
Free Variable Types1

Edwin Westbrook
ewestbro@cse.wustl.edu

Department of Computer Science and Engineering,
Washington University in Saint Louis

Saint Louis, MO USA

Abstract

Higher-order abstract syntax (HOAS) has been shown to be useful in formal systems
for reasoning about programming languages. How to recurse over HOAS represen-
tations, however, is a well-known problem. This is because, in most current systems,
it is generally impossible to recurse on the body of a λ-abstraction without creating
a fresh variable, which must itself be bound. This in turn makes it impossible, for
instance, to extract first-order data from higher-order data. One previous approach to
this problem has been to allow the creation of fresh variables that are not bound to
pass to λ-abstractions as long as they can be shown not to escape their scope. Current
systems cannot show these do not escape their scope without a runtime check. In this
paper, we propose a novel type system that allows explicit reasoning about free vari-
ables. This type system can ensure these fresh variables do not escape their scopes
without runtime checks. The usefulness of this approach is shown with a simple
example.

1 INTRODUCTION

Higher-order abstract syntax (HOAS) has been shown to be useful in formal sys-
tems for reasoning about programming languages. It allows the user to represent
variable bindings in the object language by using λ-abstractions in the meta lan-
guage. This in turn means the user need not reason directly about name-related
problems such as α-equivalence, as these are already handled by the meta lan-
guage.

Meta language variables, however, are slippery things. Being variables, they
can be replaced at any time via a substitution, and can thus not be used in any way in
which substitution would be ill-typed. In addition, the meta language must ensure
that its variables do not show up where they are not expected. This is because
under the Curry-Howard isomorphism a free variable is a proof by assumption of
the proposition for its type. Unexpected free variables then become unexpected
assumptions, making the logic of a formal system inconsistent. Thus the meta
language must be restrictive about the use of its variables and can only let the user
use them when it can ensure they will not end up free outside of a λ that binds
them.

1This work was partially supported by NSF grant CCF-0448275

For most current languages supporting HOAS, this restriction is conservative:
variables are not allowed outside the scope of a λ. This is a burden because, in
order to access the body of a λ, the user must pass that λ a term of the appropriate
type. The only general way to make a dummy term of the appropriate type is to
use a fresh variable, which, again, must be bound. This means the user cannot in
general perform any operations on a λ outside the scope of some other λ of the
same type. This in turn means it is impossible to write many simple functions on
HOAS data, such as the function that computes the size of of a piece of data, as the
size of the bodies of λs cannot escape to the top level.

In this paper we investigate a meta language called the λFV -calculus that re-
laxes this condition. The λFV -calculus allows the user to create fresh variables to
pass to λ abstractions, using the construct νx : T.M. This construct creates a fresh
variable x of type T for use in M and then returns M. (The name ν is pnemonic
for a “new” variable. It comes from the ∇-calculus of Schürmann et. al. [12].) The
fresh variable x can then be used to access the body of a λ in M.

In order for a program written in such a system to be safe, it must satisfy three
conditions above and beyond standard type checking1:

1. Variable Safety: No variable created by a ν can escape the scope of that ν.

2. Coverage: Pattern matches must cover all possible forms of the argument
they match against so that it is not possible for an input to “fall through”
a pattern.2 Coverage of a pattern match depends on the types of free vari-
ables in its argument, since it must consider all possible ways in which free
variables could be used in that argument.

3. Per-Variable Data: Many functions on HOAS data require every free vari-
able of some type to have data of some other type associated with it. (This
condition is called “regular worlds” in Twelf[7].) An example of why per-
variable data is necessary is given below.

To ensure these conditions, the λFV -calculus uses a novel type system that can rea-
son about free variables. The λFV -calculus contains a free variable type modality
that captures all of the variables of a given type that might occur free in the nor-
mal form of a term. This modality specifies a list, L, that must contain all such
variables. Using this modality, the type system can ensure that a program meets
the three conditions above. For variable safety, the type system can require that
the variable, x, introduced by νx : T.M not be in any lists specified by the type
modalities of M. For coverage, the type system can ensure that all the ways free
variables in the argument to a pattern match can be used in that argument are cov-
ered by some pattern. For per-variable data, the free variable type modality also

1We do not consider here a fourth condition, termination, that is required for programs to be
considered as proofs since it is mostly orthogonal to the conditions given here

2If an input falls through a pattern in many implementations of ML, for instance, the program
immediately terminates with an error condition.

allows these lists to contain additional data associated with the variables, so that a
program can always look the variable up in L to find this data.

Note that this is a work in progress. Although the author does have an oper-
ational semantics for the calculus (which is not given here for space reasons), the
proof of type safety is not yet complete. The author does not believe there should
be any serious problems in completing it.

