting both sides of an identity and observing whether

or not they are syntactically equal. Using a convergent completion, identities that

are consequences of a theory will always rewrite to equal terms, and identities that

are not will always rewrite to different terms. In other words, syntactic equality

implies identifiability in the theory. (Convergent completions are also interesting

objects of study in their own right [34, 38].)

Completion, however, suffers from a fairly major drawback for an automated

theorem proving procedure: viz. that it is not quite as automatic as one would like.3

Ideally, an automated theorem prover would accept as input just the statement to be

proved (or disproved) and the definition the the theory (in our case, a set of identi-

ties). Knuth’s completion procedure fails to live up to this expectation, however, by

also requiring that the user provide a well-founded ordering relation (e.g., the usual

less-than relation < on the natural numbers) compatible with the given theory (i.e.,

both sides of each identity are comparable), and with other deductive consequences

of the theory. This is a major caveat: in practice, finding and specifying such an

order can be extremely challenging, even for experienced users.

All tools that implement Knuth’s completion procedure allow the the user

to specify orders that fall into a small handful of classes, often only one or two.

(Some common classes are defined in Sect. 2.2.) There are a number of problems

with this approach. First, there are many theories that cannot be oriented using the

few classes of orders usually implemented by these tools. Consequently there are

many theorems that cannot be proved in practice with completion simply because

the complex orders need to orient the assumptions are not supported by the tool.

Second, even if a theory is compatible with an order in a class supported by the

tool, the user is not given help in finding the correct one beyond halting when an

incompatibility is detected. And note that the task of finding a compatible order

is computationally difficult in its own right—NP-hard at best and undecidable at

worst. Furthermore, even if the user discovers an order which is compatible with

the identities that define the given theory (which are known at the outset), there

is no way to know whether or not the order will be compatible with the deductive

consequences of the assumptions generated during execution of the procedure.

3Although there are interactive tools for constructing proofs [36]—useful and interesting in their
own right— for problems in relatively mundane domains like ours we have more lofty expectations.
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In this thesis, we address these problems with a new variation on Knuth’s

original completion procedure. In our revised procedure, the user need not provide

a well-founded order as input. Instead, we search for well-founded orders using

heuristic search techniques. In the theoretical treatment of our procedure, we rely on

an oracle to bound the search by distinguishing among orders that are well-founded

and those that contain infinitely decreasing sequences. In practice, this oracle is

replaced by a program called a termination checker which determines whether a set

of identities possesses a property called termination that coincides with the existence

of compatible well-founded orderings. Termination checking is an active field which

has made great strides in recent years. Many modern termination tools exist, any

one of which may be integrated with our procedure, to discover well-founded orders.

By leveraging a modern termination checker, we partially or fully solve the

above problems with standard completion. Because termination checkers can detect

well-founded orders for a wide variety of theories (as opposed to just a small handful

as found in all other completion implementations), implementations of our new

procedure have the practical capability of succeeding on a wider variety of theories.

Also, because the order is discovered by the tool instead of provided by the user, a

burden is removed from the user and could potentially allow completion to succeed

for theories which, though they may admit an order implemented by previous tools,

would be otherwise difficult to discover manually.

1.1 Contributions

Informally, the major contribution of the thesis is a variation of completion that does

not require the user to supply a well-founded order and which provides the same

correctness properties as the standard procedure. The algorithm is equally effective

as completion in theory, but can be considered more effective in practice by nature

of its success on problems for which no implementation of standard completion has

yet succeeded.

In more detail, this thesis presents the following contributions to the field of

automatic theorem proving:

1. An algorithm for automatically solving the word problem of finite theories is

developed. The algorithm is a semidecision procedure for the word problem for
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any theory. It also produces convergent completions for many theories, yielding

decision procedures for such theories. The new procedure allows convergent

completions to be discovered for theories which have never been produced by

a fully automatic algorithm.

2. A complete proof of correctness for the algorithm is presented. In a previously

published paper [39], we proved the algorithm correct for finite executions only.

Here we extend that work by proving that the algorithm is correct for both

finite and infinite executions. Our proof implies that the revised algorithm

is a semidecision procedure for the word problem. The finite case is proved

by simulation [25] of the standard Knuth-Bendix completion algorithm. In

the infinite case, a more complicated proof technique is used that relies on

a different simulation and an argument about the ability to construct such

simulations nondeterministically.

3. An implementation of the new algorithm is presented. This tool, which we call

Slothrop and whose source code is freely available on the Internet, is written

in the Ocaml programming language and integrates with powerful termination

checker called AProVE. This integration came about as a result of help from

members of the AProVE team.

4. Slothrop yielded the first fully automatically constructed convergent com-

pletion of the theory of two commuting group endomorphisms (described in

Chap. 7). Although other tools can produce ground-convergent completions

(a less useful object defined in Chap. 2) automatically, and manual methods

have been used to discover the convergent completion [33], no other tool has

been able to produce such a convergent completion without user intervention.
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Chapter 2

Preliminaries

Who can find his way about this lush maze of initials, arrows solid and dotted,
boxes big and small, names printed and memorized?

Gravity’s Rainbow

This chapter briskly develops background necessary for discussion of completion-

based automated theorem proving. In Sect. 2.1, we introduce the basic syntactic

objects of study required to prove theorems automatically, and describe the connec-

tions between these objects and the truths we seek. In Sect. 2.2, we present basic

notions of term rewriting, the computational formalism upon which completion-

based theorem proving is predicated. The notions are standard for techniques based

on rewriting; more detailed presentations, including proofs of well-known theorems

and lemmas, can be found in [1, 10, 37, 12].

2.1 Logical Foundations

In automated theorem proving, proofs or disproofs are typically sought for state-

ments in the form of logical formulae, which are defined inductively from atomic

formulae (which are themselves built of terms) and the familiar logical connectives

(∨,∧,¬, etc). We will instead take a more direct path, suitable for our purposes

(the study of completion), and imbue our terms and identities with logical meaning

in the form of an algebraic semantics.
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2.1.1 Syntax: Terms and Identities

A signature Σ is a finite set of function symbols, each with an associated arity n ∈ N.

Those function symbols with arity zero are called constants. Let X be a countable

set of variable symbols, such that Σ ∩X = ∅. The set of terms constructed over Σ

and X, written T (Σ, X), is defined inductively by:

• X ⊆ T (Σ, X).

• If f ∈ Σ with arity n and t1, . . . , tn ∈ T (Σ, X) then f(t1, . . . , tn) ∈ T (Σ, X).

In case a signature contains only single-arity function symbols, we omit parentheses

and variables when terms are written. For example, if Σ = {g, f}, both of which are

single-arity, then we write fgf as shorthand for f(g(f(x))). In all other signatures,

parentheses are omitted only for constants.

The set of positions of a term t, written Pos(t), is a set of strings defined by

induction on t:

• If t = x ∈ X, then Pos(t) = {ε}

• If t = f(t1, . . . , tn), then

Pos(t) = {ε} ∪
n⋃

i=1

{ip | p ∈ Pos(ti)}.

The subterm of term t at position p, written t|p, is defined by simultaneous induction

on p and t:

• If p = ε, then t|p = t.

• If p = ip′ and t = f(t1, . . . , tn) with 1 ≤ i ≤ n, then t|p = ti|p′ .

If s is a subterm of t at position p, we write s E t, and if p 6= ε then s is a strict

subterm, written s C t. A variable position in a term t ∈ T (Σ, X) is any p ∈ Pos(t)

such that t|p = x ∈ X. The set Vars(t) contains all x ∈ X such that there is some

variable position p ∈ Pos(t) with t|p = x. The size of a term t is |Pos(t)|. For a

term t and position p ∈ Pos(t) the replacement of s in t at p, written t[s]p, is defined

by simultaneous induction on p and t:
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• If p = ε, then t[s]p = s

• If p = ip′ and t = f(t1, . . . , tn) with 1 ≤ i ≤ n, then t[s]p = f(t1, . . . , ti[s]p′ , . . . , tn).

A substitution σ is a total function from a set of variables X to terms T (Σ, X) in

which σ(x) 6= x only for x ∈ X ′ ⊂ X with X ′ finite. The instantiation of term t

with substitution σ, written tσ, is defined by induction on t:

• If t = x ∈ X, then tσ = σ(t)

• If t = f(t1, . . . , tn), then tσ = f(t1σ, . . . , tnσ).

Instantiation associates to the left: tστ = (tσ)τ . A substitution is a unifier of terms

s, t ∈ T (Σ, X) if sσ = tσ and a most general unifier (MGU) if for all unifiers θ of

s, t there exists another unifier λ such that sθ = sσλ = tσλ = tθ.

For some signature Σ, a Σ-identity (or simply identity when the signature

is clear or irrelevant) is a pair of terms s, t ∈ T (Σ, X), written s ≈ t. An identity

s ≈ t is trivial if s = t. For a set of identities E, terms s and t are in the reduction

relation on E, written s→E t, if for some identity (l, r) ∈ E, position p ∈ Pos(s) and

substitution σ, we have s|p = lσ and t = s[rσ]p. We write
=→E,

+→E,
∗→E and

∗↔E

for the reflexive, transitive, reflexive-transitive and reflexive-transitive-symmetric

closures of →E, respectively. We write ←E for the inverse of →E,
∗←E for the

inverse of
∗→E, etc. If s

∗↔E t, then we say that the identity s ≈ t is a syntactic

consequence of E.

2.1.2 Semantics

We now briefly discuss semantics for identities and reduction relations, and state

the connection between the syntactic and semantic notions.

