
Submitted to:
Journal of Logic and Computation

© Anthony Cantor, Aaron Stump
This work is licensed under the
Creative Commons Attribution License.

Dual counterpart intuitionistic logic

Anthony Cantor
Department of Computer Science

University of Iowa
Iowa City, Iowa

anthony-cantor@uiowa.edu

Aaron Stump
Department of Computer Science

University of Iowa
Iowa City, Iowa

aaron-stump@uiowa.edu

We introduce dual counterpart intuitionistic logic (or DCInt): a constructive logic that is a conser-
vative extension of intuitionistic logic, a sublogic of bi-intuitionistic logic, has the logical duality
property of classical logic, and also retains the modal character of its interpretation of the connec-
tive dual to intuitionistic implication. We define its Kripke semantics along with the corresponding
notion of a bisimulation, and then prove that it has both the disjunction property and (its dual) the
constructible falsity property. Also, for any class C of Kripke frames from our semantics, we identify
a condition such that C will have the disjunction property if it satisfies the condition. This provides a
method for generating extensions of DCInt that retain the disjunction property.

1 Introduction

Intuitionistic logic (or Int) is the preeminent constructive logic, and its prime status in this category is
related to the fact that it exhibits the disjunction property. In [27], Rauszer introduced bi-intuitionistic
logic (or BiInt) with the intention of creating a variant of Int with a duality property that is analogous to
that of classical logic (or CL).1 In the introduction she writes

From those investigations it appeared that an intuitionistic logic with two negations and two
implications, dual to itself, would have a more elegant algebraic and model-theoretic theory
than an ordinary intuitionistic logic. The purpose of this paper is to develop that theory.

As she describes, BiInt has duality because its semantics interprets the language of Int extended to
include a connective that is dual to the implication connective. We refer to this connective as exclusion,
and we write B A to mean that the formula B excludes A.2 The exclusion connective is defined in any
logic that has duality because it is defined as the dual of implication, and so–for example–it is defined in
CL. We will elaborate further upon the concepts of duality and exclusion in Section 2. BiInt achieves
duality while remaining a conservative extension of Int. Even though it extends Int conservatively, BiInt
fails to be constructive because it lacks the disjunction property. This eliminates BiInt from consideration
for any purpose where constructiveness is highly valued. The failure of BiInt to be constructive is
strangely incongruous considering the fact that it originates from Int, and so this motivates investigation

1In [13], Drobyshevich, Odintsov, and Wansing point out that Moisil independently discovered a closely related system
many years prior to Rauszer’s work.

2The same terminology is used in [32]. Exclusion is sometimes called co-implication, subtraction, or pseudo-difference
(see footnote 2 of [31] for a helpful enumeration of which authors have used which terminology for exclusion). Furthermore,
the nomenclature we use here differs from Rauszer’s, as she used the name Heyting-Brouwer logic (or H-B logic) instead of
bi-intuitionistic logic and referred to the exclusion connective as Brouwerian implication. She also extended the language with
a unary connective she called Brouwerian negation, but this connective is definable in terms of Brouwerian implication (we
define it in Section 3). Finally, sometimes others have also referred to her logic as subtractive logic (for example, in [6]).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Dual counterpart intuitionistic logic

into possible alternative approaches to extending Int in a way that obtains duality. The only known
alternative is the logic of constructible falsity (or N) of [24] and [23], since it is a constructive logic that
has duality and is also a conservative extension of Int. Though N does have the disjunction property, it
semantically interprets the exclusion connective in a manner that is more akin to the CL interpretation
of exclusion. This is a significant departure from how BiInt interprets the exclusion connective, and as a
result of this N is not a sublogic of BiInt.

In this article we contribute a new alternative to BiInt called dual counterpart intuitionistic logic (or
DCInt). DCInt is a constructive logic that is a conservative extension of Int, a sublogic of BiInt, and
also has duality. This new logic is important because of its differences when compared to BiInt and N.
Specifically, it is distinct from these logics on the following points:

1. DCInt has the disjunction property, while BiInt does not.
2. DCInt semantically interprets the exclusion connective in a way that is similar to the interpretation

taken by BiInt. As a result, it is a sublogic of BiInt, while N is not.

DCInt is unique in that it is the only known logic that combines these two features while also obtaining
duality.

The meaning of Point 1 is clear, but Point 2 requires elaboration. Rauszer defined the semantics of
BiInt by extending the Kripke semantics for Int to cover exclusion, and so from the point of view of
their Kripke semantics this is the sole distinction between the two. The main characteristic of a Kripke
semantics is that it defines the semantic relation in way that incorporates a set of possible worlds together
with a reachability relation between those worlds. The truth value of a formula is then defined relative to
a particular world w, and in some cases the truth value will further depend on a quantification over non-
local worlds that are reachable from w. In the Kripke semantics of Int, the interpretation of a formula
involving the implication connective universally quantifies over non-local reachable worlds. The BiInt
interpretation of a formula involving the exclusion connective existentially quantifies over non-local
reachable worlds, and this is natural because in classical logic the existential quantifier connective is
dual to the universal quantifier connective. In the context of a logic, we will call a connective modal
when the Kripke semantics of the logic interprets the connective at a world w in such a way that its
truth value depends on a quantification over worlds reachable from w; and we will call a connective non-
modal when the Kripke semantics of the logic interprets the connective at a world w in such a way that
its truth value depends only on w.3 In this sense, the exclusion connective of BiInt is a modal connective.
This interpretation is only natural because in the Kripke semantics of Int the intuitionistic implication
connective is also a modal connective. In contrast, N interprets exclusion as a non-modal connective, and
this is similar to how exclusion is interpreted in the semantics of CL. This similarity holds because one
can show that the semantics of CL is embedded in the Kripke semantics of Int, where each CL structure
is represented by an Int structure that has only a single world. With only a single world the quantification
involved in the interpretation of a formula involving implication becomes trivialized, and so this means
that from the view of a Kripke semantics the connectives of CL are all non-modal. Finally, the Kripke
semantics of DCInt interprets exclusion as a modal connective, and so it is more similar to BiInt than
N. Moreover, it is similar enough that DCInt turns out to be a sublogic of BiInt, and yet it is different
enough that DCInt retains the disjunction property.

The rest of this paper is organized as follows. In Sections 2 and 3 we define the CL property of duality

3We use this terminology because in the Kripke semantics of modal logic the interpretation of a modal formula (for example,◻φ , or ◇φ) quantifies over non-local reachable worlds.

Anthony Cantor, Aaron Stump 3

CL formula A,B ∶∶= σ ∣ ¬A ∣ A∧B ∣ A∨B (σ ∈ Σ)
(1a) The formulas of CL over Σ variables

M ⊧C σ iff M(σ) = T
M ⊧C ¬A iff M ⊭C A
M ⊧C A∧B iff M ⊧C A and M ⊧C B
M ⊧C A∨B iff M ⊧C A or M ⊧C B

(1b) Two valued semantic interpretation of CL

δC(σ) = σ

δC(¬A) = ¬δC(A)
δC(A∧B) = δC(B)∨δC(A)
δC(A∨B) = δC(B)∧δC(A)

(1c) The duality correspondence of CL

M ⊧C σ iff δC(M) ⊭C σ (1)

M ⊧C ¬A iff δC(M) ⊭C ¬δC(A) (2)

M ⊧C A∧B iff δC(M) ⊭C δC(B)∨δC(A) (3)

M ⊧C A∨B iff δC(M) ⊭C δC(B)∧δC(A) (4)

(1d) The duality of CL semantics

and also recapitulate the semantics of CL, Int, and BiInt. These sections include explanations for why
CL and BiInt both have duality, and for why Int does not. In Section 4 we define the Kripke semantics of
DCInt, and then establish some basic results from the definitions. In particular, in Section 4.3 we prove
that DCInt has a duality property that is analogous to that of CL; in Section 4.4 we prove that DCInt
is both a conservative extension of Int and a sublogic of BiInt; and in Section 4.5 we establish the
definition of a bisimulation between two DCInt Kripke structures. In Section 5 we prove that DCInt has
the disjunction property and the constructible falsity property. The proof utilizes the frame fusion/gluing
technique from the model theory of both modal and intuitionistic logic. This technique is utilized–for
example–in [33] and in Section 6.4 of [9]. However, our application of it here is a novel contribution
because formulas in DCInt semantics are sensitive to worlds that are both forwardly and backwardly
reachable, and this complicates the application of this technique. Finally, we discuss related work in
Section 6 before concluding in Section 7. Notably, the proof theory of DCInt is not discussed here,
though we plan on investigating it in future work.

Throughout this paper we will use classical logic as the metalogic of the definitions and proofs. Also,
when we mention the name of a definition or result we will sometimes also mention its numerical index
N using an expression of the form “{N}” (for example: we will recall the definition of the disjunction
property {7} in Section 3.1, and the definition of a conservative extension {33} in Section 4.4).

2 The duality of classical logic

The duality of CL can be expressed as a bijective correspondence between structurally identical formulas,
where (1) the only difference between two corresponding formulas is that each connective is exchanged
for its dual; and (2) the semantic interpretation of a formula A is equivalent to the “dual interpretation”
of the dual of A, where the “dual interpretation” is obtained by swapping the roles of true and false.
Essentially the intuition for the property of duality is that each connective will have a dual, and in the
context of the “dual interpretation” that dual connective will operate in “the same way” as the original

4 Dual counterpart intuitionistic logic

terminology definition
standard verify/falsify
M models φ M verifies φ iff M ⊧C φ

M countermodels φ M falsifies φ iff M ⊭C φ

(2a) CL definitions of relations between structures (M) and formulas (φ)

term T define term from column 1 or 2 by substituting it for “T”
standard verify/falsify φ is T iff . . .
valid verify valid . . . M ⊧C φ for every M
satisfiable verify satisfiable . . . M ⊧C φ for some choice of M
unsatisfiable falsify valid . . . φ is not satisfiable
countermodeled falsify satisfiable . . . φ is not valid

(2b) CL definitions of the semantic classification of a formula φ

Figure 2: CL semantic definitions, where in each table the third column gives the definition, and the
first and second columns describe the same notions under different naming conventions: the first column
uses standard terminology and the second column uses terminology from a duality perspective. Each
term in the first and second column of (b) under the “term T” heading is being defined. For each term in
one of those columns, its definition is the statement determined by substituting it for “T” in its rightmost
column. We will also use this substitution-style presentation for Figures 6b and 10.

connective. The language of CL formulas is shown in Figure 1a, and it is parameterized over a set Σ

of propositional variables. Its duality correspondence is shown in Figure 1c. The correspondence arises
from the symmetry inherent in both the semantic structures and the semantic interpretation of CL {1}.
Note that Definition 1 includes the non-standard terminology of “verifies”, “falsifies”, and “verify/falsify
valid/satisfiable”. These terms are useful for discussing the mentioned “dual interpretation”, and we will
explain them further after introducing the concept of duality in CL {2}.

Definition 1. A two-valued structure (or model) of CL is a function M ∶ Σ→ {F ,T}. For any formula φ ,
the expression M ⊧C φ is recursively defined on φ in Figure 1b. The expression M ⊭C φ is true whenever
M ⊧C φ is not true. The models/verifies, and countermodels/falsifies relations are defined in Figure 2a,
and the definitions of the semantic classification of a formula are given in Figure 2b.

A CL structure {1} carries the information that is needed for the semantic interpretation, and is often
also referred to as a “model”. Throughout the rest of this paper we will define the notion of a structure
for the semantic relation ⊧ of other logics as well. In those contexts, a structure could also be referred to
as a model, and we will also write ⊭ to indicate that the relation ⊧ does not hold (just as we write ⊭C).

Every CL structure M corresponds to a dual structure δC(M) given by exchanging true and false; in
other words, δC(M) = σ ↦ not M(σ). A propositional variable σ is self-dual because we have M ⊧C σ

iff δC(M) ⊭C σ . Further, for all formulas A and B, we have the equivalences shown in Figure 1d. Equiv-
alence 2 shows why the connective ¬ is self-dual, and Equivalences 3 and 4 show why the connectives∨ and ∧ are duals to each other. In general, this means that for every formula A and structure M we
have that A being modeled by M is faithfully represented by δC(A) not being modeled by δC(M), and
vice-versa. In other words, we have Theorem 2.

Anthony Cantor, Aaron Stump 5

A→ B ≡ ¬A∨B

B A ≡ B∧¬A

(3a) CL implication and exclusion

δC(A→ B) = δC(B) δC(A)
δC(B A) = δC(A)→ δC(B)

(3b) CL implication duality

M ⊧C A→ B iff M ⊧C ¬A∨B iff δC(M) ⊭C δC(B)∧¬δC(A) iff δC(M) ⊭C δC(B) δC(A)
(3c) The duality between implication and exclusion in CL

Theorem 2. The function δC is an involution,4 and for every structure M and formula φ we have M ⊧C φ

iff δC(M) ⊭C δC(φ).
This relationship between a formula and its dual demonstrates that the semantic definitions of classical
logic exhibit a perfect symmetry between the dual notions of verification and falsification described by
Wansing in [35]. The statement M ⊧C A can be interpreted to mean that the structure M verifies A, so
that the semantic relation ⊧C represents the “models” relationship defined by the notion of verification.
Dually, in this interpretation the statement M ⊭C A means that the structure M falsifies A, so that the
semantic relation ⊭C represents the “models” relationship defined by the notion of falsification. These
two interpretations are sensible because we cannot have both M ⊧C A and M ⊭C A for any structure M
and formula A. These interpretations manifest at the formula level as well because the verify and falsify
perspectives can refer to each other through the negation connective: a structure verifies ¬A iff it falsifies
A, and it falsifies ¬A iff it verifies A. With respect to verification, the ∧ connective fulfills the conjunctive
role and the ∨ connective fulfills the disjunctive role. The same holds for falsification but with ∨ and ∧
swapped. For example, from this perspective the de Morgan duality schema of ¬(A∨B)↔ (¬A∧¬B)
is valid because the ∨ connective is conjunctive (since it is dual to ∧) in the context of the falsification
interpretation: the verification of ¬(A∨B) is equivalent to the falsification of both A and B, which is
equivalent to the verification of both ¬A and ¬B. In other words, the de Morgan duality of CL can be
viewed as a result of the duality described by Figure 1c. It is also possible to define the duality of CL as
a property inherent to its proof theory, but in this article we will focus entirely on duality in the model
theoretic context.

Just as the negation, disjunction, and conjunction connectives have duals, the exclusion connective serves
as the dual of the implication connective. Since we are defining it as the dual of the implication connec-
tive, the meaning of the exclusion connective will depend on the meaning of the implication connective
in the logical context. In the context of CL the implication connective is defined by A→ B ≡ ¬A∨B, and
so the duality correspondence given by δC induces the definition of classical exclusion shown in Figure
3a along with the extended definition of δC in Figure 3b. Under this definition, for every CL structure M
and formulas A, B, we have the equivalence shown in Figure 3c. The ∧ connective is disjunctive from the
falsification perspective, and so therefore from this perspective the formula B∧¬A is analogous (reading
from right to left) to the formula ¬A∨B (reading from left to right) from the verify perspective. That is,
the falsification of B∧¬A can be described as “if A is falsified, then B is falsified”.5

Figure 2b includes the non-standard classifications of a formula as being verify valid or falsify valid.
These two definitions are arrived at by extending the standard “valid” classification to the dual concepts

4An involution is a function that is equal to its own inverse.
5We write the exclusion schema as B A instead of A B in order to suggest this intuition.

6 Dual counterpart intuitionistic logic

of verification and falsification: a formula is verify valid iff every structure verifies it; and a formula is
falsify valid iff every structure falsifies it. We use these two definitions to formally state the CL property
of duality {3}, which follows from Theorem 2.

Theorem 3 (duality of CL). For any formula φ :

1. φ is verify valid iff δC(φ) is falsify valid
2. φ is verify satisfiable iff δC(φ) is falsify satisfiable
3. (a) if φ is verify valid then δC(φ) is not verify satisfiable

(b) if φ is falsify valid then δC(φ) is not falsify satisfiable

The latter two parts of Theorem 3 are directly implied by the first part because in CL the classifications of
“verify valid” and “falsify valid” happen to be exactly equivalent to the standard classifications of “valid”
and “unsatisfiable”, respectively. However since we define them in terms of the notions of verification
and falsification, these two classifications will no longer be equivalent to “valid” and “unsatisfiable” in
the context of a logic that has a more nuanced interpretation of verification and falsification. Section 4
will introduce the semantics of DCInt, and this is an example of such a logic (for example, in DCInt the
classification of a formula as falsify valid is distinct from its classification as unsatisfiable). Furthermore,
Section 3.1 will explain why this aspect of DCInt is important.

3 The Kripke semantics of Int, DualInt, and BiInt

Int interprets the intuitionistic propositions of Figure 4a as either proved or not proved. As such, the
natural intuitionistic notion of a verified proposition is the same as a proved proposition, and the notion of
a falsified proposition is the same as a proposition for which no proof is known. This view of verification
and falsification is notable for its imbalance: a proposition is verified by the demonstration of a proof
object, whereas a falsified proposition simply indicates the absence of such an object. In [34], Wansing
explains that Int can be criticized on this basis.

...intuitionistic negation has been criticized, because it does not express the idea of a direct
falsification. An intuitionistically negated formula [¬A] is verified at a possible world (alias
state) s in an intuitionistic Kripke model iff at every state related to s by the pre-order of the
model, A fails to be verified. There is no way of falsifying A at s in the sense of verifying
the negation of A by considering just s.

In addition to this criticism, there is also the problem that under this interpretation of intuitionistic verifi-
cation and falsification, Int cannot have a duality property that is analogous to that of CL. This is because
exclusion cannot be defined in terms of the other Int connectives, and it follows from Crolard’s Corollary
2.19 of [6]. We will also provide an alternative proof later in this section, because it more clearly illus-
trates the problem that arises from seeking a duality property in the context of Int. As mentioned in the
introduction, Rauszer introduced BiInt for the express purpose of developing a conservative extension of
Int that has the duality property with respect to the intuitionistic notions of verification and falsification.
It is defined on the BiInt propositions of Figure 4a, and its duality correspondence is shown in Figure
4b. BiInt has duality with respect to that correspondence because its semantic interpretation satisfies a
collection of equivalences that is analogous to that of CL (shown in Figure 1d). The dual-intuitionistic
logic (or DualInt) of [8] and [17] defines exclusion but not implication, and in [4] Brunner & Carnielli
show that it is (as a logic) the dual of Int. DualInt is closely related to BiInt, and Section 4.4 proves
some results about its relation to DCInt.

