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ABSTRACT
Constructor subtyping is a form of subtyping where two inductive

types can be related as long as the inductive signature of one is

a subsignature of the other. To be a subsignature requires every

constructor of the smaller datatype be present in the larger datatype

(modulo subtyping of the constructors’ types). In this paper, we de-

scribe a method for impredicatively encoding datatype signatures in

Cedille (a dependently typed programming language) that supports

highly flexible constructor subtyping, with the subtyping relation

given by a derived notion of type inclusion witnessed by a heteroge-

neously typed identity function. Specifically, the conditions under

which constructor subtyping is possible between datatypes are fully

independent of the order in which constructors are listed in their

declarations. After examining some extended case studies, we for-

mulate generically a sufficient condition for constructor subtyping

in Cedille using our technique.

CCS CONCEPTS
• Theory of computation → Type theory; Lambda calculus; •
Software and its engineering→ Data types and structures.

KEYWORDS
constructor subtyping, impredicative encodings, Cedille, generic

programming
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1 INTRODUCTION
Inductive datatypes are the least set of terms generated by their

constructors. Constructor subtyping arises when we interpret the

subtype relation as the subset relation between the sets of terms.

Equivalently, one can interpret constructor subtyping as the subset

relation between sets of constructors treated as uninterpreted con-

stants. For example, the inductive datatype for natural numbers, N,
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is represented by the set {0, succ} and the inductive datatype for the
(unquotiented) integers, Z, is represented by the set {0, succ,pred}.
It is trivial to see that {0, succ} ⊆ {0, succ,pred} which implies

N ⊆ Z.
Subtyping allows for function and proof reuse, and constructor

subtyping in particular enriches the subtype relation to include

relationships when an inductive datatype is a subset of any other

inductive datatype. Function reuse is a natural use case of subtyp-

ing and although constructor subtyping is not required for reusing

functions, many more kinds of instances of reuse are possible using

a relation enriched by constructor subtyping. Additionally, con-

structor subtyping yields a form of incremental definition where a

datatype is extended with additional constructors, implicitly inher-

iting the signature of the datatype being extended.

The concept of constructor subtyping is attributed to Kent Pe-

terson and (independently) A. Salvesen by Coquand [8], but was

developed by Barthe et al. [3, 4] into new calculi that directly sup-

port constructor subtyping. However, Barthe did not investigate

constructor subtyping for indexed inductive datatypes. In this pa-

per, we describe a highly flexible approach to constructor subtyping

in the Cedille programming language, where the subtype relation

is a derived notion of type inclusion — directly analogous to the set

inclusion discussed earlier. In particular, this type inclusion yields

a zero-cost coercion from a smaller type to a larger type in the

subtyping relation.

By zero-cost we mean that there is no runtime penalty for co-

ercing types in the subtyping relation. Indeed, the theory we work

in is extrinsic and thus types can be viewed as the set of terms

they classify. A type inclusion in this setting literally means that

the set of classified terms for a smaller type is a subset of the set

of classified terms for a larger type. Within Cedille, a type inclu-

sion is realized by a heterogeneous typing for the identity function,

e.g., an assignment of the type N→ Z to λ x . x . For indexed types

the presence of a (to be defined) implicit function type allows for

type inclusions between lists and vectors enriched with additional

constructors.

Precisely, our contributions are:

(1) a method of impredicative encoding of datatype signatures

in Cedille that treats a list of constructors for a datatype as

a label-indexed set, allowing users or language implemen-

tors their choice of labeling set (whose only requirement is

decidable equality) and associated assignment of labels to

constructors;

(2) a demonstration that this method supports highly flexible

constructor subtyping, where the subtyping relation is a

derived notion of type inclusion: for two compatible con-

structors to be identified, it is necessary only that they be

assigned the same label;
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Γ,x : T ⊢ t ′ : T ′ x < FV(|t ′ |)
Γ ⊢ Λx :T . t ′ : ∀x :T .T ′

Γ ⊢ t : ∀x :T ′.T Γ ⊢ t ′ : T ′

Γ ⊢ t -t ′ : [t ′/x]T

|Λx :T . t | = |t | |t -t ′ | = |t |

Figure 1: Implicit Functions

(3) and progress towards a surface-language implementation

of datatypes with constructor subtyping, made by proving

generically (for any labeling type and label-indexed family

of constructor argument types) a sufficient condition for

subtyping of datatypes.

