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Abstract

We describe work in progress on a new approach, and associated tools, for checking proofs pro-
duced by SMT solvers. The approach extends our previous work on LFSC (“Logical Framework with
Side Conditions”), a meta-language in which different proof systems for different SMT solvers can be
declaratively specified. In this paper, we show how the LFSC proof checker can delegate the check-
ing of propositional inferences (within a proof of an SMT formula) to a propositional proof checker
clcheck based on Reverse Unit Propagation (RUP). This approach shows promising improvements
in proof size and proof checking time for benchmark proofs produced by the clsat QF IDL solver.
We also discuss work in progress to replace clcheck with a different RUP checker we are developing
called vercheck, whose soundness we are in the process of statically verifying.

1 Introduction

The problem of devising a standardized proof format for SMT solvers is an ongoing challenge. A number of
solvers are proof-producing; for example, CVC3, veriT, and Z3 all produce proofs, in different formats [1,
2, 5]. In previous work, we advocated for the use of a flexible meta-language for proof systems called LFSC
(“Logical Framework with Side Conditions”), from which efficient proof-checkers could be generated by
compilation [6, 7]. Our team at The University of Iowa is currently working on a new implementation of
LFSC, intended for public release.

For many SMT problems, propositional reasoning is a large if not the dominating component of proofs.
Compressing the size of propositional proofs is therefore of significant interest (see, e.g., [3]). In the current
paper, we describe an approach, and tools in progress, to compress the size of such proofs, by using an
external propositional proof checker called clcheck, based on the idea of Reverse Unit Propagation.

2 SMT Proofs in LFSC

In previous work, we have advocated the use of a meta-language called LFSC (“Logical Framework with
Side Conditions”) for describing proof systems for SMT solvers [6, 7]. We use a meta-language to avoid
imposing a single proof system on all solvers. SMT solvers support many different logics, and different
solving algorithms naturally give rise to different schemes for representing deductions. Pragmatically, it
may not be realistic to ask solver implementors to support a specific axiomatization, which may not fit well
with their internal data structures or algorithms. Instead, we are working towards a common meta-language,
in which different proof systems may be described. This at least would establish a common meta-language



(declare var type)
(declare lit type)
(declare pos (! x var lit))
(declare neg (! x var lit))

(declare clause type)
(declare cln clause)
(declare clc (! x lit (! c clause clause)))
(declare concat (! c1 clause (! c2 clause clause)))
(declare in_and_remove (! l lit (! c clause clause)))

Figure 1: Data Structures in LFSC for Generalized Clauses

(declare holds (! c clause type))
(declare R (! c1 clause (! c2 clause

(! u1 (holds c1)
(! u2 (holds c2)
(! n var
(holds (concat (in_and_remove (pos n) c1)

(in_and_remove (neg n) c2)))))))))

(program simplify_clause ((c clause)) clause ...)

(declare satlem (! c1 clause
(! c2 clause
(! c3 clause
(! u1 (holds c1)
(! r (ˆ (simplify_clause c1) c2)
(! u2 (! x (holds c2) (holds c3))

(holds c3))))))))

Figure 2: LFSC Rules for Resolution Proofs

for comparison of proofs and for (meta-language) proof checkers, and could facilitate later adoption of at
least a common core proof system for SMT. Other researchers are working towards similar goals, and we
anticipate development of a common solution in the coming year [1].

Signatures. In LFSC, proof systems are described by signatures. Figures 1 and 2 give part of the
signature we use to produce proofs from our clsat QF IDL solver. Most of the 1000-line signature is
elided here, including rules for CNF conversion and arithmetic reasoning. The rules shown were developed
in our previous work [6], and defer binary resolutions (constructed using the R proof rule) until many of them
can be processed at once when a lemma is added. Resolutions are deferred by constructing a generalized
clause (the clause type declared in Figure 1) using the concat and in and remove constructors.
These constructors represent deferred operations required in order to compute the actual binary resolvent.
The side-condition program simplify clause (code omitted from Figure 2) executes those deferred
operations in an optimized way, to construct the final resolvent of a series of binary resolutions without
constructing the intermediate resolvents.