Anthony Cantor, Aaron Stump 7

Int formula A,B ∶∶= σ ∣ � ∣ ⊺ ∣ A∧B ∣ A∨B ∣ A→ B (σ ∈ Σ)
DualInt formula A,B ∶∶= σ ∣ � ∣ ⊺ ∣ A∧B ∣ A∨B ∣ B A (σ ∈ Σ)

BiInt formula A,B ∶∶= σ ∣ � ∣ ⊺ ∣ A∧B ∣ A∨B ∣ A→ B ∣ B A (σ ∈ Σ)
(4a) The formulas of both Int and BiInt over Σ variables

δB(σ) = σ

δB(⊺) = �
δB(�) = ⊺

δB(A→ B) = δB(B) δB(A)
δB(B A) = δB(A)→ δB(B)

δB(A∧B) = δB(A)∨δB(B)
δB(A∨B) = δB(A)∧δB(B)

(4b) The duality correspondence of BiInt

The semantics of Int, DualInt, and BiInt can be given by three different but related Kripke semantic
interpretations. All of them involve the same structures {5}; i.e. an Int structure is also a DualInt and
BiInt structure. Note that in Definition 5 we write P(W) to denote the power set of a set W .

Definition 4 (Int Kripke frame). A tuple F = ⟨W,≤⟩ is an Int Kripke frame iff W is a non-empty set, and≤ is a preorder6 on the set W. An element of W is called a world. The relation ≤ is called the reachability
relation, and we say that a world x reaches a world y iff x ≤ y.

Definition 5 (Int Kripke structure). A tuple M = ⟨W,≤,v⟩ is an Int Kripke structure (or model) iff ⟨W,≤⟩ is
an Int frame and v is a function of type Σ→P(W), where the function v satisfies the following property:
for any w,w′ ∈W, if w ≤ w′ and w ∈ v(σ) then w′ ∈ v(σ). We define w ∈M to be true iff w ∈W. The
function v is called the valuation function of M.

Definition 6 specifies how a Kripke structure M interprets a formula in the context of Int, DualInt, and
BiInt. The definition is parameterized over a specifier that determines which of Int, DualInt, and BiInt
is the logic under consideration.

Definition 6. Let (L,X) be either (Int,I), (DualInt,U), or (BiInt,B). Let M = ⟨W,≤,v⟩ be an Int
structure {5}, φ be an L formula, and w ∈W. According to L and X, Figure 5 defines the relation
M,w ⊧X φ recursively on φ . The expression M ⊧X φ is true iff for every w ∈W we have M,w ⊧X φ .
Finally, Figure 6 defines several semantic definitions with respect to L and ⊧X .

For any semantic relation ⊧ of a Kripke semantics, when the structure M is implicitly clear from the
context we may write w ⊧ φ instead of M,w ⊧ φ .

We define the intuitionistic negation connective by ¬A ≡ A → �, and we define the dual-intuitionistic
negation (also referred to as “weak negation”) connective by ∼A ≡ ⊺ A. The latter connective is some-
times pronounced “non”, so that the formula ∼A would be pronounced “non A”. These two connectives
are dual to each other because via these definitions we have δB(¬A) = ∼δB(A) and δB(∼A) = ¬δB(A).
Finally, note that this definition of the dual negation connective also applies in CL, since exclusion is
defined in CL and we can define ⊺ as σ ∨¬σ for some σ . In that setting dual negation is defined as∼A ≡ ⊺∧¬A, and so it is equivalent to the classical negation connective. This is perfectly appropriate,
since the classical negation connective is self-dual.

6A binary relation is a preorder iff it is reflexive and transitive.

8 Dual counterpart intuitionistic logic

M,w ⊧X ⊺
M,w ⊭X �
M,w ⊧X A∧B iff M,w ⊧X A and M,w ⊧X B
M,w ⊧X A∨B iff M,w ⊧X A or M,w ⊧X B

(5a) Common cases for X ∈ {I,B,U}
M,w ⊧I σ iff w ∈ v(σ)
M,w ⊧I A→ B iff for every w′ ≥w ∶

M,w′ ⊭I A or M,w′ ⊧I B

(5b) Int

M,w ⊧U σ iff w ∉ v(σ)
M,w ⊧U B A iff there exists w′ ≥w ∶

M,w′ ⊧U B and M,w′ ⊭U A

(5c) DualInt

M,w ⊧B σ iff w ∈ v(σ)
M,w ⊧B A→ B iff for every w′ ≥w ∶ M,w′ ⊭B A or M,w′ ⊧B B
M,w ⊧B B A iff there exists w′ ≤w ∶ M,w′ ⊧B B and M,w′ ⊭B A

(5d) BiInt

Figure 5: The Kripke semantic interpretation for Int, DualInt, and BiInt

The BiInt semantic interpretation of Figure 5 is identical to the Int interpretation when restricted to
the intuitionistic formulas, and it is almost identical to the DualInt interpretation when restricted to
the dual-intuitionistic formulas. In the exclusion case, both BiInt and DualInt interpret the formula by
existentially quantifying over non-local possible worlds. On these formulas, the main difference between
the BiInt and DualInt interpretations is the direction of world reachability. BiInt interprets exclusion
in terms of backwards reachability, while DualInt interprets exclusion in terms of forward reachability.
These definitions are natural in terms of dualizing implication because of the definition of intuitionistic
implication in Figure 5b. The interpretation of an implication formula universally quantifies over non-
local possible worlds, and in first order classical logic the existential and universal connectives are dual
to each other. In summary: in the interpretations in Figure 5 both implication and exclusion are modal
connectives, and every other connective is non-modal.

3.1 Int does not have duality

One property that the semantic definitions of Int, DualInt, and BiInt share is that the truth value of
a formula at a world is total, so that the world either verifies or falsifies the formula. That is, for X ∈{I,B,U}, structure M, world w of M, and formula φ , we have either M,w ⊧X φ or M,w ⊭X φ . This
means that the notion of falsifying a formula is identical to the notion of failing to verify a formula,
and vice-versa (verifying a formula ≡ failing to falsify a formula). The identification of these notions
extends to validity and unsatisfiability as well, which means that the Int notion of a falsify valid formula
is equivalent to the Int notion of an unsatisfiable formula. It turns out that the identification of these two
notions prevents Int from being able to have duality, as the proof of Theorem 8 shows that Int having
duality contradicts Int having the disjunction property {7}.

Definition 7 (disjunction property). A semantics of a logic has the disjunction property iff for every valid
formula A∨B, either A is valid or B is valid.

Theorem 8 (Int does not have duality). Int cannot have duality with respect to the correspondence δB

Anthony Cantor, Aaron Stump 9

terminology definition
standard verify/falsify
M models φ at w M verifies φ at w iff M,w ⊧X φ

M countermodels φ at w M falsifies φ at w iff M,w ⊭X φ

(6a) Definitions of relations between structures (M), worlds (w), and formulas (φ), in the context of L.

term T define term from column 1 or 2 by substituting it for “T”
standard verify/falsify φ is T in L iff . . .
valid verify valid . . . M ⊧X φ for every M
satisfiable verify satisfiable . . . M,w ⊧X φ for some choice of M with w ∈M
unsatisfiable falsify valid . . . φ is not satisfiable in L
countermodeled falsify satisfiable . . . φ is not valid in L

(6b) Definitions of the semantic classification of a formula φ .

Figure 6: Semantic definitions where ⊧X is the semantic relation for a logic L, and L is either Int,
DualInt, or BiInt. In each table the first column is standard terminology and the second column is
terminology from a duality perspective. Each term in the first and second column of (b) is defined by
substituting it for “T” in the rightmost column.

and the notions of verification and falsification from Definition 6.

Proof. Suppose that the exclusion connective is somehow defined from the intuitionistic connectives,
and suppose for sake of contradiction that Int has duality with respect to δB of Figure 4b. This means
the dual negation connective ∼ is also defined in terms of the intuitionistic connectives, and that for any
formula φ , we have that φ is verify valid iff δB(φ) is falsify valid.

Fix a propositional variable σ . The formula σ ∧¬σ is unsatisfiable. This is the same as being falsify
valid, and so by duality we must have that its dual δB(σ ∧¬σ) = σ ∨∼σ is verify valid (i.e. valid). By
the disjunction property of Int we must have that either ∼σ or σ is valid. Clearly σ is not valid, so we
must have that ∼σ is valid (i.e. verify valid). By duality we must have that its dual ¬σ is falsify valid.
This means that ¬σ is unsatisfiable, but that is a contradiction because ¬σ is clearly satisfiable.

The proof of Theorem 8 is congruent with the fact that BiInt lacks the disjunction property, since the
formula σ ∨∼σ is one example of why BiInt fails to have it: the formula σ ∨∼σ is valid in BiInt, but
neither σ nor ∼σ is valid. The argument used in the proof will apply to any conservative extension of Int
that has certain properties. Besides relying on the basic facts about Int formulas, it only needs to rely on
the fact that the notion of unsatisfiable is the same as falsify valid, and that the logic has both duality and
the disjunction property. This means that for a logic to be a conservative extension of Int and have both
duality and the disjunction property, that logic must make a meaningful distinction between the notions
of unsatisfiable and falsify valid. In the next section we will define the DCInt semantic interpretation,
which is defined in such a way that it does indeed distinguish between these two notions. Unlike in the
semantics of Int, DualInt, and BiInt, a world of a DCInt structure may only partially interpret a given
formula, so that the formula may not have any truth value at all. From another perspective, it assigns the
formula one of three truth values: verified, falsified, or unknown (neither verified nor falsified). DCInt is

10 Dual counterpart intuitionistic logic

Polarity p ∶∶= + ∣ −
Formula F ∶∶= σ ∣ ⊺p ∣ F1∧p F2 ∣ F1→p F2 (σ ∈ Σ)

(7a) DCInt formulas over Σ variables

+ = −− = +
(7b) Inverse of a polarity

τ(σ) = σ

τ(�) = ⊺−
τ(⊺) = ⊺+

τ(A∧B) = τ(A)∧+ τ(B)
τ(A∨B) = τ(A)∧− τ(B)

τ(A→ B) = τ(A)→+ τ(B)
τ(B A) = τ(A)→− τ(B)

(7c) Translation from BiInt formulas to DCInt formulas

similar to N in this respect, as the Kripke semantic interpretations of N in [30] and [20] also assign one
of those three truth values to a given formula.7

4 The Kripke semantics of DCInt

In this section we define DCInt via its Kripke semantics, which bears some resemblance to the semantics
of both BiInt and N in [20]. To emphasize the duality inherent to DCInt, we define both the language
of DCInt formulas and the semantics of DCInt in a polarized form that follows the approach of articles
such as [34], [35], [36], and [12].

Definition 9 (DCInt language). Let the set Σ be a countable set of propositional variables. Let F(Σ)
denote the set of formulas over Σ variables, which are defined in Figure 7a. In a context where the set of
propositional variables is not explicitly named, the expression Σ will refer to that set. In a context where
the expression σ represents a formula, the reader should assume that σ is a propositional variable (i.e.
σ ∈ Σ). Figure 7a defines polarities and Figure 7b defines the inversion function ⋅ on polarities.

A polarity p appears in a logical connective as a syntactic parameter that selects one of two duals.
A connective with a positive polarity functions in the typical way, and a connective with a negative
polarity functions as its dual. For example, Figure 7c defines a bijective translation τ from the language
of BiInt to the language of DCInt, and it shows that the connective ∧+ corresponds to conjunction
and the connective →− corresponds to exclusion. We define the polarized syntax of intuitionistic and
dual-intuitionistic negation by ¬

p A ≡ A→p ⊺p. Naturally, the translation maps ¬A to ¬+ τ(A) and maps∼A to ¬− τ(A). The polarized language of formulas is of course not fundamental to DCInt, and so it is
equivalently defined on the BiInt formulas of Figure 4a via the translation. One benefit of the polarized
style of the definitions is that it allows for a more compact presentation and reduces the length of some of
the proofs (in many of the proofs, it is especially useful to be able to quantify over a polarity parameter).

In addition to the world reachability concept from the semantics of Int, the Kripke semantics for DCInt
also requires the dual notion of backwardly reaches: a world w backwardly reaches a world v iff vRw.
Definition 10 polarizes the notion of reachability so that wRv (i.e. forward reachability) is equivalent

7In [14], Dunn refers to the partiality of a valuation as a truth value “gap”. In Section 6 he discusses the aspect of partiality
that is present in the Kripke semantics of N.

Anthony Cantor, Aaron Stump 11

to (w ≺+ v) ∈ R, and vRw (i.e. backward reachability) is equivalent to (w ≺− v) ∈ R. This allows for the
parameterization of the reachability direction by a polarity p (such as the statement “(w ≺p v) ∈ R”).

Definition 10. Let R be a preorder relation on the set W. For every w0,w1 ∈W:

• the expression w0 ≺+ w1 denotes (w0,w1)
• the expression w0 ≺− w1 denotes (w1,w0)

For any W ′ ⊆W, and any polarity p, the expression ↑p(R,W ′) is called the (p)-upset of W ′ in R, and it
denotes the set {w1 ∈W ∣ (w0 ≺p w1) ∈ R for some w0 ∈W ′}.
The notation of Definition 10 can be difficult to read, and so we will make frequent use of abbreviations to
reduce the burden. When the relation R is distinguished within the context we simply write ↑pW ′ instead
of ↑p(R,W ′). For a singleton set {w} ⊆W we abbreviate ↑p(R,{w}) and ↑p{w} by the expressions↑p(R,w) and ↑pw, respectively. Furthermore, when the relation is clear from context, for polarity p and
elements w,w′ ∈W we may also write just w0 ≺p w1 instead of (w0 ≺p w1) ∈ R. The polar reachability
lemma {11} states some basic facts about these notational definitions, and makes use of the abbreviations
wherever possible.

Lemma 11 (polar reachability). Let ≤ be a preorder on W. For every polarity p and w0, w1, w2 ∈W:

1. (a) w0 ≺p w1 iff w1 ≺p w0; and (b) (w0 ≺p w1) ∈ ≤ iff (w0 ≺p w1) ∈ ≤−1

2. (a) w1 ∈ ↑pw0 iff w0 ∈ ↑pw1; and (b) w1 ∈ ↑p(≤,w0) iff w1 ∈ ↑p(≤−1,w0)
3. if w0 ≺p w1 and w1 ≺p w2 then w0 ≺p w2
4. if w1 ∈ ↑pw0 and w2 ∈ ↑pw1 then w2 ∈ ↑pw0
5. if w1 ∉ ↑pw0 then ↑pw1∩↑pw0 =∅

Proof. The proof follows directly from checking the definitions.

Definition 12 specifies the DCInt notion of a frame, which is just like a standard Int frame except that it
also possesses a pair of functions r+ and r−.

Definition 12 (DCInt Frame). A tuple F = ⟨W,≤,r+,r−⟩ is a DCInt frame iff (1) W is a non-empty set;
and (2) ≤ is a preorder on the set W; and (3) for each polarity p, rp is a function of type W →W such
that for every w ∈W we have rp(w) ∈ ↑p(≤,w). The elements of W are called the worlds of F, the relation≤ is called the reachability relation of F, and the functions r+ and r− are called the positive and negative
dual counterpart functions.

When the frame F is distinguished within the context, we will abbreviate ↑p(≤,w) by ↑pw. The reader
may find it helpful to consider the following alternate way of stating Part 12.3: for every w ∈W we
have r+(w) ≤ w ≤ r−(w). The dual counterpart functions affect the interpretation of exclusion from the
verification perspective and implication from the falsification perspective, and they are an essential aspect
of DCInt semantics. We will discuss these functions in more detail later on and so for now we just state
Lemma 13, which shows that it is sufficient to choose the identity function for each of these functions in
order to induce a DCInt frame from a preorder.

Lemma 13. For every preorder ≤ on a non-empty set W, the tuple ⟨W,≤,ιW ,ιW ⟩ is a DCInt frame, where
ιW is the identity function on W.

12 Dual counterpart intuitionistic logic

Proof. The identity function is acceptable as a dual counterpart function because a world is always a
member of its (p)-upset, for any polarity p.

A DCInt structure {14} combines a frame with a pair of dual valuations: the negative valuation v− and
the positive valuation v+. Each valuation is just like the valuation from a standard Int structure, except
that the persistence property is oriented in the direction that Definition 10 associates to the polarity of
the valuation (i.e. negative=backward and positive=forward). The positive valuation determines which
propositional variables are verified and the negative valuation determines which are falsified, so we also
require that no propositional variable is both verified and falsified.

Definition 14 (DCInt structure). A tuple M = ⟨F,v+,v−⟩ is a DCInt structure (or model) over Σ variables
iff F is a DCInt frame, and the pair of v+ and v− satisfies the following requirements. Each of v+ and v−
must be a function that maps each element of Σ to a subset of the worlds of F, and must satisfy:

1. (valuation polar persistence) for each σ ∈ Σ and polarity p we have ↑pvp(σ) ⊆ vp(σ).
2. (valuation polar consistence) for each σ ∈ Σ we have v+(σ)∩v−(σ) =∅.

For a class C of DCInt frames, we will say that M is a structure of class C iff M has a frame that is in C.

For convenience, when discussing a frame F = ⟨W,≤,r+,r−⟩ we will write w ∈ F for w ∈W , and when
discussing a structure M = ⟨F,v+,v−⟩ we will write w ∈ M for w ∈ F . Notice that the valuation polar
consistence property allows for the possibility that a pair of valuations neither verifies nor falsifies a
given propositional variable at a particular world.

The DCInt semantics definition {15} specifies two dual ways to interpret a DCInt formula with respect
to a particular world of a structure, where M,w⊧+ φ means that φ is verified (or positively modeled), and
M,w ⊧− φ means that φ is falsified (or negatively modeled). As a consequence, for each world w of a
structure M there are two distinguished sets of formulas: the verified formulas, and the falsified formulas.
These two sets are denoted by the expressions T(M,w,+) and T(M,w,−), respectively. We also define
the expression M,w⊧p

D φ for DCInt on BiInt formulas {16} because we consider the languages of DCInt
and BiInt to be essentially equivalent. We advise the reader to study Definitions 15 and 16 together, since
they represent two perspectives of the same semantics.