All presented derivations, examples, and proofs are formalized in

Cedille and available on github.

First, we provide the necessary background of Cedille’s core

theory and describe the features we use to implement constructor

subtyping (Section 2). Next, we present the core idea behind the

lambda encoding and describe the derivation in Cedille for natural

numbers (Section 3). After, we explore three case studies involving

parametric and indexed datatypes (Section 4). We then formulate

generically a sufficient condition for subtyping of datatypes for the

signatures produced by our proposed encoding (Section 5). The

paper is concluded by remarking on related work (Section 6) and

summarizing our results (Section 7).

2 BACKGROUND ON CEDILLE
Cedille is a dependently typed programming language whose core

theory is called the Calculus of Dependent Lambda Eliminations

(CDLE) [26]. It extends the extrinsically typed Calculus of Construc-

tions (CoC) with three additional typing primitives: the implicit (or

erased) function types of Miquel [23], the dependent intersection

type of Kopylov [17], and an equality type of untyped terms. Criti-

cally, lambda-encoded datatypes supporting an induction principle

are derivable in CDLE, which is not the case in CoC [14]. Moreover,

efficient lambda encodings exist which alleviate prior concerns

with lambda-encoded inductive data [11]. In the remainder of this

section we review the three additional typing constructs that are

added to CoC to form CDLE and mention two important derived

constructs that are used in our encoding.

2.1 Implicit Functions and Erasure
Erasure in CDLE (denoted by vertical bars, e.g. |t |) defines what
is operationally relevant in the theory. It can be understood as a

kind of program extraction that produces untyped λ-terms. Typing

information such as type abstractions or type annotations are all

erased. Implicit functions, the rules for which are listed in Figure 1,

give a way of expressing when a term should also be treated as

operationally irrelevant.

We write a capital lambda to denote abstraction by either a type

or an erased term (e.g. Λ X . Λ y. λ x . x for type X and term y), a
center dot for type application (e.g.T1 ·T2 or t ·T ), a dash for erased-

term application (e.g. t1 -t2), and juxtaposition for term-to-term and

type-to-term application (e.g. t1 t2 and T t ). In types, we use the

standard forall quantifier symbol for both erased function types and

type quantification (e.g. ∀x :T1.T2 and ∀X :⋆.T2). For convenience,

Γ ⊢ t1 : T1 Γ ⊢ t2 : [t1/x]T2 |t1 | = |t2 |

Γ ⊢ [t1, t2] : ι x :T1.T2

Γ ⊢ t : ι x :T1.T2
Γ ⊢ t .1 : T1

Γ ⊢ t : ι x :T1.T2
Γ ⊢ t .2 : [t .1/x]T2

|[t1, t2]| = |t1 | |t .1| = |t | |t .2| = |t |

Figure 2: Dependent Intersection

FV (t t ′) ⊆ dom(Γ)

Γ ⊢ β{t ′} : {t ≃ t}

Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t ′ : [t2/x]T

Γ ⊢ ρ t @ x .T − t ′ : [t1/x]T

Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t1 : T

Γ ⊢ φ t − t1 {t2} : T

Γ ⊢ t : {λ x . λy. x ≃ λ x . λy.y}

Γ ⊢ δ − t : T

|β{t ′}| = |t ′ | |ρ t @ x .T − t ′ | = |t ′ |

|φ t − t1 {t2}| = |t2 | |δ − t | = λ x . x

Figure 3: Equality

we write an open arrow for an implicit function type that is not

dependent (i.e. T1 ⇒ T2). In contrast, relevant dependent functions

are written with the capital Greek pi (i.e. Π x :T1.T2) and a single

arrow when not dependent (i.e. T1 → T2). The typing rules for

implicit functions are similar to those for ordinary ones, except for

additional concerns of erasure. To introduce an implicit function,

there is a syntactic restriction that the bound variable does not

occur free in the erasure of the body of the function; this justifies

the erasure of the elimination form, which completely removes the

given argument.

