
Towards an SMT Proof Format

Aaron Stump and Duckki Oe
Computer Science and Engineering
Washington University in St. Louis

St. Louis, Missouri, USA

Abstract

The Edinburgh Logical Framework (LF) extended to support side con-
dition code (LFSC) is advocated as a foundation for a proof format for
SMT. The flexibility of the framework is demonstrated by example en-
coded inference rules, notably propositional resolution. Preliminary em-
pirical results obtained with a SAT solver producing proofs in LFSC for-
mat are presented.

1 Introduction

Given the complexity of modern SMT solvers, practical methods for verifying
either the solvers or their results are desirable. A well-known method for ver-
ifying reports of unsatisfiability is for solvers to produce a proof refuting the
formula. Just as was done by the SMT-LIB initiative for SMT input formulas,
it is highly desirable to develop a common format for such proofs, which different
solvers could target. Since SMT solvers employ a variety of reasoning methods,
it is at the least premature to standardize around a particular set of axioms and
inference rules. Instead, this paper proposes to standardize around a logical
framework, in which proof systems corresponding to these different reasoning
methods can be encoded. This framework is called LF with Side Conditions
(LFSC), and is an extension of the Edinburgh Logical Framework (LF), which
has been used successfully for representing proofs in applications like proof-
carrying code [3, 1]. LF allows proof systems to be encoded succinctly in a
type theory with special support for variable-binding constructs, which occur
frequently in both formula and proof syntaxes. LFSC extends LF with better
support for rules with computational side conditions. Encoded inference rules
may require certain side conditions to succeed for every application of the rule,
where the side conditions are described using a simple functional programming
language. This paper introduces the syntax and informal semantics of LFSC
(Section 2), and shows how LFSC can be used to encode resolution inferences
(Section 3). Empirical results using a solver called clsat are presented (Sec-
tion 4).

(declare c T) || (define c t) || (opaque c t) || (check t) ||
(program c ((x1 t1) · · · (xn+1 tn+1)) t C)

Figure 1: Top-level commands.

2 LF with Side Conditions

This section presents the syntax and gives an informal description of the typing
and operational semantics for LF with Side Conditions (LFSC). Commands are
described first. Then terms (t), types (T), and side condition code (C).

2.1 Command Syntax

A proof is given as a list of commands, listed in Figure 1 and described next:
Declarations. Constants c may be declared (with declare) to have type

T , or may be defined (with define) to equal t. They may also be given an
opaque definition (with opaque), in which case subsequent type checking will
use only the fact that c has type T computed for t, and not the fact that
c equals t. Declared constants are used in the LF encoding methodology to
represent primitive symbols of an object-language. For SMT, these include
theory functions and predicate symbols. They are also used to represent axioms
and inference rules. Opaque definitions (opaque c t) are introduced in LFSC to
allow the memory required for the defining term t to be reclaimed after checking
its type. Ordinary definitions (introduced with define) must retain the defining
term, in case the subsequent proof depends on the fact that c equals t.

Checks. We can check a term t by computing a type for it.
Programs. Singly recursive programs may be defined at the top-level of

the input using program commands (adding support for mutual recursion would
not be difficult). The recursive program is called c; its input variables are
x1, . . . , xn+1, with types t1, . . . , tn+1; its return type is t, and its body is C.

One simple usage scenario for these commands is the following. Following
standard LF terminology, a collection of declarations and definitions is called a
signature. The SMT-LIB organization may provide a signature specifying SMT
input syntax for various logics. It is also desirable to provide an example signa-
ture for axioms and inference rules for that syntax, perhaps based on the one in
progress by the authors. SMT solver implementors may use this example signa-
ture, or write their own to specify their axioms and inference rules. Untrusted
proofs are then not to use declarations, since these may non-conservatively ex-
tend the logic; but only definitions and check commands.