Definition 15 (DCInt semantics). Let M be a DCInt structure over Σ variables, p be a polarity, w ∈M,
and φ ∈ F(Σ). The relation M,w ⊧p

φ is recursively defined by Figure 8a. The expression M ⊧p
φ is true

iff for all u ∈W we have M,u ⊧p
φ . The expression T(M,w, p) denotes the set {φ ∈ F(Σ) ∣M,w ⊧p

φ}.
Figure 8b displays the meaning of the expression M,w⊧p

D φ of Definition 16 for the cases of implication,
exclusion, conjunction, and disjunction. We will typically use DCInt formulas when discussing gen-
eral statements about DCInt, and use BiInt formulas when considering concrete examples and specific
observations.

Definition 16 (DCInt semantics on BiInt formulas). For every DCInt structure M, polarity p, w ∈M,
and BiInt formula φ : the expression M,w ⊧p

D φ denotes M,w ⊧p
τ(φ).

The left half of Figure 8b shows that the DCInt interpretation is similar to the BiInt interpretation of
Figures 5a and 5d. The right half of the Figure 8b is similar to the falsifier interpretation of BiInt given by
the ⊭B relation in Table 6a. The DCInt interpretation differs from that of BiInt on two primary points:
(1) it is partial (in the sense described in Section 3.1), while the BiInt interpretation is total; and (2) it

Anthony Cantor, Aaron Stump 13

M,w ⊧p
σ iff w ∈ vp(σ)

M,w ⊧p ⊺p

M,w ⊭p ⊺p
M,w ⊧p A→p B iff for every w′ ∈ ↑pw, M,w′ ⊭p A or M,w′ ⊧p B
M,w ⊧p A→p B iff there exists w′ ∈ ↑pw, M,rp(w′) ⊧p A and M,w′ ⊧p B
M,w ⊧p A∧p B iff M,w ⊧p A and M,w ⊧p B
M,w ⊧p A∧p B iff M,w ⊧p A or M,w ⊧p B

(8a) Kripke semantic interpretation of DCInt formulas

M,w ⊧+D A∧B iff M,w ⊧+D A and M,w ⊧+D B M,w ⊧−D A∨B iff M,w ⊧−D A and M,w ⊧−D B
M,w ⊧+D A∨B iff M,w ⊧+D A or M,w ⊧+D B M,w ⊧−D A∧B iff M,w ⊧−D A or M,w ⊧−D B
M,w ⊧+D A→ B iff for every w′ ≥w, M,w ⊧−D B A iff for every w′ ≤w,

M,w′ ⊭+D A or M,w′ ⊧+D B M,w′ ⊭−D A or M,w′ ⊧−D B
M,w ⊧+D B A iff there exists w′ ≤w, M,w ⊧−D A→ B iff there exists w′ ≥w,

M,w′ ⊧+D B and M,r−(w′) ⊧−D A M,w′ ⊧−D B and M,r+(w′) ⊧+D A

(8b) DCInt interpretation of the complex cases of BiInt formulas

interprets falsified implication and verified exclusion using the dual counterpart functions. First we will
explain the former point in Remark 17, and then we will discuss the latter point in detail.

Remark 17. The DCInt interpretation of a formula φ is partial in the sense that a world w of a structure
M may satisfy M,w ⊭+ φ and M,w ⊭− φ , so that φ is neither verified nor falsified at that world. This
aspect of the semantics is necessary to avoid the problem demonstrated by the proof of Theorem 8, since
it produces a semantics in which the statements “σ ∧+¬+σ is unsatisfiable” and “σ ∧+¬+σ is falsify valid”
have distinct meanings (these statements are formally defined for DCInt below, in Definition 19).

To understand the interpretation of verified exclusion and falsified implication, it is critical to understand
two important properties of DCInt semantics. The polar persistence and consistence properties {18}
state that both Properties 1 and 2 of a DCInt structure {14} extend to complex formulas.

Theorem 18. For any DCInt structure M, formula φ , world w ∈M, and polarity p:

• (polar persistence property) if M,w ⊧p
φ , then for every world w′ ∈ ↑pw we have M,w′ ⊧p

φ .
• (polar consistence property) if M,w ⊧p

φ , then M,w ⊭p
φ .

With respect to their interpretations of verification and falsification (see Figure 6), an analogous form of
this theorem holds for Int, DualInt, and BiInt. Therefore, failure of these properties would represent a
problematic deviation from these logics, since our intention is for DCInt to remain similar to BiInt while
it obtains the disjunction property. In this sense the properties can be considered part of the definition of
DCInt. Both can be shown to hold by a straightforward induction proof.

The verification of an implication and the falsification of an exclusion in DCInt semantics is similar
to the interpretations found in BiInt. In contrast, the most distinctive aspect of DCInt semantics {15}
is its interpretation of the verification of an exclusion formula, and the falsification of an implication
formula. The left half of Figure 9 diagrams the interpretation of the verification of A→− B at a world
w of M, which depends on the existence of a backwardly reachable world w′ ∈ ↑−w; dually, the right
half diagrams the A→+ B case, which is perfectly symmetric to the A→− B case. The world w′ in turn

14 Dual counterpart intuitionistic logic

⊧+ A→− B

⊧+ B, ⊧− A

⊧− A
⊧− A→+ B

⊧− B, ⊧+ A

⊧+ A

w′

r−(w′)
u

w
u′

r+(u′)

Figure 9: The interpretation of A→p B at a world of DCInt semantics, where the right side depicts the
case of p = + at a world u and the left depicts the case of p = − at a world w (the following description
applies to the left diagram only, but the right diagram can be described dually). The dashed line for the
arrow between w and w′ represents the fact that w′ exists due to the assumption that w ⊧+ A→− B. The
wedge indicates the worlds that are negatively reachable from w. The world r−(w′) is outside of the
wedge because it does not necessarily need to be reachable from w.

determines a dual counterpart world r−(w′) which must be in the direction of positive reachability from
w′; i.e. Definition 12.3 requires that r−(w′) ∈ ↑+w′. For the exclusion to be verified at w we must have
that the dual counterpart world r−(w′) falsifies A (i.e. M,r−(w′) ⊧− A). By polar persistence {18}, if we
have M,r−(w′) ⊧− A then we also have M,w′ ⊧− A. This means that the dual counterpart world r−(w′)
falsifies a subset of the formulas that w′ falsifies (i.e. the set T(M,r−(w′),−) is a subset of T(M,w′,−)).
Additionally, M,w′ ⊧− A with polar consistence {18} implies that we have M,w′ ⊭+ A, and so we have
a statement that corresponds to that of B A verified in BiInt: there exists w′ ≤ w such that M,w′ ⊧+ B
and M,w′ ⊭+ A. In this sense the dual counterpart world is negatively weaker than w′, and so the DCInt
interpretation of a verified exclusion can be seen as a strengthening of the BiInt interpretation of a verified
exclusion from Figure 5d. This is a stronger condition because it is possible to falsify A at w′, but not
falsify it at the dual counterpart world. This highlights one important role that the dual counterpart
function plays in DCInt semantics: it makes exclusions and implications harder to verify and falsify,
respectively. This effect of the dual counterpart function is instrumental in the proof that DCInt has the
disjunction property. Finally, note that the definition of a verification of a dual-intuitionistic negation in
DCInt follows from the definition of a verification of an exclusion: a world w verifies ¬−A iff there exists
w′ ∈ ↑−w such that r−(w′) falsifies A.

Note that since r−(w′) must be a member of ↑+w′ it is illustrative to observe that the use of this desig-
nated counterpart world in the interpretation of a verified exclusion is distinct from an interpretation that
generally quantifies over ↑+w′ (and does not designate a specific counterpart world). For example, con-
sider the result of changing the interpretation of M,w ⊧+ A→− B to the following: there exists w′ ∈ ↑−w
such that there exists w′′ ∈ ↑+w′ such that M,w′′ ⊧− A and M,w′ ⊧+ B. Let us call this statement P. Now
we will show that P is logically equivalent to another statement that does not quantify over ↑+w′, which
we will call Q: there exists w′ ∈ ↑−w such that M,w′ ⊧− A and M,w′ ⊧+ B. First note that Q implies P
because w′ can serve as the choice for w′′ (since we have w′ ∈ ↑+w′). To see that P implies Q, suppose

Anthony Cantor, Aaron Stump 15

define term from column 1 by substituting it for “T”
term T φ is T over C iff . . . expression
(p)-valid M ⊧p

φ for every structure M in C . . . iff C ⊧p
φ

(p)-satisfiable M,w ⊧p
φ for some structure M in C and world w ∈M

(p)-countermodeled φ is not (p)-valid over C . . . iff C ⊭p
φ

(p)-unsatisfiable φ is not (p)-satisfiable over C
(p)-contingent8 φ is (p)-satisfiable, (p)-countermodeled, and

(p)-unsatisfiable over C
(10a)

define term from column 1 by substituting it for “T”
term T φ is T over C iff . . .
contingent for each p, φ is (p)-satisfiable and (p)-countermodeled over C
valid φ is (+)-valid over C
verify valid φ is (+)-valid over C
falsify valid φ is (−)-valid over C
unsatisfiable φ is (+)-unsatisfiable over C
satisfiable φ is (+)-satisfiable over C
countermodeled φ is (+)-countermodeled over C

(10b)

Figure 10: Each table defines semantic classifications for a formula φ with respect to a class of DCInt
frames C. Each term in the leftmost column is defined by substituting it for “T” in the column to its
right. Table (a) defines the classifications that are parameterized by a polarity p, and Table (b) defines
non-polarized classifications using the polarized ones. Additionally, each non-empty cell of the rightmost
column of Table (a) defines a symbolic expression that is equivalent to the statement in the center column.

that P is true. In this case the polar persistence property and Lemma 11 applied to the facts of M,w′′ ⊧− A
and w′′ ∈ ↑+w′ implies that we have M,w′ ⊧− A. Therefore Q is true. The existential quantification in
P turned out to be irrelevant because P is equivalent to Q. The next section {4.1} defines the logic–
called Partial BiInt–that is the result of interpreting exclusion according to Q. There it is shown that
Partial BiInt lacks the disjunction property.

We conclude this section by formally defining DCInt {20} and discussing the polarized notions of valid,
satisfiable, countermodeled, and unsatisfiable {19}.

Definition 19. Figure 10 defines a collection of semantic classifications for DCInt formulas. Each term
assumes the class of all DCInt frames when no class is mentioned. Additionally, for each BiInt formula
φ , define the following for each term from the figure substituted for T: φ is T in DCInt over C iff τ(φ) is
T over C.

DCInt is formally defined as the set of formulas (over Σ variables) that are (+)-valid. This definition is
sufficient for our current setting because we are not investigating the proof theory for DCInt.

8We borrow the term “contingent” from modal logic, where a formula is called contingent iff it is neither necessary nor
impossible (see page 15 of [21]).

16 Dual counterpart intuitionistic logic

sat. valid sat.
possible + + − − comment example
0 no ✗ ✗ ✗ ✗ Theorem 40
1 yes ✗ ✗ ✗ ✓ (−)-contingent σ ∧+¬+σ

2 no ✗ ✗ ✓ ✗ (−)-valid implies (−)-satisfiable
3 yes ✗ ✗ ✓ ✓ (−)-valid σ→−σ

8 yes ✓ ✗ ✗ ✗ (+)-contingent σ ∧−¬−σ

9 yes ✓ ✗ ✗ ✓ contingent σ

11 no ✓ ✗ ✓ ✓ Theorem 21 implies (+)-unsatisfiable
12 yes ✓ ✓ ✗ ✗ (+)-valid σ→+σ

13 no ✓ ✓ ✗ ✓ Theorem 21 implies (−)-unsatisfiable
15 no ✓ ✓ ✓ ✓ Theorem 21

Figure 11: The possibilities for the semantic classification of a DCInt formula. The # column contains
the binary number associated with four bits representing the four boolean statements “the formula is
(+)-satisfiable ((+)-valid, (−)-valid, and (−)-satisfiable, respectively)”. Rows #4, #5, #6, #7, #10, and
#14 are omitted because they have the value “no” in Column 2 for an analogous reason as Row #2.

Definition 20. For each Σ, define DCInt over Σ as the set {φ ∈ F(Σ) ∣ φ is (+)-valid}.
The independence of the verification and falsification status of a formula at a world (see Remark 17) ex-
tends to the polarized notions of validity and satisfiability, and so a formula can be (−)-unsatisfiable but
also not (+)-valid. Figure 11 enumerates the feasible combinations of (+)-satisfiable, (+)-valid, (−)-valid,
and (−)-satisfiable. It shows that the DCInt notions of verification and falsification are logically op-
posed to each other in the sense that every formula of the language can be categorized as exactly one
of (+)-contingent, (+)-valid, (−)-valid, (−)-contingent, or contingent. The contrapositive of Theorem 21
shows that these notions of validity and satisfiability respect each other in the sense that if a formula
is (p)-satisfiable then it is (p)-countermodeled. This comports with the intuitive understanding of the
meaning of verification and falsification since–for example–this means that exhibiting a world that fal-
sifies a formula φ (i.e. it is (−)-satisfiable) is sufficient to demonstrate that φ is not verify valid (i.e. it is
(+)-countermodeled).

Theorem 21. For every formula φ and polarity p: if φ is (p)-valid, then φ is (p)-unsatisfiable.

Proof. The conclusion follows directly from the polar consistence property {18}.

In accordance with Remark 17, the converse of Theorem 21 is not true: σ ∧+¬+σ is (+)-unsatisfiable
but is not (−)-valid. This formula is shown in row #1 of Figure 11 as an example of a (−)-contingent
formula. In section 4.4 we prove Theorem 40, which is a weaker form of the converse of Theorem 21. It
establishes that every formula of DCInt must be either (+)-satisfiable or (−)-satisfiable, which justifies
row #0 of Figure 11.

4.1 Partial BiInt

The precise relationship between both Int and BiInt Kripke semantics, and DCInt Kripke semantics is
not discussed until Section 4.4. However, it is accurate to say that the DCInt interpretation of a veri-
fied implication, verified conjunction, falsified exclusion, and a falsified disjunction is roughly equiva-

Anthony Cantor, Aaron Stump 17

M,w ⊧+D B A iff there exists w′ ≤w such that M,w′ ⊧+D B and M,w′ ⊧−D A (5)

M,w ⊧+D ∼A iff there exists w′ ≤w such that M,w′ ⊧−D A (6)

(12a) Interpretation of a verified exclusion and dual-intuitionistic negation in Partial BiInt

⊧+ σ
w1

w2

(12b) DCInt countermodel of ¬σ ∨∼¬σ . The blue dashed line indicates the negative dual counterpart,
and the red dotted line indicates the positive dual counterpart.

lent to the BiInt interpretation. Thus the schema A→ A is (+)-valid in DCInt, and the schema A∧¬A
is (+)-unsatisfiable; and–dually–the schema A A is (−)-valid in DCInt, and the schema A∨ ∼A is
(−)-unsatisfiable (in the polarized language these four schemas are A→+A, A∧+¬+A, A→−A, and A∧−¬−A).
As noted in the previous section, DCInt semantics is different from BiInt in two important ways: (1) it
is partial (see Remark 17); and (2) it interprets falsified implication and verified exclusion differently.
The purpose of this section is to explain why these are both important.

As a result of the first difference, a formula such as σ ∨∼σ is valid in BiInt but not in DCInt.

Theorem 22. For any proposition σ , σ ∨∼σ is (+)-countermodeled in DCInt.

Proof. This formula fails to be verified by a world w in a structure where that is the only world, and
the valuations v+ and v− are such that v+(σ) = v−(σ) = ∅. The formula ∼σ is not verified at w because
there is only one negatively reachable world, namely w itself; and in this negatively reachable world the
negative counterpart is again w because that is the only choice; finally, this negative counterpart does not
falsify σ .

In the discussion around Theorem 8, this was the formula that we used to demonstrate that BiInt lacks the
disjunction property. Since the countermodel of this formula did not involve the “dual counterpart” aspect
of DCInt semantics, it is natural to question whether that aspect of the semantics is actually necessary
for the disjunction property. We will now briefly consider an alternative semantics in order to show why
the aspect of partiality in DCInt semantics is not by itself sufficient to obtain the disjunction property. By
Lemma 13, a structure can always choose w′ itself as the dual counterpart r−(w′) (i.e. define r−(w′)=w′).
In this case the interpretations of exclusion and dual-intuitionistic negation change to the statements
shown in Figure 12a. The class of DCInt frames that interpret exclusion as shown in Equivalence
5 determines a Kripke semantics {23} that is like BiInt semantics, but where formulas are partially
interpreted. However, Theorem 24 shows that modifying BiInt semantics with partial interpretation in
this way is not enough to obtain the disjunction property.

Definition 23 (Partial BiInt). A DCInt frame ⟨W,≤,r+,r−⟩ is in the class CP.B. iff both r+ and r− are
equal to the identity function on W. Define the logic Partial BiInt by the semantics of DCInt, but where
every frame must be a member of CP.B..

18 Dual counterpart intuitionistic logic

Theorem 24. Partial BiInt does not have the disjunction property.

Proof. The formula ¬σ ∨∼¬σ is (+)-valid in DCInt over CP.B.; and neither ¬σ nor ∼¬σ is (+)-valid in
DCInt over CP.B.. To see why the statement for ¬σ ∨∼¬σ holds, consider a structure with a frame fromCP.B., let w be a world from that structure, and suppose that w ⊭+D ¬σ . This implies that there exists a
world w′ ≥ w such that we have w′ ⊧+D σ . Now we can show that we have w ⊧+D ∼¬σ by showing that
there exists a world w′′ ≤ w such that w′′ ⊧−D ¬σ . Choosing w itself for w′′, we must check that there
exists a world w′′′ ≥ w such that w′′′ ⊧+D σ . By our assumption above, this clearly holds by choosing w′
for w′′′.
Later on we will prove that DCInt has the disjunction property, and the proof critically relies on the way
that DCInt interprets verified exclusion and falsified implication. Theorem 25 hints at the intuition for
why that difference is critical because it shows how the dual counterpart functions facilitate a counter-
model to the formula ¬σ ∨∼¬σ . In summary, of the two primary differences from BiInt: the first is not
sufficient to obtain the disjunction property, but the second is; and furthermore, both are needed to obtain
duality and the disjunction property together.