2.2 Dependent Intersections
In an extrinsically typed theory such as CDLE, terms do not have

unique types. If we view all types as denoting sets of (βη-equivalence
classes of) terms, then an intersection type is interpreted precisely

as a set intersection. Additionally, this idea has a dependent coun-

terpart appropriately called a dependent intersection, the rules for

which are listed in Figure 2. Syntactically, the introduction form

of a dependent intersection is a pair with the constraint that the

components of the pair are βη-equal modulo erasure. This equality

restriction on the components allows the erasure rule for the de-

pendent intersection to forget one of the components, recovering

our intuition for set intersection. We write the type of a dependent

intersection with the Greek iota (i.e. ι x :T1.T2), the introduction of

dependent intersections with braces (i.e. [t1, t2]), and projections

with a dot followed by a numeral for the first or second projection

(i.e. t .1 or t .2). For convenience, we use the standard set intersection
symbol (i.e. T1 ∩T2) for an intersection that is not dependent.

2.3 Equality
The propositional equality type of Cedille internalizes the judge-

mental βη-conversion (modulo erasure) of the theory. The rules
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Γ ⊢ f : S → T Γ ⊢ t : Π x :S . { f x ≃ x}

Γ ⊢ intrCast -f -t : Cast · S ·T

Γ ⊢ t : Cast · S ·T

Γ ⊢ cast -t : S → T

|intrCast -f -t | = λ x . x |cast -t | = λ x . x

Figure 4: Type inclusions

governing it are given in Figure 3. Reflexive equalities are intro-

duced with the β-axiom after a (potentially empty) series of rewrites

(written with the Greek letter rho and a type guide to specify the

position of the rewrite). The β-axiom allows for any well-scoped

term to be used as the inhabitant of the equality. This, in combina-

tion with the fact that equality witnesses are erased from rewrites,

makes the equality type effectively proof irrelevant. Additionally,

the equality type has a strong form of the direct computation rule

of Allen et al. [2], allowing a term’s type to be changed to the type

of another term if those two terms are provably equal. The direct

computation rule is written with the Greek letter phi, typeset as

φ. The δ -rule (written with the Greek letter delta) is used to distin-

guish unequal terms. It is a Principle of Explosion for the equality

type from a single obviously false equality. In Cedille 1.1.2 some

limited automation is included to schematize this rule for a larger

set of trivially false equalities.

2.4 Type Inclusions
Capitalizing on CDLE’s extrinsic typing, dependent intersections,

and the direct computation law of the equality type, we now sum-

marize how type inclusions are defined (see [16] for more details).

For all types S andT ,Cast ·S ·T is defined as the type of all functions

f which are provably equal to the identity function:

Cast · S ·T = ι f :S → T . { f ≃ λ x . x}

For convenience, we present Cast axiomatically via a set of intro-

duction, elimination, and erasure rules (Figure 4). However, note

that these axiomatic rules are actually derivable in CDLE.

The introduction form intrCast -f -t takes as (operationally

irrelevant) arguments a function f of type S → T and a proof

t that, for all terms x : S , f x is provably equal to x . The direct
computation rule φ provides the justification for this rule: functions

of type S → T that are merely extensionally equal to λ x . x can be

used to prove that λ x . x itself has type S → T . Operationally, using
a witness t of the inclusion of a type S into T via the elimination

form cast -t is then just an application of the identity function at

type S → T .

2.5 Strong Principle of Explosion
The Principle of Explosion trivializes a type theory in contexts

where an absurdity is derivable. In CDLE, the false proposition, ⊥,

is defined in the standard way: ⊥ = ∀X :⋆.X . However, a stronger

version of the Principle of Explosion is possible in CDLE: instead

of deriving some constant that is the inhabitant of all types, we

are able to inhabit all types with any well-scoped term. This is a

Γ ⊢ f : ⊥ FV (t) ⊆ dom(Γ)

Γ ⊢ explode -f t : T

|explode -f t | = |t |

Figure 5: Strong principle of explosion

consequence of the axiom φ for equality:

explode · X -f t = φ (f · { f ≃ t}) − (f · X ) {t}

Figure 5 presents these concepts axiomatically. Note that, critically,

the erasure of explode is the erasure of the well-scoped term t .