Let Σ be a signature as before. Then a Σ-algebra A consists of a carrier set

(or domain) A and a mapping which associates with every f ∈ Σ having arity n a

function fA : An → A. For a set of variables X, a Σ-term algebra T (Σ, X) is an

algebra with domain T (Σ, X) and a mapping such that (informally) fT (t1, . . . , tn) =

f(t1, . . . , tn). A Σ-homomorphism is a function φ : A → B, for any algebras A and

B, such that φ(fA(a1, . . . , an)) = fB(φ(a1), . . . , φ(an)), for f ∈ Σ with arity n,

1 ≤ i ≤ n and a1, . . . , an ∈ A.
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An identity s ≈ t holds in an algebra A iff for all homomorphisms φ from the

associated term algebra into A, φ : T (Σ, X) → A, it is the case that φ(s) = φ(t).

Intuitively, an identity holds in an algebra if the interpretations of both sides are the

same regardless of the interpretations of the variables. The algebra A is a model of

a set of identities E if every identity of E holds in A. An identity s ≈ t is a semantic

consequence of E if it holds in every model of E. We define the equational theory

of E, written ≈E, as the set of all semantic consequences of E; for s, t ∈ T (Σ, X),

s ≈E t iff s ≈ t is a semantic consequence of E.

We can now state the crucial connection between syntactic objects easily

manipulated by a computer and the mathematical objects we wish to reason about.

The following theorem states that semantic consequence coincides with syntactic

consequence. If an identity between terms is shown to be a syntactic consequence

of E, then the mathematical objects which the terms represent are also identical in

the same theory.

Theorem 1 (Birkhoff). For a set of Σ-identities E and terms s, t ∈ T (Σ, X) for

any set of variables X, s
∗↔E t iff s ≈E t [1].

It follows that the membership in the reduction relation is a necessary and

sufficient condition for truth in a mathematical domain which can be axiomatized

with a finite set of identities. In particular, an identity s ≈ t is valid in E iff s ≈E t.

Because of this connection, in the sequel we will abuse terminology somewhat and

refer to both
∗↔E and E itself as the equational theory (or simply the theory).

2.2 Term Rewriting

For terms s and t and a finite set of identities E, deciding whether or not s ≈E t

is called the word problem for E. The word problem is undecidable in general [6].

However, there are many theories for which the word problem is decidable. For

example, there exist efficient solutions for the world problem when the equational

theory consists of ground identities only; this problem is called congruence closure

[4]. We also know that, by Thm. 1, a method for deciding
∗↔E also decides the

equational theory of E, and hence the word problem. We now give a brief overview

of the field of term rewriting, in which techniques exist for solving the word problem

for many cases of E.
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A rewrite rule l → r is an identity, with l not a variable, and Vars(r) ⊆
Vars(l). A set of rewrite rules is called a term rewriting system (or rewriting system,

or TRS). Because a TRS R is simply a set of identities, we use (without abuse) the

notation→R to denote the reduction relation on R. A TRS is finite if it has a finite

number of rewrite rules. We also assume w.l.o.g. that Vars(l1) ∩ Vars(l2) = ∅ and

Vars(r1) ∩ Vars(r2) = ∅ for any pair of rewrite rules l1 → r1, l2 → r2 in a TRS.

We now present terminology useful when discussing rewriting systems, as-

suming some reduction relation →. A term t is reducible if, for some t′, t → t′

and a normal form otherwise. Terms t1 and t2 are joinable if there exists t′ such

that t1
∗→ t′

∗← t2, in which case we write t1 ↓ t2. The reduction relation → is

globally confluent (or simply confluent) if t1
∗← t

∗→ t2 implies t1 ↓ t2, and locally

confluent if t1 ← t→ t2 implies t1 ↓ t2. It is terminating if there are no sequences of

reductions with infinite length, t1 → t2 → · · · . Note that termination of a relation

implies the strictly weaker property that every term has a normal form, but not

the other way around.1 If a rewriting system is both confluent and terminating,

then it is called convergent ; if these properties hold only for ground terms, then

it is ground-convergent. Note that ground-convergence is a weaker property than

convergence. For convenience, we will say a TRS R has one of the above properties

when its reduction relation →R has it.

By Thm. 1, we know that syntactic consequence implies semantic conse-

quence. Therefore, to solve the word problem for a set of identities E it suffices

to decide syntactic consequence of E. Since the word problem and semantic con-

sequence is in general undecidable, so then is syntactic consequence. In the special

case when E is a finite convergent rewriting system, however, we have an effective

test for syntactic consequence. The following theorem states that an identity is

joinable in a convergent theory E iff the identity is a syntactic consequence of E.

Lemma 1. If E is convergent, then
∗↔E=↓E.

This says that for a convergent TRS, we can determine syntactic consequence

by testing joinability. But two terms are joinable if they have the same normal

form, and since the system is terminating, these normal forms can be found after

only a finite number of reductions. It follows that if the TRS is itself finite, then

1E.g., with the TRS {f(x)→ f(x), f(x)→ a}, every term has a normal form a, but there also
exist infinite sequences of reductions f(a)→ f(a)→ · · · .
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normal forms can be obtained finitely, joinability can be decided, and hence syntactic

consequence and hence semantic consequence. In summary, for finite convergent

theories E, the word problem for E is decidable.

Theorem 2. If E is finite and convergent, then ≈E is decidable.

The difficulty then becomes determining whether a set of identities is conver-

gent. (It is assumed that we can determine whether or not it is finite.) The next

two sections consider strategies for proving confluence and termination of rewriting

systems.

2.2.1 Proving Confluence with Critical Pairs

Demonstrating confluence of a rewriting system is undecidable in general. However,

there is a straightforward procedure for testing local confluence in the special case of

finite terminating rewrite systems by inspecting only combinations of rewrite rules

(instead of all possible terms). For a TRS R with li → ri ∈ R for i = 1, 2 such

that σ is an MGU of l1|p, l2, and where l1 is not a variable, a critical pair of R is a

tuple 〈r1σ, (l1σ)[r2σ]p〉. We write Γ(R) to denote the set of all critical pairs between

all rules of R. The following lemma states that if a term can be rewritten to two

different terms in one step each, then either those two terms are joinable or the two

new terms differ by the presence of different elements of a critical pair.

Lemma 2 (Critical Pairs). For a TRS R, If t1 ←R t →R t2, then either t1 ↓R t2

or t1 = s[u1]p and t2 = s[u2]p for some term s, position p ∈ Pos(s) and critical pair

〈u1, u2〉 ∈ Γ(R).

It follows that to test local confluence, it suffices to test all critical pairs of

a TRS for joinability. In case the TRS is finite and terminating, there are only

finitely many critical pairs and testing joinability of each takes only finitely many

reduction steps, and so local confluence is decidable. Furthermore, the following

lemma states that for such terminating rewriting systems, local confluence coincides

with global confluence and, consequently, confluence is decidable for terminating

rewriting systems.

Lemma 3 (Newman). A terminating TRS is locally confluent iff it is confluent.
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2.2.2 Proving Termination with Well-founded Orders

As mentioned above, demonstrating confluence or termination of a TRS is undecid-

able in general. However, we have seen that confluence is decidable for any finite

terminating TRS. Consequently, we now to turn to methods for demonstrating ter-

mination of a TRS. To prove termination of a TRS, it suffices to show that its

reduction relation is compatible with some well-founded order on the terms; for in

this case, there can be no reduction sequences of infinite length.

A rewrite order > is a strict order on terms of T (Σ, X) which is compatible is

Σ-operations (i.e., t > t′ implies f(t1, . . . , t, . . . , tn) > f(t1, . . . , t
′, . . . , tn) and closed

under substitutions (i.e., t > t′ implies tσ > t′σ). If a rewrite order is well-founded,

it is called a reduction order. We say a reduction order > is compatible with a

rewriting system R if, for all l→ r ∈ R it is the case that l > r.

Theorem 3. A TRS R is terminating iff there exists a reduction order compatible

with R.

Sketch. In one direction, the relation
+→R is itself a reduction order. In the other,

t → t′ implies t > t′ due to compatibility and closure under substitutions, and no

infinite sequence of reductions exists because of well-foundedness.

The lexicographic extension of an order >, written >#, extends an order on

terms to an order on lists of terms. For terms s1, . . . , sn ∈ T (Σ, X) and t1, . . . , tm ∈
T (Σ, X), 〈s1, . . . , sn〉 ># 〈t1, . . . , tm〉 iff s1 > t1 or both s1 = t1 and 〈s2, . . . , sn〉 >#

〈t2, . . . , tm〉.

A wide variety of methods exist for proving termination; an excellent survey

is found in [37]. One class of reduction orders that is simple to describe are the

lexicographic path orders (LPOs). An LPO is a complex order parametrized by a

more simple order called a precedence. The precedence order > is a well-founded

partial order (i.e., antisymmetric as well as reflexive and transitive) on the function

symbols of Σ. The LPO >lpo induced by precedence > is defined by induction on

terms. For s, t ∈ T (Σ, X), s >lpo t iff s = f(s1, . . . , sn) (i.e., s is not a variable) and

1. si = t for some 1 ≤ i ≤ n; or

2. si >lpo t for some 1 ≤ i ≤ n; or
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3. t = g(t1, . . . , tm), s >lpo ti for all 1 ≤ i ≤ m, and either

(a) f > g; or

(b) f = g and 〈s1, . . . , sn〉 >#
lpo 〈t1, . . . , tm〉.

