
Simulating Large Eliminations in Cedille
Christa Jenkins �Â

The University of Iowa, U.S.A.

Andrew Marmaduke �Â

The University of Iowa, U.S.A.

Aaron Stump � Â

The University of Iowa, U.S.A.

Abstract
Large eliminations provide an expressive mechanism for arity- and type-generic programming.
However, as large eliminations are closely tied to a type theory’s primitive notion of inductive
type, this expressivity is not expected within polymorphic lambda calculi in which datatypes are
encoded using impredicative quantification. We report progress on simulating large eliminations for
datatype encodings in one such type theory, the calculus of dependent lambda eliminations (CDLE).
Specifically, we show that the expected computation rules for large eliminations, expressed using a
derived type of extensional equality of types, can be proven within CDLE. We present several case
studies, demonstrating the adequacy of this simulation for a variety of generic programming tasks,
and a generic formulation of the simulation allowing its use for a broad family of datatype encodings.
All results have been mechanically checked by Cedille, an implementation of CDLE.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases large eliminations, generic programming, impredicative encodings, Cedille,
Mendler algebra

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.7

Supplementary Material Source Code: https://github.com/cedille/cedille-developments/

1 Introduction

In dependently typed languages, large eliminations allow programmers to define types by
induction over datatypes—that is, as an elimination of a datatype into the large universe
of types. For type theory semanticists, large eliminations rule out two-element models of
types by providing a principle of proof discrimination (e.g., 0 6= 1)[26, 25]. For programmers,
they give an expressive mechanism for arity- and type-generic programming with universe
constructions [34]. As an example, the type Nary n of n-ary functions (where n is a natural
number) over type T can be defined as T when n = 0 and T → Nary n′ when n = succ n′.

Large eliminations are closely tied to a type theory’s primitive notion of inductive type.
Thus, this expressivity is not expected within polymorphic pure typed lambda calculi in
which datatypes are impredicatively encoded. The calculus of dependent lambda eliminations
(CDLE) [27, 28] is one such theory that seeks to overcome historical difficulties of impredicative
encodings, such as the lack of induction principles for datatypes [13].

Contributions In this paper, we report progress on overcoming another difficulty of impre-
dicative encodings: the lack of large eliminations. We show that the expected definitional
equalities of a large elimination can be simulated using a derived type of extensional equality
for types (as CDLE is an extrinsic theory, we take the extent of a type to be the set of terms
it classifies). In particular, we:

describe our method for simulating large eliminations in CDLE (Section 3) using a
concrete example, identifying the features of the theory that enable the development

© Christa Jenkins and Andrew Marmaduke and Aaron Stump;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christa-jenkins@uiowa.edu
https://homepage.divms.uiowa.edu/~cwjnkins/
https://orcid.org/0000-0002-5434-5018
mailto:andrew-marmaduke@uiowa.edu
https://homepage.divms.uiowa.edu/~marmaduke/
mailto:aaron-stump@uiowa.edu
https://homepage.divms.uiowa.edu/~astump/
https://doi.org/10.4230/LIPIcs.TYPES.2021.7
https://github.com/cedille/cedille-developments/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Simulating Large Eliminations in Cedille

(Section 2) and noting a limitation on the contexts in which it may be effectively used;
formulate the method generically for all impredicative encodings of the form used by the
datatype system of the Cedille tool (Section 5);
demonstrate the adequacy of this simulation by applying it to several generic programming
tasks: n-ary functions, a closed universe of datatypes, and an arity-generic map operation
(Sections 3 and 4).

All results have been mechanically checked by Cedille, an implementation of CDLE, and are
available in the supplementary material for this paper.

Outline Section 2 reviews background material on CDLE, focusing on the primitives which
enable the simulation. In Section 3, we carefully explain the recipe for simulating large
eliminations using as an example the type of n-ary functions over a given type. Section 4
shows two more case studies, a closed universe of strictly positive types and a generalized map
operation for vectors, as evidence of the effectiveness of the simulation in tackling generic
programming tasks. The recipe for concrete examples is then turned into a generic derivation
(that is, parametric in a covariant datatype signature) of simulated large eliminations in
Section 5. Finally, Section 6 discusses related work and Section 7 concludes with a discussion
of future work.

2 Background on CDLE

In this section, we review CDLE, the kernel theory of Cedille. CDLE extends the impredic-
ative extrinsically typed calculus of constructions (CC), overcoming historical difficulties of
impredicative encodings (e.g., underivability of induction [14]) by adding three new type
constructs: equality of untyped terms; the dependent intersections of Kopylov [20]; and
the implicit products of Miquel [24]. The pure term language of CDLE is untyped lambda
calculus, but to make type checking algorithmic terms t are presented with typing annotations
which are removed during erasure (written |t|). Definitional equality of terms t1 and t2 is
βη-equivalence modulo erasure of annotations, denoted |t1| =βη |t2|.

The typing and erasure rules for the fragment of CDLE used in this paper are shown
in Figure 1 and described in Section 2.1 (see also Stump and Jenkins [28]); the derived
constructs we use are presented axiomatically in Section 2.2. We assume the reader is familiar
with the type constructs inherited from CC: abstraction over types in terms is written ΛX. t
(erasing to |t|), application of terms to types (polymorphic type instantiation) is written t · T
(erasing to |t|), and application of type constructors to type constructors is written T1 · T2.
In code listings, we sometimes omit type arguments to terms when Cedille can infer them.

2.1 Primitives
Below, we only discuss implicit products and the equality type. Though dependent inter-
sections play a critical role in the derivation of induction for datatype encodings, they are
otherwise not explicitly used in the coming developments.

The implicit product type ∀x :T1. T2 of Miquel [24] is the type for functions which accept
an erased (computationally irrelevant) input of type T1 and produce a result of type T2.
Implicit products are introduced with Λx. t, and the type inference rule is the same as for
ordinary function abstractions except for the side condition that x does not occur free in the
erasure of the body t. Thus, the argument plays no computational role in the function and
exists solely for the purposes of typing: the erasure of Λx. t is |t|. For application, if t has

C. Jenkins and A. Marmaduke and A. Stump 7:3

Γ, x : T1 ` t : T2 x 6∈ FV(|t|)
Γ ` Λx. t : ∀x :T1. T2

Γ ` t : ∀x :T1. T2 Γ ` t′ : T1
Γ ` t -t′ : [t′/x]T2

|t1| =βη |t2|
Γ ` β : {t1 ' t2}

Γ ` t : {λx. λ y. x ' λx. λ y. y}
Γ ` δ - t : T

Γ ` t : {t′ ' t′′} Γ ` t′ : T FV(t′′) ⊆ dom(Γ)
Γ ` ϕ t - t′ {t′′} : T

|Λx. t| = |t| |t -t′| = |t|
|β| = λx. x |ϕ t - t′ {t′′}| = |t′′|
|δ - t| = λx. x

Figure 1 Typing and erasure for a fragment of CDLE

type ∀x :T1. T2 and t′ has type T1, then t -t′ has type [t′/x]T2 and erases to |t|. When x is
not free in T2, we write T1 ⇒ T2, similar to writing T1 → T2 for Πx :T1. T2.

I Note. The notion of computational irrelevance here is not that of a different sort of
classifier for types (e.g. Prop in Coq [31]) separating terms by whether they can be used for
computation. Instead, it is similar to quantitative type theory [2]: relevance and irrelevance
are properties of binders, indicating how functions may use arguments.

The equality type {t1 ' t2} is the type of proofs that t1 is propositionally equal to t2. The
introduction form β proves reflexive equations between βη-equivalence classes of terms: it
can be checked against the type {t1 ' t2} if |t1| =βη |t2|. Note that this means equality is
over untyped (post-erasure) terms. There is also a standard elimination form (substitution),
but it is not used explicitly in the presentation of our results, so we omit its inference rule.

Equality types also come with two additional axioms.

The ϕ axiom gives a strong form of the direct computation rule of NuPRL (see Allen et
al. [1], Section 2.2). Though ϕ does not appear explicitly in the developments to come, it
plays a central role by enabling the derivation of extensional type equality that enables
zero-cost coercions between the equated types.

The δ axiom provides a principle of proof discrimination. By enabling proofs that datatype
constructors are disjoint, δ plays a vital role in our simulation of large eliminations.

