
Impredicative Encodings of Inductive-Inductive
Data in Cedille

Andrew Marmaduke, Larry Diehl, and Aaron Stump

The University of Iowa, Iowa City, Iowa, U.S.A. {first}-{last}@uiowa.edu

Abstract. Cedille is a dependently typed programming language known
for expressive and efficient impredicative encodings. In this work, we
show that encodings of induction-induction are also possible by employ-
ing a standard technique from other encodings in Cedille, where a type
representing the shape of data is intersected with a predicate that further
constrains Thus, just as with indexed inductive data, Cedille can encode
a notion that is often axiomatically postulated or directly implemented
in other dependent type theories without sacrificing efficiency.

Keywords: Impredicative Encoding · Induction-Induction · Cedille.

1 Introduction

Induction-induction is an extension of mutual inductive datatypes that further
empowers a user to specify exactly the associated inhabitants. Denoted correct-
by-construction, constructors are specified so that only the data of interest are
expressible which prevents error handling or other boilerplate code for so-called
“junk” data. These kinds of definitions where explored in detail by Forsberg et al.
[20,11,10,2]. Mutual inductive datatypes in their simplest incarnation define two
datatypes whose constructors may refer to the type of the other. The canonical
example is the indexed datatypes Even and Odd.

data Even : N → ⋆ where
ezer : Even 0

esuc : (n : N) → Odd n → Even (suc n)

data Odd : N → ⋆ where
osuc : (n : N) → Even n → Odd (suc n)

Induction-induction expands on this by allowing a type to be the index of the
other. Thus, instead of two mutually defined types A,B : ⋆ there are two types
A : ⋆ and B : A → ⋆ mutually defined. Of course, the types can refer to one
another in their constructors as before. The canonical example of induction-
induction is a type representing the syntax of a dependent type theory. The Ctx

2 A. Marmaduke et al.

and Ty types (excluding a type representing terms) are defined:

data Ctx : ⋆ where
nil : Ctx
cons : (Γ : Ctx) → Ty Γ → Ctx

data Ty : Ctx → ⋆ where
base : (Γ : Ctx) → Ty Γ

arrow : (Γ : Ctx) → (A : Ty Γ) → (B : Ty (cons Γ A)) → Ty Γ

Induction-induction is of particular interest when modeling programming lan-
guage syntax. Indeed, a more general formulation of quotient inductive-inductive
datatypes has been used to model dependent type theories with induction prin-
ciples modulo definitional equality over syntax [1]. From the perspective of con-
structing Domain Specific Languages (DSLs) induction-induction is a desirable
technique if available.

DSLs are not the only interesting data that can be modelled with induction-
induction. A type A and a predicate P : A → ⋆ may be mutually defined
by induction-induction to enforce some desired property on the data of A. For
example, a ListSet of natural numbers where all elements must be unique:

data ListSet : ⋆ where
nil : ListSet
cons : (n : N) → (ℓ : ListSet) → Unique n ℓ → ListSet

data Unique : N → ListSet → ⋆ where
triv : (n : N) → Unique n nil
ucons : (n m : N) → (ℓ : ListSet)

→ m ̸= n → Unique m ℓ → Unique m (cons n ℓ)

While such a type can be defined via other methods (e.g. using quotients [18]), it
is sometimes easier or more natural to define the property inductively. Addition-
ally, the initial data without the constraining predicate may have no other use,
thus a stronger guarantee is conveyed by demanding the data adheres to some
predicate in its definition. Finally, there are some constructions in mathematical
practice that have natural definitions via induction-induction in dependent type
theory such as Conway’s Surreal Numbers [20].