2.2 Term and Type Syntax

Figure 2 gives the syntax for LFSC terms t and types T . In multi-arity notation
such as (t1 · · · tn+2), the number n is a natural number (including possibly

2

t ::= x || c || || N || (t1 · · · tn+2) || (\ x t) || ($ x T t) || (: T t)

T ::= c || (T t1 · · · tn+1) || (! x r T)

r ::= (̂ C t) || T

Figure 2: Syntax for terms (t) and types (T).

0); so for this example, at least two terms must be present in the list of terms
t1, . . . , tn+2. We briefly describe the various constructs, and how they are used
in representing theories.

Variables and constants. We write x for variables, c for constants, and N
for unbounded integer literals (adding support also for rational literals would be
straightforward). The following special constants c are assumed present: type,
which is the type for types; and mpz, the type for integers.

Applications. Term-level applications (t1 · · · tn+2) consist of a functional
term t1 and its arguments t2 · · · tn+2. Applications are used to represent
applications of SMT function and predicate symbols to arguments. They are
also used to represent applications of logical connectives to formulas. Finally,
they are also used to represent applications of inference rules and axioms to
arguments for their quantified variables and hypotheses.

Holes. Applications may use holes , whose value is to be filled in from the
types of subsequent arguments.

Indexed types. Type-level applications (T t1 · · · tn+1) are used for indexed
types. In a standard functional language, we can easily define a datatype Pf
for proofs. But type checking cannot enforce proof checking, because standard
type systems do not have a way to express that a proof is a proof of a given
formula. Thus, we could apply an encoded inference rule like modus ponens to
any two terms of type Pf, regardless of whether or not the first is a proof of
φ→ ψ and the second is a proof of φ. With indexed types, the type system of
LF (and LFSC) is able to track the formula proved by a particular proof, as an
index to the type. So an encoded proof of φ would have type “(Pf F)”, assuming
F is the encoding of formula φ. Using indexed types, axioms and inference rules
can be encoded as term constructors in such a way that they cannot be applied
in cases where the object-language inference would be incorrect. We can, for
example, declare (encoded) modus ponens to be a term constructor accepting
one argument of type “(Pf (imp F1 F2))”, and another argument of type “(Pf
F1)”, and constructing a resulting term of type “(Pf F2)”.

Lambda abstractions. The expressions (\ x t) are conventionally writ-
ten in mathematical notation λx. t. They are anonymous functions accepting
arguments for input variable x, and returning t. In the LF encoding methodol-
ogy, lambda abstractions are used to encode object-language binding constructs.

3

C ::= x || c || N || (� C1 · · · Cn+1) || (c C1 · · · Cn+1)
|| (match C (P1 C1) · · · (Pn+1 Cn+1)) || (do C1 · · · Cn+1)
|| (let x C1 C2) || (markvar C) || (ifmarked C1 C2 C3) || (fail T)

P ::= (c x1 · · · xn+1) || c

Figure 3: Syntax for code (C) and patterns (P).

The variable bound by an object language binder is represented by a λ-bound
variable in LF. It is customary with LF to omit the type for the variable x, be-
cause the LF type checking algorithm will fill it in from the context surrounding
the lambda abstraction. It turns out that for representing large proofs, it can
be necessary to allow the type for the bound variable to be specified in the
λ-abstraction. In this case, we write ($ x T t) for (λx : T. t).

Pi abstractions. The expressions (! x t1 t2) are conventionally written in
mathematical notation Πx : t1. t2. These are the types for functions accepting
inputs x of type t1 and producing outputs of type t2, where t2 may contain x
free. Such types are called dependent function types, because the output type
can depend on the input argument. A programming example may help provide
intuition for such types. Imagine a function that accepts a natural number n and
returns an array of ints of length n. Such a function might be given dependent
function type Πx : nat. int[n] (writing int[n] for the type of arrays of ints of
length n). Such dependencies are used heavily when giving the types for encoded
inference rules, since we wish to capture dependencies such as described above
between the indices of the types of subproofs of modus ponens. As its crucial
addition to standard LF, LFSC allows the domain type of an abstraction to be
of the form (̂ C t). The intuitive meaning of this expression is that running
code C should produce result t. Note that t may be a hole, in which case it will
be filled in with the output produced by running C.