Rules can be thought of as richly typed constructors, accepting arguments (via the ! construct) whose



types may mention earlier arguments. For example, the R rule has 5 inputs: c1, c2, u1, u2, and n. The
first two are mentioned in the types of the second two. As an optimization, arguments for c1 and c2 may
be elided in proofs built using these proof rules, since their values can be determined during proof checking
from the types of the arguments for u1 and u2.

The rule satlem uses the caret (ˆ) notation to invoke the simplify clause side-condition program
on a clause c1, to compute a clause c2 without deferred operations concat and in and remove. The
rule specifies (via the u2 argument) that the next subproof of a satlem inference should prove clause c3
under the assumption (x) that the simplified clause c2 holds. Using an assumption here allows the proof to
refer to the proven (simplified) clause without repeating its proof multiple times.

Efficient Proof-Checking. Our current C++ implementation of LFSC compiles a signature into an
efficient C++ proof checker optimized for that signature. Compilation includes compiling side-condition
functions like simplify clause to efficient C++ code. The side-condition programming language is
a simply typed first-order pure functional programming language, augmented with the limited imperative
feature of setting marks on LFSC variables. For details of the optimizations implemented, see our previous
work [6]. There, we demonstrated significant performance gains using the deferred resolution method, and
significantly better proof-checking times than for two other proof checkers (CVC3+HOL and Fx7+Trew).

3 Compressing SMT Proofs Using RUP Inferences

Our goal now is to take advantage of recent advances in proof-checking for SAT to obtain further improve-
ments in LFSC’s runtime performance on SMT proofs. In the format described above, a proof consists of
CNF conversion steps and lemmas, which contain theory reasoning steps and propositional reasoning steps.
In most SMT implementations, propositional inferences are performed by the internal SAT solver in the
form of conflict analysis or other procedures. Reverse Unit Propagation (RUP) has been proposed by van
Gelder as an efficient propositional proof format [4]. The idea behind RUP is to check F ` C by refuting
(F ∪ ¬C) using only unit propagation. In this case, there is a proof of the empty clause using only unit
resolution, which is like standard binary resolution except that one of the two resolved clauses is required to
be a unit clause. Unit resolution is not refutation complete in general, but it has been shown to be complete
when C is a conflict clause generated according to standard conflict-analysis algorithms [4]. In a proof
based on RUP, only the clause C is recorded, and the sequence of such resolutions can be calculated from
that clause. Thus, a long resolution proof of a RUP inference can be compressed to the concluded clause. It
can happen, however, that writing down the clause itself takes more space in the proof than a short resolution
proof would (a point worth exploring further in seeking smaller proofs).

3.1 Delegating Propositional Proofs

In principle, one could implement an RUP checker in the LFSC side condition language. This would require
pure functional data structures for unit propagation, which would largely negate the benefits of the RUP
proof format, which relies on the efficient unit propagation of modern SAT solvers. So instead, we delegate
RUP proof checking to an external RUP checker; see Figure 3 for our work flow. The LFSC rules used
to delegate the checking of propositional inferences from LFSC to the external RUP checker are presented
in Figure 4. The external RUP checker confirms that certain check clauses follow by purely propositional
reasoning from certain assert clauses. Assert clauses include the propositional clauses derived by CNF
conversion from the original input formula; and also the boolean skeletons of all theory lemmas. In between
some of these asserts, a proof can request that the proof checker confirm that a check clause follows by RUP



φ solver LFSC RUP checker Y/N
LFSC Pf RUP Pf

Figure 3: Workflow of New Proof System

(declare lemma (! c1 clause
(! c2 clause
(! z unit
(! u1 (holds c1)
(! r (ˆ (print_assert c1) z)
(! u2 (! x (holds c1) (holds c2))

(holds c2))))))))
(declare check (! c2 clause

(! z unit
(! c1 clause
(! r (ˆ (print_check c1) z)
(! u (! x (holds c1) (holds c2))