This paper reports a novel result that induction-induction is a derivable con-
cept within the dependently typed programming language Cedille. Additionally,
a generic encoding of induction-induction is formalized in the Cedille tool. In
fact, all notions of data are derived by other type constructors in Cedille with
induction-induction being the latest example. While other dependent type the-
ories support induction-induction they do so by extending the core theory of
datatypes. This is a valid approach, but it is the philosophy of Cedille that a
smaller trusted computing base (i.e. a small core type checker) is a more desir-
able feature when designing a tool for dependent type theories. Moreover, other

Impredicative Encodings of Inductive-Inductive Data in Cedille 3

tools (as of 2022, Coq is one such example) do not permit inductive-inductive
datatypes.

2 Background on Cedille

Cedille is a dependently typed programming language with a type theory based
on the Calculus of Constructions with three extensions: erased functions, depen-
dent intersections, and equality [21,22]. Many interesting encodings are possible
with this theory including inductive data and simulated large eliminations as
some examples [8,13].

2.1 Erased Functions and Erasure

Γ, x : T ⊢ t′ : T ′ x ̸∈ FV(|t′|)
Γ ⊢ Λx :T. t′ : ∀x :T. T ′

Γ ⊢ t : ∀x :T ′. T Γ ⊢ t′ : T ′

Γ ⊢ t -t′ : [t′/x]T

|Λx :T. t| = |t| |t -t′| = |t|

Fig. 1: Erased Functions

Erased functions as shown in Figure 1 represent function spaces where the vari-
able may not appear free in the erasure of the body. This type former is inspired
by the implicit functions of Miquel [19]. The erasure of a term, |t|, is defined
with each corresponding extension. Additionally, the definitional equality of the
theory is extended to mean |t1| ≡βη |t2| i.e. that two terms are definitionally
equal if the βη-normal forms of their erasures are equivalent up-to renaming.
We take the liberty of a syntax style resembling Agda and use (x : T1) ⇒ T2

to be an equivalent syntax for ∀x :T1. T2. Note that types in Cedille are always
erased at the term level.

Erased functions allow for a fine-grained control over the relevant shape of a
term which is critical when intersecting. Moreover, indices are almost always
conceptually viewed as erased, but this fact is not usually expressible in a type
theory. With erased functions, indices can always be marked as erased. Note that
erased functions are not like implicit function spaces in other languages where a
term is inferred via unification. Instead, an erased function is closer to the erased
functions of Quantitative Type Theory [3].

2.2 Dependent Intersections

Inspired by Kopylov [17], dependent intersections, as shown in Figure 2, can be
interpreted intuitively as a kind of refinement type. While the namesake makes
sense, because the terms of an intersection must be definitionally equal, the

4 A. Marmaduke et al.

Γ ⊢ t1 : T1 Γ ⊢ t2 : [t1/x]T2 |t1| = |t2|
Γ ⊢ [t1, t2] : ι x :T1. T2

Γ ⊢ t : ι x :T1. T2

Γ ⊢ t.1 : T1

Γ ⊢ t : ι x :T1. T2

Γ ⊢ t.2 : [t.1/x]T2

|[t1, t2]| = |t1| |t.1| = |t| |t.2| = |t|

Fig. 2: Dependent Intersection

usage we are primarily interested in is to constrain some type via a predicate
that matches its shape. Note, this is a critical and powerful application which
obviates many other practical concerns with refinement types. Again, a syntax
style resembling Agda is used with (x : T1) ∩ T2 being equivalent syntax for
ι x : T1. T2. While useful for presentation, these alternative syntaxes are not
possible in the Cedille tool, thus an inspection of the formalization will require
understanding the original syntactic forms.

2.3 Equality

FV (t) ⊆ dom(Γ)

Γ ⊢ β : {t ≃ t}
Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t′ : [t2/x]T

Γ ⊢ ρ t @ x.T − t′ : [t1/x]T

Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t1 : T

Γ ⊢ φ t− t1 {t2} : T

Γ ⊢ t : {λx. λ y. x ≃ λx. λ y. y}
Γ ⊢ δ − t : T

|β| = λx. x |ρ t @ x.T − t′| = |t′|

|φ t− t1 {t2}| = |t2| |δ − t| = λx. x

Fig. 3: Equality

The propositional equality of Cedille, as shown in Figure 3, is necessary for rea-
soning about the shape of terms and finalizing the development of an induction
principle for the various possible encodings in Cedille. Cedille’s equality is very
different from other dependent type theories like Agda. Indeed, it is irrelevant,
not inductive, and works over untyped terms. We will not directly use the equal-
ity type in this work as it is not necessary for the core idea. However, it is still
necessary to complete the proof of induction for the various encodings, but the
process to do so is standard.