The rest of this document is organized as follows. In Section 2, we consider
an example motivating the need to introduce new free variables. In Section 3, we
introduce the free variable modality we will need for the λFV -calculus and show
how it enforces safety conditions 1 and 3 above. In Section 4, we discuss how the
free variable type modality of the λFV -calculus enforces coverage. In Section 5, we
formalize these ideas and give the full static semantics. Finally, we look at related
work in Section 6 and conclude and give future work in Section 7.

2 MOTIVATING EXAMPLE

In this Section, we consider the task of converting a lambda term from a HOAS
representation to a first-order representation using deBruijn indices. These two
representations are given by two different LF types, hterm and dbterm, with the
following constructors:

happ : hterm ⇒ hterm ⇒ hterm dbvar : nat ⇒ dbterm

hlam : (hterm ⇒ hterm) ⇒ hterm dbapp : dbterm ⇒ dbterm ⇒ dbterm

dblam : dbterm ⇒ dbterm

hterm uses HOAS to represent λ-abstraction, since hlam takes a meta-level func-
tion (and thus the object-level variables are represented by meta-level variables),
whereas dbterm does not.

To convert an hterm to a dbterm, we need to recurse on the structure of the
hterm, keeping track of the level, or number of variables bound by an hlam above
the current point in the recursion. When we recurse on the body of an hlam, we
will need to pass it a new variable, so we can access its body. In addition, we
will need to associate that new variable with the level of its binding site. Then,
whenever we reach a variable, we can look up the level of the variable’s binding
site and subtract this from the level of the variable, yielding the correct deBruijn
index for the variable.

The code to do this is given in Figure 1. The fun creates the recursive function
convert, which takes three arguments: term, the hterm to be converted; level, the
current binding level; and l, a list of records associating hterm variables with their
binding levels. The notation {l1 : T1, . . . , ln : Tn} is a dependent record type, where
Ti can use the labels l j for j < i as free variables. See [9] for more on dependently-
typed records. The type List T is the type of lists of elements of type T , using the
notation x :: L for adding x to the front of L and nil for the empty list.

A fun is a different sort of function from a λ-abstraction, as the bodies of λ-
abstractions are fully evaluated, whereas the bodies of a fun may have a pattern

fun convert (L : List {var : hterm,varlev : nat}, term : hterm, level : nat) →
case term of
happ t1 t2 [t1 : hterm, t2 : hterm] →
dbapp (convert L t1 level) (convert L t2 level)

| hlam F [F : hterm ⇒ hterm] →
dblam νx : hterm.(convert [var = x,varlev = level] ::L (F x) (succ level))

| u [u : var hterm] →
dbvar (minus (lookupvar L u).varlev n)

FIGURE 1. Converting HOAS to deBruijn λ-terms

match which cannot be evalutated until the arguments are known. This distinction
between “representational” and “computational” functions is present in some form
in many dependently-typed languages. The λFV -calculus distinguishes the two by
giving representational functions the type Πx : S.T (abbreviated S ⇒ T when T
does not depend on x) and and computational functions the type Πcu : S.T (abbre-
viated S ⇒c T). The λFV -calculus also distinguishes between two sorts of variable,
the computational variables, which can be bound by computational functions, and
the representational variables, which can be bound by λ and ν. Except in the ex-
ample below (where verbosity yields meaning), we use x and y for representational
variables and u for computational variables.

The key difference between the two sorts of variable is that the computational
functions can perform computation with free representational variables, but all
computational variables must be bound at the time of computation. The former
should not be substituted for until after computation has finished, whereas the lat-
ter must be bound before computation can proceed. Note that pattern contexts can
only have function variable bindings, because these variables must be bound when
the body of the pattern executes.

The body of convert pattern matches term against three possible patterns: an
application, a λ-abstraction, and a variable. The square brackets after each pattern
give the types of the pattern variables in it. The first case, for applications, simply
recurses on the subterms. The second case, for λ-abstractions, uses the ν construct
to create a fresh variable x of type hterm. This case then recurses on F x (which
is effectively the body of F , as x is fresh), incrementing the level and associating
x with the current level in L. The final case, for a variable, looks up the variable
in L using the function lookupvar and subtracts the number associated with it in
varlev (which was the level of its binding site) from the current level. In the type
of the variable u, we use the keyword var to indicate that it should only match a
meta-level variable.3

We intuitively know that convert satisfies the three safety conditions mentioned
in the Introduction. First, it is variable safe because any variable introduced by a

3Thus the variable matched against is not u itself, rather u is a variable whose contents are a
variable.

ν will eventually be matched against in a recursive call, and convert will return
a variable-free dbvar term. Second, it satisfies coverage because the only ways
of constructing terms of type hterm are either using the constructors happ and
hlam or using some free variable of type hterm. Note that convert does not satisfy
coverage when term has free variables of types other than hterm that can be used
to construct terms of type hterm, like for instance hterm ⇒ hterm. This is because
free variables of such types can be used to construct terms of type hterm, and the
pattern match does not consider such cases. Finally, every free variable matched
against has per-variable data in L, which is necessary for the call to lookupvar to
succeed. This is only true under the assumption that term in the top-level call to
convert has no free variables, i.e. that convert is only called on closed terms or
is called recursively by itself. Given this assumption, though, whenever convert

introduces a new free variable in the hlam case it always adds an entry for it into L.