Theorem 25. For any σ , the formula ¬σ ∨∼¬σ is (+)-countermodeled in DCInt.

Proof. A diagram of the countermodel is shown in Figure 12b. The structure has only the worlds w1 and
w2, such that w1 ≤w2, w2 ≰w1, v+(σ) = {w2}, r−(w1) =w2, and r+(w2) =w1. Clearly we have w1 ⊭+D ¬σ ,
so we only need to check that we also have w1 ⊭+D ∼¬σ . By construction we have ↑−w1 = {w1}, so it will
suffice to show that we have r−(w1)⊭−D ¬σ . Also by construction we have ↑+w2 = {w2}, so it will suffice
to show that we have r+(w2) ⊭+D σ . This clearly holds because r+(w2) =w1.

4.2 Exclusion in DCInt

In order to improve the reader’s intuition for exclusion in DCInt this section discusses the (+)-valid
status of some schemas involving exclusion (they are displayed using the BiInt language). Theorem 26
demonstrates that DCInt rejects all of Rauszer’s BiInt exclusion axioms (shown in Figure 13a). These
are the axioms A11-A14 from Rauszer’s Hilbert-style axiomatization of BiInt (page 18 of [27]). In that
system they comprise all of the axioms that characterize the exclusion connective, since axioms A1-A10
are Int valid and axioms A15-A18 concern the dual negation connective. In Section 3 of [29], Sano &
Stell provide an alternative Hilbert-style axiomatization that has only two axioms involving exclusion:
the first is equivalent to Rauszer’s A11; and the second is the axiom ((A∨B) A)→ B, which is valid
in DCInt.

Theorem 26. Each schema in Figure 13a is countermodeled in DCInt for some choice of A,B,C.

Proof. Let σ0 and σ1 be propositional variables, and for each corresponding part choose (A11) B = ⊺,
A = σ0; and (A12) B = σ0, A = σ1; and (A13) C = ⊺, B = σ0, A = σ1; and (A14) B = ⊺, A = σ0. Parts (A11)
and (A14) can be countermodeled with a simple structure of one world. Part (A12) can be countermod-
eled with the structure shown on the left side of Figure 13b, where the positive counterpart of w1 is w2
and the negative counterpart of w0 is w1. Part (A13) can be countermodeled with the structure shown
on the right side of Figure 13b, where for the negative counterpart function r− we have r−(w0) =w1 and
r−(w2) =w3.

Anthony Cantor, Aaron Stump 19

A11. B→ (A∨(B A))
A12. (B A)→ ∼(B→ A) A13. ((C B) A)→ (C (B∨A))

A14. ¬(B A)→ (B→ A)
(13a)

⊧+ σ0

⊧− σ1 ⊧− σ1

⊧− σ0
w0 w2

w1w1

w3

w0

w2

(13b)

Figure 13: Subfigure (a) contains schemas that are (+)-countermodeled in DCInt, and Subfigure (b)
displays structures for the proof of Theorem 26.

Though DCInt rejects axioms A11-A14, it does maintain compatibility with Rauszer’s “r” rule from
page 19 of [27]. Additionally, it maintains compatibility with a rule named “Mon ” from Sano & Stell’s
axiomatization of BiInt. Theorem 27 shows that these rules are sound with respect to DCInt semantics
by rephrasing them in terms of validity.9

Theorem 27. For BiInt formulas A,B,C:

1. (“r”) if A is valid in DCInt then ¬∼A is valid in DCInt
2. (“Mon ”) if A→ B is valid in DCInt then (A C)→ (B C) is valid in DCInt
3. if C→ (A∨B) is valid in DCInt then (C A)→ B is valid in DCInt

Proof. For part (1), suppose A is valid. Then A is (−)-unsatisfiable by Theorem 21. Therefore ¬∼A is
valid, since no world w of any structure can verify ∼A: if w ⊧+D ∼A then there exists w′ ≤ w such that
r−(w′) ⊧−D A. For part (2), suppose A→ B is valid and that a world w of an arbitrary structure verifies
A C. This means that there exists w′ ≤w such that w′ ⊧+D A and r−(w′) ⊧−D C. We have w′ ⊧+D B because
A→ B is valid, and so this implies w ⊧+D B C. w was arbitrary, so (A C)→ (B C) is valid. Part (3)
follows by a semantic analysis that is similar to the first two parts.

The third part of the theorem is related to a property about BiInt exclusion that Wansing [35] points
out, which is that exclusion is the residuum of additive disjunction. This is expressed in the following
statement involving the BiInt entailment relation: C ⊢ A∨B iff C A ⊢ B. It is notable that this fact
will not hold for an entailment relation of DCInt because the right-to-left direction of the equivalence
will fail. Choosing C = ⊺, A = σ , and B = ∼σ , we have the statements ⊺ σ ⊢ ∼σ and ⊺ ⊢ σ ∨∼σ . For
an entailment relation of DCInt the former inference will be true because of the definition of ∼, while
Theorem 22 implies that the latter cannot be true. However, part (3) of Theorem 27 shows that the
left-to-right direction of the equivalence will hold.

9In [18], Goré & Shillito resolve a significant amount of confusion that has arisen from the interpretation of rule “r” with
respect to the Hilbert-style proof system for BiInt. They also explicitly point out that the same interpretation issue arises with
Sano & Stell’s rule. Theorem 27 interprets the rules in the way that Goré & Shillito describe as “weak”. We thank one of the
reviewers for drawing our attention to the “r” rule and the work in [29] and [18].

20 Dual counterpart intuitionistic logic

1. ¬(A A)
2. (C ((B A)∨A))→ (C (B∨A))
3. (C (B∨A))→ ((C B) A)
4. ((C B) A)→ ((C B)∧(C A))

5. (B A)→ (B∧∼A)
6. ((B∨A) A)→ (B A)
7. (B (B∧A))→ (B A)
8. ∼(B→ A)→ (B A)

Figure 14: Valid schemas of DCInt

Finally, this section concludes with some examples of schemas involving exclusion that are valid in
DCInt {28}. Note that schema 3 is the converse of A13, schema 8 is the converse of A12, and that
schema 6 is essentially a stronger version of Sano & Stell’s second axiom. Though we are leaving the
axiomatic characterisation of DCInt exclusion to future work, we believe that these schemas are useful
for gaining an intuition for it.

Theorem 28. For DCInt formulas A,B,C, the formulas of Figure 14 are valid in DCInt. Also, the schema((A∨B) A)→ B is valid (Sano & Stell’s second exclusion axiom from [29]).

Proof. For part (1), suppose for sake of contradiction that there exists a structure M with negative coun-
terpart function r− and world w0 ∈M such that M,w0 ⊭+D ¬(A A). By definition this means that there
exists w1 ∈ ↑+w0 such that M,w1 ⊧+D A A, which in turn means that there exists w2 ∈ ↑−w1 such that
M,r−(w2) ⊧−D A and M,w2 ⊧+D A. By definition we have r−(w2) ∈ ↑+w2, so the polar persistence property
{18} implies that we have M,r−(w2) ⊧+D A. This contradicts the polar consistence property {18}. Parts
(2) through (8) follow by similar analysis of DCInt semantics.

The first schema of Figure 14 is valid because of the polar consistence property {18}, and that one essen-
tially shows that the verifier and falsifier must be consistent with each other. The intuition for the other
schemas can be similarly summarized in terms of “interaction” between the verifier and falsifier. These
examples were chosen because they demonstrate situations in which the verifier discovers information
from the falsifier. We believe that the reader will readily gain such intuitions by proving the validity of
each schema via an analysis of the semantics (especially if the reader constructs a world diagram similar
to that of Figure 9, 12b, or 13b). For example, schema 2 essentially shows that the verifier can observe
the consequence of a falsified exclusion: if there is a world w′ that verifies C and the world r−(w′)
falsifies both B A and A, then we know that w′ verifies C and r−(w′) falsifies both B and A.

4.3 The duality of DCInt

In this section we specify the duality correspondence for DCInt formulas {29}, and prove that DCInt
has a duality property that is analogous to the duality of CL.

Definition 29 (dual formulas, frames, and structures). The dualization function δD is defined on DCInt
formulas by Figure 15a, and DCInt frames and structures by Figure 15b.

Lemma 30 establishes some basic properties of δD and states that the duality correspondence of DCInt
is equivalent to that of BiInt.

Lemma 30. The function δD is an involution that maps formulas to formulas, frames to frames, and
structures to structures. Also, for δD on formulas, we have δD = τ ○δB ○τ

−1.

Anthony Cantor, Aaron Stump 21

δD(σ) = σ

δD(⊺p) = ⊺p

δD(A∧p B) = δD(A)∧p δD(B)
δD(A→p B) = δD(A)→p δD(B)

(15a)

δD(⟨W,≤,r+,r−⟩) = ⟨W,≤−1,r−,r+⟩
δD(⟨F,v+,v−⟩) = ⟨δD(F),v−,v+⟩

(15b)

Figure 15: The duality correspondence of DCInt is given in subfigure (a), and subfigure (b) defines δD
on DCInt frames and structures.

The world duality theorem {31} is analogous to Theorem 2 of CL semantics. This theorem and Lemma
30 each follow from just checking definitions, using the polar reachability lemma {11}, and by induction
on the complexity of the formula φ .

Theorem 31 (world duality). For every polarity p, DCInt structure M, formula φ , and w ∈M: we have
M,w ⊧p

φ iff δD(M),w ⊧p
δD(φ).

Finally, the duality theorem {32} states that DCInt has duality with respect to validity and satisfiability,
which is analogous to Theorem 3. In the next section we will prove that DCInt is a conservative extension
of Int and later on we will prove that it has the disjunction property. Recall that Remark 17 pointed out
that the semantics of DCInt distinguishes between the notions of (+)-unsatisfiable and (−)-valid. This
means that the argument used in Theorem 8 does not apply to DCInt, even though it has both duality
and the disjunction property.

Theorem 32 (duality of DCInt). For every polarity p and formula φ :

1. φ is (p)-valid iff δD(φ) is (p)-valid
2. φ is (p)-satisfiable iff δD(φ) is (p)-satisfiable
3. if φ is (p)-valid then δD(φ) is (p)-unsatisfiable

Proof. Parts 32.1 and 32.2 follow directly from the previous lemmas. To prove Part 32.3, suppose that φ

is (p)-valid. Part 32.1 implies that δD(φ) is (p)-valid, and so therefore Theorem 21 implies that δD(φ)
is (p)-unsatisfiable.

4.4 Relating DCInt to Int, DualInt, and BiInt

DCInt is a conservative extension of Int and is a sublogic of BiInt because Int structures {5} can be
faithfully represented as DCInt Kripke structures, and vice versa. We recall the definitions of conserva-
tive extensions and sublogics in Definition 33.

Definition 33. Let L1 and L2 be the sets of formulas of the languages in which logics L1 and L2 are
respectively expressed, where both languages are generated by the same propositional variables. Also
let L1 ⊆L2, and T1 and T2 be the set of theorems of L1 and L2, respectively. (1) L2 is an extension of L1
iff L1 is a sublogic of L2 iff T1 ⊆ T2; and (2) L2 is a conservative extension of L1 iff T2∩L1 = T1.

The functions µI, µU, µ
+
D and µ

−
D {34} specify the mappings between the two kinds of structures. The

first translation lemma {35} establishes some important basic facts about these functions, including their
relationship to each other and to the functions δD and δB.

22 Dual counterpart intuitionistic logic

Definition 34. Let M = ⟨W,≤,r+,r−,v+,v−⟩ be a DCInt structure. Define the functions µI and µU by
µI(M) = ⟨W,≤,v+⟩, and µU(M) = ⟨W,≤−1,v−⟩.
Let M = ⟨W,≤,v⟩ be an Int structure {5}. Define the functions µ

+
D and µ

−
D by µ

+
D(M) = ⟨W,≤,ιW ,ιW ,v,v⟩,

and µ
−
D(M) = ⟨W,≤−1,ιW ,ιW ,v,v⟩, where ιW is the identity function on W, and v = σ ↦W ∖v(σ).

Lemma 35 (translation I). 1. Every tuple in the image of µI and µU is an Int structure {5}
2. every tuple in the image of µ

+
D and µ

−
D is a DCInt structure {14}

3. both of the functions µI ○µ
+
D and µU ○µ

−
D are equal to the identity function

4. for each DCInt structure M and each polarity p: (a) δD(µ p
D(M)) = µ

p
D(M); and (b) for each BiInt

formula φ : µ
+
D(M),w ⊧p

D φ iff µ
−
D(M),w ⊧p

D δB(φ)
Proof. Parts (1) and (2) follow from Lemmas 13 and 11, and parts (3) and (4a) follow from just checking
definitions. Part (4b) can be proved using δD ○µ

p
D = µ

p
D (4a), Theorem 31, and δD ○τ = τ ○δB {30}.

Theorem 37 proves that DCInt conservatively extends Int with respect to verify validity, and also that
it conservatively extends DualInt with respect to falsify validity (i.e. unsatisfiability). Note that it does
not extend Int with respect to falsify validity, nor DualInt with respect to verify validity (for example,
σ ∧¬σ is falsify valid in Int, and σ ∨∼σ is verify valid in DualInt). Theorem 37 relies on the second
translation lemma {36}. That lemma follows from a straightforward induction proof on φ , and states
that the functions µI and µU are faithful with respect to φ .

Lemma 36 (translation II). For every DCInt structure M and world w ∈M:

1. if φ is an Int formula, then M,w ⊧+D φ iff µI(M),w ⊧I φ

2. if φ is a DualInt formula, then M,w ⊧−D φ iff µU(M),w ⊭U φ

Theorem 37 (DCInt conservatively extends Int).

1. (a) An Int formula is valid in Int iff it is (+)-valid in DCInt
(b) An Int formula is satisfiable in Int iff it is (+)-satisfiable in DCInt

2. (a) A DualInt formula is unsatisfiable in DualInt iff it is (−)-valid in DCInt
(b) A DualInt formula is countermodeled in DualInt iff it is (−)-satisfiable in DCInt

Proof. For part (1), let φ be an Int formula. There are four implications, and we sketch their proof in two
separate pairs (in each case the first of the pair is proved by contrapositive). Part (2) follows similarly.

The first pair: if τ(φ) is (+)-valid then φ is Int valid; and if φ is Int satisfiable then τ(φ) is (+)-satisfiable.
These two implications follow from the first two translation lemmas. For any Int structure M, translation
I {35} implies that we have µI(µ+

D(M)) =M; and translation II {36} implies that for every w ∈M we
have: M,w ⊧I φ iff µI(µ+

D(M)),w ⊧I φ iff µ
+
D(M),w ⊧+ τ(φ). Therefore an Int countermodel

induces a positive DCInt countermodel, and an Int model induces a positive DCInt model.

The second pair: if φ is Int valid then τ(φ) is (+)-valid; and if τ(φ) is (+)-satisfiable then φ is Int
satisfiable. These two implications follow by an argument similar to that of the first pair.

The third translation lemma {38} states that µ
+
D and µ

−
D are faithful with respect to BiInt formulas, which

implies that DCInt is a sublogic of BiInt {39}.

Lemma 38 (translation III). For every Int structure M, world w ∈M, and BiInt formula φ :

Anthony Cantor, Aaron Stump 23

1. M,w ⊧B φ iff µ
+
D(M),w ⊧+D φ

2. M,w ⊭B φ iff µ
+
D(M),w ⊧−D φ

3. M,w ⊧B φ iff µ
−
D(M),w ⊧−D δB(φ)

4. M,w ⊭B φ iff µ
−
D(M),w ⊧+D δB(φ)

Proof. By Part (4b) of translation I {35}, Parts (3) and (4) follow from (1) and (2). Parts (1) and (2) can
be proved simultaneously by a straightforward induction proof on φ .

Theorem 39 (DCInt is a sublogic of BiInt). For every BiInt formula φ we have:

1. (a) If φ is (+)-valid in DCInt, then φ is BiInt valid
(b) If φ is (−)-valid in DCInt, then φ is BiInt unsatisfiable

2. (a) If φ is BiInt satisfiable then φ is (+)-satisfiable in DCInt
(b) If φ is BiInt countermodeled, then φ is (−)-satisfiable in DCInt

Proof. We prove the contrapositive of Part (1a). The rest of the implications can be proved through
similar arguments. Suppose that M is a BiInt structure with w ∈M such that M,w ⊭B φ . By the third
translation lemma {38} we have µ

+
D(M),w ⊭+ τ(φ), so therefore τ(φ) is not (+)-valid.

Finally, Theorem 40 follows as a corollary to Theorem 39. This theorem was used to justify the first row
of the table in Figure 11.

Theorem 40. For every formula φ and polarity p: if φ is (p)-unsatisfiable then φ is (p)-satisfiable.

Proof. First note that τ
−1(φ) must either be BiInt satisfiable or BiInt countermodeled. Now we cannot

have that φ is both (+)-unsatisfiable and (−)-unsatisfiable, since this contradicts part 2 of Theorem 39.

4.5 DCInt bisimulations

The notion of a bisimulation between two structures of a Kripke semantics is useful because it establishes
a condition under which two worlds of different structures are logically equivalent. Int bisimulations
are developed in [22] (Section 5), [25], and [16]; and BiInt bisimulations are developed in [1] and
[19]. Similar ideas also appear in the context of modal logic, such as in [2] and [3]. In this section we
define the notion of bisimulation that corresponds to DCInt structures, and develop some results about
bisimulations that will be useful for proving the disjunction property in Section 5.

Definition 41. For sets X, Y , and X ′ ⊆ X, and relation R ⊆ X ×Y , define the image of X ′ un-
der R as the set R[X ′] = {y ∈Y ∣ there exists x ∈ X ′ such that xRy}. For x ∈ X, define R[x] = R[{x}].
For set Z and relation S ⊆ Y × Z, define the relational composition R;S as the set {(x,z) ∈ X ×Z ∣
there exists y ∈Y such that xRySz}.
Using the notation from Definition 41, we define a directed and polarized condition for when a world is
similar to another world in a different DCInt frame {42}. This definition is used as a template in both
the “back” and “forth” conditions in the definition of a DCInt bisimulation {43}. The first condition
of Definition 42 (Condition 1) is analogous to a condition that also appears in the definition of an Int
bisimulation (i.e. conditions B2 and B3 of the definition in Section 3 of [16]). Naturally, the latter
condition (Condition 2) is unique to DCInt bisimulations since it involves the dual counterpart functions.
We cannot provide an intuitive explanation of Condition 2, except to say that it should all become clear
to the reader that carefully works through the proof of the bisimulation invariance theorem {45}. This

24 Dual counterpart intuitionistic logic

condition is essential to ensure that–for example–a verified exclusion is invariant across two worlds
related by a bisimulation.