Impredicative Encodings of Inductive-Inductive Data in Cedille 5

Γ ⊢ f : S → T Γ ⊢ t : Π x :S. {f x ≃ x}
Γ ⊢ intrCast -f -t : Cast S T

Γ ⊢ t : Cast S T
Γ ⊢ cast -t : S → T

|intrCast -f -t| = λx. x |cast -t| = λx. x

Fig. 4: Casts

2.4 Casts

A cast is a derived construct in Cedille that encodes an identity function between
two, potentially definitionally distinct, types. Figure 4 presents a rule-based de-
scription of casts. Note that there are trivial casts from a dependent intersection
to its first or second component. The φ constructor of the equality type is re-
sponsible for creating more interesting inhabitants of the Cast type. Casts are
critical to deriving efficient inductive data. By efficient, we mean that the pro-
duction of subdata is emulated with a constant number of β-reductions, and that
folds over data is emulated in a proportional number of β-reductions relative to
the size of the data. For example, the predecessor function for unary Natural
numbers should be O(1) reductions and addition should be O(n) reductions in
the first argument.

2.5 Indexed Inductive Data

Indexed-inductive datatypes are also a derived notion in Cedille. The Cedille tool
supports special syntax with motive inference and other quality of life improve-
ments to ease working with data. A complete derivation of indexed-inductive
data is provided in the formalization [encoding]. Additionally, all formalized work
presented in this paper uses this encoding. However, occasionally the convenient
syntax is used instead, particularly when defining functors that are provided to
generic encodings. This syntax allows the construction of data, e.g. of Natural
numbers:

data Nat : ⋆ =

| zero : Nat
| succ : Nat → Nat

and an inductive eliminator, e.g. if n : Nat then

µ ih. n @ λ i.Motive i {
| zero → . . .

| succ x → . . . }

https://github.com/cedille/cedille-developments/tree/master/induction-induction/encoding

6 A. Marmaduke et al.

is an induction with ih binding the inductive hypothesis and producing a value
of type Motive n with cases for each constructor as expected. Finally, there is
a pattern matching form of the above induction principle µ′ n which elides the
inductive hypothesis. Further discussion of the core ideas will not use the above
syntax and instead will take an informal approach, but this syntax is necessary
for understanding the formalization.

3 Induction-Induction Encoding

3.1 The Core Idea

Impredicative encodings of inductive data follow from the observation that a
simple view of the type in terms of System F and an induction principle stated
relative to this simpler view yields the full inductive type when intersected. For
example, consider a Church encoded Natural number where we first define the
standard impredicative encoding in System F.

CNat = (X : ⋆) ⇒ X → (X → X) → X

Then, the inductive predicate we expect of natural numbers but stated relative
to CNats:

CNatInd = λn. (P : CNat → ⋆) ⇒ P czero
→ ((x : CNat) ⇒ P x → P (csucc x)) → P n

Note that, critically, the subdata in the successor case of the induction predica-
tive is quantified with an erased arrow. This allows the computational content
of both types to match while simultaneously allowing for the expected induction
principle to be stated. Now, the full inductive type is the intersection,

Nat = (x : CNat) ∩ CNatInd x

where the correct induction principle in terms of Nat is derivable.