That the relation defined above is a reduction order is proved in [1, 10, 37]. For a

given LPO >lpo, deciding if s >lpo t holds requires time polynomial in the size of

the terms, but deciding if there is some LPO which satisfies the relation is NP-hard

[29]

There are a number of orders similar to the lexicographic path order. The

recursive path orders (RPOs) are orders defined similarly to the LPOs, but where the

order is extended to lists of terms in different manners. For example, the multiset

path order uses a multiset extension to resolve order between lists. The Knuth-

Bendix orders (KBOs) use a precedence function as well as a weight function, which

maps function symbols to positive integers. Detailed descriptions of these and other

generalizations are given in [37, 1].

2.3 Executions and Simulations

In this section we describe inference systems, executions of those systems, and sim-

ulations between systems briefly and informally. Tempting though it may be (cf.

Sect. 2.1), we are not excessively formal here because it is neither the focus of this

thesis nor necessary to develop our results.

An inference system B is a pair consisting of a set of start states from a

universe U , and a set of inference rules. We require 1) that for every rule the

domain of the rule is the same as its range 2) that all rules share the same domain;

and 3) that the start states are included in that domain.Rules may, however, have

preconditions (which we do not specify formally here) that otherwise restrict their

application. We take the liberty below of identifying inference systems and their

rule sets.

Informally, an execution is a sequence of states related to one another by

the rules of some inference system. More formally, we think of an execution as a

function that maps an index to a state. Since we consider both finite and infinite

executions, we will define an execution β as a function of type β : λ 7→ U , with λ a
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countable ordinal. We say an execution β : λ 7→ U has length λ, which we write |β|.
In the this thesis, the universe of states will consist of tuples of rewriting systems.

For an ordinal ι and execution β, we may write either β(ι) or βι to denote the state

at index ι, assuming |β| > ι. State s ∈ U is a deduction of execution β if there is

some index ι such that βι = s. We informally write executions of system B by

s0 `B s1 `B s2 `B · · · ,

and also β = β′ `B sn+1 to mean that the function β extends the function β′ such

that βn+1 = sn+1.

Finite executions are hence constructed by recursion, and infinite executions

by transfinite recursion. We say an execution β of system B is valid if it is a well-

defined function and

1. β0 is a start state of B;

2. if βκ′ (where κ′ denotes the successor of ordinal κ) is defined, then for some

inference rule ρ ∈ B it is the case that ρ(βκ) = βκ′

Note that this definition gives some latitude in the definition infinite executions.

Throughout this thesis, we rely on proofs by simulation. Informally, a simula-

tion from a system B1 to a system B2 is the construction of an execution of B2 given

an execution of B1 that is equivalent in the sense that the new execution is valid in

both systems and contains the same sequence of states, possibly modulo extraneous

elements irrelevant to the opposite system. When there is a simulation from B1 to

B2, we say that B2 simulates B1, denoted B1 v B2. We rely on the following lemma

(more carefully developed elsewhere [25]):

Lemma 4 (Simulations). If all executions of a system B2 have property P and there

exists a simulation from system B1 to system B2, then all executions of system B1

have property P .
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Chapter 3

Knuth-Bendix Completion

Things then did not delay in turning curious.

The Crying of Lot 49

Thus far we have seen that the word problem is decidable for finite convergent

theories, and briefly investigated techniques for demonstrating the convergence of

theories. Once we have shown that a theory is convergent, then by Thm. 2, we

can solve the word problem by simply rewriting terms to their normal forms and

performing a simple equality test; the normal forms are equal iff the identity holds

in the theory.

What if we want to solve the word problem for a finite but non-convergent

theory E? The word problem is not decidable in general, so we cannot hope to find

a general method to solve the problem for all theories. However, in some cases we

can find a different set of identities E ′ which is equivalent to E (i.e.,
∗↔E=

∗↔E′) and

convergent. If we can find such a theory, then we could solve ≈E′ and therefore ≈E.

We now investigate a general procedure for discovering such equivalent, convergent

theories.

A Knuth-Bendix completion procedure [21], invented in 1967 by Donald Knuth,1

(or simply a completion procedure) refers to an instance of a general class of algo-

rithms that take as input a finite set of identities E and a reduction order and which

attempts to construct an equivalent convergent rewrite system R. The process is it-

erative, generating a sequence of intermediate rewriting systems which have theories

1Peter Bendix, Knuth’s student, contributed a Fortran implementation [11].
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that are, roughly speaking, successively better approximations of the input theory

E. The given reduction order is used to ensure that each intermediate rewriting

system is terminating and hence can safely (finitely) be used to calculate normal

forms during execution.

As an example, the theory of groups (G) is presented in Fig. 3-1. Group

theory is particularly well-suited to automated theorem proving procedures such as

completion because it is axiomatized by just a few identities. For ease of presenta-

tion, we use infix symbols such as ∗ as shorthand for a function symbols as described

above.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

Figure 3-1: The Theory of Groups (G)

One possible completion of G is shown in Fig. 3-2, a ten-rule term rewriting

system. It is easy to see that all the rewrite rules in the completion are compatible

with a lexicographic path order with precedence −−1 > ∗ > 1. Note however that

orders based on the size of the terms or the subterm order are not sufficient to prove

that the system is terminating.

1 ∗ x→ x x ∗ 1→ x 1−1 → 1

(x−1)−1 → x (x ∗ y)−1 → x−1 ∗ y−1 (x ∗ y) ∗ z → x ∗ (y ∗ z)

x ∗ x−1 → 1 x−1 ∗ x→ 1

x ∗ (x−1 ∗ y)→ y x−1 ∗ (x ∗ y)→ y

Figure 3-2: A Convergent Completion of G

Leo Bachmair reformulated the original Knuth-Bendix completion procedure,

which was originally published as a deterministic algorithm, as a nondeterministic

equational inference system [2], and proved it correct (stated in Sect. 3.1). We

refer to this standard inference system as C because it will serves as the basis of a

correctness condition for a refinement of the procedure that will be developed later.

The rules of the inference system C are shown in Fig. 3-3. The notation s
.
≈ t means

either s ≈ t or t ≈ s. The notation s
=→R v means that the term s is reduced with

a rule l →R r ∈ R such that l is not reducible by the rule s →R t. This technical

side-condition is a requirement for the proof of correctness, irrelevant to later proofs.
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orient:

(E ∪ {s
.
≈ t}, R)

(E, R ∪ {s→ t}) if s > t

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s←R u→R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s
.
≈ t}, R)

(E ∪ {u
.
≈ t}, R) if s→R u

compose:

(E, R ∪ {s→ t})
(E, R ∪ {s→ u}) if t→R u

collapse:

(E, R ∪ {s→ t})
(E ∪ {v ≈ t}, R) if s

=→R v

Figure 3-3: Standard Knuth-Bendix Completion (C)

A deduction of C, written (E, R) `C (E ′, R′), consists of finite sets of identities

E, E ′ and rewriting systems R,R′. A execution γ of the system C is valid if it begins

with the pair (E0, ∅) and is followed by a possibly infinite sequence of deductions

(E0, ∅) `C (E1, R1) `C (E2, R2) `C · · · ,

where E0 is the finite set of identities provided as input by the user, and each

deduction results from an application of exactly one of the inference rules of C.

The persistent identities Eω (persistent rules Rω) are those that appear in

some intermediate set of identities Ei (rules Ri) and remain in all future intermediate

sets of identities Ej (rules Rj) for j > i,

Eω =
⋃
i∈N

⋂
j≥i

Ej and Rω =
⋃
i∈N

⋂
j≥i

Rj.

The persistent sets are so defined to construct transfinite executions of completion

procedures and to state and prove correctness properties of C. For consistency, we

allow finite executions to be consider as infinite executions: a finite execution γ of

length n can be extended to an infinite execution γ̂ such that (Em, Rm) = (En, Rn)

for all m > n. In the case of finite executions, the persistent sets are those found in

the final deduction.
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3.1 Properties of the System C

An execution γ of C succeeds if Eω = ∅ and Rω is a convergent rewriting system

equivalent to E as described above. An execution γ of C fails if Eω 6= ∅. Failure

of an execution occurs if an identity of some intermediate set of identities is never

oriented or reduced to a trivial identity. This can occur if either the identity is not

compatible with the given reduction order, or else simply that it is never the focus

of a rule application in γ. An execution execution may also neither succeed nor

fail if some critical pair is never considered. A fair strategy is one that produces

executions that eventually consider all critical pairs of Rω,

Γ(Rω) ⊆
⋃
i∈N

Ei.

In this thesis, we assume all executions are the result of an arbitrary, fair strategy.

The following theorem states key correctness properties of non-failing and

fair executions.

Theorem 4 (Correctness of C). Let (E0, ∅) `C (E1, R1) `C (E2, R2) `C · · · be a

non-failing and fair execution of the completion procedure C.

1. Rω is equivalent to the set of input identities E0.

2. Rω is convergent.

3. If Rω is finite, then the word problem for E0 is decidable. Otherwise, the

execution yields a semidecision procedure for ≈E0.

The first part of this theorem states soundness of the procedure. The persis-

tent rules are equivalent to the input identities, and since the execution is non-failing

by assumption, no identities persist throughout the execution. The second part of

the theorem simply states that the resulting rewriting system is confluent and ter-

minating. Note though that the resulting rules may be infinite, so this does not on

its own imply that a decision procedure for the input identities results. The third

part of the theorem addresses this specifically: if Rω is finite, then by virtue of our

assumption of a non-failing fair execution, the execution is finite and the resulting

system can be used to decide the word problem. However, if the resulting system is

infinite, then execution of the procedure yields a semidecision procedure.
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The proof of Thm. 4 is quite involved [1], and here we will only provide some

explanation of the last point: how can an infinite execution of C that results in an

infinite rewriting system be used as a semidecision procedure for the word problem

of the input identities?