3 ORDER-INVARIANT LAMBDA ENCODINGS
We introduce a high-level syntax both for convenience in defining

signature of inductive datatypes, and to illustrate how construc-

tor subtyping might fit in the design of a surface language. The

proposed syntax follows a similar style found in many functional

languages. For example, the type of natural numbers is defined:

data Nat : ⋆ = zero : Nat | succ : Nat → Nat

For constructor subtyping we focus on the following two operations

on signatures: type extension and label equality constraints. Type

extension allows a new datatype to be defined by extending a

previously defined datatype with new constructors. For example,

the type of integers is defined by extending the type of natural

numbers:

data Int extends Nat with pred : Int → Int

With type extension, the type Int is defined with three constructors:
zero, succ , and pred . Additionally, the shared constructors between
Nat and Int are equal with respect to the underlying equality of

the theory. Critically, this definition should make Nat a subtype of
Int . Thus, any function argument that accepts an Int value should
also accept a Nat value.

Equality constraints on labels allow for a more precise corre-

spondence between constructors of datatypes. These constraints

allow two types to agree on a shared subset of their constructors

even though neither one is necessarily a subtype of the other. For

example, a type of natural numbers starting instead at one but with

a shared successor could be defined as:

data Nat1 = succ : Nat1 → Nat1 | one : Nat1

where Nat1.succ = Nat .succ

Note that while type extension can be simulated by label equality

constraints, the converse is not true. For instance, consider this

artificial definition of a type with a single element:

data Nat2 = succ : ⊥ ⇒ Nat2 → Nat2 | unit : Nat2

where Nat2.succ = Nat .succ

Although the type Nat2 semantically has only one inhabitant, the

signature still correctly associates Nat .succ and Nat2.succ with

the same label. Indeed, the erasures of these two constructors are

identical because the ⊥-argument to Nat2.succ is erased. However,
type extension (as described previously) can not be used to extend

the Unit type (the canonical singleton type) to produce the types
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Nat and Nat2 where the successor constructors are equal. That is,
all of the constructors of two types can be equal without the types

being equal (i.e. a mutual type inclusion). In the case of indexed

datatypes this restriction becomes more apparent (and less artifi-

cial), as we will see in our case studies later in the paper. Thus, it

is useful to have both constructs: type extensions and label equal-

ity constraints, because the first guarantees a type inclusion and

the second gives enough expressivity for any desired relationship

between constructors.

3.1 Deriving Inductive Datatypes
Since the Church encoding is the most familiar method of encoding

inductive types, we choose it as our starting point for explaining

our order-invariant encoding. We begin with a refresher on Church

encodings and describe why constructor subtyping fails for induc-

tive data that are derived from this encoding. After, we discuss how

the situation can be amended to support constructor subtyping but

still with Church-style folds.

The Church encoding of an inductive datatype identifies it with

its iteration scheme. Thus, the interpretations for the constructors

of the corresponding datatype are encoded as an ordered list of

arguments to that scheme. For example, the type of Church encoded

natural numbers is

CNat = ∀X :⋆. X︸︷︷︸
zero

→ (X → X )︸    ︷︷    ︸
successor

→ X

where the first input interprets zero and the second input interprets

successor. The constructors are then defined by applying the cor-

responding interpretation of that constructor to the constructor’s

arguments, replacing recursive subdata with iteratively computed

results. For instance, the successor function is defined in the fol-

lowing way:

succ n = ΛX . λ z. λ s . s (n · X z s) (1)

Suppose we wanted to define an integer type that was a super-

type of the above defined natural number type. The naive approach

would be to add a constructor for predecessor to the list:

CInt = ∀X :⋆. X︸︷︷︸
zero

→ (X → X )︸    ︷︷    ︸
successor

→ (X → X )︸    ︷︷    ︸
predecessor

→ X

succ n = ΛX . λ z. λ s . λp. s (n · X z s p) (2)

Unfortunately, this causes the definition of successor defined by (2)

for the Church encoded integer type to be unequal to the natural

number successor defined by (1) because of the additional lambda

abstraction and application. Observe that constructors are being

disambiguated by the order in which they appear in the Church

encoded type definition. To implement constructor subtyping we

need constructors to instead be disambiguated in an order-invariant

way in the type signature.