(holds c2)))))))

Figure 4: LFSC Proof Rules for Delegating Checking of Propositional Inferences

from the (propositional) assert clauses, as well as previous check clauses.
The proof rule lemma (Figure 4) is used to assert a clause to the external RUP checker. It requires a

proof (u1) that the asserted clause actually holds. The check rule then delegates checking that a clause c1
follows from earlier clauses, including both asserted and already checked clauses, by purely propositional
reasoning. Note that it does not require a proof of the clause c1 which is being checked, since checking that
this clause holds in the current logical context is being delegated to the external RUP checker. Both rules
use side-condition functions (print_assert and print_check) to print out the clauses in question as
either assert clauses or check clauses. Additionally, before printing any assert or check clauses, proofs in
this signature must print an initial header, giving the number of propositional variables used.

Implementing Delegation. To support delegating propositional proofs, the LFSC compiler was mod-
ified to support printing of numbers, string literals, LFSC variables (used directly to encode propositional
variables) from side-condition functions. To enable a very straightforward implementation, variables are
printed out as their hexadecimal memory addresses. A simple post-processing phase, currently implemented
by a short OCAML program, is used to map hexadecimal addresses to numbers starting with 1.

3.2 Propositional Proof Format

This section describes the proof format that the LFSC checker produces to delegate propositional reasoning
to a RUP checker. It can be best explained by an example. Figure 5 shows an example propositional
proof. We see the initial header, starting with p, specifying the maximum number of different variables that
can appear in the file (here this is a loose bound). Then come assert clauses, which begin with a and are
terminated with 0; and check clauses, which begin with c and are similarly terminated. The format of clauses
is similar to the DIMACS format for CNF SAT problems. The example has four assert clauses and two check
clauses intermixed. Obviously, the set of those assert clauses is refutable. It is not refutable, however, by
unit resolution, because the assert clauses are all binary. Thus, the first check clause is necessary. The first



p 2
a 1 2 0
a 1 -2 0
c 1 0
a -1 2 0
a -1 -2 0
c 0

Figure 5: A Simple Propositional Proof

two assert clauses and the negation of the first check clause are refutable by resolving the negated check
clause with the first two assert clauses and then resolving their resolvents. Now, the first check clause is
verified. The last check clause, which is empty, simply asks if the entire clauses above it are refutable only
using unit propagation without any more assumptions, which is true in this example.

3.3 The clcheck RUP Proof Checker

We implemented a RUP proof checker, called clcheck that supports the proof format explained above.
Other proof checkers like checker3 combined with rupToRes, which is used in the SAT competition,
could be used with a proper translation. To the best of our knowledge, they do not support intermixed
assertions and checks. Thus, assert clauses and check clauses have to be split into separate files. In SMT
solvers, theory inferences and propositional inferences are naturally intermixed, and those theory inferences
are asserted as clauses to be used in propositional inferences later on. We believe that intermixing assertions
and checks in proofs allows concurrent processing of theory lemmas on the LFSC checker and propositional
lemmas on the RUP checker, which can lead to more efficient proof checking on a modern multicore system.
In our settings, the output of LFSC is directly streamed to clcheck using Unix pipes. So, while clcheck
is checking a RUP inference, LFSC can check the next theory lemma at the same time.

A RUP inference F ` C is verified as follows. First, for each literal in C, add a unit clause with the
negation of that literal to the clause database. Now, the clause database has F ∪ ¬C. Second, propagate
all unit clauses in the database. If it leads to a conflicting clause, C is proved; otherwise, the inference is
invalid. That can be also justified in terms of unit-resolution proof. Because every assignment is caused by
a unit clause, which is the antecedent clause, the empty clause can be derived by applying unit resolution
on each literal of C and that literal’s antecedent clause. Finally, remove those unit clauses added in the first
step and cancel all assignments. One can work more cleverly by avoiding redundancy. Instead of canceling
all assignments, just cancel assignment only caused by ¬C and, after C is verified, incrementally propagate
the new unit clauses in F ∪ C, which will be the new F for the next check. This approach is implemented
in clcheck, which is written in C++ and which uses standard efficient data structures (in particular, watch
lists for literals) for efficient unit propagation.