Informal argument. Since the set of persistent rules is an equivalent convergent

rewriting system, then it could be used as a decision procedure, but if the execution

is infinite, it cannot be explicitly constructed. However, if an identity is in fact a

semantic consequence of the input theory, then there would be a finite sequence of

reductions using the persistent rules which would show that both terms have the

same normal forms. Since the reductions on the terms would be finite, then they

only require a finite number of rules. By definition of the persistent sets, then, there

is some first intermediate system which includes all of these necessary rules. So

infinite executions can be used as a semidecision procedure if, at each step, both

sides of the identity are normalized and tested for equality. If the identity holds,

then after some finite amount of time the normal forms will be the same. Conversely,

if the normal forms are the same, we know the identity holds. This is not a full

decision procedure, however, because if the normal forms are not the same, then

it may just be the case that we have not generated enough persistent identities to

prove the equality — there is no way to tell after a finite number of steps.

The following corollary states that any strategy for applying the rules of

system C that is fair is correct — either an equivalent convergent rewriting system

is constructed, or some identities persist.

Corollary 5 (Completeness of C). Every fair completion procedure that does not

fail succeeds [2, 1].

It follows that if an execution does not succeed, then it cannot fail and remain

fair. A fair execution that does not succeed fails because there is some identity that

cannot be oriented at any point during the execution.

3.2 Limitations

An execution of the standard completion procedure C will fail if not provided a

reduction order which is compatible with all of the rules of Rω. The basic difficulty



21

with completion is in finding an appropriate reduction order. In some cases no such

reduction order exists. For example, any theory which includes the commutativity

rule x ∗ y ≈ y ∗ x must fail because it is not compatible with any reduction order —

if there were, then an arbitrary identity s ≈ t could be rewritten to t ≈ s and again

to s ≈ t, contradicting strictness of the order. In other cases, there exist reduction

orders which are compatible with the rules in the input set of identities, but not

with rules generated later.

To complicate matters further, all known implementations of completions

allow the user to specify only a limited class of reduction orders. This is largely

out of necessity; in order to provide a suitable order, a user must be able to specify

it simply. Nearly all tools allow the user to specify a precedence for generating

an LPO or a precedence and weight mapping for a KBO. In fact, we know of no

implementations of completions that accept orders other than RPOs or KBO as

input.

It is not decidable in general whether a RPO exists which is compatible with

a particular theory [8]. Even if such an order exists, finding a suitable precedence

and weight mapping for a finite set of identities is difficult for experienced users and

automated tools alike — for LPO the problem is NP-complete [29]. Furthermore,

there are many theories which do admit some reduction order, but not an RPO or

KBO. Currently, there is no automated theorem proving tool able to complete these

theories.
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Chapter 4

The Role of the Order in

Knuth-Bendix Completion

Living as he does much of the time in a world of metaphor, the poet is always
acutely conscious that metaphor has no value apart from its function; that it
is a device, an artifice.

V.

Our goal is to develop a variant of Knuth-Bendix completion which solves the

problems discussed in the previous chapter; namely that it is difficult to find and

specify a compatible reduction order. We begin by examining the role of the input

reduction order in the completion procedure. This is accomplished by introducing

two generalizations of standard Knuth-Bendix completion that relax the requirement

that the user provide a single compatible reduction order. These variants will turn

out to be over-generalizations. However, by examining their properties and, more

specifically, why they fail to be correct, these variants lead us indirectly to the

solution we seek.

4.1 Unordered Completion

We first define a generalization of Knuth-Bendix completion that is identical to the

system C but that requires no reduction order whatsoever. This modified system,
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which we call C0, is presented in Fig. 4-1. As an equational system, the only dif-

ference between C0 and C is in the definition of the orient rule. In system C0, the

side condition only requires that an identity be oriented in such a way that it is a

genuine rewrite rule (i.e., that no new variables are introduced in the right-hand

side). It is obvious that this will prove to be an over-generalization, but we will see

that it shares an important property with the system C; one that any solution must

also have.

orient:

(E ∪ {s
.
≈ t}, R)

(E, R ∪ {s→ t}) if Vars(t) ⊆ Vars(s)

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s←R u→R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s
.
≈ t}, R)

(E ∪ {u
.
≈ t}, R) if s→R u

compose:

(E, R ∪ {s→ t})
(E, R ∪ {s→ u}) if t→R u

collapse:

(E, R ∪ {s→ t})
(E ∪ {v ≈ t}, R) if s

=→R v

Figure 4-1: Generalized Knuth-Bendix Completion (C0)

4.1.1 Properties of the System C0

The first important property to consider is soundness. A deduction (E, R) `C0

(E ′, R′) is sound if the equational theory of E ∪R is equal to the equational theory

of E ′∪R′. It is easy to see that soundness of deductions implies that the equational

theory of any intermediate tuple (Ei, Ri) in an execution is equivalent to that of the

input theory E0, since every execution starts with (E0, ∅).

Theorem 6 (Soundness of C0). (E1, R1) `C0 (E2, R2) implies
∗↔E1∪R1=

∗↔E2∪R2.

Proof. For rules orient, deduce, delete, the claim follows trivially. For rule

simplify, E1 = E ∪ {s .
= t}, E2 = E ∪ {u .

= t}, R1 = R = R2 and s →R u.

We have
∗↔E2∪R2⊆

∗↔E1∪R1 because u ←R1 s
∗↔E1 t, and

∗↔E1∪R1⊆
∗↔E2∪R2 because
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s →R2 u
∗↔E2 t. For rule compose, E1 = E = E2, R1 = R ∪ {s → t}, R2 =

R ∪ {s → u} and t →R u. We have
∗↔E2∪R2⊆

∗↔E1∪R1 because s →R1 t →R u,

and
∗↔E1∪R1⊆

∗↔E2∪R2 because s →R2 u ←R t. For rule collapse, E1 = E, E2 =

E ∪ v = t, R1 = R ∪ {s → t}, R2 = R and s →R v. We have
∗↔E2∪R2⊆

∗↔E1∪R1

because v ←R s→R1 t, and
∗↔E1∪R1⊆

∗↔E2∪R2 because s→R v
∗↔E2 t.

In fact, the proof of soundness of C0 is exactly the same as a proof of soundness

of C; the side-condition on the orient rule is irrelevant. However, the system C0 is

not correct in general because the rewriting systems are not necessarily equivalent

to the initial set of identities—soundness is that the union of the intermediate

rewriting system and identities preserve the equational theory. Consequently C0
does not generally yield a decision procedure for E0, and can produce non-failing

unsuccessful runs. Success requires that Eω = ∅ and that Rω be convergent, and

indeed it would be quite surprising if Rω turned out even to be terminating when

the only condition for adding new identities is that they be rewrite rules.

It is worth emphasizing that the system C0 is a strict generalization of the

system C—there is a simulation from system C to the system C0, written C v C0,
meaning that any legal execution of C is a legal execution of C0. This is true because,

for any execution γ of C we can construct an equivalent execution γ0 of C0 (i.e., with

the same deductions). As noted in Lem. 4, this implies that any property of C0,
including soundness, also applies to the refined system C.

The system C0 is not correct in general, but it is useful because it provides

us a hint as to how to perform a completion procedure without requiring the user

to provide an order (which, as we have discussed, is of considerable difficulty). We

start by observing that in either system C or C0 there are only a finite number of

possible deductions that can take place at each step of the execution. Both systems

have a finite number of rules which can result in different deductions based on the

interpretation of the preconditions. But because the intermediate sets of identities

and rewriting systems are finite, there are but a finite number of interpretations

of the preconditions as well. This observation allows us to consider the set of all

possible executions as a labeled, finitely branching tree. The initial system (E, ∅)
is the root, and branches correspond to the states reachable by application of some

rule.
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This observation is useful because it shows how we can trade time for correct-

ness. Since the tree of executions is finitely branching, if we explore the branches of

the tree fairly — for example, with a breadth-first search — then for any execution

of C with identities E0 and order > there exists some equivalent execution of C0. By

spending exponentially more time searching a tree of executions in the system C0,
the same deductions will eventually occur as in any execution of the system C.

This approach has major drawbacks, however, primarily that there is no way

of distinguishing successful branches from unsuccessful branches. In the standard

system C, each intermediate TRS is terminating by construction, and confluence

can be tested by attempting to join all critical pairs. Therefore when performing

standard completion, it is simple to determine whether or not a completion has been

found. In the modified system C0, however, the intermediate term rewriting systems

are not terminating in general, so it is not simple to judge whether an intermediate

TRS is in fact a convergent completion. Since the convergent completion generated

is the decision procedure, we cannot rely on C0 to ever produce a decision procedure.

Needless to say, this technique would also be exceedingly slow in practice.

Indeed there are more elegant and efficient procedures for proof search, such as

paramodulation [28] and unfailing completion [3]. However, these techniques provide

no means for obtaining a convergent completion. In the next chapter, we consider

refinements of C0 which will solve the problem of distinguishability of successful

branch and increase performance.