3 FREE VARIABLE MODALITY

To ensure variable safety, coverage, and per-variable data, the λFV -calculus con-
tains a type modality that limits the free variables of certain types of the normal
form of a term. For expository purposes, we consider simpler versions of this
modality in this section. We first consider a version that just ensures variable safety,
and later modify it to also ensure per-variable data. The full modality that ensures
coverage is introduced in Section 4.

The simplest version of the modality is �S(L). For types S and T and list L
of type List S, a term of type �S(L)T is a term that otherwise has type T but for
which all the free variables of type S in its normal form are elements of the list L.
In particular, the modality �S(nil) ensures the normal form of a term has no free
variables of type S. We use � here because of the relation between free variables
and modal logic: if M has type �S(L)T , then for all possible substitutions of type
S for variables in L (read: all possible worlds), M will have type T . (For more on
the connection to modal logic see Nanevski et. al. [6, 5].)

In general, terms can have more than one type of free variable, so these modal-
ities can be stacked. For instance, a term with free variables x and y of types S1 and
S2 respectively might have type �S1(x :: nil)�S2(y :: nil)T . To abbreviate multiple
modalities, we use the notation φT , where φ can be any list of � modalities. We
will generally assume with this notation that φ contains all the modalities of the
type, and T contains none (at least at the top level). Since the order of the free
variables does not matter, we identify all φ up to permutations of the modalities
and the lists.

Modalities φ limit only the free variables in the normal form of a term. This
allows terms that might temporarily use a variable not mentioned in the modality as
long as the variable is not in the normal form. This is a conservative approximation:
if M : �S(L)T , the normal form of M need not actually have all the variables listed
in L free. This modality simply states that the normal form of M can have these

variables free. More importantly, the modalities on a type list the only variables the
normal form can have free that have the types mentioned in the modalities. Thus
T is a supertype of �S(L)T , as T does not impose any requirements on the free
variables of a term, while �S(L)T does. Also �S(L)T is a subtype of �S(x :: L)T ,
as the latter allows more variables to be free.

We also do not allow modalities inside modalities. For instance, the type
��S(L1)T (L2)U is not well-formed. This is because we will always allow the sub-
stitution of any term M of type T for x in any term N of type U , no matter what the
free variables of M are. Of course the modality of the resulting term will reflect
the fact that it could have the variables of M in it as well as any N had. The type
��S(L1)T (L2)U would limit the terms that could be substituted for variables in L2
depending on the free variables of their normal forms. By the same token, it does
not make sense to have a λ-abstraction with type (�S(L)T) ⇒ U . On the other
hand, if a λ-abstraction has a body whose normal form has some variables free in
it, the normal form of that λ-abstraction itself has those variables free in it, so the
types T ⇒ (�S(L)U) and �S(L)(T ⇒U) are equivalent.

In contrast, computational functions like convert can affect the free variables
of a term. In the case of convert, term can have free variables of type hterm, but the
returned value will not have these free. Because of this, the types of computational
functions can mention modalities in both their arguments and their bodies. For
instance, convert has type

ΠcL : {var : hterm,varlev : nat}.
Πcterm : �hterm(projvar L)hterm.
Πclevel : nat.�hterm(nil)

where projvar L is the function that returns a list of var fields of the records in L.
Although the �S(L) modality is sufficient to ensure variable safety - since the

typing rule for νx : S.M can simply require M to have type �S(L)T for any L not
containing x - it is not sufficient for our needs for three reasons. First, because of the
dependencies that arise in HOAS functions, it is useful to be able to reason not only
about all variables of one specific type, but also about all variables of types that are
substitution instances of a general type. For instance, consider a type, sterm, for
the terms of the simply typed lambda calculus. Such a type might be indexed by
stype, i.e. sterm A would be a type for every stype A. In this scenario, we might
be interested in all free variables of type sterm x for any x. The second reason the
current modality will not be sufficient is that because of per-variable data we will
require some easy method of associating data with each variable. Finally, it will be
useful below to specify multiple lists that together contain all the free variables of
specified types.