4 Preliminary Results

Our SMT solver clsat has been modified to generate proofs in the new format in addition to the original
format. We have chosen 39 QF IDL benchmarks that clsat solved in 900 seconds in the SMT competition
2009. Because clsat does not support the SMT-LIB 2.0 file format, they are in the SMT-LIB 1.2 format.



Figure 6: Distribution of Relative Proof Sizes

Table 1 (page 10) shows the results. The test machine had Intel Xeon X5650 2.67GHz CPU and 12GB of
memory. Times (in seconds) are measured for solving and checking combined so that we can see how the
new format improves the whole work flow, not just proof overhead. That measurement includes I/O overhead
between the solver and checkers. The proof formats in comparison have different syntactic characteristics
that may affect proof sizes. So, we wanted to compare the amount of information as the smallest number of
bits needed to store the proof. That means you cannot modify the syntax to achieve a smaller proof. Instead
of developing such a proof syntax, we used gzip-compression to approximate the amount of information in a
proof. The table shows the gzip-compressed sizes (in bytes) of proofs. The uncompressed proof sizes did not
change the conclusion. However, we believe the compressed sizes are more meaningful as data (especially,
when we see the relative sizes). Note that one benchmark, diamonds.18.5.i.a.u did generate proofs,
but failed to check in both formats due to memory overflow (uncompressed proof sizes reach 2GB in size).

Figure 6 shows the distribution of the relative sizes (ratios) of the new proofs. The horizontal axis is
the relative size in percent (the size of new proof over the size of old proof times 100). And the vertical
axis is the percentage of instances in each range. The number on each bar shows the number of instances
in the range. For 14 benchmarks (accounting 35%), the new proof has almost the same size as the old
counterpart (in the range of 95%-105%). However, there are a variety of compression ratios and mostly
the new proofs are smaller or similar in size. One new proof is as small as 30% of the old counterpart. At
the other extreme, there is one case that the new proof is 12% bigger than the old one. Figure 7 shows the
correlation between the relative proof sizes and the relative proof checking times. For time comparison, we
considered 11 benchmarks that take more than 1 second to solve and check on any system. Because small
checking times have relatively big measurement errors, their relative times are not reliable. In the figure,
each vertex represents a benchmark where its horizontal coordinate is the relative proof size and its vertical
coordinate is the relative checking time. The figure shows a rough linear relationship between relative proof
size and relative checking time along the regression line. The R2 value of the regression is 0.7675. That can
be summarized as the more a proof compresses in the new format, the more checking speeds up.



Figure 7: Correlation between Relative Checking Times and Relative Proof Sizes

5 Conclusion and Future Work

We have presented an approach for integrating an RUP checker for propositional proofs with the LFSC proof
meta-language, based on delegation to an RUP checker. We have seen promising improvements over pure
LFSC proof-checking, in both proof size and proof-checking time.

Improved LFSC implementation. As mentioned in the introduction, our team at The University of
Iowa is implementing a new version of the LFSC checker, which we anticipate amplifying the benefits we
have observed in our preliminary empirical results. Profiling the current version of LFSC on these bench-
marks shows that at least in some cases, running the side-condition code (simplify clause referenced
in Figure 2) needed to check propositional resolution proofs is not taking a large part of the time for proof
checking. Overhead in other parts of the proof checker outweighs this. Our new implementation is de-
signed to take advantage of optimizations we described in earlier work on fast proof-checking for LF, the
Edinburgh Logical Framework on which LFSC is based [8]. These optimizations are missing in the current
LFSC checker. We anticipate they will lower the overhead of the rest of the proof-checking algorithm, and
thus amplify the benefits of delegating propositional proofs to the RUP checker.