The inference rule for an expression of the form ϕ t - t′ {t′′} says that the entire expression
can be checked against type T if t′ can be, if there are no undeclared free variables in t′′ (so,
t′′ is a well-scoped but otherwise untyped term), and if t proves that t′ and t′′ are equal. The
crucial feature of ϕ is its erasure: the expression erases to |t′′|, effectively enabling us to cast
t′′ to the type of t′. An expression of the form δ - t may be checked against any type if t
synthesizes a type convertible with a particular false equation, {λx. λ y. x ' λx. λ y. y}. To
broaden applicability of δ, the Cedille tool implements the Böhm-out semi-decision procedure
[4] for discriminating between separable lambda terms.

TYPES 2021

7:4 Simulating Large Eliminations in Cedille

Γ ` t1 : S → T Γ ` t2 : Πx :S. {t1 x ' x}
Γ ` intrCast · S · T -t1 -t2 : Cast · S · T

Γ ` t : Cast · S · T
Γ ` cast · S · T -t : S → T

Γ ` t : Cast · S · T
Γ ` etaCast · S · T -t : {t ' λx. x}

|intrCast · S · T -t1 -t2| = λx. x |cast · S · T -t| = λx. x

|etaCast · S · T -t| = |λx. x|

Figure 2 Type inclusions

Γ ` t1 : Cast · S · T Γ ` t2 : Cast · T · S
Γ ` intrTpEq · S · T -t1 -t2 : TpEq · S · T

Γ ` t : TpEq · S · T
Γ ` tpEq1 · S · T -t : S → T

Γ ` t : TpEq · S · T
Γ ` tpEq2 · S · T -t : T → S

|intrTpEq · S · T -t1 -t2| = λx. x |tpEq1 · S · T -t| = λx. x

|tpEq2 · S · T -t| = λx. x

Figure 3 Extensional type equality

2.2 Derived Constructs
Type inclusions

The ϕ axiom of equality allows us to define a type constructor Cast that internalizes the
notion that the set of all elements of some type S is contained within the set of all elements
of type T (note that Curry-style typing makes this relation nontrivial). We describe its
axiomatic summary, presented in Figure 2; for the full derivation, see Jenkins and Stump [17]
(also Diehl et al. [11] for the related notion of Curry-style identity functions).

The introduction form intrCast takes two erased term arguments, a function t1 : S → T ,
and a proof that t1 behaves extensionally as the identity function on its domain. The
elimination form cast takes evidence that a type S is included into T and produces a function
of type S → T . The crucial property of cast is its erasure: |cast -t| = λx. x. Thus, Cast ·S ·T
may also be considered the type of zero-cost type coercions from S to T — zero cost because
the type coercion is performed in a constant number of β-reduction steps. The uniqueness
principle etaCast tells us that every witness of a type inclusion is equal to λx. x.

I Note. The significance to the results presented in this paper of the fact that any two
witnesses of a type inclusion are equal is discussed in Remark 11.

I Remark. When inspecting the introduction and elimination forms, it may seem that Cast
provides a form of function extensionality restricted to identity functions. This is not the
case, however, as it is possible to choose S, T , and t1 : S → T such that t1 is provably
extensionally equal to the identity function for terms of type S, and at the same time refute
{t1 ' λx. x} using δ. Instead, these rules should be read as saying that if t1 is extensionally
identity on its domain, then that fact justifies the assignment of type S → T to λx. x.

C. Jenkins and A. Marmaduke and A. Stump 7:5

Type equality

The extensional notion of type equality used to simulate large eliminations, TpEq, is the
existence of a two-way type inclusion, as shown by the introduction form intrTpEq in Figure 3.
Similar to Cast, the important feature of the summary of TpEq for the reader to keep in
mind is the erasure rules for the elimination forms, tpEq1 and tpEq2 : both erase to λx. x.
In Section 3.2, we will see a proof that computes a type equality witness in linear time.
However, in both elimination forms the type equality witness t : TpEq · S · T is given as an
erased argument. This means that the complexity of computing the witness is irrelevant to
the functions that realize the two-way coercion.

I Remark. Strictly speaking, the type TpEq · S · T is defined as the intersection of the types
Cast · S · T and Cast · T · S. In particular, this means TpEq enjoys the same uniqueness
property as Cast that all witnesses are equal to λx. x. However, the developments of this
paper do not need to make explicit use of this property, so we omit this from the figure.

2.2.1 Substitution
Though we call TpEq extensional type equality, within CDLE it is only an isomorphism of
types. To be considered a true notion of equality, TpEq would need a substitution principle.
The type constructors for dependent function types (both implicit and explicit) can be proven
to permit substitution if the domain and codomain parts do, as does quantification over
types. However, a proof of general substitution principle would assume an arbitrary type
constructor X : ?→ ? and a term t : X · S, and would need to produce a term of type X · T ,
where S and T are types such that TpEq · S · T . To proceed, we appear to require additional
assumption on X—otherwise, we cannot decompose or analyze the type X · S any further.

Nonetheless, the case studies presented in Sections 3 and 4 show that despite this
limitation, our simulation of large eliminations using TpEq is adequate for dealing with
common generic-programming tasks (see for example Note 9). Where we do use type
constructors of higher order than ? (such as in Section 4.2.1), we restrict ourselves to those
which admit a substitution principle for TpEq.

3 n-ary Functions

In this section, we use a concrete example to detail the method of simulating large eliminations.
Figure 4a shows the definition of Nary, the family of n-ary function types over some type T ,
as a large elimination of natural numbers. Our simulation of this begins by approximating
this inductive definition of a function with an inductive relation between Nat and types,
given as the generalized algebraic datatype [36] (GADT) NaryR in Figure 4b.

This approximation is inadequate: we lack a canonical name for the type Nary n because
n does not a priori determine the type argument of NaryR n. Indeed, without a form of

(a) As a large elimination

Nary : Nat → ?

Nary zero = T
Nary (succ n) = T → Nary n

(b) As a GADT

data NaryR : Nat → ? → ?

= naryRZ : NaryR zero ·T
| naryRS : ∀ n: Nat. ∀ Ih: ?.

NaryR n ·Ih → NaryR (succ n) ·(T → Ih)

Figure 4 n-ary functions over T [source]

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/example-nary.ced

7:6 Simulating Large Eliminations in Cedille

proof discrimination we would not even be able to deduce that if a given type N satisfies
NaryR zero, then from a term of type N we can extract a term of type T . Proceeding by
induction, in the naryRS case the (impossible) goal is to show that T is the same as T → Ih
for some arbitrary but fixed Ih : ?. We would need to derive a contradiction from the absurd
equation that {succ n ' zero} for some n. Fortunately, proof discrimination is available in
CDLE in the form of δ, so we are able to define functions such as extr0 below which require
this form of reasoning.

extr0’ : ∀ x: Nat. { x ' zero } ⇒ ∀ N: ?. NaryR x ·N → N → T
extr0’ -zero -eqx ·T naryRZ x = x
extr0’ -(succ n) -eqx ·(T → X) (naryRS n ·X r) x = δ - eqX

extr0 = extr0’ -zero -β

I Note. In code listings such as the above, we present recursive Cedille functions using the
syntax of (dependent) pattern matching to aid readability. This syntax is not currently
supported by the Cedille tool. For the functions we present, those that compute terms are
implemented in this paper’s repository using the datatype system described by Jenkins et
al. [16], and those that compute types use the simulation to be described next.

In the digital version of this paper, figures with code listings are accompanied by hyperlinks
to the Cedille implementation embedded in the text “[source]” in captions.

3.1 Sketch of the Idea

Our task is to show that NaryR defines a functional relation, i.e., for all n : Nat there exists
a unique type Nary n such that NaryR n · (Nary n) is inhabited. The candidate definition
for this type family is:

Nary n = ∀ X: ?. NaryR n ·X ⇒ X

For all n, read Nary n as the type of terms contained in the intersection of the family of
types X such that NaryR n ·X is inhabited. For example, every term t of type Nary zero
has type T also, since T is in this family (specifically, we have that t · T -naryRZ has type T
and erases to |t|). In the other direction, every term of type T also has type Nary zero, since
the only type X satisfying NaryR zero ·X is T itself.

However, at the moment we are stuck when attempting to prove NaryR zero · (Nary zero).
Though we see from the preceding discussion that T and Nary zero are extensionally equal
types (they classify the same terms), naryRZ requires that they be definitionally equal!
Furthermore, and as noted in Section 2.2.1, derived extensional type equality does not admit
a general substitution principle, which would allow us to rewrite the type NaryR zero · T to
the desired type by proving TpEq · T · (Nary zero). Therefore, we must modify the definition
of NaryR so that it defines a relation that is functional with respect to extensional type
equality. This is shown in below, with both constructors now quantifying over an additional
type argument X together with evidence that it is extensionally equal to the type of interest.

data NaryR : Nat → ? → ?