We thus expand the � modality to

�Γ`S(l1;L1| . . . |ln;Ln)

where Γ is a context (list of variables and their types), each li is a record label, and
each Li is a list of type List RTi for some record type RTi that contains the label

li. This modality specifies that every free variable whose type is a substitution
instance of S (substituting for variables in Γ) occurs, for some i, in field l i of some
record R occuring in the list Li. The vertical bars | in the modality indicate the
disjunctive nature of the list/label combinations. For example, if a function were
to recurse on terms of type sterm with free variables of type sterm x for any stype,
but had data of type nat associated with variables of type sterm A, it would use the
modality

�x:stype`sterm x(trm;L1|trm;L2)

where L1 would have type List {t p : stype, trm : sterm t p} and L2 would have type
List {t p : stype, trm : sterm t p,data : nat}. To specify that all free variables of type
sterm A had data of type nat, we would have to nest the modalities:

�x:stype`sterm x(trm;L1)�·`sterm A(trm;L2)

so that all variables of type sterm A would also be in L2. The first modality here
would then also require that all variables of type sterm x be in L1, including those
of type sterm A in L2. To allow variables of type sterm A to not appear in L1, we
would have to use the modality

�x:stype`sterm x(trm;L1|trm;L2)�·`sterm A(trm;L2)

to allow these variables which appear in L2 to satisfy the first modality. Each
modality must be satisfied irrespective of what other modalities are present. The
full list of modalities can be considered as a conjunction of the individual modali-
ties, while the set of lists inside a modality is a disjunction of the individual lists.

This expanded modality requires a new pattern matching construct to match
against the data associated with a variable. The syntax

(̂l;L; [. . . , l = u, . . .])

matches against a variable at label l in list L. The record given as the third param-
eter toˆmatches against the record in L containing the free variable, which will be
substituted for u when this pattern matches it. Having the whole record present in
the pattern allows case splitting in pattern matches on the per-variable data. Note
that the field l in this record must always contain a variable to hold the free variable
matched against. (It is a variable that names a variable.) Since u matches a free
variable, it can be assumed to satisfy the modalities this free variable would match,
namely �S(u :: nil) (where S is the type of u) and any modalities that have types
different than S.

Using the refined � modality and theˆ construct, the variable case for convert

can be rewritten

(̂var;L; [var = u,varlev = vl]) [u : hterm,vl : nat] →
dbvar (minus vl n)

to make explicit the association between the variable matched against and L. The
resulting type of convert is

ΠcL : {var : hterm,varlev : nat}.
Πcterm : �·`hterm(var;L)hterm.
Πclevel : nat.�·`hterm(nil).

Note that level cannot contain any free varables of type nat, as the minus function
would not work in this case.

4 COVERAGE

In this section, we examine issues of coverage that come up when free variables
are allowed. As mentioned in Section 1, coverage is the property that all possible
forms of the argument of a pattern match are matched by some pattern. If a pattern
match does not satisfy coverage, then the program containing it is in some sense
not correct, as certain input data could cause the pattern match to fall through all
of its cases and cause a run-time error. Since one of the points of using dependent
types with HOAS is to have verified programs, this is an important property.

We give an informal description of coverage checking here. For more details,
see [10].

Coverage is checked by case splitting on the computational variables in the ar-
gument of a pattern match. More specifically, if the argument to a pattern match
does not already match one of the patterns (which is hardly the norm), the com-
putational variables it contains are split into subcases, one for each constant or
(λ-bound) variable that could possibly be used to construct a term of the type of
that computational variable. For instance, checking coverage of convert requires
splitting the variable term into cases for happ, hlam, and for free variables of type
hterm. Since these are the only possible ways of constructing a term of type hterm,
term must match one of them, and so if they are all covered by the pattern match
(which they are in the case of convert), so is term. If checking coverage of a pat-
tern match requires splitting some computational variable u of type T , the pattern
match is said to split u over T . Either u or T can be elided, in which case the pattern
match is said to split u or split over T .

Splitting over function and record types reduces to splitting over base types.
Splitting over the type Πx : S.T requires splitting over T with the extra variable
x of type S, since a λ-abstraction can use the variable it introduces in its body.
Splitting over a record type is straightforward, as only records can inhabit record
types (using extensionality of records), and splitting over computational function
types Πcu : S.T is not allowed, as there are (in almost all cases) infinitely many
possible functions of type Πcu : S.T .

How a variable u is split depends on the free variable modality of u. For ex-
ample, when splitting term over the type hterm in convert, free variables of type
hterm must be considered, as term could possibly be such a free variable, and the

pattern match must consider this case. The problem is in fact more general, as
splitting over any base type T must consider all free variables that could be used
as the head of a term of type T , not just those of type T . (Splitting over record and
function types reduces to splitting over base types by the previous paragraph.) The
free variables that must be considered when splitting over base type T include: free
variables of any base type T ′ unifiable with T ; free variables of any function type
Πx1 : U1. . . .Πxm : Um.T ′ where some substitution for x1 through xm in T ′ yields
a substitution instance for computational variables of T ; and free variables of any
record type, the type of one of whose fields is a substitution instance of T .

Any of these types that could be used as the head of a term of type T are said
to generate T . A computational variable is itself said to generate T if its type
generates T . Formally, that S generates T is captured by the judgment Γ ` S B T ,
where Γ is a context typing the variables occuring in S and T . It makes precise the
intuitions given in the previous paragraph. We do not formalize this here for space
reasons.