From clcheck to vercheck. In a separate line of research, the authors are implementing a statically
verified modern SAT solver called versat. The specification we are establishing is that if the solver reports
a set of input clauses unsatisfiable, then there exists a resolution proof of the empty clause from those input
clauses. This resolution proof is not constructed at runtime. Rather, we prove that it is guaranteed to
exist whenever the solver reports unsatisfiable. The versat solver uses standard efficient low-level data
structures, based on mutable arrays, and implements standard modern SAT-solving techniques like conflict-
driven clause learning, non-chronological backtracking, and watched literals.

Using the unit-propagation code in versat, we are implementing a trusted RUP checker called vercheck.
The specification we are proving for this tool is that if it confirms an RUP proof of the kind described above,
then the check clauses really do follow from the earlier check and assert clauses. Using vercheckwill help
mitigate the expansion of the trusted computing base incurred by delegating from LFSC. Our current LFSC
C++ checker is around 6kloc C++. The new version currently in progress will be around 4.5kloc OCAML

when complete. The clcheck solver is just under 1kloc C++. The trusted specification for vercheck is
just 355 lines of GURU code (GURU is the research programming language we are using for implementation



and static verification of versat and vercheck). Also, the old signature for QF IDL proofs from clsat
is 870 lines of LFSC, while the new one is 795 lines. So using vercheck, the new approach based on del-
egation will only increase the number of lines of trusted code by 280 lines total, which seems a worthwhile
price to pay for decreased proof size and improved proof-checking time.
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solve+check time compressed proof size
benchmarks old new old new
BubbleSort safe blmc010 0.48 0.48 224122 220316
BubbleSort safe blmc016 0.94 0.94 406296 401250
CELAR7 SUB1 1.39 1.38 49754 46620
ckt PROP0 tf 15 0.21 0.11 98277 59202
ckt PROP1 tf 25 0.2 0.16 123252 99474
ckt PROP2 tf 10 0.02 0.02 13762 13057
ckt PROP5 tf 25 0.9 0.54 385940 252867
diamonds.18.5.i.a.u Error Error 112879127 126579755
DTP k2 n35 c245 s19 1.32 0.89 363027 186938
DTP k2 n35 c245 s5 2.51 1.66 709885 340784
DTP k2 n35 c245 s6 3.36 2.32 924559 423192
FISCHER11-6-ninc 0.76 0.47 352386 241472
FISCHER13-1-ninc 0.03 0.03 25785 25642
FISCHER14-9-ninc 56.78 48.31 9851980 7214785
FISCHER6-2-ninc 0.03 0.03 24634 24146
FISCHER8-1-ninc 0.02 0.02 16079 15929
inf-bakery-invalid-2 0.01 0.01 7212 6690
int incompleteness1 0 0 565 525
jobshop6-2-3-3-4-4-11 0.01 0.01 3923 3672
lpsat-goal-12 5.91 3.18 2124140 907239
lpsat-goal-15 19.48 11.09 5613533 2867306
lpsat-goal-2 0.05 0.05 43171 41749
lpsat-goal-8 0.92 0.6 486810 271645
plan-18.cvc 7.26 4.41 1570043 890322
plan-22.cvc 0.9 0.57 286853 190437
plan-30.cvc 5.71 2.51 1571073 545799
plan-33.cvc 23.6 14.55 4485851 2650662
plan-35.cvc 68.74 46.02 10937058 6369656
plan-9.cvc 0.06 0.06 37021 33638
PO2-2-PO2 0.01 0.01 10918 10691
PO2-6-PO2 0.04 0.05 40422 38543
PO4-10-PO4 2.64 1.78 1286666 867640
PO4-4-PO4 0.32 0.32 237111 232804
PO4-8-PO4 1.46 1.04 795994 602860
SelectionSort safe bgmc005 0.06 0.07 36991 36033
SelectionSort safe bgmc009 0.13 0.13 74919 72530
SortingNetwork4 safe bgmc002 0 0 1833 1812
SortingNetwork8 safe bgmc006 0.05 0.05 25317 25167
SortingNetwork8 safe blmc006 0.18 0.17 75659 75482

* Measurement units: times in seconds, sizes in bytes

Table 1: Results of Old and New Proof Systems