4.2 Many-orderered Completion

Since we have seen that completely eliding the reduction order in Knuth-Bendix

completion breaks correctness, we take a different tack in making it easier to provide

orders. Instead of requiring that the user provide a single reduction order compatible

with all rules in intermediate rewriting systems, the user provides a set (or proper

class) of reduction ordersO. The rules of this system, which we call C1, are presented

in Fig. 4-2. The side-condition on the orient requires that there is some reduction

order >∈ O for which all the rules in R ∪ {s → t} are compatible. The idea here

is that each intermediate rewriting system is shown terminating by some method,

even if it is a different method at each step. The set O could be, for example, the

set of all lexicographic path orders over the signature under consideration. More
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generally, we are free here to consider the class of all reduction orders as O. Also,

if O is the set which contains a single reduction order, then C1 is equivalent to C.
Consequently, we have that there is a simulation from C to C1 by choosing O as a

singleton and from C1 to C0 by choosing O as the class of all orders: C v C1 v C0.

orient:

(E ∪ {s
.
≈ t}, R)

(E, R ∪ {s→ t}) if ∃ >∈ O. ∀l→ r ∈ R ∪ {s→ t}. l > r

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s←R u→R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s
.
≈ t}, R)

(E ∪ {u
.
≈ t}, R) if s→R u

compose:

(E, R ∪ {s→ t})
(E, R ∪ {s→ u}) if t→R u

collapse:

(E, R ∪ {s→ t})
(E ∪ {v ≈ t}, R) if s

=→R v

Figure 4-2: Many-ordered Knuth-Bendix Completion (C1)

The intuition behind the system C1 is that it may be considerably easier to

provide a set of orders, one of which is compatible with each intermediate system,

than to specify a single order which is compatible with all intermediate systems.

Next we investigate whether or not this restriction provides properties we desire.

4.2.1 Properties of the System C1

Since C1 v C0, soundness of C1 follows immediately from Thm. 6.

Like C0, the system C1 is finitely branching. Note that even if O has infinite

cardinality, the rule orient can only be applied to an identity in two ways (s→ t

or t→ s).

Correctness of this system has been studied previously. In particular, some

interactive completion tools, for example the Rewrite Rule Laboratory (RRL) [20]

for many years implemented a variant of this system. In RRL, the user specifies

an initial order >1, but is allowed to provide a different order >2 in the middle
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of the procedure if >2 is compatible with all the rules in the current intermediate

rewriting system. Surprisingly, it was unknown for quite a while as to whether or not

this variation was correct; Dershowitz listed it in the official Rewriting Techniques

and Applications an open problem list in 1991 [13, 14]. In 1994, however, Andrea

Sattler-Klein closed it with complicated examples that demonstrated incorrectness

[31]. In particular, it was shown that there exist theories for which Rω was not

only non-confluent for infinite executions of C1, but also non-terminating for infinite

executions and non-confluent even for finite executions. However, Sattler-Klein also

proved that finite executions of the system C1−{collapse,compose} are correct;

if the system terminates after a finite number of steps without failure, then the

resulting TRS is convergent and equivalent to the input theory. This is easy to

see, for the system has the property that the intermediate rewriting systems form

an increasing chain: R1 ⊆ R2 ⊆ . . . ⊆ Rn. First note that since no rule is ever

removed, each rule is persistent and Rω = Rn. Since by definition, there is some

reduction order compatible with the last rewriting system, then Rω is terminating.

Since the execution is fair, all nontrivial critical pairs of Rω have been added, and

so it is also confluent. Still, infinite executions of the restricted system can result in

a non-confluent Rω — an important caveat, because it implies that even the system

C1 − {collapse,compose} can not be used as a semidecision procedure for some

theories.

At first glance, it seems that this system also fails to resolve the problems

we presented while remaining usable as a theorem prover. However, because the

system C1−{collapse,compose} is correct for finite execution and is also finitely

branching, this allows the following scheme: explore all branches of the execution

tree, with branch points at applications of the orient rule. If any path from the

root leads to a finite, non-failing system, then, because all intermediate rewriting

systems are convergent, then the resulting system is a decision procedure for the

input theory.

There are two drawbacks to such a scheme, however. First, without the

rules collapse and compose, the rewriting systems produced (the convergent

completions) will be large and unwieldy, perhaps with many redundant rules. This

is in contrast to the convergent completions produced by the standard procedure

in which redundant rules are typically eliminated with the aforementioned rules.

While such a completion could still be used as a decision procedure, they do not
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yield an object of study that reveals as much about the equational theory, mitigating

its usefulness for algebraic proof mining. And second, it is not clear that such

a scheme would be useful as a semidecision procedure. Indeed, the basis of the

scheme, C1 − {collapse,compose}, is not a correct semidecision procedure. In

the next chapter, we address these issues.
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Chapter 5

Knuth-Bendix Completion with

Modern Termination Checking

But it was a neat theory, and he was in love with it. The only consolation he
drew from the present chaos was that his theory managed to explain it.

V.

We now present a modification of the standard Knuth-Bendix completion

procedure. The primary difference is that no reduction order is explicitly provided

as input, only a finite set of identities. Lacking any specific reduction order to guide

the search, we preserve convergence of each intermediate rewriting system Ri by

ensuring that some reduction order �i compatible with Ri exists. The orders �i

are constructed using terminating rewriting systems Ci, specifically as the transitive

closure of the reduction relation on Ci, written
+→Ci

. This relation is a well-founded

order exactly when the system Ci is terminating. While in the standard system C a

rule s→ t is added by orient to Ri only if s > t with the user-specified reduction

order, in the modified system the rule is added only if the addition of s → t to Ci

preserves termination. Of course, deciding termination is not possible in general. In

Chap. 6, we discuss how this test is accomplished in practice.

Figure 5-1 provides the inference rules a modification of the standard com-

pletion procedure, which we refer to as system A. A deduction of A, written

(E, R,C) `A (E ′, R′, C ′), consists of identities E, E ′ and rewriting systems R,R′

as in standard completion, and finite constraint rewriting systems C, C ′ unique to
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A. An execution α of the system A is valid if it begins with the triple (E0, ∅, ∅) and

is followed by a sequence of deductions

(E0, ∅, ∅) `A (E1, R1, C1) `A (E2, R2, C2) `A · · · ,

with E0 the set of input identities and where each deduction results from an applica-

tion of one inference rule from A. An execution α of A is equivalent to an execution

γ of C when the intermediate equations and rewriting systems are the same at each

step. A execution α of system A succeeds when E|α| = ∅ and R|α| is a convergent

rewriting system equivalent to E.

orient:

(E ∪ {s
.
≈ t}, R, C)

(E, R ∪ {s→ t}, C ∪ {s→ t}) if C ∪ {s→ t} terminates

deduce:

(E, R,C)

(E ∪ {s ≈ t}, R, C) if s←R u→R t

delete:

(E ∪ {s ≈ s}, R, C)

(E, R,C)

simplify:

(E ∪ {s
.
≈ t}, R, C)

(E ∪ {u
.
≈ t}, R, C) if s→R u

compose:

(E, R ∪ {s→ t}, C)

(E, R ∪ {s→ u}, C) if t→R u

collapse:

(E, R ∪ {s→ t}, C)

(E ∪ {v ≈ t}, R, C) if s
=→R v

Figure 5-1: Modified Knuth-Bendix Completion (A)

The rules deduce, delete, simplify, compose and collapse of A are

identical to those of C, except for the presence of the constraint system C which is

carried unmodified from antecedent to consequent. The critical difference between

A and C is in the definition of the orient rule. In the standard system C, an

identity s
.
= t of E is added to R as rule s → t only when s > t for the given

reduction order. In the modified system A, we add the rule s → t to R only when

the augmented constraint system C∪{s→ t} is terminating. The system A accepts

as input only the finite set of identities E; no reduction order is explicitly provided.
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In Sect. 5.1, we discuss the properties of the system A. We prove correctness

in two parts: first in Sect. 5.1.1 for finite executions; second in Sect. 5.1.2 for all

executions, including infinite ones.

5.1 Properties of the System A

We will now show that the system A is correct in the sense of Thm. 4; i.e., that it

is sound, that the resulting rewriting system is convergent, and finally that finite,

non-failing fair executions result in a decision procedure for the word problem of the

input identities, and infinite non-failing fair executions a semidecision procedure.

Soundness is easy to prove because A simulates the unordered system C0 which

is sound by Thm. 6. The other two properties require more elaborate arguments.

Below we present two separate arguments for the correctness of A.

First we prove in Sect. 5.1.1 that the properties hold for finite executions

only using a simulation argument, in particular that for every finite execution of

A there exists an equivalent execution of the standard system C. Because every

execution of A is mirrored by an execution of C, and C is correct, then A is also

correct. This sort of simple argument is exactly the reason Bachmair went to the

trouble to formulate the standard completion procedure as an inference system and

prove it correct: most variations can then be proved correct by showing that they

simulate the standard system. Unfortunately, as we will see, our modified system is

too much of a departure to rely on simulation alone to prove it correct for infinite

executions.

The second proof of correctness in Sect. 5.1.2, which works for finite or infinite

executions, also relies internally on a simulation argument, but is more complicated.

In this proof, we perform a simulation opposite to the one used in the proof of cor-

rectness for finite executions: we show that for every execution of the original system

C there exists an equivalent execution of the modified system A. We then show that

such an execution is actually constructed, so that for any set of identities that can

be completed using the system C an equivalent execution of A will be made. This

proof technique does not rely on the finiteness of executions, however, and so makes

the first proof technically superfluous. We include it here for instructive reasons

only, as it illustrates nicely the limitations of completion correctness arguments via

simulation.
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5.1.1 Finite Correctness

It is easy to see that termination of Ci is invariant over i; no rules are ever simplified

or removed, and a rule is only added if it preserves the termination property. The

following lemma states that for each intermediate rewriting system in an execution

α of A, there exists a reduction order compatible with it. We write �i for
+→Ci

, the

transitive closure of the reduction relation for Ci.