The same core idea works for reducing inductive-inductive data to indexed in-
ductive data. For example, the canonical example of Ctx and Ty is encoded first
by defining a mutual inductive type representing the shape of the type.

data Pre : B → ⋆ where
pnil : Pre tt
pcons : Pre tt → Pre ff → Pre tt
pbase : Pre tt → Pre ff
parrow : Pre tt → Pre ff → Pre ff → Pre ff

Now Pre tt is the PreCtx and Pre ff is the PreTy, the initial shapes of both types.
Second, we construct a predicate over Pre types capturing induction relative to

Impredicative Encodings of Inductive-Inductive Data in Cedille 7

a Pre value.

data Ind : (b : B) → elim b → ⋆ where
gnil : Ind tt (in1 pnil)
gcons : (c : PreCtx) ⇒ Ind tt (in1 c)

→ (t : PreTy) ⇒ Ind ff (in2 c t)
→ Ind tt (in1 (pcons c t))

gbase : (c : PreCtx) ⇒ Ind tt (in1 c) → Ind ff (in2 (pbase c))
garrow : (c : PreCtx) ⇒ Ind tt (in1 c)

→ (a : PreTy) ⇒ Ind ff (in2 c a)
→ (b : PreTy) ⇒ Ind ff (in2 (pcons c a) b)
→ Ind ff (in2 c (parrow c a b))

Where elim b is a simulated large elimination [13] with constructors

in1 : Pre tt → elim tt
in2 : Pre tt → Pre ff → elim ff

Notice that the type Ind, when erased arrows and the elim b dependencie are
removed, is exactly the Pre type. Moreover, in Cedille when two inductive types
are defined with the same number of constructors, as long as the relevant types
of those constructors agree, then the constructors themselves are equal. Thus, we
have that pnil is definitionally equal to gnil, and likewise for the three remaining
constructors. Conceptually, we will see that we can also view Ind as capturing
the canonical (or normal) elements of Pre that are inductive.

Now, the complete inductive-inductive types may be defined by the intersections:

Ctx = (x : PreCtx) ∩ Ind tt (in1 x)
Ty c = (x : PreTy) ∩ Ind ff (in2 c.1 x)

Again, the expected induction principles are derivable in terms of Ctx and Ty.
Note that the technique of encoding mutual inductive types via indexed induc-
tive types is a standard trick [16]. Moreover, the efficiency of the encoding is
dependent entirely on the efficiency of the underlying indexed-inductive data
encoding.

3.2 Generic Encoding: First Variant

To obtain a generic version of the core idea we first must describe a functor
representation of the required data. First, the ShapeF functor must encode the
shape of all possible constructors. Let n be the number of datatypes under
definition, then

(Fin n → ⋆) → Fin n → ⋆

8 A. Marmaduke et al.

is the type of the ShapeF functor. Of course, in order for this to really be a functor
it must be monotonic. A functor F with index I is monotonic if it preserves casts
on indexed data, or concretely if it satisfies the following property:

(A : I → ⋆) → (B : I → ⋆)

→ ((i : I) → Cast (A i) (B i))

→ (i : I) → Cast (F A i) (F B i)

Second, we must constrain the shape with what we will suggestively call the
NormalF functor. Let Shape be the inductive type corresponding to a monotonic
ShapeF functor. Let Idx be the type (i : Fin n) × (Tuple n Shape (fsucc -n i))
where (a : A)× P a is a derived sigma type and Tuple n Shape (fsucc -n i) is a
derived simulated large elimination with the computation rules:

tupleP : Tuple n Shape (fsucc -n i) → (Shape i)× (Tuple n Shape i)

tupleS : (Shape i)× (Tuple n Shape i) → Tuple n Shape (fsucc -n i)

tupleZ : Tuple n Shape 0 → Unit

The formalization of Tuple is available in [lib/tuple.ced]. Now, the type of Nor-
malF is

NormalF : (Idx → ⋆) → Idx → ⋆

and it must additionally be monotonic relative to Idx.