= naryRZ : ∀ X: ?. TpEq ·X ·T ⇒ NaryR zero ·X
| naryRS : ∀ Ih: ?. ∀ n: Nat. NaryR n ·Ih →

∀ X: ?. TpEq ·X ·(T → Ih) ⇒ NaryR (succ n) ·X

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/

C. Jenkins and A. Marmaduke and A. Stump 7:7

naryRResp : ∀ n: Nat. ∀ T1: ?. NaryR n ·T1 → ∀ T2: ?. TpEq ·T1 ·T2 ⇒ NaryR n ·T2

naryRUnique : ∀ n: Nat. ∀ T1: ?. NaryR n ·T1 → ∀ T2: ?. NaryR n ·T2 → TpEq ·T1 ·T2

naryZEq : TpEq ·(Nary zero) ·T
naryZ : NaryR zero ·(Nary zero)

narySEq : ∀ n: Nat. NaryR n ·(Nary n) → TpEq ·(Nary (succ n)) ·(T → Nary n)
naryS : ∀ n: Nat. NaryR n ·(Nary n) → NaryR (succ n) ·(Nary (succ n))

naryREx : Π n: Nat. NaryR n ·(Nary n)
naryREx zero = naryZ
naryREx (succ n) = naryS -n (naryREx n)

Figure 5 Respectfulness, uniqueness, and existence [source]

3.2 Proof that NaryR is a Functional Relation
We now overview the proof that NaryR is a functional relation, shown partially in Figure 5
and sketched below (the full Cedille proof can be found in the code repository). Though we
omit many details of the machine-checked derivation from the code listing, we give proof
sketches in natural language to convey the essence of the derivation.

Having made the operating notion of type equality extensional, we are required to prove
another property (in addition to uniqueness and existence): it respects (or is congruent with)
extensional type equality.

I Proposition 1 (Respectfulness (naryRResp)). For all n : Nat and T1, T2 : ?, if Nary relates
n to T1 and T1 is equal to T2, then Nary relates n to T2 also.

Proof idea. By case analysis on the assumed proof x : NaryR n · T1. In both cases, we have
a type X which is equal to T1, so use transitivity to conclude X is equal to T2. J

I Proposition 2 (Uniqueness (naryRUnique)). For all n : Nat and T1, T2 : ?, if Nary relates
n to T1 and also to T2, then T1 and T2 are equal.

Proof idea. By induction on the assumed proofs f1 : NaryR n · T1 and f2 : NaryR n · T2. In
the case for naryRZ , T1 and T2 are equal to T and thus to each other. In the case for naryRS ,
T1 is equal to a type of the form T → Ih1 and T2 is equal to a type of the form T → Ih2
for some Ih1, Ih2 : ?, both of which are assumed to satisfy Nary n′ (where n = succ n′). By
the inductive hypothesis, Ih1 and Ih2 are equal. Since the type constructor → respects type
equality in both domain and codomain, we have T → Ih1 is equal to T → Ih2, and thus T1
is equal to T2. J

Compared to the first two properties, the proof of existence, naryEx , is more involved. It
proceeds by induction, using lemmas naryZ and naryS , which specialize the constructors
naryRZ and naryRS to the corresponding members of the Nary family. We only sketch the
idea of one of these two lemmas, naryRS (the idea for naryRZ appeared in Section 3.1).

I Lemma 3 (naryS). For all n : Nat, if NaryR relates n and Nary n, then it relates succ n
and Nary (succ n).

Proof idea. First, given the assumption that NaryR n·(Nary n) holds, we have NaryR (succ n)·
(T → Nary n) as an instance of the constructor naryRS . From this and the proof that

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/nary.ced#L1-L107

7:8 Simulating Large Eliminations in Cedille

naryZC : Nary zero → T
naryZC = tpEq1 -naryZEq

narySC : ∀ n: Nat. Nary (succ n) → (T → Nary n)
narySC -n = tpEq1 -(narySEq -n (naryREx n))

naryZCId : { naryZC = λ x. x }
naryZCId = β

narySCId : ∀ n: Nat. { narySC -n ' λ x. x }
narySCId -n = β

Figure 6 Computation laws for Nary as zero-cost coercions [source]

NaryR respects type equality, it suffices to show that Nary (succ n) and T → Nary n are
equal types. We proceed by proving a two-way type inclusion.

In the first direction, we assume f : Nary (succ n). Since this type is the intersection of
the family of types X such that NaryR (succ n) ·X holds, we conclude by showing that
T → Nary n is in this family; this allows us to assign this type to f .
In the second direction, we assume f : T → Nary n and an arbitrary type X such that
Nary (succ n) · X holds, and must show f can be assigned the type X. We appeal
to uniqueness, as NaryR relates succ n to both X and T → Nary n. Since X and
T → Nary n are equal, f can be assigned type X.

J

I Proposition 4 (Existence (naryREx)). For all n : Nat, NaryR relates n and Nary n.

Proof. By induction on n, using lemmas naryZ and naryS . J

3.3 Computation Laws as Zero-cost Type Coercions
The proof of existence, naryREx, takes time linear in its argument n to compute a proof
of NaryR n · (Nary n). Therefore, at first glance it would seem that any type coercions
using naryEx could not be constant time. However, thanks to erasure in CDLE this is not
the situation: eliminators tpEq1 and tpEq2 (Figure 3) take the proof of type equality as
an erased argument, meaning the runtime complexity of naryREx is irrelevant to the type
coercion to which it entitles us!

Figure 6 demonstrates concretely the above discussion. Therein, we define the type
coercions naryZC and narySC , corresponding to the two computation laws (left-to-right)
for NaryR. In the definition of narySC , note that n is bound as an erased argument, and
that our problematic linear-time proof naryEx occurs only as part of the erased argument to
tpEq1 . Furthermore, we are able to prove that these to coercions are equal to the identity
function. The proofs, named naryZCId and narySCId in the figure, are given by β in both
cases, meaning that this equality holds not just propositionally, but definitionally—as we
would expect given the erasure rules for tpEq1 .

I Example 5. We conclude with an example: applying an n-ary function to n arguments of
type T , given as a length-indexed list (Vec). This is shown as appN below.

appN : ∀ n: Nat. Nary n → Vec ·T n → T
appN -zero f vnil = naryZC f
appN -(succ n) f (vcons -n x xs) = appN -n ((narySC -n f) x) xs

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/nary.ced#L109-L119

C. Jenkins and A. Marmaduke and A. Stump 7:9

The definition proceeds by induction on the list of arguments of type Vec · T n. In the vcons
case, the given natural number is revealed to have the form succ n, so we may coerce the
type of f : Nary (succ n) to the type T → Nary n to may apply f to the head of the list,
then recursively call appN on the tail.

4 Generic Programming Case Studies

In the previous section, we outlined the recipe simulating large eliminations, and in particular
we showed explicitly the use of type coercions for the example of applying an n-ary function.
For the case studies we consider next, all code listings are presented in a syntax that omits
the uses of type coercions to improve readability. In our implementation, we must explicitly
use these coercions as well as several substitution lemmas for TpEq over type constructors.
As CDLE is a kernel theory (and thus not intended to be ergonomic to program in), the
purpose of these examples is to show that this simulation is indeed capable of expressing
common generic programming tasks, and we leave the implementation of a high-level surface
language for its utilization as future work. We do, however, remark on any new difficulties
that are obscured by this presentation (such as Remark 9). Full details of all examples of
this section can be found in the repository associated with this paper.

4.1 A Closed Universe of Strictly Positive Datatypes

data Descr : ?

= idD : Descr
| constD : Descr
| pairD : Descr → Descr → Descr
| sumD : Π c: C. (I c → Descr) → Descr
| sigD : Π n: Nat. (Fin n → Descr) → Descr

Decode : ? → Descr → ?

Decode ·T idD = T
Decode ·T constD = Unit
Decode ·T (pairD d1 d2) = Pair ·(Decode ·T d1) ·(Decode ·T d2)
Decode ·T (sumD c f) = Sigma ·(I c) ·(λ i: I c. Decode ·T (f i))
Decode ·T (sigD n f) = Sigma ·(Fin n) ·(λ i: Fin n. Decode ·T (f i))

U : Descr → ?

U d = µ (λ T: ?. Decode ·T d)

inSig : ∀ n: Nat. ∀ cs: Fin n → Descr. Π i: Fin n. U (cs i) → U (sigD n cs)
inSig -n -cs i d = in (i , d)

Figure 7 A closed universe of strictly positive types [Descr source] [Decode source]

In the preceding section, we saw an example of arity-generic programming. We consider
now a type-generic task: proving the no confusion property [5] of datatype constructors for
a closed universe of strictly positive types. For the datatype universe, the idea (describe in
more detail by Dagand and McBride [9]) is to define a type whose elements are interpreted
as codes for datatype signatures and combine this with a type-level least fixedpoint operator.