Note that the function type A → B → C is isomorphic to any

reordering of the argument types (i.e. A → B → C ≃ B → A → C).
This means that the constructors in Church encoded data can be

reordered up to isomorphism, but this is not sufficient for zero-cost

constructor subtyping. Instead, we need to be able to reorder up to

type inclusion. To achieve this we utilize the power of intersection

types. Indeed, the non-dependent variant of the intersection type is

associative and commutative with respect to type inclusion. Thus, a

first attempt at fixing the Church encoding is to replace the ordered

list of constructors with an intersection of constructors:

CSNat = ∀X :⋆. ( X︸︷︷︸
zero

∩ (X → X )︸    ︷︷    ︸
successor

) → X

However, now a fold requires that the interpretation of zero and the

interpretation of successor are equal, which would severely com-

promise the utility of this type as an encoding of natural numbers.

By removing the order we have eliminated a method for disam-

biguating the constructors which is compensated for in the type

theory by demanding that the constructors are equal.

With that in mind, we pick a type L with decidable equality to

represent constructor labels, where we intend that different label

values will be used to disambiguate different constructors. Now, the

label type is used as an indexing set to the set of constructors with

each constructor disambiguated via an additional erased argument

that checks if the indexed value is equal to the associated label.

CSNatPack · X ℓ = ({lzero ≃ ℓ} ⇒ X )

∩ ({lsucc ≃ ℓ} ⇒ X → X )

CSNat = ∀X :⋆. (Π ℓ :L.CSNatPack · X ℓ) → X

There are two important reasons why this encoding works. First, in

the event that an equality is false it will be equivalent to⊥. Thus, the

strong Principle of Explosion allows components of the intersection

whose label equality is false to be equal to any well-scope term

and in particular to a constructor term whose label equality is true.

Without the strong Principle of Explosion the encoding would not

be inhabitable for any datatype with more than one constructor.

Second, the constructors can be made disjoint by picking a

unique label for every constructor. In fact they must be disjoint,
as otherwise a fold could not decide between two given possible

constructors. When computing a fold over this encoding the sup-

plied function can match on the label (because it has decidable

equality) to obtain the correct constructor, but only if the mapping

from labels to constructors is unique. Now an extension to CSNat
is as simple as adding a constructor into the intersection with an

appropriate disjoint selection of a label. Indeed, this concept is appli-

cable to other encodings and more generally for any label-indexed

signature functor, as we show in Section 5.

Two outstanding questions about this definition remain: what is

the overhead, and how should labels be assigned to constructors.

First, the packaging only imposes one layer of indirection in the

definition. However, it does require inspecting the label value to pro-

duce the correct constructor when performing a fold. This inspec-

tion can always be defined as a sequence of equality comparisons

on the occurring labels in the signature. With this implementation

the cost is the same as the number of constructors times the cost

of comparing labels for equality. In our formalization, as a matter

of convenience, we use a natural number type to represent labels

which has a linear time cost to compare for equality. This means

that, for an implementation, the choice of a label type can not be

made lightly. With lambda-encoded data, the cost of equality can

be made logarithmic by using a tree structure for the label types,

but in a more mature language (such as Idris, Agda, or Coq) the

standard natural number type may be internally represented more
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efficiently. Additionally, a type represented by machine words may

also be present, which would be the ideal label type (assuming that

a limit of 2
64

constructors is acceptable). If we assume that the cost

of equality between labels is a memcmp between words then the cost

of unpacking is proportional to the number of constructors for that

datatype.

The second outstanding issue is that the method of assignment of

labels has a few variations, each of which have different trade-offs.

The obvious assignment is to give every constructor a unique label

except when the user specifies when two constructors should be

equal. Another variation is to assign labels based on the order the

constructors are listed in the declaration. This is, coincidentally,

how subtyping between datatypes works in Cedille as of version

1.1.2, and why zero-cost reuse between certain inductive datatypes

with the same number of constructors can be manually derived [9].

There is no best choice about how labels should be assigned to

constructors, but the method should be coherent and predictable.

The examples from this and the next section are formalized

manually but one would hope that the encoding could be heav-

ily abstracted such that only the inductive signature is necessary.

Moreover, we use a Church-style encoding which is known to be in-

efficient when computing predecessors. To remedy this, in Section

5 we detail a generic development of a Mendler-style encoding.