Finally, we must know that the computational shape of NormalF data is the
same as ShapeF data. That is, we require a cast:

(i : Idx) → Cast (NormalF i) (ShapeF (fst i))

With all of this input data supplied the core idea may be carried out. Let QIdx be
the type (i : Fin n)×(Tuple n Shape i), Shape be the inductive type constructed
from ShapeF, and Normal the inductive type constructed from NormalF. Then
the quotient is

Quotient i = (s : Shape) ∩ (Normal (pair (fst i) (tupleS (pair s i))))

Notice that QIdx contains the indexes of all previously defined types in the
chain, i.e. the types with fewer indices. The final Shape missing from QIdx is the
very Shape to be constrained by the corresponding Normal. We have called this
type a quotient because this construction, upon further reflection, is essentially
a generic quotient construction. The complete formalization of this encoding is
available in [indind.ced]. However, it has two flaws:

1. the input data is onerous, requiring specifying the constructors twice and
proving an unnecessary cast;

2. and the indices of Quotient are Shapes instead of Quotients.

https://github.com/cedille/cedille-developments/blob/master/induction-induction/lib/tuple.ced
https://github.com/cedille/cedille-developments/blob/master/induction-induction/indind.ced

Impredicative Encodings of Inductive-Inductive Data in Cedille 9

If we want to elaborate a custom syntactic representation of induction-induction
to this encoding then these problems are recoverable, but implementing this
custom syntax is time-consuming. Moreover, Cedille’s theory has a wealth of
potential inductive encodings whose limits are not yet realized. Instead, we dis-
cuss a way of fixing the above hiccups internally.

3.3 Generic Encoding: Second Variant

Luckily, we do not need to start over. We will define a smaller set of inputs and
use those inputs to construct the necessary data for the quotient construction.
Then, using the resulting types and induction principles from the quotient en-
coding, build the expected types and induction principles for the smaller input.

For this variant we focus on constructing only two types as opposed to any
arbitrary n types. Consider a functor

F : (X : ⋆) → (Y : X → ⋆) → ⋆

where X is conceptually the abstract representation of the first inductive type
and Y is the abstract representation of the second inductive type. Then, a functor
for the second type

G : (X : ⋆) → (Y : X → ⋆) → (alg : F X Y → X) → X → ⋆

has almost the same signature but crucially must be given an algebra to describe
how to construct abstract Xs from F X Y data. For example, CtxF and TyF
functors are defined in this style as:

data CtxF (X : ⋆) (Y : X → ⋆) : ⋆ where
nilF : CtxF
consF : (g : X) → Y g → CtxF

data TyF (X : ⋆) (Y : X → ⋆) (alg : CtxF X Y → X) : X → ⋆ where
baseF : (g : X) → TyF g

arrowF : (g : X) → (a : Y g) → (b : Y (alg (consF g a))) → TyF g

Note that the arrowF constructor is only possible with the additional alg param-
eter. These new functors require their own conditions of monotonicity, but the
core idea is the same: the functor must preserve casts. In order to specify this
requirement for the G functor there must be two algebras. However, the algebras
should both correspond to the constructor for CtxF! Therefore, the additional
restraint is imposed that the algebras are definitionally equal. The formalized
monotonicity conditions are available in [indind2/mono.ced]. The two functors,
F and G, with proofs that they are monotonic is all that is needed to derive the
corresponding inductive types.

https://github.com/cedille/cedille-developments/blob/master/induction-induction/indind2/mono.ced

10 A. Marmaduke et al.

With this input data we proceed by defining a ShapeF and NormalF to instan-
tiate the quotient encoding. To define ShapeF, let R : Fin 2 → ⋆ be the abstract
type, then we have two constructors:

ShapeFinF : F (R 0) (λ_. R 1) → ShapeF 0

ShapeFinG : ∀ A mA inj ⇒ (r : IndA 0) ⇒
G (IndA 0) (λ i. inA (inj i)) r

→ ShapeF 1

Note a peculiarity in the definition of ShapeFinG. We must postulate a functor A
of the same type as ShapeF that is monotonic (mA) and has an injection (inj).
With this data, an inductive type (IndA) is instantiated with a corresponding
constructor (inA). This abstracts the inductive type Shape that can not yet be
spoken about, but is otherwise needed to enable typing G data. Proving mono-
tonicity for this functor is straightforward. The full formalization is available in
[indind2/shape.ced].