This universe is shown in Figure 7, where Descr is the type of codes for signatures,
Decode the large elimination interpreting them, and C : ? and I : C → ? are parameters to

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/universe/descr.ced
https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/universe/decode.ced

7:10 Simulating Large Eliminations in Cedille

the derivation. Signatures comprise the identity functor (idD), a constant functor returning
the unitary type Unit (constD), a product of signatures (pairD), and two forms of sums.
The latter of these, sigD, takes an argument n : Nat for the number of constructors and
a family of n descriptions of the constructor argument types (Fin n is the type of natural
numbers less than n). The former, sumD, is a more generalized form that takes a code c : C
for a constructor argument type, and a mapping of values of type I c (where I interprets
these codes) to descriptions. Both are interpreted by Decode as dependent pairs which pack
together an element of the indexing type (I c or Fin n) with the decoding of the description
associated with that index.
I Remark 6. In order to express a variety of datatypes, our universe is parameterized by
codes C and interpretations I : C → ? for constructor argument types, such as used in
Example 8 below. Unlike much of the literature describing the definition of a closed universe
of strictly positive types [6, 9, 8] wherein the host language is a variation of intrinsically typed
Martin-Löf type theory, CDLE is extrinsically typed—type arguments to constructors can play
no role in computation, even in the (simulated) computation of other types. This appears
to be essential for avoiding paradoxes of the form described by Coquand and Paulin [7], as
CDLE is an impredicative theory in which datatype signatures need not be strictly positive.

Finally, the family of datatypes within this universe is given as U , defined using a type-
level least fixedpoint operator µ which we discuss in more detail in Section 5. We define a
constructor inSig for datatypes whose signatures are described by codes of the form sigD n cs

(for n : Nat and cs : Fin n→ Descr) using the generic constructor in : F µF → µF .

I Example 7 (Natural numbers). The type of natural numbers can be defined as:

unatSig : Descr
unatSig = sigD 2 (fvcons constD (fvcons idD fvnil))

UNat = U unatSig

where fvcons and fvnil are utilities for expressing functions out of Fin n in a list-like notation.
The constructors of UNat are:

uzero : UNat
uzero = inSig fin0 unit

usucc : UNat → UNat
usucc n = inSig fin1 n

We do not need the parameters C and I for these definitions.

I Example 8 (Lists). Let T : ? be an arbitrary type, and let parameters C and I be resp.
Unit and λ_. T . The type of lists containing elements of type T is defined as:

ulistSig : Descr
ulistSig = sigD 2 (fvcons constD (fvcons (sumD unit (λ _. idD)) fvnil))

UList = U ulistSig

with constructors defined similarly to those of UNat in the preceding example.

Proving No Confusion

Figure 8 shows the definition of the no confusion property, NoConfusion, as well as the type
of the proof noConfusion which states that the property holds for all equal datatype values.

C. Jenkins and A. Marmaduke and A. Stump 7:11

NoConfusion : Π n: Nat. Π cs: Fin n → Descr. U (sigD n cs) → U (sigD n cs) → ?

NoConfusion n cs (in (i1 , d1)) (in (i2 , d2)) | i1 =? i2
NoConfusion n cs (in (i1 , d1)) (in (i1 , d2)) | yes _ = { d1 ' d2 }
NoConfusion n cs (in (i1 , d1)) (in (i2 , d2)) | no _ = False

noConfusion : ∀ n: Nat. ∀ cs: Fin n → Descr.
Π d1: U (sigD n cs). Π d2: U (sigD n cs).
{ d1 ' d2 } → NoConfusion d1 d2

Figure 8 Statement and proof of no confusion [source]

NoConfusion is defined by case analysis over the two datatype values, and additionally
abstracts over a test of equality between the constructor labels i1 and i2 . The clause in
which they are equal corresponds to the statement of constructor injectivity (the two terms
are equal only if equal arguments were given to the constructor); the clause where i1 6= i2
gives the statement of disjointness (datatype expressions cannot be equal and also be in the
image of distinct constructors). The proof noConfusion (definition omitted) proceeds by
abstracting over the same equality test, and in both cases relies on injectivity of inSig.

I Note. Though our definition of NoConfusion follows that of Dagand and McBride [9], it
has a subtle difference: the primitive equality type in CDLE is untyped. Specifically, in the
case where we have that i1 and i2 are equal, we do not need the evidence of this fact to make
{d1 ' d2}, the type of equalities between d1 : U (cs i1) and d2 : U (cs i2), well-formed.

4.2 Arity-generic Map Operation
The last case study we consider is an arity-generic vector operation that generalizes map.
We summarize the goal (Weirich and Casinghino [34] give a more detailed explanation):
define a function which, for all n and families of types (Ai)i∈{1···n+1}, takes an n-ary function
of type A1 → . . . → An → An+1 and n vectors of type Vec · Ai m (for arbitrary m and
i ∈ {1, . . . , n}), and produces a result vector of type Vec ·An+1 m. Note that when n = 1,
this is the usual map operation, and when n = 2 it is zipWith (when n = 0, we have
repeat : Πm :Nat. A1 → V ec ·A1 m).

4.2.1 Vectors of Types
Our first task is to represent Nat-indexed families—i.e., length-indexed lists, or vectors—of
types. As discussed in Remark 6, it is not possible to define vectors of types which support
lookup as a Cedille datatype. We instead use simulated large eliminations to define them
directly as lookup functions. This definition, along with some operations, is shown in Figure 9.

The kind of length n vectors of types, κTpVec n, is defined as a function from Fin n to ?.
For the empty type vector TVNil, it does not matter what type we give for the right-hand
side of the equation as Fin zero is uninhabited. For TVCons, we use a (non-recursive) large
elimination of the given index, returning the head type H if it is zero and performing a
lookup in the tail vector L otherwise. The destructors TVHead and TVTail and the mapping
function TVMap are defined as expected. The fold operation, TVFold, is given as a large
elimination of the Nat argument; in the successor case, the recursive call is made on the tail
of the given type vector L.

I Remark 9. Somewhat hidden by our use of high-level pseudocode is the fact that, since
type equality does not admit a general substitution principle, effective use of TVFold requires

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/universe/noconfusion.ced

7:12 Simulating Large Eliminations in Cedille

κTpVec (n : Nat) = Fin n → ?

TVNil : κTpVec zero
TVNil _ = ∀ X: ?. X.

TVCons : Π n: Nat. Π H: ?. Π L: κTpVec n → κTpVec (succ n)
TVCons n ·H ·L zeroFin = H
TVCons n ·H ·L (succFin i) = L i

TVHead : Π n: Nat. κTpVec (succ n) → ?

TVHead n ·L = L zeroFin

TVTail : Π n: Nat. κTpVec (succ n) → κTpVec n
TVTail n ·L i = L (succFin i)

TVMap : Π F: ? → ?. Π n: Nat. κTpVec n → κTpVec n
TVMap ·F n ·L i = F ·(L i)

TVFold : Π F: ? → ? → ?. Π n: Nat. κTyVec (succ n) → ?

TVFold ·F zero ·L = TVHead zero ·L
TVFold ·F (succ n) ·L = F ·(TVHead n ·L) ·(TVFold n ·(TVTail (succ n) ·L))

Figure 9 Vectors of types [source]

restricting its first argument to type constructors F : ?→ ?→ ? which support substitution
with type equality. In particular, if we do not make this assumption, then for types of the
form TVFold · F (succ (succ n)) · L we can in general simulate only one computation step.

Additionally, under the assumption type constructor F respects type equality in both
its type arguments, we are able to give an alternative, more familiar characterization of
TVFold · F by expressing its action over type vectors constructed from TVNil and TVCons.
We show this characterization in Figure 10, where RespTpEq2 · F formally expresses that
F respects type equality, and tvFoldZEq and tvFoldSEq respectively express the action of
TVFold on a singleton list and a list with two or more arguments.

RespTpEq2 : Π F: ? → ? → ?. ?