Since there are infinitely many types that generate any T and pattern matches
are finite, any pattern match (except those with a catch-all pattern that matches
anything) cannot cover all possible cases of free variables that could occur in its
argument. Specifically, if a pattern match splits u over T , then the free variables
that generate T in any argument passed in for u must have one of the types con-
sidered by the splitting. Otherwise, u could have a form not considered by the
pattern match. To ensure this property, we modify the meaning of the free variable
modality of the previous section. Its syntax remains the same, but a term with the
modality

�Γ`S(l1;L1| . . . |ln;Ln)

must now have all of its free variables that generate S be listed in one of the L i in
field li. The other change to the modality is that S must be a base type. Given this
refined modality it is then safe to only consider free variables listed in the L i when
splitting over any type that is a substitution instance of S.

The full free variable modality given above can be considered an explicit for-
mulation of the regular worlds of Twelf [7]. Regular worlds specify what types of
variable may be free when a function is used. They also specify that each variable
of certain types have data associated with them by using blocks of variables that
must come together. These blocks can be modelled by the lists of records in our
free variable type modality. The difference here is that the type modality is now
an explicit part of the type of the function, instead of it being externally specified
and externally checked. In addition, the free variable modality allows finer control
over which specific variables end up free.

5 STATIC SEMANTICS

In this section we make concrete the above ideas by giving a static semantics for
the λFV -calculus. We start with a grammar for the elements of the language. This

Kinds K ::= Πx : T.K ‖ type

Types T ::= Πx : T1.T2 ‖ Πcx : φ1T1.φ2T2 ‖ a M1 . . .Mn ‖ RT ‖ List T
Record Types RT ::= {l : T,RT} ‖ {}
Objects M ::= x ‖ c ‖ M1 M2 ‖ λx : T.M ‖ u ‖ νx : T.M ‖ nil ‖ M1 :: M2

‖ R ‖ M.l ‖ fun u (u1 : φ1T1, . . . ,un : φnTn) → M
‖ case M of P1 [Γ] → M1| . . . |Pn [Γ] → Mn

Records R ::= [l = M,R] ‖ []
Record Patterns RP ::= [l = P,RP] ‖ []
Patterns P ::= x ‖ c ‖ P1 P2 ‖ λx : T.P ‖ u ‖ nil ‖ P1 :: P2

‖ RP ‖ P.l ‖ (̂l;M;RP)
Signatures Σ ::= Σ,c : T ‖ Σ,a : K ‖ ·
Contexts Γ ::= Γ,x : T ‖ Γ,u : φT ‖ ·
Modalities φ ::= �Γ`T (LS)φ ‖ ·
List Specs. LS ::= l;M|LS ‖ ·

FIGURE 2. Grammar for the λFV -calculus

is given in Figure 2. Most of these constructs are either standard or we have seen
them above. The first four object-level constructs along with the representational
function types and the type constants are exactly LF [3]. The records, record types,
and record projections are standard from dependently-typed records (see [9]). The
List type, with its constructors nil and ::, is also straightforward. The language
contains in addition computational functions (fun), computational variables, the ν
construct, and case expressions.

The Figure also separates out the class of patterns. These are similar to the
objects, but cannot contain computational functions or case expressions. They
can contain expressions (̂l;L;RP) to match variables, as discussed in Section 3.
For preciseness, the forms of records allowed in patterns are also separated from
normal records in the Figure.

In order to be used in a typing judgment, all signatures, contexts, and modalities
must be well-formed, written ` Σ, ` Γ, and Γ ` φ. These judgments will be implicit
below, and all signatures, contexts, and modalities will be assumed to be well-
formed. The well-formedness of signatures will in fact be implicit in the rules for
that of contexts and modalities, and the well-formedness of contexts will also be
assumed in the rules for that of modalities. The rules for ` Σ are:

` ·
Σ; · ` K
` Σ,a : K

Σ; · ` T : type T does not contain Πc

` Σ,c : T

In addition to the kinds and types of constants needing to be well-formed, the types
of constants are also not allowed to contain computational abstractions. This is
because computational abstraction types can contain modalities which change the
variables considered to be bound, but constants themselves cannot change which
variables are bound.

The rules for ` Γ are as follows:

` ·

Γ ` T : type T does not contain Πc

` Γ,x : T
Γ ` T : φ type Γ ` φ

` Γ,u : φT

A representational variable can also not contain computational abstraction types,
for the same reason as for constants. Computational variables can contain compu-
tational abstraction types, since computational variables will always be bound to a
value when evaluated. Computational variables are also listed with a modality in
the context. This modality must be well-formed, and the type of the variable must
also satisfy the modality.

The rules for Γ ` φ are as follows:

Γ ` ·

Γ,Γ′ ` T : type ∀i(Γ ` Li : List RTi) ∀i(li ∈ labels(RTi)) Γ ` φ
Γ ` �Γ′`T (l1;L1| . . . |ln;Ln)φ

These rules require the type specifier T in a modality to always be well-formed.
They also require every Li to be a valid list of records, where the type of these
records must contain the label li.