Lemma 5. Let α be a finite execution of the system A. Then for all l → r ∈ R|α|,

l �|α| r.

Proof. By induction on |α|. The claim is vacuously true when |α| = 0. For |α| = k

with α = α′ `A (Ek, Rk, Ck), we assume l �k−1 r for all l → r ∈ Rk−1. If the final

state of α is due to an instance of the rule deduce, delete, or simplify, then

Rk = Rk−1, Ck = Ck−1 and l �k r for all l → r ∈ Rk by IH. If the final state of α

is due to an instance of the rule collapse, then Rk ⊂ Rk−1, Ck = Ck−1 and again

l �k r by IH. If the final state of α is due to an instance of the rule compose, then

assume for contradiction that for some l → r ∈ Rk = R ∪ {s→ u} we have l �k r.

It cannot be that l → r ∈ R, because Ck = Ck−1 and by IH l �k−1 r, so l �k r. So

l = s and r = u, and s �k−1 u. But s �k−1 t �k−1 u, so s �k u, a contradiction.

Finally, assume the final state of α is due to an instance of the rule orient. Then

Rk = Rk−1 ∪ {s → t} and Ck = Ck−1 ∪ {s → t}. For all l → r ∈ Rk−1, we have

l �k−1 r and so l �k r. Otherwise, l = s and r = t, and by definition of the

transition, s �k t.

In standard Knuth-Bendix completion, a single reduction order is provided

by the user. Therefore, to show correctness of our modified completion procedure, it

is necessary to exhibit one reduction order which is compatible with all intermediate

rewriting systems. For finite executions, we can use the reduction relation of the

final constraint rewriting system, augmented by each application of the rule orient.

The constraint systems form an increasing chain, and so the induced reduction order

is refined at each step and compatible with all prior orientations.

Lemma 6. Let α be a finite execution of the system A. Then for all i ≤ |α| and

l→ r ∈ Ri, l �|α| r.

Proof. By induction on |α|. The claim is vacuously true for |α| = 0. For α = α′ `A
(Ek, Rk, Ck), we assume l �k−1 r for all l → r ∈ ∪i<kRi. Since Ck−1 ⊆ Ck, then by
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definition of the � orders, s �k−1 t implies s �k t. So for any i < k and l → r in

Ri, l �k r by IH. Finally, for l→ r ∈ Rk, we have l �k r by Lem. 5.

The preceding lemma shows that the modified completion procedure can be

considered to use only a single reduction order throughout any execution. This is

important because completion is not generally correct when reduction orders are

changed during execution, even if each is compatible with the immediate interme-

diate rewrite system. This was an open problem in the rewriting community [14],

eventually solved by Sattler-Klein [31]. A single reduction order also allows the

convenience of proving partial correctness by simulation of a standard completion

procedure.

Theorem 7 (A v C). Let α be a finite execution of the system A. Then there exists

an equivalent execution γ of C using reduction order �|α|.

Proof. By induction on |α|. We construct an execution γ of C that uses �|α| as the

given reduction order. The beginning execution is α = (E0, ∅, ∅), which translates

trivially to γ = (E0, ∅). Otherwise, α = α′ `A (Ek, Rk, Ck) and let γ = γ′ `C
(Ek, Rk). By the IH, γ′ satisfies the claim for α′. We show γ is a valid execution

given the inference rules of C. If the final deduction of α results from any of the

rules of A other than orient, then the deduction is valid in γ by definition of

the corresponding rule of C. Otherwise, orient produces the final deduction with

Rk = Rk−1 ∪ {s → t}. Lemma 6 shows that s �|α| t for all s → t ∈ Rk, so orient

is a valid deduction in γ.

Theorem 8 (Finite Correctness of A). Let α := (E0, ∅, ∅) `A (E1, R1, C1) `A
(E2, R2, C2) `A · · · be a finite, non-failing, fair execution of the system A.

1. R|α| is equivalent to the set of input identities E0;

2. R|α| is convergent; and

3. The word problem for E0 is decidable.

Proof. The first part of the theorem follows from Thm. 6, the soundness of the

unordered system C0. The second and third parts follow from Thm. 7, an equivalent

execution of C is constructable from α using the reduction order �|α|.
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We can now see why the preceding simulation argument fails for infinite

executions: we must be able to construct the reduction order �|α|. We have no

trouble doing this for finite orders. At each step of the execution, �|α| is a reduction

order, though it is refined after each application of an orient rule. For finite

executions, this incremental refinement provides no trouble; at each step, the order

is a well-founded reduction order, and remains so until the procedure halts. The

problem is that for infinite executions, this unending refinement of the order can

prevent it from being well-founded.

The particular problem is that termination of the infinite union of the in-

termediate constraint systems does not follow from termination of the individual

systems. This is because in general the union of an infinite number of finite, termi-

nating rewriting systems is not itself terminating. For example, consider the family

of rewriting systems Rj = ∪0≤i≤j{fgif → fgi+1}. For any k ∈ N it is easy to see

that ∪0≤j≤kRj is terminating. But it is not the case that ∪j∈NRj is terminating, for

it contains the infinite derivation ff → fgf → fggf → · · · .

Instead, it must be shown in a proof of correctness that includes infinite

executions that some successful branch of execution always exists, and that it will

always be found in the search for a completion. In the next section, we make such

an argument.

5.1.2 Total Correctness

We begin by showing a sort of completeness for our procedure with respect to stan-

dard Knuth-Bendix completion. Namely, for any successful execution of the stan-

dard completion procedure C there exists a corresponding execution of the modified

procedure A with the same deductions. This will be used in a later argument, and

also shows that our method can, with the proper nondeterministic choices, construct

decision procedures for any theory that is decidable by the standard method.

Theorem 9 (C v A). For any valid execution γ of C with reduction order >, there

exists an equivalent valid execution α of A. Furthermore, C|α| ⊆> and R|α| ⊆>

Proof. By transfinite induction on |γ|.

• In the base case, γ0 = (E0, ∅) by validity, and so α0 = (E0, ∅, ∅). These

executions are clearly equivalent, α is valid, and also ∅ ⊆>.
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• In the step case, γ has length k + 1, γk = (Ek, Rk) and extends γ′ of length k.

By IH there exists an execution α′ that satisfies the claim for γ′, including that

Ck−1 ⊆>. Let Ck = Ck−1 if the final deduction is the result of any rule except

orient, and Ck = Ck−1∪{s→ t} otherwise, with {s→ t} = Rk−Rk−1. Now

let α extend α′ such that αk = (Ek, Rk, Ck). This is clearly equivalent to γ,

and we claim this is a valid execution of A. This is trivial for rules other than

orient, since their side conditions do not mention the constraint systems.

Otherwise, s > t and
+→Ck−1

⊆> which implies Ck ⊆>.

• In the limit case, |γ| is a limit ordinal, and gamma is a valid extension of the

executions γλ for all λ < |γ|. By IH there exist valid executions α′ of A for all

λ < |γ|, and also that Rλ ⊆> and Cλ ⊆>. Let α be an extension of all α′ as

above such that αλ(
⋃

κ<|γ|
⋂

κ≤ι<|γ| Eι,
⋃

κ<|γ|
⋂

κ≤ι<|γ| Rι,
⋃

ι<|γ| Cι). By defini-

tion of the persistent sets,
⋃

κ<|γ|
⋂

κ≤ι<|γ| Eι := Eω and
⋃

κ<|γ|
⋂

κ≤ι<|γ| Rι :=

Rω, so α is equivalent to γ. For ι < |γ| we have Rι ⊆> and Cι ⊆ by IH. It

follows easily that that
⋃

κ<|γ|
⋂

κ≤ι<|γ| Rι ⊆> and
⋃

ι<|γ| Cι ⊆>.

The above theorem demonstrates the existence of a successful execution of

A for every successful execution of C, including infinite ones. It also implies by

Thm. 3 that the rewriting systems R and constraint systems C are terminating

because their rules are compatible with the reduction order >. But note that that

the rule orient in A can orient an equation s ≈ t in either direction when both

C ∪ {s→ t} and C ∪ {t→ s} are terminating systems. Consequently, an execution

of A as defined above will fail if a poor decision is made during orientation. The

ability to construct a successful execution relies on a non-deterministic orientation

choice. Deterministically, an execution of A becomes a binary tree in which each

node is an instance of the rule orient. In practice, we must search for a successful

execution. We ensure discovery of such an execution (corresponding to a path from

the root (E0, ∅)) by advancing each of the individual executions in a fair manner.

We now prove the main theorem of the thesis, correctness of the system A,

by leveraging the fact that C v A.

Theorem 10 (Correctness of A). If there exists a non-failing fair execution γ :=

(E0, ∅) `C (E1, R1) `C (E2, R2) `C · · · of the system C, then there is a deterministi-

cally constructable execution α of the system A with the following properties.
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1. R|α| is equivalent to the set of input identities E0;

2. R|α| is convergent; and

3. If Rω is finite, then the word problem for E0 is decidable. Otherwise, the

execution yields a semidecision procedure for ≈E0.

Proof. The first part follows from the soundness of C0 in Thm. 6 and that A v C.
For the other parts, consider that by Thm. 9 for every fair, non-failing execution γ

of the system C there exists an equivalent execution α of the system A. Because

the identities and rewriting systems of the execution α are the same as those in γ,

it follows that α satisfies that second two properties of the theorem.