Ascriptions. Expressions (: T t) state that T is the type for term t. Type
checking an ascription requires verifying that this is indeed the case. Ascriptions
are needed just in giving definitions.

2.3 Code Syntax

Figure 3 gives the syntax for code (C). We write � for arithmetic operations
on unbounded integers. Code constructs are used for writing strongly typed
first-order, monomorphic functional programs. First-order means that unlike
well-known functional languages such as Haskell and OCaml, functions may
not be passed as arguments to programs or produced as results. Monomor-
phic means that, again unlike those languages, programs cannot be defined
polymorphically, to operate uniformly on all types of data. The programs are

4

mostly without mutable state, although there is a feature for marking LF vari-
ables, demonstrated below. The resulting language supports programs where
inductively defined data may be recursively decomposed (using match) and con-
structed. Additionally, code can fail, either explicitly using fail, or by failing to
match a piece of inductively defined data against any of the patterns in a match
expression.

Application. Expressions (c C1 · · · Cn+1) are either of term constants or
program constants to arguments. In the former case, the application is con-
structing a new piece of inductive data. In the latter, it is invoking a program.

Match. Expressions (match C (P1 C1) · · · (Pn+1 Cn+1)) evaluate C to
a piece of inductively defined data, and then seek to match that piece of data
against one of the given simple patterns P1, . . . , Pn+1. Successfully matching
against a pattern Pi binds the appropriate subdata to the variables in the pat-
tern. The body Ci of the match is then evaluated and its result returned for
the result of the match expression.

Do. Expressions (do C1 · · · Cn+1) evaluate each of C1, . . . , Cn+1 in turn,
and return the value of the last. This is useful for checking that several condi-
tions in a row do not fail (it is not related to do in Haskell).

Let. Expressions (let x C1 C2) are as standard in functional languages. The
value (if any) of C1 is substituted for x before evaluating C2.

Markvar. The code (markvar C) first evaluates C. If the result is an
LF variable, then this toggles a mark on that variable, and then returns the
variable. These marks are useful in implementing the important example of
resolution inferences below (Section 3).

Ifmarked. The code (ifmarked C1 C2 C3) evaluates C1. If the result is not
a variable, evaluation fails. Otherwise, if the result is marked, we evaluate C2;
otherwise, we evaluate C3.

Fail. We have (fail T) for explicitly indicating failure. The fail term is
treated as having the given type T .

3 Encoding Resolution Proofs

This section presents an important example of encoding a proof system in LFSC,
namely propositional resolution. Resolution is used during clause learning in
state-of-the-art SAT and SMT solvers [5]. A proof format proposed in 2005 by
van Gelder for SAT solvers is based directly on resolution. Encoding a resolution
proof system in LFSC is thus a critical step in encoding proof systems for the
more general logics of SMT.

3.1 Encoding Clauses

The first step in encoding any proof system in LFSC (or pure LF) is to encode
the formulas of the logic. Once these are encoded, we can consider how to
encode proofs. In the case of propositional resolution, the formulas of the logic
are propositional clauses. Figure 4 lists LFSC declarations for these. We first

5

(declare var type)

(declare lit type)
(declare pos (! x var lit))
(declare neg (! x var lit))

(declare clause type)
(declare cln clause)
(declare clc (! x lit (! c clause clause)))

Figure 4: Clauses

declare an LFSC type var, for propositional variables. We do not give any
term constructors for variables, for reasons which will be given shortly. Next,
we declare a type lit for propositional literals, with two constructors, pos and
neg. We will use these for positive and negative occurrences, respectively, of a
variable in a clause. Note that the type given for both pos and neg, namely

(! x var lit)

says that pos and neg are functions taking input x, which is a variable, and
producing a literal. Finally, the type clause of clauses is declared with con-
structors cln for the empty clause, and clc for cons’ing a literal (x) onto the
front of a clause (c). Assuming that P and Q are propositional variables, then
a clause like P ∨ ¬Q is encoded with these declarations as

(clc (pos P) (clc (neg Q) cln))