RespTpEq2 ·F = ∀ A1: ?. ∀ A2: ?. TpEq ·A1 ·A2 ⇒
∀ B1: ?. ∀ B2: ?. TpEq ·B1 ·B2 ⇒
TpEq ·(F ·A1 ·B1) ·(F ·A2 ·B2)

tvFoldZEq : ∀ F: ? → ? → ?. RespTpEq2 ·F ⇒
∀ X: ?. TpEq ·(TVFold ·F zero ·(TVCons zero ·X ·TVNil)) ·X

tvFoldSEq : ∀ F: ? → ? → ?. RespTpEq2 ·F ⇒
∀ n: Nat. ∀ X: ?. ∀ L: κTyVec (succ n).
TpEq ·(TVFold ·F (succ n) ·(TVCons (succ n) ·X ·L)) ·(F ·X ·(TVFold ·F n ·L))

Figure 10 Variant computation laws for TVFold [source]

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/zipwith/tpvec.ced
https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/zipwith/tpvec/fold.ced#L99-L131

C. Jenkins and A. Marmaduke and A. Stump 7:13

ArrTp : Π n: Nat. κTpVec (succ n) → ?

ArrTp = TVFold ·(λ X: ?. λ Y: ?. X → Y)

ArrTpVec m n ·L = ArrTp n ·(TVMap ·(λ A: ?. Vec ·A m) (succ n) ·L)

vrepeat : ∀ A: ?. Π m: Nat. A → Vec ·A m
vapp : ∀ A: ?. ∀ B: ?. ∀ m: Nat. Vec ·(A → B) m → Vec ·A m → Vec ·B m

nvecMap : Π m: Nat. Π n: Nat. ∀ L: κTpVec (succ n). ArrTp n ·L → ArrTpVec m n ·L
nvecMap m n ·L f = go n ·L (vrepeat m f)

where
go : Π n: Nat. ∀ L: κTpVec (succ n) → Vec ·(ArrTp n ·L) → ArrTpVec m n ·L
go zero ·L fs = fs
go (succ n) ·L fs = λ xs. go n ·(TVTail (succ n) ·L) (vapp -m fs xs)

Figure 11 Arity-generic map [source]

4.2.2 ArrTp and nvecMap
We are now ready to define the arity-generic vector operation nvecMap, shown in Figure 11.
We begin with ArrTp, the large elimination that computes the type A1 → · · · → An → An+1
as a fold over a vector of types L = (Ai)i∈{1···n+1}. The type Vec·A1 m→ . . .→ Vec·An m→
Vec ·An+1 m is then constructed simply by composing ArrTp n with a map over L taking
each entry Ai to the type Vec ·Ai m, shown in ArrTpVec.

For nvecMap, we use vrepeat to create m replicas of the given n-ary function argument f ,
then invoke the helper function go which is defined by recursion over n. In the zero case, fs
has type Vec · (TVHead zero ·L) m, which is equal to the expected type (by the computation
laws for ArrTp and a proof that Vec respects type equality). In the successor case, fs is a
vector of functions where the type of each element is equal to

TVHead (succ n) · L→ ArrTp n · (TVTail (succ n) · L)

and the expected type is

Vec · (TVHead (succ n) · L) m→ ArrTpVec m n · (TVTail (succ n) · L)

so we assume such a vector xs, use vapp to apply each function of fs point-wise to the
elements of xs, then recurse to consume the remaining arguments.

5 Generic Simulation

We now generalize the approach outlined in Section 3 and simulate large eliminations
generically for datatypes. In the Cedille tool, datatype declarations are elaborated [16]
to impredicative encodings provided by the generic framework of Firsov et al. [12]. This
framework is based on the categorical semantics of datatypes as initial algebras [15], specifically
Mendler-style algebras [32], and it supports a broad class of datatypes including those that
are nonstrictly positive. To enjoy this same generality and to establish a foundation for
surface-language syntax of large eliminations in the Cedille tool, the developments in this
section also uses the framework of op. cit. Specifically, we simulate large eliminations for all
datatypes of the form µF : ?, where F : ?→ ? is a covariant (but otherwise arbitrary) type
scheme and µ is the operator for type-level least fixedpoints provided by Firsov et. al. [12].

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/zipwith/nvecMap.ced

7:14 Simulating Large Eliminations in Cedille

We first review Mendler-style recursion, and the framework of op. cit. for inductive
Mendler-style lambda encodings of datatypes in CDLE. Then, we define the notion of a
Mendler-style F -algebra at the level of types, overcoming a technical difficulty for classical
F -algebras arising from CDLE’s truncated sort hierarchy. Finally, we show that if a type-level
Mendler F -algebra A satisfies a certain condition with respect to derived type equality, then
A can be used for a simulated large elimination.

5.1 Mendler-style Recursion and Encodings
We briefly review the datatype recursion scheme à la Mendler. Originally proposed by
Mendler [23] as a method of impredicatively encoding datatypes, Uustalu and Vene have
shown that it forms the basis of an alternative categorical semantics of inductive datatypes [32],
and the same have advocated for the Mendler style of coding recursion, arguing that it is
more idiomatic than the classical formulation of structured recursion schemes [33].

I Definition 10 (Mendler-style primitive recursion). Let F : ?→ ? be a positive type scheme.
The datatype with signature F is µF with constructor in : F · µF → µF . The Mendler-style
primitive recursion scheme for µF is described by the typing and computation law given for
rec below:

Γ ` T : ? Γ ` a : ∀R :?. (R→ µF)→ (R→ T)→ F ·R→ T

Γ ` rec · T a : µF → T

rec · T a (in d) a · µF (id · µF) (rec · T a) d

In Definition 10, the type T (the carrier) is the type of results we wish to compute, and
the term a (the action) gives a single step of a recursive function, and we call the two of
them together a Mendler-style F -algebra for recursion. We understand the type argument R
of the action as a kind of subtype of the datatype µF — specifically, a subtype containing
only predecessors on which we are allowed to make recursive calls.

The first term argument of the action, a function of type R→ µF , we can view as the
coercion that realizes the subtyping relation; in the computation law, type argument R is
instantiated to µF , and the coercion is just id · µF , the identity. The next argument, a
function of type R→ T , is the handle for making recursive calls; in the computation law, it
is instantiated to rec · T a. Finally, the last argument is an “F -collection” of predecessors
of the type R; in the computation law, it is instantiated to the collection of predecessors
d : F µF of the datatype value in d.
I Note. We can use the fact that the “coercion” function for Mendler recursion is always
instantiated to the identity. In such cases, in CDLE it is idiomatic to have, instead of a
computationally relevant argument of type R→ µF , a computationally irrelevant argument
of type Cast ·R · µF (Figure 2). Since a Cast term is a proof of a type inclusion, this makes
explicit the previously informal intuition that the quantified type R is a subtype of µF .

Generic framework for Mendler-style datatypes Figure 12 gives an axiomatic summary
of the generic framework of Firsov et al. [12] for deriving efficient Mendler-style lambda
encodings of datatypes with induction. In all inference rules save the type formation rule of
µ, the datatype signature F is required to be Monotonic (that is, positive).

in is the datatype constructor. For the developments in this section, we find the Mendler-
style presentation given in the figure more convenient than the classical type of in.

C. Jenkins and A. Marmaduke and A. Stump 7:15

Monotonic · F = ∀X :?.∀Y :?.Cast ·X · Y ⇒ Cast · (F ·X) · (F · Y)
PrfAlg · F m · P = ∀R :?.∀ c :Cast ·R · µF.

(Πx :R.P (cast -c x))→ Π xs :F ·R.P (in -m -c xs)

Γ ` F : ?→ ?
Γ ` µF : ?

Γ ` F : ?→ ? Γ ` m : Monotonic · F
Γ ` in -m : ∀R :?.Cast ·R · µF ⇒ F ·R→ µF

Γ ` F : ?→ ? Γ ` m : Monotonic · F
Γ ` out -m : µF → F · µF

Γ ` F : ?→ ? Γ ` m : Monotonic · F
Γ ` ind -m : ∀P :µF → ?.PrfAlg · F m · P → Πx :µF. P x

|ind -m · P a (in -m ·R -c xs)| =βη |a ·R -c (λx. ind -m · P a (cast -c x)) xs|
|out -m (in -m ·R -c xs)| =βη |xs|

Figure 12 Axiomatic summary of the generic framework of Firsov et al. [12]

out is the datatype destructor, revealing the F -collection of predecessors used to construct
the given value.
PrfAlg is a generalization of Mendler-style algebras to dependent types. Compared to
the earlier discussion:

the carrier is a predicate P : µF → ? instead of a type;
the coercion function R→ µF from Mendler recursion becomes an erased witness of
type Cast ·R · µF ;
given a handle for invoking the inductive hypothesis on predecessors of type R and an
F -collection of such predecessors, a P -proof F -algebra action must show that P holds
for the value constructed from these predecessors using in.

ind gives the induction principle: to prove a property P for an arbitrary term of type
µF , it suffices to give a P -proof F -algebra.