For space reasons, we do not give the rules for well-formed kinds or well-
kinded types. These are similar to their standard versions, except how they propa-
gate, which is done in ways similar to the object-level typing rules.

The rules for typing objects are given in Figure 3. These are given by the
judgment Γ ` M : φT , where Γ is the context typing the variables of M, T is the
type of M, and φ limits the free variables of M. If Γ ` M : φT holds for some
Γ and T , M is said to satisfy φ. Many of the rules are similar to their standard
forms except for the addition of φ. Constants, empty records, and empty lists do
not have any free variables, and can thus satisfy any modality φ. Representational
applications, non-empty records and lists, and record projections satisfy a modality
only if all subterms satisfy the modality.

In Section 3, we argued that a term satisfying a modality φ should also satisfy
any modality φ′ where φ′ allows for at least as many free variables. This is because
φ′ is a more conservative approximation than φ. In this case we say φ′ is at least
as permissive as φ, written φ - φ′. If φ and φ′ are just as permissive as each other,
we write φ ∼ φ′. The rule in Figure 3 allows any M satisfying φ to be typed with a
more permissive modality φ′.

The rules for permissiveness are given in Figure 4 in terms of permissiveness
rules for the list specifiers of modalities. These rules define ∼ as an equivalence
relation and - as a transitive ordering. List specifiers are just as permissive when
lists are permuted, when free variables of the lists are permuted, and when the
empty list is added. Modalities are in addition just as permissive when their order
is changed. A list specifier is more permissive than another when it adds a list
specifier, adds a variable to a list, or makes the type of a modality more specific
(and thus it specifies the freeness of less variables).

Returning to Figure 3, there are three rules for typing representational variables
x. The first finds the type of x in Γ, but does not ascribe it any modality. The other

c : φT ∈ Σ
Γ ` c : T

u : φT ∈ Γ
Γ ` u : φT

x : T ∈ Γ
Γ ` x : T

Γ ` M : φ′T φ′ - φ
Γ ` M : φT

Γ ` x : φT Γ,Γ′ ` T 6 BT ′

Γ ` x : �Γ′`T ′(l1;M1| . . . |ln;Mn)φT

Γ ` x : φT Γ,Γ′ ` T BT ′

Γ ` x : �Γ′`T ′(l; [. . . , l = x, . . .] :: M)φT

Γ ` M1 : φ(Πx : T1.T2) Γ ` M2 : φT1

Γ ` M1 M2 : φ[M2/x]T2

Γ,x : T1 ` M : φT2

Γ ` λx : T1.M : φx(Πx : T1.T2)

Γ,x : T1 ` M : φT2 Γ ` φ Γ ` T2 : type

Γ ` νx : T1.M : φT2

Γ ` M : φRT RTSell(M,RT) = T

Γ ` M.l : φT

Γ ` [] : φ{}
Γ ` M : φT Γ, l : T ` RT : φ type Γ ` R : φ[M/l]RT

Γ ` [l = M,R] : φ{l : T,RT}

Γ ` T : type

Γ ` nil : φ(List T)

Γ ` M1 : φT Γ ` M2 : φ(List T)

Γ ` M1 :: M2 : φ(List T)

Γ ` M1 : φ(Πcx : φ1T1.φ2T2) Γ ` M2 : φ1T1

Γ ` M1 M2 : φφ2[M2/x]T2

Γ,u : Πcu1 : φ1T1 . . .Πcun : φnTn.φT,u1 : φ1T1, . . . ,un : φnTn ` M : φT

Γ ` fun u (u1 : φ1T1, . . . ,un : φnTn) → M : Πcu1 : φ1T1 . . .Πcun : φnTn.φT

Γ ` L : φ′(List RT) Γ ` u : φT
Γ ` [l1 = P1, . . . , li = Pi, l = u, li+1 = Pi+1, . . . , ln = Pn] : RT

Γ ` (̂l;L; [l1 = P1, . . . , li = Pi, l = u, li+1 = Pi+1, . . . , ln = Pn]) : φT

Γ ` M : φ′T ′ ∀i(Γ,Γi ` Pi : φiT ′)
∀i(Γ,Γi ` Mi : φT) ∀i∀x ∈ Dom(Γi)(` strict(x,Pi,Γ))

` (Γ,Γ1 ` P1; . . . ;Γ,Γn ` Pn) covers (Γ ` M)