3.2 Encoding Resolution Inferences

Figure 5 gives three declarations for encoding binary resolution with factoring.
More complex forms of resolution such as hyperresolution should also be encod-
able, but this is future work. First, we declare an indexed type holds, with the
intention that “(holds C)” is the type for proofs that clause C holds. We defer
consideration of resolve. The declaration of R, which encodes the resolution
inference rule, states that R takes clauses c1, c2, and c3 as inputs; then a proof
that clause c1 holds (this is the input argument u1 of type “(holds c1)”), and
a proof that clause c2 holds; and a variable v. If running the code “(resolve
c1 c2 v)” produces clause c3, then R constructs a term of type “(holds c3)”,
representing a resolution inference deriving c3. Since the values of the inputs
c1, c2, and c3 to R can all be filled in from subsequent arguments (in particular,
u1 to fill in c1, u2 to fill in c2, and r to fill in c3), we can use holes “ ” for these
inputs whenever R is used. This is demonstrated in Section 3.3 below.

The side condition to check for a resolution inference is as follows. If we are
resolving clauses c1 and c2 on variable v, v must occur positively in c1 and

6

(declare holds (! c clause type))

(program resolve ((c1 clause) (c2 clause) (v var)) clause
(let pl (pos v)
(let nl (neg v)
(do (in pl c1)

(in nl c2)
(let d (append (remove pl c1) (remove nl c2))

(dropdups d))))))

(declare R (! c1 clause (! c2 clause (! c3 clause
(! u1 (holds c1)
(! u2 (holds c2)
(! v var
(! r (^ (resolve c1 c2 v) c3)
(holds c3)))))))))

Figure 5: Propositional resolution in LFSC

negatively in c2. All positive occurrences are removed from c1 and all negative
ones from c2. The resulting clauses are concatenated to produce the resolvent
c3. Additionally, it is desirable to drop duplicate literals from the resolvent.

LFSC code to compute a resolvent from c1, c2, and v is given in the program
resolve of Figure 5. This program relies on several helper programs, mostly
relegated to the Appendix. Reading through the body of resolve, we can see
that it first let-defines pl to be the positive literal for variable v, and nl to
be the negative literal. It then checks that this positive literal is in c1, and
the negative one in c2. It then let-defines d to be the result of appending the
results of removing the positive literal from c1 and the negative literal from c2.
Finally, we return the result of dropping duplicates from d.

3.3 An Example Resolution Proof

For a very simple example, suppose our clause database consists of the following
clauses: ¬V1 ∨ V2, then ¬V2 ∨ V3, then ¬V3 ∨ ¬V2, and V1 ∨ V2. A resolution
derivation of the empty clause from these clauses is given in Figure 6. The
encoding in LFSC of this proof is given in Figure 7. We can see in the last
line of Figure 7 three applications of R, corresponding to the three resolution
inferences in Figure 6. As mentioned above, the clauses being resolved and the
resolvent (the first three arguments to R) do not need to be mentioned when R
is applied, because those clauses can all be filled in from subsequent arguments.
That is why each use of R begins with three holes. The nested resolutions
in Figure 6 are mirrored by the nested applications of R in Figure 7. Where
Figure 6 lists the n’th clause (in the order the clauses were listed above) from
our clause database, at the leaves of the proof tree; in those places Figure 7 lists

7

V1 ∨ V2 ¬V1 ∨ V2

V2

¬V2 ∨ V3 ¬V3 ∨ ¬V2

¬V2

empty

Figure 6: An example refutation

(check ($ v1 var ($ v2 var ($ v3 var
($ x0 (holds (clc (neg v1) (clc (pos v2) cln)))
($ x1 (holds (clc (neg v2) (clc (pos v3) cln)))
($ x2 (holds (clc (neg v3) (clc (neg v2) cln)))
($ x3 (holds (clc (pos v1) (clc (pos v2) cln)))
(R _ _ _ (R _ _ _ x3 x0 v1) (R _ _ _ x1 x2 v3) v2)))))))