Next we define NormalF, recall that the index is defined in terms of Tuple,
although the size of the Tuple is restricted to two types. To simplify the presen-
tation we assume the functions

in1 : Shape 0 → Idx

and
in2 : Shape 1 → Shape 0 → Idx

have been defined. Also, we elide casts to reduce the noise in the presentation.
Let R : Idx → ⋆ be the abstract type.

let A 0 = (s : Shape 0) ∩R (in1c)

let A 1 = λx :A 0. (s : Shape 1) ∩R (in2 s x.1)

NormalFinF : (xs : F (A 0) (A 1))

NormalF (in1 (inShape -0 (ShapeFinF xs)))

The constructor NormalFinG follows the same pattern as ShapeFinG by ab-
stracting an arbitrary functor A that stands in for a Normal as opposed to a
Shape. The only additional requirement is that the inductive type IndA must be
castable to the abstract type R. We elide its concrete definition because it is tech-
nical but not conceptually harder than ShapeFinG and thus not illuminating.
The full formalization is available in [indind2/constraint.ced].

The definitions are carefully chosen so that a NormalF casts into a ShapeF for
compatible indices which completes all required input to instantiate the quotient
generic encoding. Now, after instantiation, the types TypeF : ⋆ and TypeG :
TypeF → ⋆ are definable. Notice that TypeG has the correct index. Moreover,
the constructors:

inF : F TypeF TypeG → TypeF

https://github.com/cedille/cedille-developments/blob/master/induction-induction/indind2/shape.ced
https://github.com/cedille/cedille-developments/blob/master/induction-induction/indind2/constraint.ced

Impredicative Encodings of Inductive-Inductive Data in Cedille 11

inG : (i : TypeF) ⇒ G TypeF TypeG inF i → TypeG i

and the associated induction principles:

inductF : (P : TypeF → ⋆) → (Q : (i : TypeF) → TypeG i → ⋆)

→ PrfAlgF P Q → PrfAlgG P Q → (x : TypeF) → P x

inductG : (P : TypeF → ⋆) → (Q : (i : TypeF) → TypeG i → ⋆)

→ PrfAlgF P Q → PrfAlgG P Q → (i : TypeF) ⇒ (x : TypeG i) → Q i x

are all derived. We direct the reader to the formalization for the definition of these
functions and the definition of the associated proof algebras [indind2/ind.ced].
Note that the proof algebras follow the same pattern as the efficient Mendler-
style proof algebras of previous Cedille encodings [9]. Indeed, these inductive
encodings are Mendler-style inductive types as they reduce, now through an
additional layer, to Mendler-style indexed-inductive data. An example of this
encoding applied to CtxF and TyF where more standard induction principles
are defined is also available [example.ced].

This second variant has the correct indices and has a smaller input burden. Of
course, an elaborated definition would be able to impose a syntactic restriction
to automatically derive monotonicity, but that is a price that must be paid for
the additional flexibility of a semantic criterion of monotonicity.

4 Related and Future Work

Inductive inductive definitions where studied extensively by Forsberg et al [20,11].
Forsberg’s thesis was used extensively and heavily inspired this work [10]. In par-
ticular, Forsberg describes an axiomatic description of Inductive-inductive types
and shows how to model them with indexed inductive types when using equality
reflection (i.e. uniqueness or identity proofs and function extensionality). More-
over, his work is relative to a predicative theory and is presented via a theory of
containers where inductive types are presented by a type of codes. Kaposi et al.
expand on this reduction showing that inductive data are sufficient for finitary
inductive-inductive types in Extensional Type Theory [15]. The first variant of
the generic encoding we present differs from Forsberg’s in that it does not use
codes for types and instead impredicativity and does not require an equality re-
flection rule or function extensionality. Like Forsberg’s translation (but not like
his axiomatic description), our encoding is limited to “simple” inductive motives.
However, we conjecture that general inductive motives are also possible by pos-
tulating a second set of general proof algebras and using the simple eliminator
to construct the correct motives in the general case. Critically, if the eliminators
are definitionally equal then when we move from the first variant to the second
variant the difference will disappear.