Definition 42 (world similarity). Let F0 = ⟨W0,≤0,r+0 ,r−0 ⟩ and F1 = ⟨W1,≤1,r+1 ,r−1 ⟩ be DCInt frames, and
let Z+, Z− ⊆W0×W1, w ∈W0, u ∈W1, and p be a polarity. w is similar to u with respect to (p,F0,F1,Z+,Z−)
iff (1) for every w′ ∈ ↑pw, there exists u′ ∈ ↑pu such that w′ Zp u′; and (2) for every w′ ∈ ↑pw, there exists
u′ ∈ ↑pu, such that (a) (↑pu′)∩(Zp[↑pw′]) ≠∅; and (b) (↑prp

1(u′))∩(Zp[↑prp
0(w′)]) ≠∅.

Next, we define a bisimulation as a polarized relation between two frames where for every pair of posi-
tive/negative related worlds, each world of the pair is positive/negative similar to the other {43}.

Definition 43 (frame bisimulation). Let F0 = ⟨W0,≤0,r+0 ,r−0 ⟩ and F1 = ⟨W1,≤1,r+1 ,r−1 ⟩ be DCInt frames,
and let Z+, Z− ⊆W0×W1. The pair (Z+,Z−) is a bisimulation between F0 and F1 iff for each polarity p, if
wZp u then: (a) w is similar to u with respect to (p,F0,F1,Z+,Z−); and (b) u is similar to w with respect
to (p,F1,F0,(Z+)−1,(Z−)−1).
We will sometimes refer to Condition 43.a as the “forth” condition, and Condition 43.b as the “back”
condition. In the context of the variable names used in the bisimulation definition {43}, the “forth”
condition translates verbatim to the statements shown in Definition 42. This condition is shown in a
more concise form in Figure 16a, and a diagram of the second part of the condition is shown in Figure
16c. The “back” condition translates to the statement shown in Figure 16b.

Definition 44 extends Definition 43 to DCInt structures, so that a bisimulation between structures is any
bisimulation between frames in which worlds related at polarity + verify exactly the same propositional
variables, and worlds related at polarity − falsify exactly the same propositional variables. The bisimu-
lation invariance theorem {45} states that this agreement between worlds extends from the propositional
variables to all formulas.

Definition 44 (structure bisimulation). Let M0 = ⟨F0,v+0 ,v−0 ⟩ and M1 = ⟨F1,v+1 ,v−1 ⟩ be DCInt structures,
and let the pair (Z+,Z−) be a bisimulation between F0 and F1. The pair (Z+,Z−) is a bisimulation
between M0 and M1 iff for each polarity p, if wZp u then M0,w ⊧p

σ iff M1,u ⊧p
σ for each σ ∈ Σ.

Theorem 45 (bisimulation invariance). Let M0 and M1 be DCInt structures, and let the pair (Z+,Z−) be
a bisimulation between M0 and M1. For every w0 ∈M0, w1 ∈M1, and for each polarity p: if w0Zpw1 then
T(M0,w0, p) =T(M1,w1, p).
Proof. Let M0 = ⟨F0,v+0 ,v−0 ⟩ and M1 = ⟨F1,v+1 ,v−1 ⟩ be DCInt structures, with F0 = ⟨W0,≤0,r+0 ,r−0 ⟩ and
F1 = ⟨W1,≤1,r+1 ,r−1 ⟩. Let the pair (Z+,Z−) be a bisimulation between M0 and M1, w0 ∈W0, w1 ∈W1
and p be a polarity. Suppose that we have w0Zpw1, and let φ ∈ F(Σ). The conclusion (M0,w0 ⊧p

φ iff
M1,w1 ⊧p

φ) holds by induction on the complexity of φ . The base case holds directly by the definition of
a bisimulation {44}. Except for the cases of a verified exclusion or a falsified implication, the induction
step is straightforward (the arguments are similar to those found in the proof of logical invariance between
worlds related by an Int bisimulation). We only consider the case of a verified exclusion, since it is
symmetric to that of a falsified implication. Furthermore, we only prove the left to right implication,
since the argument for the right to left implication is symmetric. Figure 16d contains a diagram that
depicts the relationships of the worlds that will be discussed in this proof.

Let φ ≡ A→− B and suppose that M0,w0 ⊧+ A→−B, so that we want to show M1,w1 ⊧+ A→−B. Since
we have M0,w0 ⊧+ A→−B, by definition there exists w′

0 ∈ ↑−w0 such that M0,r−0 (w′
0) ⊧− A and M0,w′

0 ⊧+

Anthony Cantor, Aaron Stump 25

w similar to u w.r.t. (p,F0,F1,Z+,Z−):
1. ∀w′ ∈ ↑pw. ∃u′ ∈ ↑pu. w′ Zp u′
2. ∀w′ ∈ ↑pw. ∃u′ ∈ ↑pu.

(a) ↑pu′∩(Zp[↑pw′]) ≠∅
(b) ↑prp

1(u′)∩(Zp[↑prp
0(w′)]) ≠∅

(16a) The “forth” condition

u similar to w w.r.t. (p,F1,F0,(Z+)−1,(Z−)−1):
1. ∀u′ ∈ ↑pu. ∃w′ ∈ ↑pw. u′ (Zp)−1 w′
2. ∀u′ ∈ ↑pu. ∃w′ ∈ ↑pw.

(a) ↑pw′∩((Zp)−1[↑pu′]) ≠∅
(b) ↑prp

0(w′)∩((Zp)−1[↑prp
1(u′)]) ≠∅

(16b) The “back” condition

w′

r−0 (w′) a0

b0

uw

u′
r−1 (u′)
b1

a1

(16c) A diagram of part (2) of the “forth” condition

⊧+ A→− B

⊧+ B

⊧− A

w′
0

r−0 (w′
0) w′′′

0

w′′
0

w1w0

w′
1

r−1 (w′
1)

y1

x1

(16d) A diagram of a variable instantiation of part (2) of the “forth” condition

Figure 16: The (b) and (a) subfigures succintly describe the “back” and “forth” conditions. The (c)
subfigure illustrates part (2) of the “forth” condition: the a0 and a1 worlds must exist by part (2.a) and
the b0 and b1 worlds must exist by part (2.b). The (d) subfigure illustrates the instantiation of part (2) of
the “forth” condition that is used in the proof of Theorem 45, where the serpentine arrows indicate the
path in which positive and negative formulas propagate. In subfigures (c) and (d) the thick dotted line in
the center separates the worlds of the two frames, and a thin headed directed arrow between two worlds
indicates that the source world reaches the target world. Also, a thick headed bidirectional arrow between
two worlds indicates that the worlds are related by one of the components of the bisimulation (Z+,Z−),
where solid red corresponds to the Z+ component and dotted blue corresponds to the Z− component.

26 Dual counterpart intuitionistic logic

B. By the “forth” property, w0 is similar to w1 with respect to (+,F0,F1,Z+,Z−). By part 2 of this
similarity property (with w′

0 for w′) we have: there exists w′
1 ∈ ↑−w1 such that ↑−w′

1 ∩ (Z+[↑+w′
0]) ≠ ∅

and ↑+r−1 (w′
1)∩ (Z−[↑−r−0 (w′

0)]) ≠ ∅. Therefore, let x1 ∈ ↑−w′
1 ∩ (Z+[↑+w′

0]), and let y1 ∈ ↑+r−1 (w′
1)∩(Z−[↑−r−0 (w′

0)]). In order to show M1,w1 ⊧+ A→−B, we will show that M1,r−1 (w′
1)⊧− A and M1,w′

1 ⊧+ B.

Let w′′
0 ∈ ↑−r−0 (w′

0) such that w′′
0 (Z−)y1, which exists because of our assumption of y1 ∈ Z−[↑−r−0 (w′

0)].
We have M0,w′′

0 ⊧− A by polar persistence {18} applied to M0,r−0 (w′
0)⊧− A. By the induction hypothesis

applied to M0,w′′
0 ⊧− A and w′′

0 (Z−)y1, we have M1,y1 ⊧− A. Now note that by the polar reachability
lemma {11} we have r−1 (w′

1) ∈ ↑−y1, since y1 ∈ ↑+r−1 (w′
1). Therefore the polar persistence property implies

that M1,r−1 (w′
1) ⊧− A.

Let w′′′
0 ∈ ↑+w′

0 such that w′′′
0 (Z+)x1, which exists because we are assuming that x1 ∈ Z+[↑+w′

0]. We
have M0,w′′′

0 ⊧+ B by polar persistence applied to M0,w′
0 ⊧+ B. By the induction hypothesis applied

to M0,w′′′
0 ⊧+ B and w′′′

0 (Z+)x1, we have M1,x1 ⊧+ B. The polar reachability lemma {11} implies that
w′

1 ∈ ↑+x1, since x1 ∈ ↑−w′
1. By polar persistence applied to this and M1,x1 ⊧+ B, we have M1,w′

1 ⊧+ B.
Since w′

1 ∈ ↑−w1, we conclude that M1,w1 ⊧+ A→−B.

Earlier we remarked that the second condition of Definition 42 lacks an intuitive explanation, but the
proof argument for the invariance theorem {45} at least provides a technical explanation. In the case
of a verified exclusion, this condition produces the situation shown in Figure 16d: every backwardly
reachable world w′

0 has a counterpart w′
1 in the other structure such that w′

1 ∈ ↑−w1; and there exists worlds
y1 and x1 such that w′

1 forwardly reaches y1 and backwardly reaches x1; and there exists counterpart
worlds w′′

0 and w′′′
0 such that w′′′

0 Z+ x1 and w′′
0 Z− y1; and furthermore w′

0 forwardly reaches w′′′
0 and

r−0 (w′
0) backwardly reaches w′′

0 . In that situation the induction hypothesis and polar persistence property
{18} together imply that the verification of B at w′

0 travels forward to w′′′
0 , across to x1, and then forward

to w′
1. Similarly, the falsification of A at r−0 (w′

0) travels backward to w′′
0 , across to y1, and then backward

to r−1 (w′
1).

Next, we prove that a bisimulation is bidirectional in the sense that inverting the component relations
produces another bisimulation.

Lemma 46. Let F0 and F1 be DCInt frames. If the pair (Z+,Z−) is a bisimulation between F0 and F1,
then ((Z+)−1,(Z−)−1) is a bisimulation between F1 and F0.

Proof. The conclusion follows directly from the frame bisimulation definition {43}, since conditions
43.a and 43.b are symmetric .

The following two lemmas establish that the relational composition {41} of the components of two
bisimulations produces another bisimulation.

Lemma 47. Let F0, F1, and F2 be DCInt frames, the pair (Z+0 ,Z−0) be a bisimulation between F0 and F1,
and the pair (Z+1 ,Z−1) be a bisimulation between F1 and F2. Define the pair (Z+,Z−) by Zp = Zp

0 ;Zp
1 for

each polarity p. For every w ∈ F0, x ∈ F1, u ∈ F2, and for every polarity p: if we have that w is similar
to x with respect to (p,F0,F1,Z+0 ,Z−0), and x is similar to u with respect to (p,F1,F2,Z+1 ,Z−1), then w is
similar to u with respect to (p,F0,F2,Z+,Z−).
Proof. It is easy to prove that Part (1) of the world similarity definition {42} follows directly from the
definitions, so we only describe the proof for Part (2). We specifically cover the case of p = +, since

Anthony Cantor, Aaron Stump 27

w

w′

a0

r−0 (w′)
a1

a′1

a′0

x

x′
a2

b0

r−1 (x′)

a3

b1

u

u′

b2

r−2 (u′)

b3

Figure 17: Diagram of the worlds that are discussed in the proof of Lemma 47, where the frames are
segregated by the thick dotted lines with F0 on the left, F1 in the center, and F2 on the right. The
directed arrows indicate world reachability; and bidirectional arrows indicate worlds that are related by
a component of the pair (Z+i ,Z−i), with a solid red arrow shaft indicating Z+i , a dotted blue arrow shaft
indicating Z−i , and with i = 0 for arrows on the left and i = 1 for arrows on the right.

the argument is symmetric for p = −. Let w′ ∈ ↑−w. w is similar to x with respect to (+,F0,F1,Z+0 ,Z−0),
so by part 2 applied to w′ ∈ ↑−w we have that there exists x′ ∈ ↑−x satisfying Parts 2.a and 2.b. Analo-
gously, x is similar to u with respect to (+,F1,F2,Z+1 ,Z−1), so by part 2 applied to x′ ∈ ↑−x we have that
there exists u′ ∈ ↑−u satisfying Parts 2.a and 2.b. We want to show that (1) (↑−u′)∩ (Z+[↑+w′]) ≠ ∅;
and (2) (↑+r−2 (u′))∩(Z−[↑−r−0 (w′)]) ≠∅. The worlds used in this proof are diagrammed in Figure 17.

Let a2 ∈ ↑−x′∩(Z+0 [↑+w′]), where a0 ∈ ↑+w′ such that a0 Z+0 a2. Let b2 ∈ ↑−u′∩(Z+1 [↑+x′]), where b0 ∈ ↑+x′
such that b0 Z+1 b2. By the polar reachability lemma {11} we have x′ ∈ ↑+a2 and b0 ∈ ↑+a2, since a2 ∈ ↑−x′
and b0 ∈ ↑+x′. (Z+0 ,Z−0) is a bisimulation so by Part 1 of the frame bisimulation definition applied to
b0 ∈ ↑+a2, we have that there exists a′0 ∈ ↑+a0 such that b0 (Z+0)−1 a′0. Again by polar reachability we have
a′0 ∈ ↑+w′, since a′0 ∈ ↑+a0 and a0 ∈ ↑+w′. By definition of relational composition we have a′0 Z+ b2, since
a′0 Z+0 b0 and b0 Z+1 b2. Therefore we have b2 ∈ ↑−u′∩(Z+[↑+w′]), since b2 ∈ ↑−u′ and a′0 ∈ ↑+w′.
Let a3 ∈ ↑+r−1 (x′)∩(Z−0 [↑−r−0 (w′)]), where a1 ∈ ↑−r−0 (w′) such that a1 Z−0 a3. Similarly, let b3 ∈ ↑+r−2 (u′)∩(Z−1 [↑−r−1 (x′)]), where b1 ∈ ↑−r−1 (x′) such that b1 Z−1 b3. By polar reachability {11} we have r−1 (x′) ∈ ↑−a3
and b1 ∈ ↑−a3, since a3 ∈ ↑+r−1 (x′) and b1 ∈ ↑−r−1 (x′). (Z+0 ,Z−0) is a bisimulation and we have a1 Z−0 a3 so
therefore by Part 1 of the frame bisimulation definition applied to b1 ∈ ↑−a3, we have that there exists
a′1 ∈ ↑−a1 such that b1 (Z−0)−1 a′1. We have a′1 ∈ ↑−r−0 (w′) by polar reachability, since a′1 ∈ ↑−a1 and
a1 ∈ ↑−r−0 (w′). By the definition of relation composition we have a′1 Z− b3, since a′1 Z−0 b1 and b1 Z−1 b3.
Therefore we have b3 ∈ Z−[↑−r−0 (w′)], since a′1 ∈ ↑−r−0 (w′) and a′1 Z− b3. Thus we conclude that b3 ∈↑+r−2 (u′)∩(Z−[↑−r−0 (w′)]), since b3 ∈ ↑+r−2 (u′).
Lemma 48. Let F0, F1 and F2 be DCInt frames. If the pair (Z+0 ,Z−0) is a bisimulation between F0 and
F1, and the pair (Z+1 ,Z−1) is a bisimulation between F1 and F2, then the pair ((Z+0 ;Z+1),(Z−0 ;Z−1)) is a
bisimulation between F0 and F2.

28 Dual counterpart intuitionistic logic

Proof. Define Zp = Zp
0 ;Zp

1 for each polarity p. Let q be a polarity, and suppose wZq u. We will only show
that the “back” condition holds, since showing the “forth” condition is similar but easier. By definition
of relation composition, there exists x ∈ F1 such that w Zq

0 x and x Zq
1 u. Let G0 = F2 and G2 = F0, and for

each polarity p define Bp
0 = (Zp

1)−1 and Bp
1 = (Zp

0)−1. Therefore we have u Bq
0 x and x Bq

1 w. By Lemma
46, both the pairs (B+0 ,B−0) and (B+1 ,B−1) are bisimulations. This means that u is similar to x with respect
to (q,G0,F1,B+0 ,B−0), and x is similar to w with respect to (q,F1,G2,B+1 ,B−1). By these facts together
with Lemma 47, we have that u is similar to w with respect to (q,G0,G2,(B+0 ;B+1),(B−0 ;B−1)). By defini-
tion of relation composition, for each polarity p we have (Zp)−1 = (Zp

0 ;Zp
1)−1 = (Zp

1)−1;(Zp
0)−1 = Bp

0 ;Bp
1 .

Therefore we have the “back” condition: u is similar to w with respect to (q,F2,F0,(Z+)−1,(Z−)−1).
Finally, the bisimulation composition theorem {49} is a corollary of Lemma 48, and simply extends that
result to structure bisimulations {44}.

Theorem 49 (bisimulation composition). Let M0, M1, and M2 be DCInt structures. If the pair (Z+0 ,Z−0)
is a bisimulation between M0 and M1 and the pair (Z+1 ,Z−1) is a bisimulation between M1 and M2, then((Z+0 ;Z+1),(Z−0 ;Z−1)) is a bisimulation between M0 and M2.