Figure 7: LFSC encoding of the example refutation

xn (e.g. x3 and x0 in the leftmost innermost resolution).
Let us now consider the LFSC command in Figure 7 more carefully. This is

a check command. The proof begins by λ-abstracting (with $) all the propo-
sitional variable and assumptions that all the initial clauses hold. The use of
λ-abstraction here comes from standard LF encoding methodology, where one
seeks to represent object-language variables via LF variables. This confers one
of the main advantages of using LF, namely that the encoding need not ex-
plicitly describe safe renaming of or substitution for bound variables. These
features are provided by LF directly for λ-bound variables, and hence are in-
herited for free by any encoding that represents object-language variables by
LF variables. The main benefit of using LF variables for propositional variables
is that we can efficiently test equality of variables in LFSC code using variable
marking. This is necessary when computing the resolvent: for example, when
testing whether or not the negative literal for variable v occurs in the second
clause being resolved (see the Appendix).

4 Preliminary Empirical Results

clsat is a SMT solver currently supporting the QF IDL logic. It can solve SAT
benchmarks in DIMACS format and SMT benchmarks in SMT-LIB format,
generating resolution proofs for unsatisfiable SAT benchmarks. Proofs of SMT
benchmarks are not yet supported. The use of resolution in deriving conflict
clauses from conflicting clauses is well known [5]. Learned clauses are recorded as
lemmas to keep the proof size from exploding (see also Section A). A refutation
of the formula is then just a sequence of lemmas, culminating in the empty
clause.

The benchmarks used are from SAT Race 2008 Test Set 1, which represent
modern SAT benchmarks. Since these are quite large and difficult to solve, 10
easier ones out of the 31 unsatisfiable benchmarks in the set were selected (see

8

benchmark pf (s) overhd sz (MB) num R check (s) tot overhd
E-sr06-par1 4.56 196.10% 35 14316 14.75 11.54
E-sr06-tc6b 0.96 152.63% 8.4 8708 11.68 32.26
M-c10ni s 6.62 34.01% 43 4578 10.90 2.55
M-c6nid s 15.58 12.82% 33 72930 48.35 3.63
M-f6b 20.76 29.51% 30 1018638 3237.22 202.24
M-f6n 16.59 35.76% 26 847567 2848.03 233.42
M-g6bid 20.05 28.61% 27 797530 1165.57 75.05
M-g7n 16.12 43.03% 28 1006820 1707.43 151.93
V-eng-uns-1.0-04 25.04 29.27% 41 1692714 5913.22 305.57
V-sss-1.0-cl 4.18 46.15% 9.8 416200 553.30 193.92

Figure 8: Proof sizes and proof checking times

also Section D). Checking is carried out using a prototype LFSC checker [4].
The checker does not yet compile side condition code. Profiling reveals that
around 90% of checking time is currently devoted to interpreting side condi-
tion code. This at least partially explains the much greater times required for
checking proofs over producing them. The checker implements an optimization
called incremental checking, where parsing and proof checking are interleaved.
Abstract syntax trees for subterms of proofs are not constructed in memory at
all, unless they are used in the theorem proved by a subproof.

The proofs of all derived lemmas are emitted by the solver. Excluding un-
necessary lemmas is expected often to result in smaller proofs, but this requires
storing all proofs until the end of the run. Incremental checking alone is cur-
rently not fast enough to keep up with the solver’s proof production. But if this
can be achieved, then the checker can consume proofs of unnecessary lemmas as
they are produced. This would allow the solver to avoid storing them during the
attempted refutation, and hence would be preferable, at least for proof checking
purposes, to emitting just the needed lemmas.

Figure 8 shows results related to proof production and checking. The “pf”
column gives the time to solve the benchmark and produce a proof (including
time to write the proof to disk). The “overhd” column gives the percentage
running time overhead incurred for proof production. The “sz” column gives
the size of the generated proofs in megabytes. The “num R” column gives
the number of resolutions. The “check” column gives proof checking time in
seconds. The “totl overhd” column gives the ratio of proof production and
checking time, to time needed to solve the benchmark without producing a
proof. All experiments were performed on an Intel Core 2 Duo 2GHz, 4MB L2
Cache, 2GB memory, running MacOS 10.5.2.