4 CASE STUDIES
4.1 Naturals and Integers
We return to our example of Nat and Int as a warm-up for the ex-

position of our proposed encoding. Recall the definition of CSNat :

CSNatPack · X ℓ = ({lzero ≃ ℓ} ⇒ X )

∩ ({lsucc ≃ ℓ} ⇒ X → X )

CSNat = ∀X :⋆. (Π ℓ :L.CSNatPack · X ℓ) → X

Using this definition we are able to define the successor constructor

by picking the correct label, projecting out of the intersection, and

applying the arguments.

succ n =ΛX . λ f . let s = (f lsucc).2 -β (3)

in s (n f )

Note that the underlined section, the projection out of the intersec-

tion type, is computationally irrelevant.

A CSInt type can be defined merely by adding the predecessor

constructor to the intersection.

CSIntPack · X ℓ = ({lzero ≃ ℓ} ⇒ X )

∩ ({lsucc ≃ ℓ} ⇒ X → X )

∩ ({lpred ≃ ℓ} ⇒ X → X )

CSInt = ∀X :⋆. (Π ℓ :L.CSIntPack · X ℓ) → X

Moreover, the definition of successor is exactly the same except for
projection out of the intersection.

succ n =ΛX . λ f . let s = (f lsucc).2.1 -β (4)

in s (n f )

Like the definition in (3) the underlined projection in (4) is erased,

but the two definitions are identical otherwise! Therefore, the era-

sures of these definitions are α-convertible. Indeed, without much

effort we can prove that there is a type inclusion from CSNat to
CSInt as desired.

Theorem 4.1. The identity function has type CSNat → CSInt .

Proof. Note that here we supply a proof sketch and remind the

reader that all examples and proofs have been formalized in Cedille

and is available on github. First, note that it is enough to construct

a function f : CSNat → CSInt that is extensionally equal to the

identity function. The direct computation rule, φ, is then used to

demonstrate that the identity function (λ x . x) also has this type.

Let

f n = CSNat . f old n CSInt .zero CSInt .succ

To prove that f is extensionally the identity we induct
1
on n . The

base case is trivial because CSNat .zero is identical to CSInt .zero.
In the step case suppose that n = CSNat .succ x and that f x =
(λ z. z) x . The successor function commutes with the fold, thus

f (CSNat .succ x) = CSInt .succ (f x). Now the inductive hypoth-

esis and our prior observation that CSNat .succ = CSInt .succ con-
cludes the proof. □

As an aside, the predecessor function is of course unequal to any

other constructor of CSNat because the associated label, which is

computationally relevant in the constructor, is different from any

other label used in the definition of CSNat .

4.2 Lists and Vector Trees
Zero-cost reuse between lists and vectors (i.e., length-indexed lists)

is already possible in the current version (1.1.2) of Cedille — in both

directions [9]. The direction of reuse from lists to vectors requires a

dependent form of casts which demonstrates additional difficulties

that may arise with defining constructor subtyping with a syntactic

calculus as done by Barthe [4].

We define lists and vector trees using the higher level syntax

introduced at the beginning of Section 3.

data List (A : ⋆) : ⋆ = nil : List | cons : A → List → List

Note that the parameter,A, is not applied to the type List in the con-

structors intentionally. To handle type parameters the packaging

type of the order-invariant lambda encoding must take an addi-

tional type argument. There is no other change to the underlying

encoding aside from adding the type parameter.

A vector type is a length indexed list, and because the length

value can be erased (since, if needed at runtime, it can be dynam-

ically computed) it is clear from both prior work on re-use and

from earlier developments in this paper that the constructors for

the types will be equal. To add a constructor subtyping twist to the

example, we consider a vector tree type which is a regular vector

type extended with a branching constructor:

data VecTree (A : ⋆) : N→ ⋆ =

| nil : VecTree 0

| cons : ∀n :N.A → VecTree n → VecTree (n + 1)

| branch : ∀a,b :N.VecTree a → VecTree b → VecTree (a + b)

where List .nil = VecTree .nil | List .cons = VecTree .cons

1
Induction is derived for the Church encoded data in the formalization following the

standard approach from past work by Stump [27].
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Note that in our prior discussion of this high level syntax we men-

tioned that type extension is a strictly weaker form of type defini-

tion for constructor subtyping. With this example it becomes clear

why: using type extension to defineVecTree , the elaboration of the

inductive datatype would be required to make an arbitrary choice

about the index for the nil and the cons constructors. In contrast,

checking the equalities of List .cons and VecTree .cons amounts to

checking βη-equality for their elaborations modulo erasure, which

does not require arbitrary choices.