5 DCInt has the disjunction property

In this section we prove that DCInt has the disjunction property by showing that we can (1) transform
any given collection of DCInt structures into a single new synthesized DCInt structure; and (2) that
the existence of the new structure can be used to imply the disjunction property for DCInt. This proof
method is adapted from the well known model theoretic method of proving the disjunction property for
Int (see Section 6.4 of [9] for a complete example of this approach for Int). The essential idea of the
Int method is to prove the contrapositive of the disjunction property by constructing a countermodel of
a disjunction A∨B from a countermodel of A and a countermodel of B. Supposing that neither A nor
B is valid, we must have a countermodel MA of A and a countermodel MB of B. Let wA be the world
of MA where A is not modeled, and wB be the world of MB where B is not modeled. It can be shown
that there exists a structure M that has both MA and MB embedded within it, and also has an additional
fresh world ⋆ that reaches both wA and wB.10 Furthermore, it can be shown that the formulas modeled
at wA in MA are exactly those that are modeled at wA in M, and the same for wB with respect to MB and
M. In particular, this means that in this new structure the world wA continues to be a countermodel of A
and the world wB continues to be a countermodel of B. Finally, the world ⋆ of M is a countermodel of
A∨B because Int has a persistence property similar to the polar persistence property {18}, and by the
contrapositive of that property both A and B are countermodeled at the world ⋆.

In Section 4 we gave a counterexample to the disjunction property for Partial BiInt {23}, and so this
means that there must be an aspect of that semantics that causes this proof method to go wrong. The
problem arises from the fact that an exclusion formula represents knowledge about backwardly reachable
worlds, and so adding the fresh world ⋆ below the worlds wA and wB can actually cause one of those
worlds to model a formula that it previously did not model. For example, let A = ¬−σ , B = σ , and MA

and MB be Partial BiInt structures {23}. Let the worlds of MA be WA = {wA} and let the worlds of MB

be WB = {wB}. Further, let the negative valuation of MA be such that MA,wA ⊭− σ and let the negative
valuation of MB be such that MB,wB ⊧− σ . This means that MA,wA ⊭+ A and MB,wB ⊭+ B. However,

10Here we either assume that the pair of structures have their worlds re-labeled so that their sets of worlds are disjoint, or we
assume that the embedding uses some kind of encoding to track whether a world came from MA or MB.

Anthony Cantor, Aaron Stump 29

applying the fusion construction that is used for Int produces the structure M shown in Figure 18a, and
this structure does not countermodel A∧− B. Let ŵA and ŵB denote the versions of wA and wB that are
embedded in M. We have ⋆ ∈ ↑−ŵB, so by persistence {18} we must have M,⋆ ⊧− σ . We also have⋆ ∈ ↑−ŵA, so therefore M,ŵA ⊧+ ¬−σ . Thus by applying the fusion construction we caused ŵA in M to
positively model ¬−σ even though it countermodeled that formula in MA. This eliminates the value of the
fusion construction because it does not allow us to unconditionally combine a countermodel of A and a
countermodel of B into a countermodel of their disjunction.

Though it is not possible to utilize the Int fusion construction technique in the context of Partial BiInt,
it is possible to utilize a more complex version of the technique for DCInt. Essentially, a DCInt frame’s
dual counterpart components provide enough flexibility to avoid the problem that was demonstrated with
Partial BiInt. This is quite natural, since Partial BiInt is defined by requiring that each dual counterpart
function is the identity. The version of the fusion construction for DCInt is more complex because we
must produce the new structure in a way that utilizes this flexibility.

We describe the general idea of the DCInt fusion construction as follows, where the construction trans-
forms a collection of structures into a single new structure. Indexing by indices i ∈ I, each structure Mi

of the collection will be embedded in the new structure M in such a way that there is a bisimulation
between Mi and M. Furthermore, each world of the collection is embedded in the new structure three
times: in the positive level, the neutral level, and the negative level. We replicate a world of a structure
three separate times in order to faithfully represent that world in three different senses: (1) the version
of the world on the positive level faithfully represents the world in terms of the formulas that it does and
does not positively model; and (2) the version on the negative level faithfully represents the world in the
same way but in the negative sense; and (3) the version in the central level faithfully represents the world
in both the positive and negative sense combined. For example, the positive and central levels faithfully
represent the positive sense of a world w of Mi because the bisimulation between Mi and M is defined
in such a way that w will verify a formula iff both of its representations in the positive and central level
verify it. The purpose of the central level is to faithfully represent a world in both senses, whereas the
purpose of the positive and negative levels is intimately related to two special worlds: a fresh negative
world denoted by ⋆−, and a fresh positive world denoted by ⋆+. Each of these worlds plays a role that
is analogous to the role of ⋆ in the Int construction. They are fresh in the sense that they are distinct
from any of the worlds that come from the collection, and they are also the only two worlds that are not
part of any of the three levels. The negative world positively reaches the positive world as well as every
world in the positive level (i.e. it is “below” those worlds), and the positive world negatively reaches the
negative world as well as every world in the negative level (i.e. it is “above” those worlds).

For each polarity p, the DCInt fusion construction effectively demonstrates that a formula A∧p B is
(p)-countermodeled in the same way that the Int construction demonstrates that a formula A∨B is coun-
termodeled. We will explain the general idea of why this is effective in the case of the positive polarity
because that is the case that implies the disjunction property (dually, the effectiveness for the negative
polarity implies the constructible falsity property). A positive countermodel for a formula of the form
A∧−B is a DCInt structure M with world w such that M,w ⊭+ A and M,w ⊭+ B; therefore, to prove the
disjunction property it suffices to prove that we can combine a countermodel of A and a countermodel of
B into a single countermodel of A∧−B. Figure 18b depicts the synthesized structure M that we generate
from a pair of countermodels MA and MB, where wA is a world of MA such that MA,wA ⊭+ A, and wB is a
world of MB such that MB,wB ⊭+ B. In the context of the structure M we write ŵA and ŵB to distinguish
the worlds wA and wB from their representatives in M. Later in this section we will show that there is a

30 Dual counterpart intuitionistic logic

MA

MB

⊧− σ, ⊭+ σ, ⊧+ ¬− σ

⊧+ ¬− σ ⊧− σ, ⊭+ σ

⊭+ ¬− σ

⊧− σ, ⊭+ σ

wA

wB
ŵA ŵB

⋆

(18a)

MA

MB

⊭+ A ∧− B

⊭+ A ⊭+ B

⊭+ A

⊭+ B

wA

wB

ŵA

ŵA

ŵA

ŵB

ŵB

ŵB

⋆−

⋆+

(18b)

Figure 18: The panes on the left of each subfigure show the inputs to the fusion construction: a structure
where the world wA countermodels A, and another structure where the world wB countermodels B. The
pane on the right of each subfigure diagrams the fusion construction. In the first case this is the con-
struction that is used for proving that Int has the disjunction property, and in the second case this is the
construction we use to prove that DCInt has the disjunction property. In both cases an oval with a dashed
border is a copy of MA and an oval with a dotted border is a copy of MB. Additionally, the representatives
of wA and wB are denoted by ŵA and ŵB, respectively. The synthesized structure in (a) contains an em-
bedded copy of both input structures and one fresh world denoted by ⋆. The reachability relation in the
embedded structures is unchanged except for one case: this world ⋆ positively reaches ŵA and ŵB (and
by transitivity, every world that is positively reachable from either ŵA or ŵB). The synthesized structure
in (b) contains three copies of each input structure, and so it also contains three distinct representatives
for each of wA and wB. The positive, central, and negative levels are arranged from the top down. A
world in a level of the structure that is situated lower in the diagram will positively reach its versions
that are in the levels above it. In particular, the diagram shows that each hatted world positively reaches
its version in the levels above. Finally, the fresh world ⋆− positively reaches the other fresh world ⋆+,
and also positively reaches every world in the positive level. Dually, ⋆+ negatively reaches ⋆−, and also
negatively reaches every world in the negative level.

Anthony Cantor, Aaron Stump 31

bisimulation between both MA and M, and MB and M. Further, the positive component of this bisimula-
tion will relate the worlds wA and wB to their respective representatives ŵA and ŵB on both the central and
positive levels. This means that the positive level representatives ŵA and ŵB will positively countermodel
the formulas A and B, respectively. Now note that the negative world ⋆− positively reaches both of these
worlds. The contrapositive of the polar persistence property {18} implies that the negative world will be
a positive countermodel of both A and B, and therefore it is a positive countermodel of A∧−B.

Before moving on to the formal details we must first explain a critical fact about the positive and neg-
ative worlds that ensures that–for example–the aforementioned DCInt structure MA is bisimilar to the
synthesized structure M. This is that in the structure M, the positive world is the negative counterpart
of the negative world, and the negative world is the positive counterpart of the positive world. In other
words, denoting the dual counterpart functions of M by r+ and r−, we have r−(⋆−) = ⋆+ and r+(⋆+) = ⋆−.
Technically, this arrangement ensures that each world of MA can be related by the positive component of
the bisimulation to its twin in the positive level of M (and the same for the negative level with respect
to the negative component of the bisimulation). For example, it ensures that the positive component of
the bisimulation can relate wA and ŵA even though we have ⋆− ∈ ↑−ŵA (this will be proved by the second
pure world and pure fusion lemmas). From an intuitive point of view, the dual counterpart arrangement
between the two fresh worlds prevents a case where the world ŵA verifies an exclusion that the world wA

does not verify. Similar to the example of Figure 18a, the only way that ŵA could verify an exclusion
that is not verified by wA is if the exclusion is witnessed by the world ⋆−. However, suppose that ⋆−
falsifies some formula φ due to the fact that ŵB (on the positive level) falsifies φ (by the persistence
property {18}). Also suppose that wA does not verify ¬−φ , so that we expect ŵA to also not verify that
formula. The “new information” represented by φ is quarantined by the fact that we have r−(⋆−) = ⋆+:
the formula φ is not necessarily falsified at the world ⋆+, and therefore ŵA does not necessarily verify¬−φ . Of course, we actually wanted to conclude that ŵA necessarily does not verify ¬−φ . However, this
fact does follow from the full technical argument that uses bisimulations.

We specify the synthesized structure in two steps. We first define the pure world extension {51}: a three
level structure that is induced by any DCInt structure. Figure 19a demonstrates the pure world extension
of an example nine world structure. Next we define the pure fusion {53}: a superstructure that contains
the pure world extension of each structure in a given family of structures, as well as the negative world
and the positive world.

Definition 50. Define the preorder ⊴ on the set {−1,0,+1} as the standard integer preorder restricted to
the set {−1,0,+1}, and define the [⋅] function on polarities by [+] = +1 and [−] = −1.

Definition 51 (pure world extension). For every DCInt structure M = ⟨F,v+,v−⟩ where F = ⟨W,≤,r+,r−⟩:
• the pure world extension of F is the tuple ⟨Ŵ , ≤̂, r̂+, r̂−⟩, where (1) Ŵ = {−1,0,+1} ×W;

and (2) ≤̂ = {((l0,w0),(l1,w1)) ∣ l0 ⊴ l1 and w0 ≤ w1}; and (3) for each polarity p:
r̂p((l,w)) = (l,rp(w)).

• the pure world extension of M is the tuple ⟨F̂ , v̂+, v̂−⟩ where (1) F̂ is the pure world extension of
F; and (2) for each polarity p, v̂p(σ) = {(l,w) ∣ l ∈ {0,[p]} and w ∈ vp(σ)}.

The pure world extension duplicates a structure across the −1, 0, and +1 levels. Each world (l,w)
will positively reach every world (l′,w′) in which l ⊴ l′ and also w ≤ w′, and its negative reachability is
defined dually. The worlds in the central level 0 have the same valuation of propositional variables as
in their original structure, but the −1 and +1 levels only preserve the negative and positive valuations,

32 Dual counterpart intuitionistic logic

Z+

Z−

w0

w7 w1

w8

w2 w3

w4

w5

w6

w0

w7 w1

w8

w2 w3

w4

w5

w6

w0

w7 w1

w8

w2 w3

w4

w5

w6

w0

w7 w1

w8

w2 w3

w4

w5

w6

(19a)

w0

w7 w1

w8

w2 w3

w4

w5

w6

w0

w7 w1

w8

w2 w3

w4

w5

w6

w0

w7 w1

w8

w2 w3

w4

w5

w6

⋆−

⋆+

(19b)

Figure 19: The pure world extension and pure fusion of an example structure, which is shown on the left
side of (a). In each Figure, the lined red region covers the 0 and +1 levels, the dotted blue region covers
the 0 and −1 levels, the thick arrows represent the original reachability edges, and the thin arrows repre-
sent the new edges. The Z+ and Z− annotations in (a) indicate the levels covered by those components of
the bisimulation between the original structure and pure world extension. The solid wedges indicate the
worlds to which the valuation of w0 persists forward and backward. For example, the wedges indicate
that w0 in the central level does not negatively reach the version of w7 on the negative level.

Anthony Cantor, Aaron Stump 33

rp(u) =⎧⎪⎪⎨⎪⎪⎩
⋆p, u ∈ {⋆p,⋆p}((i, l),rp

i (w)), u = ((i, l),w)
(20a) The counterpart functions

≤ = {(⋆−,u) ∣ u ∈ L+1}∪{(u,⋆+) ∣ u ∈ L−1}∪{(⋆−,⋆−),(⋆+,⋆+),(⋆−,⋆+)}∪ ⋃(i,l)∈J{(((i, l),w),((i, l′),w′)) ∣ l ⊴ l′, and w ≤i w′}
(20b) The reachability relation, where J = I×{−1,0,+1}

Figure 20: Definitions for the pure fusion of Fi∈I

respectively. The set of worlds of the example shown in Figure 19a is {(l,wx) ∣ l ∈ {−1,0,+1}, x ∈{0, . . . ,8}}.
The pure fusion {53} is similar, except that it incorporates an arbitrary indexed family of structures and
also adds the ⋆− and ⋆+ worlds. For example, Figure 19b shows the pure fusion structure induced by
the singleton collection comprised of the example structure from Figure 19a. This structure is nearly
equivalent to the structure produced by the pure world extension, where the only difference is that the
pure fusion adds ⋆− below the +1 level and adds ⋆+ above the −1 level. Specifically, by using 0 as
the index for the structure in the collection, the set of worlds of this pure fusion structure is {⋆−,⋆+}∪{((0, l),wx) ∣ l ∈ {−1,0,+1}, x ∈ {0, . . . ,8}}.
Definition 52. Let C be a class of DCInt frames. An I indexed family of C structures is a non-empty set I
with a family of structures Mi∈I over Σ variables such that for every i ∈ I, the frame of Mi is in C. For each
i ∈ I we denote the components of structure Mi by Mi = ⟨Fi,v+i ,v−i ⟩, and Fi = ⟨Wi,≤i,r+i ,r−i ⟩. If the class C
is omitted, we assume the class of all DCInt frames.

Definition 53 (pure fusion structure). For every I indexed family of DCInt structures Mi∈I:
• for each l ∈ {+1,0,−1} define11 Ll =⋃i∈I{(i, l)}×Wi

• the pure fusion of Fi∈I is the tuple F = ⟨W,≤,r+,r−⟩, where (1) W = {⋆−,⋆+}∪ L−1 ∪ L0 ∪ L+1;
and (2) ≤ is defined by Figure 20b; and (3) rp is defined by Figure 20a for each polarity p

• the pure fusion of Mi∈I is the tuple ⟨F,v+,v−⟩, where F is the pure fusion of Fi∈I and for each
polarity p, vp(σ) =⋃i∈I{(i,0),(i,[p])}×vp

i (σ)
The first pure world lemma {54} and the first pure fusion lemma {55} each states many basic important
properties that hold for the structures of Definitions 51 and 53. Both of them follow from checking
definitions and the polar reachability lemma {11}, so instead of describing their proofs we will present
each of their parts individually with a short explanation. Some of the parts of these lemmas will be used
in the abridged proof arguments that we will provide for subsequent results, but all of the statements
would be useful to a reader that works through the full proof arguments of those results.

Lemma 54 (pure world I). Let F = ⟨W,≤,r+,r−⟩ be a frame and let ⟨Ŵ , ≤̂, r̂+, r̂−⟩ be the pure world
extension of F.

1. for each polarity p and (l0,w0), (l1,w1) ∈Ŵ , we have ((l0,w0)≺p (l1,w1)) ∈ ≤̂ iff both (l0 ≺p l1) ∈ ⊴
and (w0 ≺p w1) ∈ ≤

11Note that ⋃i∈I Wi is a set because I is a set, and therefore Ll is also a set.

34 Dual counterpart intuitionistic logic

The first statement simply polarizes the definition of the reachability relation of a pure world extension
structure.

2. for each polarity p and world (l,w) ∈ Ŵ , we have: (a) ↑p(l,w) = ↑pl × ↑pw; and (b) [p] ∈ ↑pl;
and (c) {[p]}×↑pw ⊆ ↑p(l,w)

This part describes some important properties of the upset of a world, where parts (b) and (c) describe
how it relates to the levels 0, −1, and +1. For example, a world of a level always positively reaches higher
levels, so the set {+1}×↑+w is a subset of ↑+(−1,w), ↑+(0,w), and ↑+(+1,w).

3. for each polarity p and world w ∈W, if l ∈{0,[p]} then we have: (a) ↑pl ⊆{0,[p]} and {0,[p]}⊆ ↑pl;
and (b) ↑p(l,w) ⊆ {0,[p]}×↑pw; and (c) {0}×↑pw ⊆ ↑p(l,w)

Suppose for example that l is biased against the negative polarity; i.e. that we have l ≠ −1. In this case
this part says that a positive upset ↑+(l,w) is contained in {0,+1}× ↑+w (part of the central and upper
levels), and that a negative upset ↑−(l,w) at least contains {0}×↑−w (part of the central level).

Lemma 55 (pure fusion I). Let Mi∈I be an I indexed family of structures, and let M = ⟨F,v+,v−⟩ be the
pure fusion of Mi∈I with F = ⟨W,≤,r+,r−⟩ and J = I×{−1,0,+1}.

1. For every w ∈W and polarity p: (a) ⋆p ≺p w iff w = ⋆p; and (b) ↑p⋆p = {⋆p}; and (c) ⋆p ≺p w iff
w ∈ L[p]∪{⋆p,⋆p}; and (d) ↑p⋆p = L[p]∪{⋆p,⋆p}

This first part establishes the reachability properties of the fresh worlds. For example, the world ⋆−
in Figure 19b only negatively reaches itself, and positively reaches itself, ⋆+, and every world on the
positive level (i.e. ↑+⋆− = {⋆−,⋆+}∪{((0,+1),wx) ∣ x ∈ {0, ...,8}} and ↑−⋆− = {⋆−}).