5 Related Work and Conclusion

A recent paper by M. Moskal gives another approach to flexible proof checking,
currently achieving much faster proof checking than reported here [2]. Moskal’s
approach uses term rewriting with a fixed (non-standard) reduction strategy to

9

rewrite proofs to the theorems, if any, they prove. This formalism combines
symbolic and functional programming, the former because the reduction strat-
egy includes reduction beneath λ-abstractions. This will prove a hinderance to
compilation. In contrast, LFSC separates a standard, naturally compilable pro-
gramming language from more declarative aspects of proofs (particularly those
involving bound variables). A further difference is that Moskal’s formalism is
untyped, while LFSC’s enjoys the well-known benefits of strong typing. Finally,
Moskal’s formalism includes ad hoc features to support sound skolemization.
While conversion to CNF has not yet been implemented in clsat, LF’s direct
support for higher-order abstract syntax enables introduction of new symbols
without additional ad hoc features.

This paper has taken important first steps towards a meta-logical approach
to SMT proofs, based on LF with Side Conditions (LFSC). The important case
of propositional resolution has been evaluated with the clsat SAT solver, which
produces LFSC proofs for unsatisfiable benchmarks. This work’s achievement
is in supporting large propositional resolution proofs with a general meta-logic.
The use of a meta-logic paves the way for flexibly supporting theory inferences
and CNF conversion. Future work includes proof production for full SMT rea-
soning in clsat, and compilation of side condition code for faster LFSC proof
checking.

Acknowledgments. This work was partially supported by NSF award
0551697. Thanks are due to the SMT 2008 reviewers for helpful comments that
improved the paper. Thanks also to Clark Barrett, Leonardo de Moura, Pascal
Fontaine, and Cesare Tinelli for helpful discussions on LF-based proof checking
for SMT.

References

[1] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Log-
ics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[2] M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In C. Ramakrish-
nan and J. Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 2008.

[3] G. Necula. Proof-Carrying Code. In 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 106–119, January
1997.

[4] A. Stump. Proof Checking Technology for Satisfiability Modulo Theories.
In A. Abel and C. Urban, editors, Logical Frameworks and Meta-Languages:
Theory and Practice, 2008.

[5] L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiability Solvers.
In Proceedings of 8th International Conference on Computer Aided Deduc-
tion (CADE 2002), 2002.

10

A Propositional Lemmas

To keep proofs as compact as possible, it is critical for encoded resolution proofs
to be able to introduce lemmas for learned clauses. This is done with satlem,
defined in Figure 9. Note the use of an ascription in giving this definition. If P1
proves that clause c1 holds, and if P2 is a proof of clause c2 from a hypothesis
named x that c1 holds, then “(satlem P1 (x P2))” derives c2 without
hypotheses. In practice, the name of the hypothesis x can be determined by the
clause number introduced by the SAT solver for the new clause.

B Helper Code for Resolution

The helper code called by the side condition program resolve of the encoded
resolution rule R is given in Figures 10 and 11. We can note the frequent uses
of match, for decomposing or testing the form of data. The program eqvar of
Figure 10 uses variable marking to test for equality of LF variables. The code
assumes a datatype of booleans tt and ff. It marks the first variable, and then
tests if the second variable is marked. Assuming all variables are unmarked
except during operations such as this, the second variable will be marked iff it
happens to be the first variable. The mark is then cleared (recall that markvar
toggles marks), and the appropriate boolean result returned. Marks are also
used by dropdups to drop duplicate literals from the resolvent.