Γ ` case M of P1 [Γ1] → M1| . . . |Pn [Γn] → Mn : φT

FIGURE 3. Object-level typing rules for the λFV -calculus

φ ∼ φ
φ′ ∼ φ
φ ∼ φ′

φ ∼ φ′ φ′ ∼ φ′′

φ ∼ φ′′
φ ∼ φ′

φφ′′ ∼ φ′φ′′ φφ′ ∼ φ′φ

LS ∼ LS′

�Γ`T (LS) ∼ �Γ`T (LS′)
LS ∼ LS′

LS|LS′′ ∼ LS′|LS′′ l;L|l′;L′|LS ∼ l′;L′|l;L|LS

l,nil ∼ ·

l;L ∼ l;L′

l;M :: L ∼ l;M :: L′ l;M :: M′ :: L ∼ l;M′ :: M :: L

φ ∼ φ′

φ - φ′
φ - φ′ φ′ - φ′′

φ - φ′′
φ - φ′

φφ′′ - φ′φ′′
LS - LS′

�Γ,u:φT,Γ′`T (LS) - �Γ,Γ′`[M/u]T (LS′)

l;L - l;R :: L · - l;L
R.l = x R′.l′ = x

l;R :: L|l′;L′ ∼ l;L|l′;R′ :: L′

FIGURE 4. Context Permissiveness

two check whether it satisfies each individual modality in φ. Whether x satisfies
�Γ′`T ′(l1;L1| . . . |ln;Ln) depends on whether its type T generates T ′. If not (given
by the judgment Γ ` T 6 BT ′ of Section 4), x will satisfy any such modality. Other-
wise, x must be in field li of a record in Li for some i. The rule for this specifies that
x only satisfies modalities with one list that has x in the correct field at the head of
that list. Using permissiveness, these modalities can be weakened so that x satisfies
the full modality.

Since a variable cannot escape its λ binding, the typing rule for λx : T.M can
safetly remove x from the modality used to type M. This is the purpose of φx.
Intuitively, this purges the variable x from φ. Formally, φx is defined as follows:

(φφ′)x = φxφ′x
(�Γ`T (l1;L1| . . . |ln;Ln))

x = �Γ`T ((l1;L1)
x| . . . |(ln;Ln)

x)
(l;nil)x = l;nil

(l;R :: L)x = l;(R\x) :: nil|(l;L)x if R.l 6= x
(l;u)x = l;u
(l;y)x = l;y

(l; [l1 = M=, . . . , l = x, . . .] :: L)x = (l;L)x

This judgment removes x from any list in φ that mentions it as a free variable. It
is possible that a list specifier ends with a variable. Since purging is only used at
a λ-abstraction binding x, it is safe to leave such variables as they are, since their
scope is greater than that of x and therefore cannot have x free. It is also possible
that x is free in per-variable data for some other variable y. In this case, y is still
free, but any per-variable data with x free is no longer valid. This is the purpose of
R\x: it removes all fields of R with x free. If there are none, then R remains intact,
and permissiveness can put all such R that are separated by the third to last clause
above back into the same list after purging has finished.

The rule for ν uses a simpler method of ensuring that x is not in the modality
φ. It requires that the modality be well-formed in the original context Γ before x
is added. To ensure x does not end up free in the type of a ν expression, this type
must also be well-kinded without x.

The rule for typing a projection uses the function RTSel, defined as follows:

RTSell(M,{l : T,RT}) = T
RTSell(M,{l ′ : T,RT}) = RTSell(M, [M.l ′/l′]RT) for l 6= l ′

When projecting a field l of a record, the projections of all earlier fields of that
record are substituted for the fields in the type associated with l in the record type.
For more on dependently-typed records, see [9], and see [13] for more on RTSel.

Typing computational applications requires the argument to satisfy the input
modality of the function. This modality is then replaced with the combination of
the output modality and the modality of the whole function in the modality of the
application. This is because a modality on a function type is the same as a modality
on the output of the function type.

Computational functions have a built-in fixpoint, so typing them requires as-
suming the name of the function as well as the input variables have the appropriate
types and showing the body yields the appropriate type. The modality satisfied by
the body of the function is then used as the modality of the whole function.

The rule for typing (̂l;M;RP) makes three requirements. First, RP must have a
computational variable in field l to match the variable matched by the whole form.
Second, RP must have some valid record type RT . Third, M must be a well-typed
list whose elements have the same record type RT , i.e. it must have type List RT .

The most complicated rule in the Figure is that for case expressions. The first
two premises require that the patterns all have the same type as the argument. The
modalities on these are not important. The third premise ensures that the bodies of
the pattern match all have the appropriate return type. All bodies must also satisfy
the output modality, as they will be returned for the value of the case expression.
The fourth clause tests for strictness of the patterns, a syntactic condition that en-
sures higher-order pattern matching is decidable. (For more on strict patterns, see
Schürmann and Pfenning [10].) Finally, the last clause ensures that the case expres-
sion passes coverage checking, as described in Section 4. This judgment ensures
that splitting of a computational variable is only done over a type matched by one
of its modalities.

This type system has the following useful properties. These can be proved by
straightforward induction on the size of the judgments.

Theorem 1 Free Variables
If Γ ` M : φT and M is a normal form, then the free representational variables of
M are all listed in modalities in φ.