5.2 Mendler-style Type Algebras

Like other (well-founded) recursive definitions, a large elimination can be expressed as a fold
of an algebra. In theories with a universe hierarchy, expressing this algebra is no difficult
task: the signature F can be universe polymorphic so that its application to either a type or
kind is well-formed. This is not the case for CDLE, however, as it has a truncated hierarchy
of sorts and no sort polymorphism. More specifically, there is no way to express a classical
F -algebra on the level of types, e.g., a kind (F ?) → ?, as it is not possible to define a
function on the level of kinds (which F would need to be).

Thankfully, this difficulty disappears when the type algebra is expressed in the Mendler
style! This is because F does not need to be applied to the kind (?) of previously com-
puted types, only to the universally quantified type R. Instead, types are computed from
predecessors using an assumption of kind R→ ?.

Figure 13 shows the definition κAlgTy of the kind of Mendler-style algebras for primitive
recursion having carrier ? (henceforth we will refer to the action of type algebras simply

TYPES 2021

7:16 Simulating Large Eliminations in Cedille

κAlgTy = Π R: ?. Cast ·R ·µF → (R → ?) → F ·R → ? .

AlgTyResp : κAlgTy → ?

= λ A: κAlgTy.
∀ R1: ?. ∀ R2: ?. ∀ c1: Cast ·R1 ·µF. ∀ c2: Cast ·R2 ·µF.
∀ Ih1: R1 → ?. ∀ Ih2: R2 → ?.
(Π r1: R1. Π r2: R2. { r1 ' r2 } → TpEq ·(Ih1 r1) ·(Ih2 r2)) →
Π xs1: F ·R1. Π xs2: F ·R2. { xs1 ' xs2 } →
TpEq ·(A ·R1 c1 ·Ih1 xs1) ·(A ·R2 c2 ·Ih2 xs2) .

Figure 13 Mendler-style type algebras [source]

as algebra). Just as in the concrete derivation of Section 3, we require that algebras must
respect type equality. This condition is codified in the figure as AlgTyResp, which says:

given two subtypes R1 and R2 of µF (which need not be equal),
and two inductive hypotheses Ih1 and Ih2 for computing types from values of type R1
and R2, resp.,
that return equal types on equal terms, then
we have that the algebra A returns equal types on equal F -collections of predecessors
(where the types of predecessors are resp. R1 and R2).

I Remark 11. A careful reader may have noticed that, in Figure 13, we place no constraints
on the witnesses c1 : Cast ·R1 µF and c2 : Cast ·R2 · µF , even though they both appear in
the final equality of AlgTyResp. This is because none are needed: recall from Figure 2 that
etaCast tells us all witnesses of a type coercion are provably equal to λx. x, so in particular
c1 and c2 are provably equal to each other.

I Example 12. Let F ·R = 1+R be the signature of natural numbers with zeroF : ∀R :?. F ·R
and succF : ∀R :?.R→ F ·R the signature’s injections. For a given property P : µF → ?,
we can express as a fold over a Mendler type algebra the property that P holds for a given
value and all its predecessors, as might be used for a hypothesis for strong induction. That
algebra is given below as StrongIndAlg:

StrongIndAlg : κAlgTy
StrongIndAlg ·R c Ih (zeroF ·R) = P (in -c (zeroF ·R))
StrongIndAlg ·R c Ih (succF ·R n) =

Pair ·(P (in -c (succF ·R n))) ·(StrongIndAlg ·R c Ih n)

Note that unlike previous examples, this algebra is recursive rather than being only iterative,
as the cast c is used (by in) to access predecessors at type µF .

Inspecting this definition, we see it indeed satisfies the condition AlgTyResp, with the
proof sketch as follows. We assume R1, R2, c1 : Cast · R1 · µF , c2 : Cast · R2 · µF , and
xs1 : F ·R1 and xs2 : F ·R2 such that {xs1 ' xs2}. We may proceed by considering the cases
where both are formed by the same injection.

In the zeroF case, the algebra returns P (in -c1 (zeroF ·R1)) and P (in -c2 (zeroF ·R2)),
which are convertible by erasure (we do not need etaCast for this).
In the succF case, Pair respects type equality, so it suffices to prove that the types of the
components are equal. From the assumption that succF ·R1 n1 is equal to succF ·R2 n2
(for some n1 : R1, n2 : R2), we obtain {n1 ' n2}, allowing us to conclude by using term
substitution in the first component type and the inductive hypothesis for the second.

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/generic/algty.ced

C. Jenkins and A. Marmaduke and A. Stump 7:17

data FoldR : µF → ? → ?

= foldRIn
: ∀ R: ?. ∀ c: Cast ·R ·µF. ∀ xs: F ·R.
∀ Ih: R → ?. (Π x: R. FoldR (cast -c x) ·(Ih x)) →
∀ X: ?. TpEq ·X ·(A ·R c ·Ih xs) ⇒ FoldR (in -c xs) ·X

Fold : µF → ?

Fold x = ∀ X: ?. FoldR x ·X ⇒ X .

foldRResp : ∀ x: µF. ∀ X1: ?. FoldR x ·X1 → ∀ X2: ?. TpEq ·X1 ·X2 ⇒ FoldR x ·X2
foldRUnique : ∀ x: µF. ∀ X1: ?. FoldR x ·X1 → ∀ X2: ?. FoldR x ·X2 → TpEq ·X1 ·X2
foldREx : Π x: µF. FoldR x ·(Fold x)

foldBeta : ∀ R: ?. ∀ c: Cast ·R ·µF. ∀ xs: F ·R.
TpEq ·(Fold (in -c xs)) ·(A ·R c ·(λ x: R. Fold (cast -c x)) xs)

foldEta : ∀ H: µF → ?.
Π homH: ∀ R: ?. ∀ c: Cast ·R ·µF. Π xs: F ·µF.

TpEq ·(H (in -c xs)) ·(A ·R c ·(λ x: R. H (cast -c x)) xs).
Π x: µF. TpEq ·(H x) ·(Fold x)

Figure 14 Generic large elimination [source]

I Remark 13. We again note that, in the definition of AlgTyResp, the two assumed subtypes
R1 and R2 need not be equal. As a consequence, in order to satisfy this condition the type
produced by the algebra should not depend on its type argument R. A high-level surface
language implementation for large eliminations in Cedille could require that the bound type
variable R only occurs in type arguments of term subexpressions. As definitional equality of
types is modulo erasure of typing annotations in term subexpressions, this would ensure that
the meaning (extent) of the type does not depend on R.

5.3 Relational Folds of Type Algebras
Figure 14 gives the definition of FoldR, a GADT expressing the fold of a type level algebra
A : κAlgTy over µF as a functional relation (A and F are parameters to the definition). It
has a single constructor, foldRIn, corresponding to the single generic constructor in of the
datatype, whose type we read as follows:

given a subtype R of µF and a collection of predecessors xs : F ·R, and
a function Ih : R → ? that, for every element x in its domain, produces a type related
(by FoldR) to that element, then
the datatype value constructed from xs is related to all types that are equal to A·R c·Ih xs.

Just as in Section 3, to show that the inductive relation given by FoldR determines a
function (from µF to equivalence classes of types), we define a canonical name (Fold) for
the types determined by the datatype elements and prove that the relation satisfies three
properties: it respects type equality, and every datatype element uniquely determines a type.
The proofs of respectfulness and existence properties proceed similarly to the concrete proofs
given for n-ary functions (see the code repository for full details). We use the condition on
type algebras in the proof of uniqueness, so we give a proof sketch below.

I Proposition 14 (Uniqueness (foldRUnique)). For all x : µF and X1, X2 : ?, if FoldR
relates x to both X1 and X2, then X1 and X2 are equal.

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/generic/large.ced

7:18 Simulating Large Eliminations in Cedille

Proof idea. By induction on the proofs f1 : FoldR x ·X1 and f2 : FoldR x ·X2. In the case for
foldRIn for f1, we know that x is of the form in ·R1 -c1 xs1 for some R1 : ?, c1 : Cast ·R1 ·µF ,
and xs1 : F · R. Similarly, from f2 we know that x is also of the form in · R2 -c2 xs2. By
injectivity of in, we know that {xs1 ' xs2}. Call this result (1).

In the case for foldRIn, we also are given: from f1, a type family Ih1 : R1 → ? such that
FoldR relates every x : R1 (R1 is a subtype of µF) to Ih1 x, and a type X1 extensionally equal
to A ·R1 c1 · Ih1 xs1; from f2, a type family Ih2 and type X2 satisfying similar conditions.
By the inductive hypothesis, we can obtain the fact that for all r1 : R1 and r2 : R2 such that
{r1 ' r2}, Ih1 r1 is equal to Ih2 r2. Call this result (2).