Quotient inductive-inductive types are an extension that have been demon-
strated as a powerful technique for internalizing the definition of dependent type

https://github.com/cedille/cedille-developments/blob/master/induction-induction/indind2/ind.ced
https://github.com/cedille/cedille-developments/blob/master/induction-induction/example.ced

12 A. Marmaduke et al.

theories [1,4,14]. The first generic variant is suggestively described as a quotient.
Indeed, many constructions in Cedille via dependent intersection might fruit-
fully be cast in a framework of quotients. However, these kinds of quotients are
through a normalization argument only and thus quotients such as multisets
would not be possible. It is an open question if quotient inductive-inductive def-
initions could be generically encoded in Cedille using similar techniques, but we
conjecture that, under circumstances where the equivalence relation has decid-
able canonical elements, that it is possible.

Induction-recursion is another powerful technique for defining universes of type
codes [5,6,7]. Cedille does not possess large eliminations natively because it
does not possess inductive data natively. Thus, computing types by recursion
is relegated to simulated computation rules or type inclusions. However, these
simulated large eliminations are encoded themselves via inductive definitions.
It stands to reason that if a simulated large elimination is an inductive type
already, that an inductive-inductive definition could yield a simulated inductive-
recursive definition. Note that this is different from small induction-recursion
where the recursive function computes a term instead of a type [12].

5 Conclusion

In this work we have shown how to encode inductive-inductive data in Cedille, a
dependently type programming language based on the Calculus of Constructions
with three extensions. Our first generic construction follows a construction of
Forsberg in reducing inductive-inductive data to indexed inductive data where
we define first the shape of the constructors and then a predicate to quotient
normal forms. Second, we demonstrate another framework that layers on the
first and fixes redundancy and indices problems in the prior reduction. This is
another chapter in the story of encoding efficient inductive data in Cedille and it
is the author’s opinion that there is still a lot of potential left to be uncovered.

References
1. Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Nordvall Forsberg, F.: Quo-

tient inductive-inductive types. In: International Conference on Foundations of
Software Science and Computation Structures. pp. 293–310. Springer, Cham (2018)

2. Altenkirch, T., Morris, P., Nordvall Forsberg, F., Setzer, A.: A categorical seman-
tics for inductive-inductive definitions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.)
Algebra and Coalgebra in Computer Science. pp. 70–84. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2011)

3. Atkey, R.: Syntax and semantics of quantitative type theory. In: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 56–65
(2018)

4. Dijkstra, G.: Quotient inductive-inductive definitions. Ph.D. thesis, University of
Nottingham (2017)

5. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In:
Typed Lambda Calculi and Applications: 4th International Conference, TLCA’99
L’Aquila, Italy, April 7–9, 1999 Proceedings 4. pp. 129–146. Springer (1999)

Impredicative Encodings of Inductive-Inductive Data in Cedille 13

6. Dybjer, P., Setzer, A.: Induction–recursion and initial algebras. Annals of Pure
and Applied Logic 124(1-3), 1–47 (2003)

7. Dybjer, P., Setzer, A.: Indexed induction–recursion. The Journal of Logic and
Algebraic Programming 66(1), 1–49 (2006)

8. Firsov, D., Blair, R., Stump, A.: Efficient Mendler-style lambda-encodings in
Cedille. In: International Conference on Interactive Theorem Proving. pp. 235–
252. Springer (2018)