Theorem 2 Representational Substitution
If Γ ` M : φT and Γ ` N : (φ)xT ′, then Γ ` [N/x]M : (φ)xT.

6 RELATED WORK

Dependently-typed programming languages in general are the subject of active
research. (See e.g. [13, 1, 4]) Although some older languages (e.g. [7]) support
HOAS, there has recently been a push to overcome some of the limitations on
recursion over HOAS representations outlined in the introduction. One example
of this direction of research is the ∇-calculus of Schürmann et. al. [12] and its
refinement to the language λ	Π [11]. This is work upon which the current calculus
is based, as it introduced the ν operator present here. These languages were not
as powerful as the one given here, however, since showing there that a ν-bound
variable does not escape its scope generally involves a runtime check.

Other work on programming with HOAS representations includes the follow-
ing. In [2], HOAS is combined with a first-order representation in such a way to
allow some level of recursion over HOAS representations. In [5], the type system
allows specification of the free variables of a term, and [6] allows this indirectly by
reasoning about contexts. Yet another approach has been to use nominal logic [8]
to reason about variable binding constructs.

7 CONCLUSION AND FUTURE WORK

We have seen a language with a built-in capability for reasoning about free vari-
ables. It allows reasoning not only about the free variables of HOAS representa-
tions, but more importantly about how computational functions manipulate the free
variables of these representations. It also allows reasoning about the free variables
in specific arguments, yielding a fine-grained specification of what variables end
up free in what results.

We have also seen how reasoning about free variables allows us to express more
functions over HOAS representations of data. This is accomplished by using the ν
construct to create fresh variables to pass into λ-abstractions. The type system can
then ensure that a fresh variable does not escape the scope of the ν that created it.

For future work, a proof of type safety should be completed for the λFV -
calculus. As mentioned in the introduction, the author does not anticipate this
should be a serious challenge, but it has not yet been completed. The current sys-
tem also must be “stress-tested” with more programs written in it. This would test
its expressiveness; it is unclear exactly exactly how expressive the λFV -calculus is
compared with other dependently-typed languages supporting HOAS.

The system given here is also complicated. It requires lists and dependently-
typed records to express properties about free variables. This suggests an interest-
ing avenue for future work in trying to simplify it in some manner.

Acknowledgments: The author would like to thank his advisor, Aaron Stump,
along with Ian Wehrman and Charles Comstock for discussions and errata on the
paper. The author would also like to thank Adam Poswolsky for pointing out major
flaws in earlier versions of this work.

REFERENCES

[1] C. Chen and H. Xi. Combining Programming with Theorem Proving. In Proceedings
of the 10th International Conference on Functional Programming (ICFP05), Tallinn,
Estonia, September 2005.

[2] K. Donnelly and H. Xi. Combining higher-order abstract syntax with first-order ab-
stract syntax in ats. In Workshop on Mechanized Reasoning about Languages with
Variable Binding (MERλIN’05), Tallinn, Estonia, September 2005.

[3] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of
the Association for Computing Machinery, 40(1):143–184, Jan. 1993.

[4] C. McBride and J. McKinna. The View from the Left. Journal of Functional Pro-
gramming, 14(1), 2004.

[5] A. Nanevski and F. Pfenning. Meta-programming with names and necessity. Journal
of Functional Programming, 2005. To appear.

[6] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. submitted,
2005.

[7] F. Pfenning and C. Schürmann. System Description: Twelf — A Meta-Logical
Framework for Deductive Systems. In 16th International Conference on Automated
Deduction, 1999.

[8] A. M. Pitts. Nominal logic: A first order theory of names and binding. In
N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Software,
4th International Symposium, TACS 2001, Sendai, Japan, October 29-31, 2001.
Proceedings, volume 2215 of Lecture Notes in Computer Science, pages 219–242.
Springer-Verlag, Berlin, 2001.

[9] R. Pollack. Dependently typed records in type theory. Formal Aspects of Computing,
13:386–402, 2002.

[10] C. Schürmann and F. Pfenning. A Coverage Checking Algorithm for LF. In D. Basin
and B. Wolff, editors, Proceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics, volume 2758 of LNCS, pages 120–135. Springer-
Verlag, 2003.

[11] C. Schürmann and A. Poswolsky. A temporal-logic approach to programming with
dependent types and higher-order encodings. unpublished manuscript, 2005.

[12] C. Schürmann, A. Poswolsky, and J. Sarnat. The ∇-Calculus. Functional Program-
ming with Higher-Order Encodings. In Proceedings of the 7th International Confer-
ence on Typed Lambda Calculi and Applications, volume 3461 of Lecture Notes in
Computer Science, pages 339–353, Long Beach, CA, January 2005. Springer-Verlag.

[13] E. Westbrook, A. Stump, and I. Wehrman. A Language-based Approach to Func-
tionally Correct Imperative Programming. In Proceedings of the 10th International
Conference on Functional Programming (ICFP05), 2005.