Thm. 9 is nonconstructive, however, in that it relies on the ability to make a

nondeterministic choice in case a particular identity can be oriented in both direc-

tions. If we actually had an execution γ of the system C on hand, we could choose

the correct orientation based on that. We do not, however, and so we simply try

both orientations. Because each orientation yields only two choices, if we explore

all possible orientations then we can think of the executions as a finitely branching

tree. By exploring the branches of this tree fairly, we will eventually encounter the

branch that contains the system Rω of γ because, as Thm. 9 demonstrates, some

branch of the tree is exactly α, and α is equivalent to γ.

It is interesting to note that termination of the intermediate rewrite systems

is irrelevant to the proof except that without termination it would not be possible

to explore the branches fairly. Because each intermediate rewriting system is ter-

minating as in the standard completion procedure, we can explore the branches of

the tree by visiting each execution individually, executing the completion as though

we were only performing a single one. If the individual rewriting systems were

not terminating, we might encounter an infinite reduction when computing normal

forms in critical pairs calculations. Then again, if we could correctly guess which

branch contained the execution α equivalent to γ, then we would not have to be

concerned about termination, as Thm. 9 proves that the rewriting systems are in

fact terminating.
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5.1.3 Practical Correctness

Given the definition of the system A and proof of its correctness, one might rightly

ask whether or not we have assumed too much. Indeed, in the definition of the

orient rule, we assume the ability to determine whether or not an arbitrary rewrit-

ing system is encompassed by some reduction order (i.e., is terminating). But

as we admitted in Chap. 2, this question is undecidable in general. What then

does this new variant of Knuth-Bendix completion practically offer, when no such

termination-checking oracle exists?

Consider again Thm. 9, and note that an invariant of the execution α of

system A constructed is that the intermediate rewriting and constraint systems are

always included in the input reduction order >. Also consider that while termination

checking is undecidable in general, there are many decidable classes, and some that

are even efficiently decidable. It follows then that as long as the given reduction

order > is in some decidable class, then Thm. 9 is provable and the equivalent

execution α is constructable without an oracle. This means that the system A can

reliably construct convergent completions for all those theories in which termination

is practically checkable.

The same statement holds for Knuth-Bendix completion though. Whenever

there is a theory which is provably compatible with some reduction order, a con-

vergent completion can be constructed by Thm. 5. The difference however is not

only that these proofs are hard to construct, but that from the user’s perspective,

it is difficult to guess what should even be proved (i.e., in what reduction order

is a theory contained). In the modified algorithm, this difficulty is swept aside by

searching for an order and letting a tool, a termination checker, build proofs as the

search proceeds. It follows that if, in an implementation of the new procedure, a

termination checker is used that can decide termination using some orders O, then

that implementation of the new procedure can decide all theories that admit an or-

der in O. A major contribution of the new algorithm is that, by offloading the work

of proving termination to a separate tool, the theoretical capability of completion

procedures are more readily achieved in reality than with the standard technique.
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Chapter 6

Implementing Completion with a

Termination Checker

A kind of tapestry . . . spilled out the slit windows and into a void, seeking
hopelessly to fill the void: for all the other buildings and creatures, all the
waves, ships and forests of the earth were contained in this tapestry, and the
tapestry was the world.

The Crying of Lot 49

Our modified Knuth-Bendix completion procedure is implemented in a 7000-

line Ocaml program called Slothrop.1 Theories are read from files in the standard

format of the TPTP (Thousands of Problems for Theorem Provers) project [35]. The

source grew from an older implementation of the standard completion procedure by

Franz Baader and Tobias Nipkow [1] and makes use of data structures programmed

by Jean-Cristophe Fillâtre [16]. The strategy for executing the completion procedure

in Slothrop was developed in 1981 by Girard Huet [19], and is commonly referred

to as Huet’s algorithm. Ten years later, Bachmair used the inference system C [2]

to prove Huet’s algorithm correct.

1Slothrop is available online at cl.cse.wustl.edu.

cl.cse.wustl.edu
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6.1 Huet’s Completion Strategy

Huet’s algorithm proceeds iteratively by choosing identities from the current set Ei,

reducing them to normal forms using the current rewriting system Ri, orienting them

(if possible), and finally adding the oriented rules to the next set of rewrite rules.

A rewrite rule is then chosen from this new set and used to calculate critical pairs

against the other rewrite rules. These critical pairs are added to the set of identities,

and the chosen rule is marked, meaning that it will not again be chosen to generate

critical pairs. If during execution all rules become marked and all identities are

oriented, then the procedure has succeeded and the current rewrite rules constitute

a convergent completion of the input identities.

Slothrop implements Huet’s algorithm essentially as specified, the major

difference being with the orientation step. Huet’s algorithm as originally specified

assumes the presence of a reduction order > used for orienting identities. As each

identity s ≈ t is considered, Huet’s algorithm checks that s > t and, if so, adds the

rule s→ t to the next intermediate set of rewrite rules. If s ≯ t but t > s, then the

rule t → s is added. If otherwise s ≯ t and t ≯ s, then the execution fails. In the

new completion procedure, however, there is no given reduction order, so we turn

to a termination checker.

6.2 Integration with AProVE

As discussed in Chap. 2, determining whether or not a term rewriting system termi-

nates is undecidable in general. However, modern termination-checking tools, such

as AProVE [17], succeed in proving many systems terminating or nonterminating

with almost alarming success. In our implementation, we take advantage of this

success and use AProVE as an oracle to answer queries about the termination of

constraint rewriting systems in each orientation step. If AProVE fails to prove

a system terminating or nonterminating, we treat it as a nonterminating system.

However, the array of techniques used by AProVE to show termination includes

recursive path orders among many others, so there is little difficulty recognizing the

termination of systems compatible with such an order. Furthermore, since AProVE

is able to prove termination of systems that are not compatible with a path order,

Slothrop can find convergent completions of theories other modern completion
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tools (e.g., Waldmeister [24]) cannot. One example of such a theory is given in

Chap. 7.

Integrating a separate termination checker also provides separation-of-concerns

benefits for theorem proving. As the power and speed of the AProVE tool, so

does Slothrop. This also provides the opportunity to leverage other termination

checkers with different properties (e.g., one which is faster but less powerful might

be useful for simple theories).

6.3 Heuristic Search

Another important aspect of our implementation is the manner in which different

branches of executions are explored. When AProVE determines that some identity

s ≈ t can be oriented either way, both branches are explored. Implementation of

this exploration is critical to performance. The binary tree of executions is poten-

tially infinite, and branches whenever orders exist that are compatible with both

orientations of an identity.

A breadth-first search of the branches is sufficient for completeness; if there is

some successful execution corresponding to a branch on the tree, it will eventually be

expanded. In practice, however, this strategy spends too much time in uninteresting

areas of the search space, and prevents Slothrop from finding completions for any

but the most modest theories in a reasonable amount of time. A more effective

strategy is a best-first search in which the next execution to advance is chosen

based on a cost function defined by

cost(E, R,C) := size(C) + size(E) + size(Γ(R)),

where Γ(R) denotes the set of all nontrivial critical pairs of R. With this strategy,

size(C) can be thought of as the cost to reach the current intermediate step in the

execution and size(E) + size(Γ(R)) as a heuristic estimate for the cost to find a

convergent completion.
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6.4 Limitations

Even the refined heuristic described above leaves something to be desired in terms

of performance. While it has been successful in completing systems of modest size

(described in Chap. 7), performance is certainly an issue for larger systems. This

is, to some extent, the nature of working on undecidable problems, but other tools

have set impressive benchmarks that Slothrop cannot generally match.

We have done some experimentation with different heuristics, most of which

show more promise on some theories and less on others. A variation on the above

heuristic that factors the size of only non-trivial critical pairs appears occasionally

advantageous. We have also tried heuristics that sacrifice completeness of the algo-

rithm. For example, it seems occasionally useful to note when AProVE needs a

particularly long time to prove termination of a rewriting system, and one heuris-

tic tends to avoid such a system. Any heuristic that takes timing information into

account is worrisome for a variety of reasons, not the least of which that search is

guided mainly toward easy parts of the space of orientations.

Unfortunately, the heuristics used by Slothrop to search for completions

are just that: heuristic. Decisions are made based on semi-educated guesses, and not

on solid principals. This limitation remains a roadblock for Slothrop’s progress,

and any other implementation of the algorithm. An answer to the question of what

makes a partial completion similar to a final completion would, we believe, yield

great progress.

Another issue is that in some cases AProVE is unable to prove termination

of a system with either orientation of a particular identity. Here, we do not discard

the system entirely, but attempt to orient other identities in hope that the previously

unorientable identity will simplify into an orientable (or trivial) one. In the current

implementation of Slothrop, treatment of such systems is delayed until others are

explored that can be proved terminating or nonterminating. Again, this heuristic

has proved tentatively suitable for simple systems, but a better grasp of the problem

is needed to deal with difficult theories efficiently.
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Chapter 7

Results and Performance

Not outward, into the simple Mysteries of an open Sea, but inward, — branch-
ing, narrowing, compressing towards an Enigma as opaque and perilous as any
in my Travels.

Mason & Dixon

Slothrop is capable of completing a variety of theories fully automatically

in a modest amount of time. For example, the standard ten-rule completion of the

group axioms is discovered in under three seconds on a modern desktop PC. On

the way to this completion, it encounters 27 orientations, roughly half of which are

not trivially nonterminating and must be verified with AProVE. On the execution

branch that leads to a completion, however, only two orientation steps are required.

Slothrop automatically completes the theory of groups plus a single endomor-

phism (GE1, shown in Fig. 7-1) in under ten seconds, requiring about a hundred

calls to AProVE. The completion discovered is shown in Fig. 7-2.