9. Firsov, D., Blair, R., Stump, A.: Efficient mendler-style lambda-encodings in
cedille. In: Interactive Theorem Proving: 9th International Conference, ITP 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings 9. pp. 235–252. Springer (2018)

10. Forsberg, F.N.: Inductive-inductive definitions. Ph.D. thesis, Swansea Uni-
versity (2013), http://login.proxy.lib.uiowa.edu/login?url=https:
//www.proquest.com/dissertations-theses/inductive-definitions/
docview/2041902169/se-2, copyright - Database copyright ProQuest LLC;
ProQuest does not claim copyright in the individual underlying works; Last
updated - 2022-10-21

11. Forsberg, F.N., Setzer, A.: A finite axiomatisation of inductive-inductive defini-
tions. Logic, Construction, Computation 3, 259–287 (2012)

12. Hancock, P., McBride, C., Ghani, N., Malatesta, L., Altenkirch, T.: Small induction
recursion. In: Typed Lambda Calculi and Applications: 11th International Confer-
ence, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013. Proceedings 11.
pp. 156–172. Springer (2013)

13. Jenkins, C., Marmaduke, A., Stump, A.: Simulating Large Eliminations in Cedille.
In: Basold, H., Cockx, J., Ghilezan, S. (eds.) 27th International Conference on
Types for Proofs and Programs (TYPES 2021). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 239, pp. 9:1–9:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.
TYPES.2021.9, https://drops.dagstuhl.de/opus/volltexte/2022/16778

14. Kaposi, A., Kovács, A., Altenkirch, T.: Constructing quotient inductive-inductive
types. Proceedings of the ACM on Programming Languages 3(POPL), 1–24 (2019)

15. Kaposi, A., Kovács, A., Lafont, A.: For finitary induction-induction, induction
is enough. In: TYPES 2019: 25th International Conference on Types for Proofs
and Programs. vol. 175, pp. 6–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2019)

16. Kaposi, A., von Raumer, J.: A syntax for mutual inductive families (2020)
17. Kopylov, A.: Dependent intersection: A new way of defining records in type the-

ory. In: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer
Science. pp. 86–. LICS ’03, IEEE Computer Society, Washington, DC, USA (2003)

18. Marmaduke, A., Jenkins, C., Stump, A.: Quotients by idempotent functions in
cedille. In: Bowman, W.J., Garcia, R. (eds.) Trends in Functional Programming.
pp. 1–20. Springer International Publishing, Cham (2020)

19. Miquel, A.: The implicit calculus of constructions: Extending pure type systems
with an intersection type binder and subtyping. In: Proceedings of the 5th In-
ternational Conference on Typed Lambda Calculi and Applications. pp. 344–359.
TLCA’01, Springer-Verlag, Berlin, Heidelberg (2001)

20. Nordvall Forsberg, F., Setzer, A.: Inductive-inductive definitions. In: Dawar, A.,
Veith, H. (eds.) Computer Science Logic. pp. 454–468. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

21. Stump, A.: The calculus of dependent lambda eliminations. Journal of Functional
Programming 27, e14 (2017)

http://login.proxy.lib.uiowa.edu/login?url=https://www.proquest.com/dissertations-theses/inductive-definitions/docview/2041902169/se-2
http://login.proxy.lib.uiowa.edu/login?url=https://www.proquest.com/dissertations-theses/inductive-definitions/docview/2041902169/se-2
http://login.proxy.lib.uiowa.edu/login?url=https://www.proquest.com/dissertations-theses/inductive-definitions/docview/2041902169/se-2
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://drops.dagstuhl.de/opus/volltexte/2022/16778

14 A. Marmaduke et al.

22. Stump, A.: From realizability to induction via dependent intersection. Ann. Pure
Appl. Logic 169(7), 637–655 (2018). https://doi.org/10.1016/j.apal.2018.03.
002, https://doi.org/10.1016/j.apal.2018.03.002

https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002

	Impredicative Encodings of Inductive-Inductive Data in Cedille