2. For every polarity p:
(a) u ∈W ∖{⋆+,⋆−} iff there exists (i, l) ∈ J, and w ∈Wi such that u = ((i, l),w)
(b) for every (i, l),(i′, l′) ∈ J, w ∈ Wi, and w′ ∈ Wi′: ((i, l),w) ≺p ((i′, l′),w′) iff (1) i = i′;

and (2) l′ ∈ ↑pl; and (3) w′ ∈ ↑pw
(c) for every (i, l),(i′, l′) ∈ J, w ∈Wi, and w′ ∈Wi′: if both ((i, l),w) ∈ ↑p⋆p and ((i, l),w) ≺p((i′, l′),w′), then ((i′, l′),w′) ∈ ↑p⋆p
(d) for every (i1, l1),(i2, l2),(i3, l3) ∈ J, w1 ∈Wi1 , w2 ∈Wi2 , and w3 ∈Wi3: if both ((i1, l1),w1) ≺p((i2, l2),w2) and ((i2, l2),w2) ≺p ((i3, l3),w3) then ((i1, l1),w1) ≺p ((i3, l3),w3)

This part establishes the basics of the non-fresh worlds: part (a) says that any world that is not fresh
came from one of the structures of the indexed family; and part (b) says that any two of these worlds are
related by reachability iff they came from the same structure and are oriented in the same way as the pure
world extension; and part (c) says that–for example–every world in the positive upset of w5 on the upper
level of Figure 19b is also in the positive upset of ⋆−; and part (d) just states that transitive reachability
still holds for the worlds that came from the family of structures.

3. For every (i, l) ∈ J, polarity p, and w ∈Wi:
(a) i. {(i,[p])}×↑pw ⊆ ({i}×↑pl)×↑pw ⊆ ↑p((i, l),w)

ii. ↑p((i, l),w) ⊆ {⋆p}∪(({i}×↑pl)×↑pw) ⊆ {⋆p}∪↑p((i, l),w)
(b) l ∈ {0,[p]} iff ↑p((i, l),w) = ({i}×↑pl)×↑pw
(c) l = [p] iff ↑p((i, l),w) = {⋆p}∪(({i}×↑pl)×↑pw)

This part says that the upset ↑+((i, l),w) is almost equivalent to the set ({i}×↑+l)×↑+w. The equivalence
is exact in the case where l ∈ {0,+1}, but otherwise when l = −1 it is equal to {⋆+}∪(({i}×↑+l)×↑+w).

Anthony Cantor, Aaron Stump 35

For example, in Figure 19b we have ↑+((0,−1),w4) = {⋆+,((0,−1),w4),((0,0),w4),((0,+1),w4)}.
4. For every i ∈ I, polarity p, w ∈Wi, if l ∈ {0,[p]} then:

(a) {(i,0)}×↑pw ⊆ ({i}×↑pl)×↑pw ⊆ ↑p((i, l),w)
(b) ↑p((i, l),w) ⊆ {(i,0),(i,[p])}×↑pw

This part is analogous to Lemma 54.3. If l is biased against the negative polarity, then the positive upset↑+((i, l),w) is contained in {(i,0),(i,+1)}×↑+w (part of the central and upper levels). Additionally, the
negative upset ↑−((i, l),w) contains {(i,0)}×↑−w (part of the negative level).

5. For each polarity p, σ ∈ Σ,
(a) u ∈ vp(σ) iff there exists i ∈ I, l ∈ {0,[p]} and w ∈ vp

i (σ) such that u = ((i, l),w)
(b) for each i ∈ I we have {(i,0),(i,[p])}×vp

i (σ) ⊆ vp(σ)
Finally, this part states that a propositional variable is only modeled at a world that comes from the family
of structures. Furthermore, the status of a propositional variable at a world from one of these structures
is exactly determined by its status in the original structure.

The second pure world lemma {56} proves that the pure world extension {51} of a structure M is a
DCInt structure {14}, and that there exists a bisimulation between M and its pure world extension.

Lemma 56 (pure world II). Let M = ⟨F,v+,v−⟩ be a structure over Σ variables, and let M̂ = ⟨F̂ , v̂+, v̂−⟩
be the pure world extension of M, where F̂ is the pure world extension of F. Then we have

1. for every σ ∈ Σ and polarity p: v̂p(σ) = {0,[p]}×vp(σ) = ↑p({0,[p]}×vp(σ))
2. F̂ is a DCInt frame and M̂ is a DCInt structure
3. the pair (Z+,Z−) is a bisimulation between M and M̂, where (Z+,Z−) is defined by Zp ={(w,(l,w)) ∣ l ∈ {0,[p]}, w ∈M} for each polarity p

Proof. Parts (1) and (2) follow by checking definitions and using the first pure world lemma {54}. For
Part (3), we only show that the second condition of the “back” property holds, since the other aspects of
the proof are simpler. Define the pair (Z+,Z−) such that Zp = {(w,(l,w)) ∣ l ∈ {0,[p]}}, for each polarity
p. Let p be a polarity, and suppose w Zp u, for w ∈M, and u ∈ M̂. While reading the rest of the proof the
reader will likely benefit from constructing a diagram that is similar to previous ones (such as Figure 17),
as this will help to track the worlds and their relationships. By definition of Zp we have u = (l,w) with
l ∈ {0,[p]}. For the second condition of the “back” property, we want to show that for every u′ ∈ ↑p(l,w)
there exists w′ ∈ ↑pw such that ↑pw′ ∩ ((Zp)−1[↑pu′]) ≠ ∅ and ↑prp(w′)∩ ((Zp)−1[↑pr̂p(u′)]) ≠ ∅. Let
u′ ∈ ↑p(l,w). By pure world I {54.2.a} we have ↑p(l,w) = ↑pl ×↑pw. Therefore there exists l′ ∈ ↑pl and
w′ ∈ ↑pw such that u′ = (l′,w′). By the polar reachability lemma {11} this means we have l ∈ ↑pl′. We
also have (l,w′) ∈ ↑p(l′,w′), because we have both ↑p(l′,w′) = ↑pl′ × ↑pw′ and l ∈ ↑pl′. By definition
we have (l,w′) (Zp)−1 w′ because l ∈ {0,[p]}. Therefore w′ ∈ (Zp)−1[↑p(l′,w′)] and so we have w′ ∈↑pw′ ∩ ((Zp)−1[↑pu′]). This satisfies the first part. For the second part, note that we have r̂p(u′) =
r̂p((l′,w′)) = (l′,rp(w′)). By pure world I {54.2.c} we have {[p]}× ↑prp(w′) ⊆ ↑p(l′,rp(w′)). That
implies that we have ([p],rp(w′)) ∈ ↑p(l′,rp(w′)). We have ([p],rp(w′))(Zp)−1 rp(w′) by the definition
of (Zp)−1, and so therefore rp(w′) ∈ (Zp)−1[↑p(l′,rp(w′))]. Thus we conclude rp(w′) ∈ ↑prp(w′)∩((Zp)−1[↑pr̂p((l′,w′))]).
Similarly, the next lemma {57} proves that there is a bisimulation between a structure and its pure fusion.

36 Dual counterpart intuitionistic logic

Lemma 57 (pure fusion II). Let Mi∈I be an I indexed family of structures, and let M = ⟨F,v+,v−⟩ be the
pure fusion of Mi∈I . We have (1) F is a DCInt frame; and (2) M is a DCInt structure; and (3) For every
i ∈ I, the pair (Z+i ,Z−i) is a bisimulation between M̂i and M, where M̂i is the pure world extension of Mi

and (Z+i ,Z−i) is defined by Zp
i = {((l0,w),((i, l1),w)) ∣ l0, l1 ∈ {0,[p]}, w ∈Mi} for each polarity p.

Proof. Parts (1) and (2) follow from checking definitions and using the first fusion lemma {55}. For part
(3), let i ∈ I, and M̂i = ⟨F̂i, v̂+i , v̂−i ⟩ be the pure world extension of Mi, and F̂i = ⟨Ŵ , ≤̂, r̂+, r̂−⟩ be the pure
world extension of Fi. By Lemma 56.2, M̂i is a DCInt structure. We will show that the pair (Z+i ,Z−i)
satisfies the frame bisimulation definition {43} with respect to F̂i and F . From this and pure fusion I
{55.5.a} it is easy to show that it satisfies the structure bisimulation definition {44} with respect to M̂i

and M.

Let p be a polarity, and suppose x Zp
i y. By the definition of Zp

i , there exists lx, ly ∈ {0,[p]} and w ∈Wi

such that x = (lx,w) and y = ((i, ly),w). We will only show that the pair satisfies the “back” prop-
erty, since the “forth” property can be shown using a similar but easier argument. Furthermore, part
(1) is straightforward to prove using Lemmas 55.4.b and 54.2.c, so we only explain the proof of part
(2). In particular, we want to show the second part of the condition of ((i, ly),w) being similar to(lx,w) with respect to (p,F, F̂i,(Z+i)−1,(Z−i)−1). Again, while reading this proof we recommend that
the reader construct a diagram (similar to Figure 17) that tracks the worlds and their relationships. Let
y′ ∈ ↑p((i, ly),w). We want to show that there exists x′ ∈ ↑p(lx,w), such that ↑px′∩((Zp

i)−1[↑py′])≠∅, and↑pr̂p
i (x′)∩((Zp

i)−1[↑prp(y′)]) ≠∅. We have ↑p((i, ly),w) ⊆ {⋆p}∪(({i}×↑ply)×↑pw) by pure fusion I
{55.3.a}, so we consider the cases for the form of y′.
In the first case we have y′ = ⋆p. We have ly = [p] by pure fusion I {55.3.c}, since ⋆p ∈ ↑p((i, ly),w).
We have y = ((i,[p]),w) ∈ L[p] by the pure fusion definition {53}. We have {0}× ↑pw ⊆ ↑p(lx,w) by
pure world I {54.3.c}, since lx ∈ {0,[p]}. Therefore (0,w) ∈ ↑p(lx,w). We choose x′ = (0,w), and
show that both parts hold. For the first part, we have y = ((i,[p]),w) ∈ ↑p⋆p by polar reachability {11},
since y′ ∈ ↑py by assumption. We have ((i,[p]),w) (Zp

i)−1 (0,w) by definition of (Zp
i)−1. Therefore(0,w) ∈ (Zp

i)−1[↑p⋆p] and so x′ ∈ ↑px′∩((Zp
i)−1[↑py′]). For the second part we have rp(y′) = rp(⋆p) =⋆p

by its definition in Figure 20a. Also, ((i,[p]),rp
i (w)) ∈ L[p] by the pure fusion definition {53}. We

have ↑p⋆p = L[p] ∪ {⋆p,⋆p} by pure fusion I {55.1.d}, so therefore ((i,[p]),rp
i (w)) ∈ ↑p⋆p. We have((i,[p]),rp

i (w))(Zp
i)−1 (0,rp

i (w)) by definition of (Zp
i)−1, so therefore (0,rp

i (w)) ∈ (Zp
i)−1[↑p⋆p]. We

have r̂p
i (x′) = r̂p

i ((0,w)) = (0,rp
i (w)), so therefore r̂p

i (x′) ∈ ↑pr̂p
i (x′)∩((Zp

i)−1[↑prp(y′)]).
In the second case we have y′ ∈ ({i} × ↑ply) × ↑pw. There exists l′ ∈ ↑ply and w′ ∈ ↑pw such that
y′ = ((i, l′),w′). We have {0}× ↑pw ⊆ ↑p(lx,w) by pure world I {54.3.c}, since lx ∈ {0,[p]}. There-
fore (0,w′) ∈ ↑p(lx,w), since w′ ∈ ↑pw. We prove that each part holds for choice x′ = (0,w′).
For the first part we have {(i,[p])} × ↑pw′ ⊆ ↑p((i, l′),w′) by pure fusion I {55.3.a.i}, so there-
fore ((i,[p]),w′) ∈ ↑p((i, l′),w′). We have ((i,[p]),w′) (Zp

i)−1 (0,w′) by definition of (Zp
i)−1, so

therefore (0,w′) ∈ (Zp
i)−1[↑p((i, l′),w′)]. Therefore x′ ∈ ↑px′ ∩ ((Zp

i)−1[↑py′]). For the second part
we have rp(y′) = rp(((i, l′),w′)) = ((i, l′),rp

i (w′)), and r̂p
i (x′) = r̂p

i ((0,w′)) = (0,rp
i (w′)). We have{(i,[p])}× ↑prp

i (w′) ⊆ ↑p((i, l′),rp
i (w′)) by pure fusion I {55.3.a.i}, so therefore ((i,[p]),rp

i (w′)) ∈↑p((i, l′),rp
i (w′)). We have ((i,[p]),rp

i (w′)) (Zp
i)−1 (0,rp

i (w′)) by definition of (Zp
i)−1, so therefore(0,rp

i (w′)) ∈ (Zp
i)−1[↑p((i, l′),rp

i (w′))]. Thus we have r̂p
i (x′) ∈ ↑pr̂p

i (x′)∩((Zp
i)−1[↑prp(y′)]).

The star countermodel lemma {58} is the heart of our proof of the disjunction property because it brings

Anthony Cantor, Aaron Stump 37

everything together for an important payoff (Lemma 59). It says that for any world from a member of
the family of structures, (1) the positive representation of that world in the pure fusion verifies the same
formulas (and the analogous statement for the negative representation, dually); and (2) the negative world⋆− countermodels the same formulas (and the analogous dual statement for ⋆+).

Lemma 58 (star countermodel). Let Mi∈I be an I indexed family of DCInt structures, and let M be
the pure fusion of Mi∈I . For each polarity p, i ∈ I, and w ∈Mi: (1) T(Mi,w, p) = T(M,((i,[p]),w), p);
and (2) for each formula φ , if Mi,w ⊭p

φ then M,⋆p ⊭p
φ .

Proof. By the second pure fusion lemma {57.2}, M is a structure. For every i ∈ I let M̂i be the pure
world extension of Mi, and define the pair (Z+i ,Z−i) as in the second pure fusion lemma {57.3}. That
lemma and the second pure world lemma {56.2} imply that M̂i is a structure and that the pair (Z+i ,Z−i)
is a bisimulation between M̂i and M. For every i ∈ I, define the pair (B+i ,B−i) as in the second pure
world lemma {56.3}, so we have that (B+i ,B−i) is a bisimulation between Mi and M̂i. Therefore by the
bisimulation composition theorem {49}, the pair (B+i ;Z+i ,B−i ;Z−i) is a bisimulation between Mi and M
for every i ∈ I. Therefore for every i ∈ I and w ∈Mi we have w(Bp

i ;Zp
i)((i,[p]),w).

Let p be a polarity, i ∈ I, and w ∈Mi. Part 1 holds because the bisimulation invariance theorem {45}
implies that T(Mi,w, p) = T(M,((i,[p]),w), p), since w(Bp

i ;Zp
i)((i,[p]),w). For the second part, let φ

be a formula and suppose that Mi,w ⊭p
φ . By the first part, this means that M,((i,[p]),w) ⊭p

φ . We
have ((i,[p]),w) ∈L[p] by definition of L[p] {53}. Also, ↑p⋆p =L[p]∪{⋆p,⋆p} by pure fusion I {55.1.d},
so therefore we have ((i,[p]),w) ∈ ↑p⋆p. This together with the contrapositive of the polar persistence
property {18} implies that M,⋆p ⊭p

φ .

As a corollary we have Lemma 59, which says that we can transform a collection of countermodels of
formulas into a single structure that is a countermodel of the disjunction of those formulas.

Lemma 59. Let p be a polarity, k ≥ 1, and I = {i1, . . . , ik} such that φi∈I is a family of formulas over Σ

variables. Let J be a set such that I ⊆ J, M j∈J be a family of structures, and M be the pure fusion of the
family M j∈J . If for every i ∈ I we have Mi ⊭p

φi, then we have M,⋆p ⊭p
φi1 ∧p . . .∧p φik .

Proof. For every i ∈ I, let wi ∈Mi be such that Mi,wi ⊭p
φi. By the star countermodel lemma {58}, for

each i ∈ I we have M,⋆p ⊭p
φi. The conclusion holds by induction on k.

Lemma 59 implies the disjunction property, and the proof arguments needed to obtain it only rely on
the possibility of constructing the pure fusion structure from a family of structures. This means that any
class of frames that is closed under this construction {60} will also have the disjunction property. This
argument is formalized by the class disjunction property theorem {61}, which implies that a class of
frames satisfying Definition 60 induces an extension of DCInt that retains the disjunction property. For
example, Theorem 62 shows that the class CE {62} defines one such extension.

Definition 60 (pure fusion closed). A class C of DCInt frames is pure fusion closed iff it is not empty,
and for every family Mi∈I of C structures: the frame of the pure fusion of Mi∈I is in C.

Theorem 61 (class disjunction property). Let C be a pure fusion closed class of frames. Let p be a
polarity, k ≥ 1, and I = {i1, . . . , ik} such that φi∈I is a family of formulas over Σ variables. If C ⊧p

φi1 ∧p
. . .∧p φik then there exists i ∈ I such that C ⊧p

φi.

38 Dual counterpart intuitionistic logic

Proof. Suppose that for every i ∈ I there exists a structure Mi with its frame in C such that there exists
wi ∈Mi with Mi,wi ⊭p

φi. Let M be the pure fusion of Mi∈I . By Lemma 59, we have M,⋆p ⊭p
φi1 ∧p . . .∧p

φik . The frame of M is a member of C because the class is pure fusion closed, so it demonstrates that
φi1 ∧p . . .∧p φik is (p)-countermodeled in C. This proves the contrapositive.

Theorem 62 (example pure fusion closed class). Define the class CE as follows. A DCInt frame ⟨W,≤
,r+,r−⟩ is a member of CE iff for every polarity p and world w ∈W: if rp(w) ≠w then rp(rp(w)) =w.

The class CE is pure fusion closed, and the logic defined by that class has the disjunction property.

Proof. The frame from Figure 12b satisfies the condition for membership in CE, so the class is not empty.
For a family Mi∈I of CE structures, it is easy to check that each world of the pure fusion of Mi∈I satisfies
the condition that defines CE. Therefore the class is pure fusion closed.