To prove that there is a cast from List to VecTree we need a

dependent variant of type inclusion.

DepCast · A · B = ι f :Π a :A. B a. { f ≃ λ x . x}

Now the desired cast property can be expressed in the following

way:

DepCast · (List · A) · (λ l .VecTree · A (lenдth l))

where lenдth is a function computing the length of a List .

Theorem 4.2. The identity function has type

Π l :List · A.VecTree · A (lenдth ℓ)

for any A.

Proof. As before it is enough to construct a function

f : Π l :List · A.VecTree · A (lenдth l)

that is extensionally equal to the identity function. Unlike with

CSNat and CSInt , the dependency on the length of l requires that
we use induction (as opposed to merely iteration) in the definition

of f itself so that we can compute the correct length of theVecTree
in the inductive step. Thus, we define f as follows:

f l = List .induct l (V .nil · A) (Λm.V .cons -(lenдth m))

whereV = VecTree . Note that the use of induction is operationally

equivalent to a fold. Thus, just as in the prior proof of CSNat and
CSInt , a straightforward induction on l is sufficient to prove that f
is extensionally equal to the identity. □

4.3 Language Extensions
In this subsection we study yet another example of indexed in-

ductive datatypes: one for the simply typed λ-calculus, and one

for an extension of that calculus with numerals and addition. To

derive an inductive type for the simply typed λ-calculus, we first
define an auxiliary type encoding the internal simple types with

two constructors:

data Typ : ⋆ = base : Typ | arr : Typ → Typ → Typ

Now we are able to define the simply typed λ-calculus:

data Stlc : List ·Typ → Typ → ⋆ =

| var : ∀ Γ :List ·Typ. ∀T :Typ.

Π i :N. {at i Γ T ≃ tt} ⇒ Stlc Γ T

| abs : ∀ Γ :List ·Typ. ∀A :Typ. ∀B :Typ.
Stlc (cons A Γ) B → Stlc Γ (arr A B)

| app : ∀ Γ :List ·Typ. ∀A :Typ. ∀B :Typ.
Stlc Γ (arr A B) → Stlc Γ A → Stlc Γ B

where at tests if a given element is at the ith depth of a list.

In order to extend this language with numerals, Typ must first

be extended with an encoded type of numerals:

data ETyp extends Typ with nat : ETyp

where ETyp stands for “extended-Typ.” Finally, we extend Stlc with
two constructors for numerals and a primitive addition function.

data EStlc : List · ETyp → ETyp → ⋆ =

| var : ∀ Γ :List · ETyp. ∀T :ETyp.

Π i :N. {at i Γ T ≃ tt} ⇒ EStlc Γ T

| abs : ∀ Γ :List · ETyp. ∀A :ETyp. ∀B :ETyp.
EStlc (cons A Γ) B → EStlc Γ (arr A B)

| app : ∀ Γ :List · ETyp. ∀A :ETyp. ∀B :ETyp.
EStlc Γ (arr A B) → EStlc Γ A → EStlc Γ B

| num : Π Γ :List · ETyp.N→ EStlc Γ nat

| add : Π Γ :List · ETyp.

EStlc Γ nat → EStlc Γ nat → EStlc Γ nat

where Stlc .var = EStlc .var

| Stlc .abs = EStlc .abs

| Stlc .app = EStlc .app

Notice that every occurrence of Typ in the definition of Stlc is

replaced instead with the more general type ETyp. This allows
for numeral abstractions and higher-order numeral functions as

expected in an extension to the simply typed λ-calculus. It is also
another example of how equality constraints on constructor labels

provides greater flexibility than type extension.

There is no novel technique in constructing a type inclusion

between Stlc and EStlc except in writing down the correct function

type between them. Suppose that д : Typ → ETyp and h : List ·
Typ → List · ETyp are equal to the identity function. Note that

constructing д is similar to what we previously showed for CSNat
andCSInt . Once д is constructed, h is constructed by induction and

then direct computation by φ. With д and h the correct type is

Stlc Γ A → EStlc (h Γ) (д A)

for any context Γ and type A.