We may now use results (1) and (2) to invoke the assumed condition on A that it respects
type equality, obtaining a proof that A ·R1 c1 · Ih1 xs1 is equal to A ·R2 c2 · Ih2 xs2. From this
and some equational reasoning it follows that X1 is equal to X2, concluding the proof. J

I Remark 15. At present, we are unable to express in a single definition type constructor
algebras with arbitrarily kinded carriers. Thus, while our derivation is parametric in a
datatype signature, it must be repeated once for each type constructor kind. This process is
however entirely mechanical, so an implementation of a higher-level surface language for large
eliminations in Cedille could elaborate each variant of the derivation as needed, removing
the burden of writing boilerplate code.

5.3.1 Characterization
The last two definitions of Figure 14 characterize Fold as a recursion scheme. The computation
law, given by foldBeta, follows a similar pattern as for the Mendler-style recursion shown
in Definition 10. Fold acts over a datatype value constructed with predecessors xs : F · R
by calling the type level algebra A with Fold as the handle for recursive calls. Since in is a
Mendler-style datatype constructor, we instantiate the type argument of A to R so that A
may be applied directly to xs. The requirement that A satisfies AlgTyResp means that this
is equivalent (up to type equality) to instantiating A with µF and applying this to xs after
casting xs to the type F · µF .

In the case studies of Sections 3 and 4, we discussed only the computation laws of our
simulated large eliminations. For the generic result, we go further: Fold satisfies (up to type
equality and function extensionality) the extensionality law for Mendler-style recursion, which
says that Fold is uniquely defined by its action on the values generated by the constructor in.
This is shown as foldEta in the figure, whose type says that any other function H : µF → ?

that satisfies the same computation law as Fold is in fact equal to Fold.

6 Related Work

CDLE In an earlier formulation of CDLE [27], Stump proposed a mechanism called lifting
which allowed simply typed terms to be lifted to the level of types. While adequate
for both proving constructor disjointness for natural numbers and enabling some type-
generic programming (such as formatted printing in the style of printf), its presence
significantly complicated the meta-theory of CDLE and its expressive ability was found to
be incomplete [28]. Lifting was subsequently removed from the theory, replaced with the
simpler δ axiom for proof discrimination.

Marmaduke et al. [22] described a method of encoding datatype signatures that enables
constructor subtyping (à la Barthe and Frade [3]) with zero-cost type coercions. A key
technique for this result was the use of intersection types and equational constraints to

C. Jenkins and A. Marmaduke and A. Stump 7:19

simulate (again with type coercions) the computation of types by case analysis on terms —
that is, non-recursive large eliminations. Their method of simulation is therefore suitable for
expressing type algebras, but not their folds.

System FC The intermediate language used by the Haskell compiler GHC, System FC [29],
is an extension of System F with type coercions and equalities. In particular, within
System FC one can express nonparametric type-level functions by adding type equality
axioms, such as f Int ∼ Bool (where ∼ is the type equality operator for FC). In our
approach, clauses of type-level functions are encoded using datatype constructors, and
incoherent or partial functions cannot be used because the relation defined by the underlying
datatype must be proven to be functional.

MLTT and CC Smith [26] showed that disjointness of datatype constructors was not
provable in Martin-Löf type theory without large eliminations by exhibiting a model of types
with only two elements — a singleton set and the empty set. In the calculus of constructions,
Werner [35] showed that disjointness of constructors would be contradictory by using an
erasure procedure to extract System Fω terms and types, showing that a proof of 1 6= 0 in
CC would imply a proof of (∀X :?.X → X)→ ∀X :?.X in Fω. Proof irrelevance is central
to both results. Since in CDLE proof relevance is axiomatized with δ, this paper can be
viewed as a kind of converse to these results: large eliminations enable proof discrimination,
and proof discrimination together with extensional type equality enable the simulation of
large eliminations.

GADT Semantics Our simulation of large eliminations rests upon a semantics of GADTs
which (intuitively) interprets them as the least set generated by their constructors. However,
the semantics of GADTs is a subject which remains under investigation. Johann and
Polonsky [19] recently proposed a semantics which makes them functorial, but in which the
above-given intuition fails to hold. In subsequent work, Johann et al. [18] explain that GADTs
whose semantics are instead based on impredicative encodings (in which case they are not
in general functorial) may be equivalently expressed using explicit type equalities. Though
they exclude functorial semantics for GADTs in CDLE, the presence of type equalities (both
implicit in the semantics and the explicit uses of derived extensional type equality) are
essential for defining a relational simulation of large eliminations.

7 Conclusion and Future Work

We have shown that large eliminations may be simulated in CDLE using a derived extensional
type equality, zero-cost type coercions, and GADTs to inductively define functional relations.
This result overcomes seemingly significant technical obstacles, chiefly CDLE’s lack of
primitive inductive types and universe polymorphism, and is made possible by an axiom for
proof discrimination. To demonstrate the effectiveness of the simulation, we examine several
case studies involving type- and arity-generic programming. Additionally, we have shown
that the simulation may be derived generically (that is, parametric in a datatype signature)
with Mendler-style type algebras satisfying a certain condition with respect to type equality.

Syntax In this paper, we have chosen to present code examples using a high-level syntax
to improve readability. While the current version of Cedille [10] supports surface language
syntax for datatype declarations and recursion, syntax for large eliminations remains future

TYPES 2021

7:20 Simulating Large Eliminations in Cedille

work. Support for this requires addressing (at least) two issues. First, it requires a sound
criterion for determining when the type algebra denoted by the surface syntax satisfies
the condition AlgTyResp (Section 5.2). We conjecture that a simple syntactic occurrence
check, along the lines outlined in Remark 13, for erased arguments will suffice. Second, it is
desirable that the type coercions that simulate the computation laws of a large elimination
be automatically inferred using a subtyping system based on coercions [21, 30].

Semantics As discussed in Section 2.2.1, the derived form of extensional type equality used
in our simulation lacks a substitution principle. However, we claim that such a principle is
validated by CDLE’s semantics [28], wherein types are interpreted as sets of (βη-equivalence
classes of) terms of untyped lambda calculus. Under this semantics, a proof of extensional type
equality in the syntax implies equality of the semantic objects. We are therefore optimistic
that CDLE may be soundly extended with a kind-indexed family of type constructor equalities
with an extensional introduction form and substitution for its elimination form, removing all
limitations of the simulation of large eliminations.

References
1 Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori

Lorigo, and E. Moran. Innovations in computational type theory using NuPRL. J. Applied
Logic, 4(4):428–469, 2006. doi:10.1016/j.jal.2005.10.005.

2 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and
Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
doi:10.1145/3209108.3209189.

3 Gilles Barthe and Maria João Frade. Constructor subtyping. In S. Doaitse Swierstra,
editor, Programming Languages and Systems, 8th European Symposium on Programming,
ESOP’99, Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’99, Amsterdam, The Netherlands, 22-28 March, 1999, Proceedings,
volume 1576 of Lecture Notes in Computer Science, pages 109–127. Springer, 1999. doi:
10.1007/3-540-49099-X_8.

4 Corrado Böhm, Mariangiola Dezani-Ciancaglini, P. Peretti, and Simona Ronchi Della Rocca.
A discrimination algorithm inside lambda-beta-calculus. Theor. Comput. Sci., 8:265–292, 1979.
doi:10.1016/0304-3975(79)90014-8.

5 R. M. Burstall and J. A. Goguen. Algebras, Theories and Freeness: An Introduction for
Computer Scientists, pages 329–349. Springer Netherlands, Dordrecht, 1982. doi:10.1007/
978-94-009-7893-5_11.

6 James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle art of
levitation. In Proceeding of the 15th ACM SIGPLAN international conference on Functional
programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010, pages 3–14,
2010. doi:10.1145/1863543.1863547.

7 Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and
Grigori Mints, editors, COLOG-88, International Conference on Computer Logic, Tallinn,
USSR, December 1988, Proceedings, volume 417 of Lecture Notes in Computer Science, pages
50–66. Springer, 1988. doi:10.1007/3-540-52335-9_47.

8 Pierre-Évariste Dagand. A cosmology of datatypes: reusability and dependent types. PhD
thesis, University of Strathclyde, Glasgow, UK, 2013. URL: http://oleg.lib.strath.ac.uk/
R/?func=dbin-jump-full&object_id=22713.

9 Pierre-Évariste Dagand and Conor McBride. Elaborating inductive definitions. CoRR,
abs/1210.6390, 2012. arXiv:1210.6390.