C Encoding Theory Reasoning

For SMT, it is, of course, necessary to add theory reasoning to our encoded
propositional resolution calculus. The authors have not yet implemented this
in clsat, and so these ideas must be considered preliminary. Let us distinguish
sorted terms and formulas (a more unified view, as under discussion for the
next revision of the SMT input syntax, should also be possible to support). If
we wish, we can easily embed SMT type checking into LF type checking by
using indexed types “(term s)” as the LF type for encodings of SMT terms of
(encoded) sort s. Here we give an example theory inference rule, from Integer
Difference Logic. This rule says that if ¬ x − y ≤ c holds, then so does
y − x ≤ d, where c is an integer constant and d is the integer predecessor of
c. The encoding of this inference, given in Figure 12, uses side condition code
to compute the integer predecessor of c. The operations mpz add and mpz neg
are integer operations implemented by the prototype LFSC checker. Using this
rule, if P proves (the encoding of) x− y ≤ c, then (not<=<= P) proves
y − x ≤ d, where d = −c− 1.

11

(define satlem (: (! c1 clause

(! c2 clause

(! u1 (holds c1)

(! u2 (! x (holds c1) (holds c2))

(holds c2)))))

(\ c1 (\ c2 (\ u1 (\ u2 (u2 u1)))))))

Figure 9: Definition for propositional lemmas

(program eqvar ((v1 var) (v2 var)) bool

(do (markvar v1)

(let s (ifmarked v2 tt ff)

(do (markvar v1) s))))

(program litvar ((l lit)) var

(match l ((pos x) x) ((neg x) x)))

(program eqlit ((l1 lit) (l2 lit)) bool

(match l1 ((pos v1) (match l2 ((pos v2) (eqvar v1 v2))

((neg v2) ff)))

((neg v1) (match l2 ((pos v2) ff)

((neg v2) (eqvar v1 v2))))))

Figure 10: Variable and literal comparison

(declare Ok type)

(declare ok Ok)

(program in ((l lit) (c clause)) Ok

(match c ((clc l’ c’) (match (eqlit l l’) (tt ok) (ff (in l c’))))

(cln (fail Ok))))

(program remove ((l lit) (c clause)) clause

(match c (cln cln)

((clc l’ c’)

(let u (remove l c’)

(match (eqlit l l’) (tt u) (ff (clc l’ u)))))))

(program append ((c1 clause) (c2 clause)) clause

(match c1 (cln c2) ((clc l c1’) (clc l (append c1’ c2)))))

(program dropdups ((c1 clause)) clause

(match c1 (cln cln)

((clc l c1’)

(let v (litvar l)

(ifmarked v

(dropdups c1’)

(do (markvar v)

(let r (clc l (dropdups c1’))

(do (markvar v) ; clear the mark

r))))))))

Figure 11: Operations on clauses

12

(declare not<=<=

(! x (term Int) (! y (term Int) (! c mpz (! d mpz

(! u (th_holds (not (<= (- x y) (an_int c))))

(! r (^ (mpz_add (mpz_neg c) (~ 1)) d)

(th_holds (<= (- y x) (an_int d))))))))))

Figure 12: Example theory rule

benchmark size (MB) clsat minisat tinisat
E-sr06-par1 8.4 1.54 1.46 1.43
E-sr06-tc6b 1.9 0.38 0.22 0.34
M-c10ni s 10 4.94 43.42 7.14
M-c6nid s 7.4 13.81 162.01 93.56
M-f6b 1.7 16.03 4.02 5.41
M-f6n 1.7 12.22 4.57 6.58
M-g6bid 1.8 15.59 3.60 3.99
M-g7n 1.1 11.27 2.75 6.46
V-uns-1.0-04 1.0 19.37 5.19 5.63
V-1.0-cl 0.18 2.86 0.41 0.21

Figure 13: Comparison of clsat with other solvers

D Solver Performance

clsat has its own lemma-learning SAT solver implementing watched literals,
non-chronological backtracking, and conflict clause simplification. The SAT
engine of clsat is primarily implemented by the second author, with other
parts of clsat written by Timothy Simpson and Terry Tidwell. Figure 13
compares the running times of clsat, with proof production turned off, with
those of minisat 2.0 beta and tinisat 0.22. This figure shows that clsat is
not too much slower than these two well-known fast modern solvers, and hence
provides a reasonable basis for studying proof production.

13