Define the logic of CE by the semantics of DCInt, but where every frame must be a member of CE.
Suppose that the formula A∧− B is (+)-valid in this semantics. This means that A∧− B is (+)-valid overCE; i.e. CE ⊧+ A∧−B. Since CE is pure fusion closed, Lemma 61 implies that either CE ⊧+ A or CE ⊧+ B.
Therefore A is (+)-valid or B is (+)-valid in the logic.

The disjunction property of DCInt {64} follows from the class disjunction property {61}, since the class
of all DCInt frames is of course pure fusion closed. The second part of Theorem 64 states that DCInt
also has the constructible falsity property. This part follows from Lemma 63, which states that (at the
level of validity) a negation connective at the opposite polarity actually represents the opposite polarity.

Lemma 63. For every formula φ and polarity p: φ is (p)-valid iff ¬p φ is (p)-valid.

Proof. The left to right implication follows directly from the definitions. For the right to left implication,
suppose φ→p ⊺p is (p)-valid, and suppose for sake of contradiction that φ is (p)-countermodeled. This
means that there exists a structure M0 with world w0 ∈M0 such that M0,w0 ⊭p

φ . M0 is trivially a family
of structures indexed by I = {0}, so let M = ⟨W,≤,r+,r−,v+,v−⟩ be the pure fusion structure of that family
(Figure 19b depicts an example of creating a pure fusion from a singleton family of structures). This
is a DCInt structure by the second pure fusion lemma {57.2}, and the star countermodel lemma {58}
implies that we have M,rp(⋆p) ⊭p

φ because we have rp(⋆p) = ⋆p. We are assuming that φ →p ⊺p is
(p)-valid, so therefore M,⋆p ⊧p

φ→p ⊺p. This implies M,rp(⋆p) ⊧p
φ by definition of DCInt semantics

{15}, which is a contradiction.

Theorem 64. For every polarity p, and formulas A and B:

1. (disjunction property) if A∧p B is (p)-valid then either A is (p)-valid or B is (p)-valid
2. (constructible falsity property) if ¬p (A∧p B) is (p)-valid then either ¬p A is (p)-valid or ¬p B is (p)-valid

Proof. The second pure fusion lemma {57.1} implies that the class of all DCInt frames is pure fusion
closed, so–just as in the proof of Theorem 62–part (1) follows directly from the class disjunction property
{61}. For part (2), suppose that ¬p (A∧p B) is (p)-valid. Lemma 63 implies that A∧p B is (p)-valid, and
so by part (1) we have that either A is (p)-valid or B is (p)-valid. Let X ∈ {A,B} be a formula such that it
is (p)-valid. By Lemma 63 again, we have that ¬p X is (p)-valid.

Anthony Cantor, Aaron Stump 39

6 Related work

DCInt is unique because it has duality, is constructive, and is a sublogic of BiInt. The related works
known to us only combine at most of two of those three aspects. As described in Section 2, the concept
of logical duality is an important aspect of classical logic. Via the Curry-Howard correspondence, pa-
pers such as [7], [37], [10], and [11] have developed the computational view of duality in the context of
classical logic. Naturally, their systems are not constructive because they allow classical reasoning. Ob-
viously, the works that are most relevant to DCInt are developments related to Nelson’s N and Rauszer’s
BiInt. The former is constructive and has duality, and the latter is the genesis of our project. The key
distinction between DCInt and N is that N is not a sublogic of BiInt: the schema (B∧∼A)→ (B A) is
valid in N but not valid in BiInt. Furthermore, we are not aware of any other constructive conservative
extension of Int that also defines exclusion and/or dual-intuitionistic negation in such a way that it is a
sublogic of BiInt. Both Cornejo’s logic in [5] and the logic of [26] (see also [15]) are not constructive,
though they are sublogics of BiInt (they lack the disjunction property because they both maintain σ ∨∼σ
as a theorem).

DCInt is similar to N in that the Kripke semantic interpretation of N also only partially interprets a
given formula (it also interprets a formula as one of verified, falsified, or neither verified nor falsified).
Nelson [24] and Markov [23] originally introduced N (independently of each other), and later both
Thomason [30] and Gurevich [20] developed Kripke semantic interpretations for it that featured such
partial interpretation of formulas. N was originally developed with a focus on the notion of verification
and falsification with respect to negation instead of with respect to exclusion, and so it only extends
the language of Int with a new unary negation connective called strong negation (it does not define the
exclusion connective). However, Gurevich [20] identified that N has the duality of Figure 4b, and showed
that the exclusion connective can be defined in terms of strong negation. Writing strong negation as −,
he defines exclusion by B A ≡ −(−A→ −B). N does have the disjunction property, the constructible
falsity property, and duality, but it defines exclusion as a non-modal connective. A world of a structure
assigns “verified” to B A iff it also assigns “verified” to B and “falsified” to A, and this is more akin to
the CL definition of exclusion from Figure 3a.

Wansing’s 2Int of [35] is another conservative extension of Int with duality, and it is motivated by the
idea of dualizing the rules of the intuitionistic natural deduction proof system NJ. Its Kripke semantics is
defined in a polarized style that is similar to some of our definitions for DCInt. Its semantic interpretation
is defined on the language of BiInt from Figure 4a, and so it explicitly defines the meaning of the
exclusion connective (as opposed to N, in which the meaning of exclusion is induced by its definition in
terms of strong negation). It is also similar to both N and DCInt in that it only partially interprets a given
formula. Furthermore, Wansing defines a translation from the language of 2Int to the language of Int
that faithfully preserves validity. The translation preserves disjunctions, and so as a result this implies
that 2Int has the disjunction property.12 Though DCInt and 2Int are defined on equivalent languages,
they differ on some important points. First, 2Int exhibits a kind of polarized paraconsistency because it
permits some formulas to be both verified and falsified in a single world. For example, it is possible for
a world of a 2Int Kripke structure to both verify and falsify the same propositional variable. In contrast,
Property 2 of the definition of DCInt structures {14} ensures that this is not possible for formulas of

12Wansing does not state this explicitly, so we briefly justify it here. Definition 4.2 of [35] defines a translation τ that maps
a 2Int formula of the form A∨B to an Int formula of the form τ(A)∨τ(B). If A∨B is valid in 2Int, then by Theorem 4.7 the
formula τ(A)∨ τ(B) in valid in Int. By the disjunction property of Int, either τ(A) or τ(B) is valid in Int. By Theorem 4.7
again, either A or B is valid in 2Int.

40 Dual counterpart intuitionistic logic

DCInt (also see the polar consistence property {18}). As a result, for every propositional variable σ the
formula ¬(σ σ) is valid in DCInt (also see schema (1) of Theorem 28); this formula is not valid in 2Int
because σ σ is satisfiable. In Section 4.3 Wansing compares 2Int to a paraconsistent variant of N, and
he points out that there exists a variant of 2Int that does not exhibit the aforementioned paraconsistency.
This variant is still a constructive extension of Int with duality, however it remains meaningfully distinct
from DCInt because it semantically interprets exclusion as a non-modal connective. As is the case
with the interpretation of exclusion in N, its interpretation of the verification of B A does not refer to
non-local worlds and so it resembles the CL notion of exclusion. Finally, like N this variant also has(B∧∼A)→ (B A) as a theorem, and so it is not a sublogic of BiInt.

In [34] Wansing investigates sixteen different ways of extending BiInt with the strong negation connec-
tive of N. The Kripke semantics of each of these logics is defined via positive and negative semantic re-
lations, which is similar to the definitions of both 2Int and DCInt Kripke semantics. In all of the sixteen
logics the Kripke semantics of BiInt is directly embedded in the positive semantic relation. Therefore the
negative semantic relation of each particular logic is the sole aspect that distinguishes it from the others.
Furthermore, all the logics adopt the same interpretation as in N for the cases of falsified strong negation,
disjunction, and conjunction. This means that each logic is actually just distinguished by its particular
interpretations for falsified implication and exclusion. As a result, the logics essentially exhibit different
possible hybridizations of BiInt and N, where each logic varies by demonstrating a different choice for
its interpretation of the falsification of those two connectives. It is possible that some of these logics may
admit a duality property, although most of the choices do not appear to exhibit the perfect symmetry that
is present in BiInt, N, and DCInt. Furthermore, each of the sixteen interpretations of falsified exclu-
sion and implication are meaningfully different from the interpretations in DCInt. Wansing argues that
these logics may be viewed as constructive because when they are restricted to a certain subset of the
language, they have both the disjunction property and the constructible falsity property. However, they
still do not have the disjunction property with respect to their full language, which is a problem for some
applications (for example, applying the logic for a type system of a programming language).

The Kripke semantics of Routley and Meyer’s entailment logic of [28] (or R) involves a notion called a
Routley star that is somewhat similar to the dual counterpart functions of DCInt. From a logical point of
view, R differs from DCInt because it is more conservative with respect to implication. For instance, R
rejects the principle of explosion and adopts principles of relevant implication. The Routley star plays a
crucial role in enabling the paraconsistent character of R because it allows for a world to model a formula
such as A∧−A, where the − is the negation connective. The Routley star is formalized as a component
of a Kripke frame, and it is defined as a function that maps a world w to another world w∗. Any negated
formula −A is then interpreted relative to w via this function, so that w ⊧ −A holds iff w∗ ⊭ A holds. The
dual counterpart functions of DCInt are also integral to the interpretation of negated formulas such as ¬−A
(from the verification perspective), but in some important ways they are playing a different role than that
of the Routley star. In both cases these frame components are involved in mediating between verification
and falsification, but the Routley star is in a fundamentally primary position because it directly defines
which negated formulas will be modeled. Specifically, the negated formulas that are modeled at w
are exactly those whose proper subformula is not modeled at w∗. In contrast, in DCInt the primary
determination for whether a formula such as ¬−A is verified at w is based on the wide range of possible
worlds in ↑−w, and then secondarily depends on the dual counterpart function r−. Furthermore, in R it
is possible that the worlds w and w∗ do not reach each other, whereas the DCInt frame definition {12}
imposes reachability requirements on the dual counterpart functions.

Anthony Cantor, Aaron Stump 41

7 Summary and future work

Rauszer introduced BiInt to create a variant of Int with duality. It is a conservative extension of Int, but
yet it does not preserve the disjunction property. In some contexts this is a problem, since this property
is essential for a logic to be constructive. DCInt is an alternative solution to Rauszer’s goal because it
is a conservative extension of Int that has duality, but also retains the disjunction property. Furthermore,
it is a more appropriate solution than the other prominent extensions of Int because it is a sublogic of
BiInt, which is not the case for N and 2Int. It is surprising that on the one hand logics such as N and
2Int retain the disjunction property while incorporating a non-modal exclusion connective that is similar
to that of CL, and yet on the other hand a logic such as BiInt fails to have the disjunction property
while incorporating a modal exclusion connective. We expect that future work involving DCInt will
help to shed some light on the value of having a constructive logic that interprets exclusion as a modal
connective. Finally, we conjecture that DCInt is also a sublogic of N. This fact would establish DCInt
as the most conservative constructive extension of Int with duality, but we leave this to future work.

In this article we have only defined DCInt in terms of its Kripke semantics, so the natural next step is to
develop its proof theory. We are presently working on producing a sound and complete sequent calculus
system for DCInt, and we also plan on exploring its computational meaning via the Curry-Howard
correspondence. In [4] Brunner & Carnielli define a methodology for obtaining the dual of a logic from
its entailment relation, and so this approach can be employed with respect to a proof system for DCInt
(in particular, it will be interesting to determine whether DCInt satisfies a condition the article defines in
which a logic is said to be “self-dual”).

Acknowledgements

We gratefully acknowledge NSF support under award 1524519, and DoD support under award FA9550-
16-1-0082 (MURI program). This project was also supported by the University of Iowa Graduate College
Post-Comprehensive Research Fellowship. We also thank Tarmo Uustalu and Alexandre Miquel for
helpful discussions and comments regarding an earlier version of this project. Finally, we thank the
anonymous reviewers for their feedback and suggestions.

References
[1] Guillermo Badia (2016): Bi-simulating in bi-intuitionistic logic. Studia Logica 104(5), pp. 1037–1050.

[2] Johan van Benthem (1976): Modal correspondence theory. Ph.D. thesis, University of Amsterdam.

[3] Patrick Blackburn, Maarten De Rijke & Yde Venema (2002): Modal logic: graph. Darst. 53, Cambridge
University Press.

[4] Andreas BM Brunner & Walter A Carnielli (2005): Anti-intuitionism and paraconsistency. Journal of Ap-
plied Logic 3(1), pp. 161–184.

[5] Juan Manuel Cornejo (2015): The Semi Heyting–Brouwer Logic. Studia Logica 103(4), pp. 853–875.

[6] Tristan Crolard (2001): Subtractive logic. Theoretical computer science 254(1-2), pp. 151–185.

[7] Pierre-Louis Curien & Hugo Herbelin (2000): The duality of computation. ACM sigplan notices 35(9), pp.
233–243.

[8] Johannes Czermak (1977): A remark on Gentzen’s calculus of sequents. Notre Dame Journal of Formal
Logic 18(3), pp. 471–474.

42 Dual counterpart intuitionistic logic

[9] Dirk van Dalen (1994): Logic and structure. 3, Springer.

[10] Paul Downen (2017): Sequent Calculus: A Logic and a Language for Computation and Duality.

[11] Paul Downen & Zena M Ariola (2021): Duality in Action (Invited Talk). In: 6th International Conference
on Formal Structures for Computation and Deduction (FSCD 2021), Schloss Dagstuhl-Leibniz-Zentrum für
Informatik.

[12] Sergey Drobyshevich (2019): A bilateral Hilbert-style investigation of 2-intuitionistic logic. Journal of Logic
and Computation 29(5), pp. 665–692.

[13] Sergey Drobyshevich, Sergei Odintsov & Heinrich Wansing (2022): Moisil’s Modal Logic and Related Sys-
tems. K. Bimbó (ed.), Relevance Logics and other Tools for Reasoning. Essays in Honour of Michael Dunn,
College Publications, London. Available at https://www.collegepublications.co.uk/tributes/
?00046.

[14] J Michael Dunn (2000): Partiality and its dual. Studia Logica 66(1), pp. 5–40.

[15] Thomas Macaulay Ferguson (2014): Extensions of Priest-da Costa logic. Studia Logica 102, pp. 145–174.

[16] Robert Goldblatt (2005): Axiomatic Classes of Intuitionistic Models. J. UCS 11(12), pp. 1945–1962.

[17] Nicolas D Goodman (1981): The logic of contradiction. Mathematical Logic Quarterly 27(8-10), pp. 119–
126.

[18] Rajeev Goré & Ian Shillito (2020): Bi-Intuitionistic Logics: A New Instance of an Old Problem. In: AiML,
pp. 269–288.

[19] Jim de Groot & Dirk Pattinson (2019): Hennessy-Milner properties for (modal) bi-intuitionistic logic. In:
International Workshop on Logic, Language, Information, and Computation, Springer, pp. 161–176.

[20] Yuri Gurevich (1977): Intuitionistic logic with strong negation. Studia Logica 36(1-2), pp. 49–59.

[21] George Edward Hughes, Max J Cresswell & Mary Meyerhoff Cresswell (1996): A new introduction to modal
logic. Psychology Press.

[22] Natasha Kurtonina & Maarten de Rijke (1997): Simulating without negation. Journal of Logic and Compu-
tation 7(4), pp. 501–522.

[23] AA Markov (1950): Konstruktivnaja logika. Usp. Mat. Nauk 5, pp. 187–188.

[24] David Nelson (1949): Constructible falsity. The Journal of Symbolic Logic 14(1), pp. 16–26.

[25] Anna Patterson (1997): Bisimulation and propositional intuitionistic logic. In: International Conference on
Concurrency Theory, Springer, pp. 347–360.

[26] Graham Priest (2009): Dualising intuitionistic negation. Principia: an international journal of epistemology
13(2), pp. 165–184.

[27] Cecylia Rauszer (1980): An algebraic and Kripke-style approach to a certain extension of intuitionistic logic.
Panstwowe Wydawnictwo Naukowe.

[28] Richard Routley & Robert Meyer (1973): The semantics of entailment. In: Studies in Logic and the Founda-
tions of Mathematics, 68, Elsevier, pp. 199–243.

[29] Katsuhiko Sano & John G Stell (2017): Strong completeness and the finite model property for bi-intuitionistic
stable tense logics. arXiv preprint arXiv:1703.02198.

[30] Richmond H Thomason (1969): A semantical study of constructible falsity. Mathematical Logic Quarterly
15(16-18), pp. 247–257.

[31] Luca Tranchini (2017): Natural deduction for bi-intuitionistic logic. Journal of Applied Logic 25, pp. S72–
S96.

[32] Igor Urbas (1996): Dual-intuitionistic logic. Notre Dame Journal of Formal Logic 37(3), pp. 440–451.

[33] JFAK Van Benthem, IL Humberstone et al. (1983): Halldén-completeness by gluing of Kripke frames. Notre
Dame journal of formal logic 24(4), pp. 426–430.

https://www.collegepublications.co.uk/tributes/?00046
https://www.collegepublications.co.uk/tributes/?00046

Anthony Cantor, Aaron Stump 43

[34] Heinrich Wansing (2008): Constructive negation, implication, and co-implication. Journal of Applied Non-
Classical Logics 18(2-3), pp. 341–364.

[35] Heinrich Wansing (2016): Falsification, natural deduction and bi-intuitionistic logic. Journal of Logic and
Computation 26(1), pp. 425–450, doi:10.1093/logcom/ext035. Available at +http://dx.doi.org/10.
1093/logcom/ext035.

[36] Heinrich Wansing (2017): A more general general proof theory. Journal of Applied Logic 25, pp. 23–46.
[37] Noam Zeilberger (2008): On the unity of duality. Annals of pure and applied logic 153(1-3), pp. 66–96.

http://dx.doi.org/10.1093/logcom/ext035
+ http://dx.doi.org/10.1093/logcom/ext035
+ http://dx.doi.org/10.1093/logcom/ext035

	Introduction
	The duality of classical logic
	The Kripke semantics of Int, DualInt, and BiInt
	Int does not have duality

	The Kripke semantics of DCInt
	Partial BiInt
	Exclusion in DCInt
	The duality of DCInt
	Relating DCInt to Int, DualInt, and BiInt
	DCInt bisimulations

	DCInt has the disjunction property
	Related work
	Summary and future work