10 Cedille development team. Cedille v1.2.1. https://github.com/cedille/cedille.

https://doi.org/10.1016/j.jal.2005.10.005
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1016/0304-3975(79)90014-8
https://doi.org/10.1007/978-94-009-7893-5_11
https://doi.org/10.1007/978-94-009-7893-5_11
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1007/3-540-52335-9_47
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
http://arxiv.org/abs/1210.6390
https://github.com/cedille/cedille

C. Jenkins and A. Marmaduke and A. Stump 7:21

11 Larry Diehl, Denis Firsov, and Aaron Stump. Generic zero-cost reuse for dependent types.
Proc. ACM Program. Lang., 2(ICFP):104:1–104:30, Jul 2018. doi:10.1145/3236799.

12 Denis Firsov, Richard Blair, and Aaron Stump. Efficient Mendler-style lambda-encodings
in Cedille. In Jeremy Avigad and Assia Mahboubi, editors, Interactive Theorem Proving -
9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10895 of Lecture Notes in
Computer Science, pages 235–252, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-94821-8_14.

13 Denis Firsov and Aaron Stump. Generic derivation of induction for impredicative encodings
in Cedille. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, page 215–227, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3167087.

14 Herman Geuvers. Induction is not derivable in second order dependent type theory. In Samson
Abramsky, editor, Typed Lambda Calculi and Applications, 5th International Conference, TLCA
2001, Krakow, Poland, May 2-5, 2001, Proceedings, volume 2044 of Lecture Notes in Computer
Science, pages 166–181, Berlin, Heidelberg, 2001. Springer. doi:10.1007/3-540-45413-6_16.

15 Tatsuya Hagino. A categorical programming language. PhD thesis, 1987.
16 Christopher Jenkins, Colin McDonald, and Aaron Stump. Elaborating inductive definitions

and course-of-values induction in Cedille, 2019. arXiv:1903.08233.
17 Christopher Jenkins and Aaron Stump. Monotone recursive types and recursive data rep-

resentations in Cedille. Math. Struct. Comput. Sci., 31(6):682–745, 2021. doi:10.1017/
S0960129521000402.

18 Patricia Johann, Enrico Ghiorzi, and Daniel Jeffries. GADTs, functoriality, parametricity:
Pick two. CoRR, 2021. arXiv:2105.03389.

19 Patricia Johann and Andrew Polonsky. Higher-kinded data types: Syntax and semantics. In
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785657.

20 Alexei Kopylov. Dependent intersection: A new way of defining records in type theory.
In Proceedings of 18th IEEE Symposium on Logic in Computer Science (LICS 2003), 22-
25 June 2003, Ottawa, Canada, LICS ’03, pages 86–95. IEEE Computer Society, 2003.
doi:10.1109/LICS.2003.1210048.

21 Zhaohui Luo. Coercive subtyping. J. Logic and Computation, 9(1):105–130, 1999. doi:
10.1093/logcom/9.1.105.

22 Andrew Marmaduke, Christopher Jenkins, and Aaron Stump. Zero-cost constructor subtyping.
In IFL 2020: Proceedings of the 32nd Symposium on Implementation and Application of
Functional Languages, IFL 2020, page 93–103, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3462172.3462194.

23 N. P. Mendler. Recursive types and type constraints in second-order lambda calculus. In
Proceedings of the Symposium on Logic in Computer Science, (LICS ’87), pages 30–36, Los
Alamitos, CA, June 1987. IEEE Computer Society.

24 Alexandre Miquel. The implicit calculus of constructions: Extending pure type systems with
an intersection type binder and subtyping. In Proceedings of the 5th International Conference
on Typed Lambda Calculi and Applications, TLCA’01, page 344–359, Berlin, Heidelberg, 2001.
Springer-Verlag. doi:10.1007/3-540-45413-6_27.

25 Jan M. Smith. An interpretation of Martin-Löf’s type theory in a type-free theory of proposi-
tions. J. Symb. Log., 49(3):730–753, 1984. doi:10.2307/2274128.

26 Jan M. Smith. The independence of Peano’s fourth axiom from Martin-Lof’s type theory
without universes. J. Symb. Log., 53(3):840–845, 1988. doi:10.2307/2274575.

27 Aaron Stump. The calculus of dependent lambda eliminations. J. Funct. Program., 27:e14,
2017. doi:10.1017/S0956796817000053.

28 Aaron Stump and Christopher Jenkins. Syntax and semantics of Cedille. 2018. arXiv:
1806.04709.

TYPES 2021

https://doi.org/10.1145/3236799
https://doi.org/10.1007/978-3-319-94821-8_14
https://doi.org/10.1007/978-3-319-94821-8_14
https://doi.org/10.1145/3167087
https://doi.org/10.1007/3-540-45413-6_16
http://arxiv.org/abs/1903.08233
https://doi.org/10.1017/S0960129521000402
https://doi.org/10.1017/S0960129521000402
http://arxiv.org/abs/2105.03389
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2003.1210048
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1145/3462172.3462194
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.2307/2274128
https://doi.org/10.2307/2274575
https://doi.org/10.1017/S0956796817000053
http://arxiv.org/abs/1806.04709
http://arxiv.org/abs/1806.04709

7:22 Simulating Large Eliminations in Cedille

29 Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly.
System F with type equality coercions. In François Pottier and George C. Necula, editors,
Proceedings of TLDI’07: 2007 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, Nice, France, January 16, 2007, pages 53–66. ACM, 2007.
doi:10.1145/1190315.1190324.

30 Nikhil Swamy, Michael W. Hicks, and Gavin M. Bierman. A theory of typed coercions
and its applications. In Graham Hutton and Andrew P. Tolmach, editors, Proceeding of
the 14th ACM SIGPLAN international conference on Functional programming, ICFP 2009,
Edinburgh, Scotland, UK, August 31 - September 2, 2009, pages 329–340. ACM, 2009. doi:
10.1145/1596550.1596598.

31 The Coq Development Team. The Coq Reference Manual, version 8.13, 2021. Available
electronically at https://coq.github.io/doc/v8.13/refman/.

32 Tarmo Uustalu and Varmo Vene. Mendler-style inductive types, categorically. Nordic Journal
of Computing, 6(3):343–361, Sep 1999. URL: http://dl.acm.org/citation.cfm?id=774455.
774462.

33 Tarmo Uustalu and Varmo Vene. Coding recursion a la Mendler (extended abstract). In Proc.
of the 2nd Workshop on Generic Programming, WGP 2000, Technical Report UU-CS-2000-19,
pages 69–85. Dept. of Computer Science, Utrecht University, 2000.

34 Stephanie Weirich and Chris Casinghino. Generic programming with dependent types. In
Jeremy Gibbons, editor, Generic and Indexed Programming - International Spring School,
SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures, volume 7470 of Lecture Notes
in Computer Science, pages 217–258. Springer, 2010. doi:10.1007/978-3-642-32202-0_5.

35 Benjamin Werner. A normalization proof for an impredicative type system with large elimina-
tion over integers. In Bengt Nordström, Kent Petersson, and Gordon Plotkin, editors, Proc.
of the 1992 Workshop on Types for Proofs and Programs, pages 341–357, June 1992.

36 Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In Alex
Aiken and Greg Morrisett, editors, Conference Record of POPL 2003: The 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, New Orleans, Louisisana,
USA, January 15-17, 2003, pages 224–235. ACM, 2003. doi:10.1145/604131.604150.

https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1596550.1596598
https://doi.org/10.1145/1596550.1596598
https://coq.github.io/doc/v8.13/refman/
http://dl.acm.org/citation.cfm?id=774455.774462
http://dl.acm.org/citation.cfm?id=774455.774462
https://doi.org/10.1007/978-3-642-32202-0_5
https://doi.org/10.1145/604131.604150

	1 Introduction
	2 Background on CDLE
	2.1 Primitives
	2.2 Derived Constructs
	2.2.1 Substitution

	3 n-ary Functions
	3.1 Sketch of the Idea
	3.2 Proof that NaryR is a Functional Relation
	3.3 Computation Laws as Zero-cost Type Coercions

	4 Generic Programming Case Studies
	4.1 A Closed Universe of Strictly Positive Datatypes
	4.2 Arity-generic Map Operation
	4.2.1 Vectors of Types
	4.2.2 ArrTp and nvecMap

	5 Generic Simulation
	5.1 Mendler-style Recursion and Encodings
	5.2 Mendler-style Type Algebras
	5.3 Relational Folds of Type Algebras
	5.3.1 Characterization

	6 Related Work
	7 Conclusion and Future Work