1 ∗ x ≈ x (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

x−1 ∗ x ≈ 1 h(x ∗ y) ≈ h(x) ∗ h(y)

Figure 7-1: The Theory of One Group Endomorphism (GE1)

A large theory with 21 identities corresponding to propositional proof simpli-

fication rules [38] is considerably more difficult to complete because of the number

of orientations. Nonetheless, Slothrop does find a completion without user inter-

vention after about seven hours and three thousand calls to AProVE.
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x ∗ 1→ x x ∗ (y ∗ z)→ (x ∗ y) ∗ z

1 ∗ x→ x (x ∗ y)−1 → x−1 ∗ y−1

x ∗ x−1 → 1 (x ∗ y) ∗ y−1 → x

x−1 ∗ x→ 1 (x ∗ y−1) ∗ y → x

1−1 → 1 h(x)−1 → h(x−1)

h(1)→ 1 h(x) ∗ h(y)→ h(x ∗ y)

(x−1)−1 → x (x ∗ h(y)) ∗ h(z)→ x ∗ h(y ∗ z)

Figure 7-2: Convergent Completion of GE1

The majority of Slothrop’s running time is spent waiting for calls to AProVE.

Although we have encountered many examples of rewriting systems which AProVE

can show terminating after a prohibitively long amount of time, in practice we have

found that it is uncommon for such difficult systems to appear on the branch of a

successful execution. Most calls to AProVE that occur on successful branches re-

turn in under 2 seconds. Figure 7-3 shows the time for each call to AProVE while

completing GE1, in which most calls require fewer than 0.25 seconds and all fewer

than 0.5 seconds. Completeness of Slothrop can be exchanged for performance

enhancements by calling AProVE with a short timeout. The above completions

were obtained with a 5-second timeout.
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7.1 New Completions

Since Slothrop is not restricted to a given reduction order, it can also search for

multiple completions of a given theory. In the implementation, once a completion

is found in some corner of the space of orientations, the search continues, looking

for more in other parts of the space that have not already been proved unworthy of

consideration. This has turned out to be an interesting side effect of the algorithm.

For example, it finds two completions of the basic group axioms corresponding to

both orientations of the associativity rule. It also finds four completions of GE1

corresponding to the orientations of the associativity endomorphism rules. It also

discovers a number of other larger completions of the same theory in which endo-

morphism are oriented differently depending on the context.

Shown in Fig. 7-4 below is a family of convergent completions for the structure

GE1 discovered by Slothrop. This family is parametrized by the natural number

k that controls the size of the system and the shape of the rules in a predictable

way. Slothrop discovered the first four completions in this family, from which the

pattern was gleaned. It remains to be proved that all members of the family shown

in Fig. 7-4 are completions of GE1.

x ∗ 1→ x x ∗ x−1 → 1 1−1 → 1

1 ∗ x→ x x−1 ∗ x→ 1 h(1)→ 1

(x−1)−1 → x h(x)−1 → h(x−1) (x ∗ y)−1 → x−1 ∗ y−1

(x ∗ hk+1(y)) ∗ hk+1(z)→ x ∗ hk+1(y ∗ z)

(x ∗ hi(y)) ∗ hi(y−1)→ x for all 0 ≤ i ≤ k

(x ∗ hi(y−1)) ∗ hi(y)→ x for all 0 ≤ i ≤ k

x ∗ (hi(y ∗ z))→ x ∗ (hi(y) ∗ hi(z))) for all 0 ≤ i ≤ k

Figure 7-4: Convergent k-completions of GE1

Additionally, a convergent completion can be obtained by Slothrop for the

theory of two commuting group endomorphisms (CGE2), shown in Fig. 7-5. The

convergent completion is shown in Fig. 7-6. The reader may verify that no RPO

or KBO is compatible with the theory (in particular, the final commutativity rule).

A convergent completion was recently obtained for the first time by hand [33] —

rules derived from critical pairs were manually oriented, local confluence checked,
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and termination of the resulting system verified by AProVE. This is a completely

new result and we consider it to be Slothrop’s defining achievement.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(x ∗ y) ≈ f(x) ∗ f(y) g(x ∗ y) ≈ g(x) ∗ g(y) f(x) ∗ g(y) ≈ g(y) ∗ f(x)

Figure 7-5: The Theory of Two Commuting Group Endomorphisms (CGE2)

(x ∗ y) ∗ z → x ∗ (y ∗ z) f(1)→ 1

x−1 ∗ x→ 1 (f(x))−1 → f(x−1)

x ∗ x−1 → 1 f(x) ∗ f(y)→ f(x ∗ y)

x ∗ (x−1 ∗ y)→ y f(x) ∗ (f(y) ∗ z)→ f(x ∗ y) ∗ z

x−1 ∗ (x ∗ y)→ y g(1)→ 1

(x ∗ y)−1 → y−1 ∗ x−1 (g(x))−1 → g(x−1)

1 ∗ x→ x g(x) ∗ g(y)→ g(x ∗ y)

x ∗ 1→ x g(x) ∗ (g(y) ∗ z)→ g(x ∗ y) ∗ z

1−1 → 1 f(x) ∗ g(y)→ g(y) ∗ f(x)

(x−1)−1 → x f(x) ∗ (g(y) ∗ z)→ g(y) ∗ (f(x) ∗ z)

Figure 7-6: Convergent Completion of CGE2

Using unfailing completion [3], Waldmeister is able to complete CGE2

as well, but constructs a larger system which is ground-confluent only — i.e, it

contains identities as well as rewrite rules. This system is often less helpful than

a small convergent completion, for example, in characterizing the normal forms of

the system for algebraic proof mining [38]. Furthermore, Waldmeister does not

appear to be able to find this ground-convergent completion fully automatically; a

carefully selected Knuth-Bendix order (given in [33]) must be provided. Slothrop

is able to find the convergent completion with no input from the user other than the

theory itself. (This still takes more than an hour, however, even using the heuristic

described in Chap. 6.)
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Chapter 8

Conclusion

We have to find meters whose scales are unknown in the world, draw our own
schematics, getting feedback, making connections, reducing the error, trying
to learn the real function . . . zeroing in on what incalculable plot?

Gravity’s Rainbow

We have presented a new variant on Knuth-Bendix completion which does

not require the user to provide a reduction order to orient identities. The procedure

is correct for infinite executions and practically complete for decidable classes of

orderings. An implementation of the procedure, called Slothrop, can find conver-

gent completions for a number of interesting theories without any input from the

user, including one (CGE2) which cannot be obtained by any existing tool.

8.1 Related Work

Another approach to completion, developed by Bachmair along with Nachum Der-

showitz and David Plaisted, is called unfailing completion [3]. The basis of unfailing

completion is that reduction orders are total for ground terms (i.e., any two terms

without variables are comparable), but not in general (e.g., no reduction order can

orient x ≈ y). Unfailing completion also leverages the observation that, when using

the procedure as a semidecision procedure to solve the word problem and decide

whether two terms are identified, the two terms in question can always be ground
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terms (made so by replacing variables with fresh constants). In an unfailing com-

pletion procedure then, the user provides a reduction order, but if at some point in

the execution an identity cannot be oriented, the execution does not fail. Instead,

the unorientable identity is remained. These identities are used just like rewrite

rules in normalizing the terms for which we wish to decide identity. It is possible to

use these unoriented identities for normalizing terms because when instantiated for

ground terms, the reduction order provided is total, and so is guaranteed to have

some orientation (even if it does not orient the identity uninstantiated).

Because identities are allowed to remain throughout an execution of an un-

failing completion procedure, the completions that are produced are not necessarily

convergent. However, they are still useful because the completions are ground con-

vergent; confluent and terminating for when used to rewrite ground terms. Unfailing

completion is a well understood variant of completion and is widely implemented.

Besides its strong correctness properties, it is also efficient in practice.

The primary drawback of unfailing completion is its inability to reliably pro-

duce convergent completions. Although the ground convergent completions can

be used to solve the word problem for arbitrary terms, the completion itself does

not shed further light on the equational theory as a convergent completion does.

Convergent completions are necessary for algebraic proof mining, in which fast al-

gorithms are developed for analyzing proofs based on the normal forms of a comple-

tions [34, 38]. Ground convergent completions do not have easily analyzable normal

forms, and hence cannot be used for algebraic proof mining.

There has been some previous interest in combining termination checkers

with completion. Claude Marché and Xavier Urbain wrote about combining a spe-

cial technique for proving termination called dependency pairs with Knuth-Bendix

completion [26]. This work is limited to the use of dependency pairs technique, and

they also mention as future work the difficulty of finding suitable orders:

We have seen that the use of the dependency pair criterion allows the

use of a wider class of term orderings, but it means that it is getting

more difficult to build systems that will try to find a suitable ordering.

Very recently, Pierre LeScanne suggested by personal communication that

some work has been done similar to ours in the early 1980’s. We have not yet been

able to verify this, but include citations to his suggestions for posterity [15, 22, 23].
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8.2 Future Work

A primary goal of future work is to increase the efficiency of Slothrop. Basic

heuristic search techniques have made the algorithm feasible for many theories, but

it is still prohibitively slow for large theories — completion of the CGE3 has not yet

been achieved. The performance of Slothrop also does not approach that of well-

tuned equational theorem provers such as Waldmeister for most tasks. Modern

search and learning techniques, e.g. as developed for SAT, may be applicable to the

search for a convergent completion. Finally, we would like to explore extensions

to termination checking techniques to allow proofs to be constructed incrementally.

This may significantly decrease the amortized time to prove a series of term rewriting

systems terminating, since Slothrop tends to make a number of successive calls

on rewriting systems whose rules form increasing chains.
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