5 GENERIC SUBTYPING FOR INDUCTIVE
DATATYPES

In the preceding case studies, we have used a surface language for

constructor subtyping in which users mark explicitly the construc-

tor labels they wish to identify. For example,

data Int : ⋆ =

| izero : Int

| isucc : Int → Int

| ipred : Int → Int

where Nat.zero = Int.izero | Nat.succ = Int.isucc

indicates that the labels for constructors zero and izero, and succ and
isucc, should be the same. This surface language has been informally

justified by the method of encoding described in Section 3.1. How-

ever, an implementation must take the set of equations between

labels given in the declaration and use some criterion to confirm

98



Zero-Cost Constructor Subtyping IFL ’20, September 2–4, 2020, Canterbury, United Kingdom

Mono · F = ∀X :⋆. ∀Y :⋆.

Cast · X · Y → Cast · (F · X ) · (F · Y )
Alg · F ·T = ∀R :⋆. (R → T ) → F · R → T

F : ⋆→ ⋆

µF : ⋆

t1 : Alg · F ·T t2 : µF

fold t1 t2 : T

F : ⋆→ ⋆ m : Mono · F t : F · µF

in -m t : µF

F : ⋆→ ⋆ m : Mono · F t : µF

out -m t : F · µF

|out -m (in -m t)| = |t |
|fold t1 (in -m t2)| = |t1 (fold t1) t2 |

Figure 6: Interface for the framework of Firsov et al. [11]

that the corresponding constructors themselves may be equated

before constructor subtyping can be supported. To ensure sound-

ness of this criterion, we desire that the implementation produce

evidence of subtyping between underlying datatype encodings.

In this section, we take a step towards an implementation. Specif-

ically, we demonstrate generically a sufficient condition for estab-

lishing subtyping between encodings of datatypes with labeled

constructors. This condition is formulated over datatype signatures,

meaning that no inductive proof over the datatypes themselves

is required to determine whether zero-cost constructor subtyping

between them is possible.

The results of this section use two generic frameworks written

in Cedille: the efficient impredicative encodings for datatypes with

induction by Firsov et al. [11], and the work of Diehl et al. [9] for

zero-cost program and data reuse for these encodings. Following a

review of these works, we give an over-approximation Sig of signa-

tures of datatypes with labeled constructors and prove a sufficient

condition for subtyping between datatypes whose signatures are

given by Sig. Finally, we illustrate how these generic results could

correspond to surface-language constructs for data and program

reuse, returning to the example of constructor subtyping for natu-

rals and integers to show how to extend the definition of addition

over naturals to integers in a style similar to the datatypes á la carte
approach of Swierstra [28].

5.1 Review: Generic Mendler-style Encoding
Firsov et al. [11] provide a generic framework for efficient inductive

impredicative encodings of datatypes in Cedille. By generic, what
is meant is parametric: their development is parameterized by a

covariant type scheme F : ⋆ → ⋆ giving the datatype signature.

We review the definitions of this framework that we use, listed in

Figure 6.

• Mono, the property that a type scheme is covariant (more

precisely, monotonic with respect to the preorder on types

induced by Cast);

• Alg, the generic shape of recursive definitions of functions

over datatype µF that fall into the pattern of Mendler-style

iteration;

• µ, which forms a datatype given a signature F : ⋆→ ⋆;

• fold, the recursive combinator for Mendler-style iteration.

• in, the generic datatype constructor; and

• out, the generic datatype destructor.

For the reader familiar with the framework of Firsov et al., we

note that some transliteration is required: their Id is equivalent to

our Cast, and their IdMapping is equivalent to ourMono.

The generic constructor and monotonicity. The datatype µF can

be understood as the least fixedpoint of the type scheme F (a

result known as Lambek’s lemma [18], which Firsov et al. [11]

proved holds for their encoding). It is well-known that unrestricted

fixedpoint types in type theory lead to non-termination and in-

consistency when the theory is interpreted as a logic under the

Curry-Howard correspondence. To avoid such issues, the formation,

introduction, or elimination of fixedpoint types must be restricted.

Usually, the restriction is the syntactic condition on the forma-

tion of the type µF that F is a positive type scheme, i.e., F is of

the form λX :⋆.T and in T the type variable X never occurs to

the left of an odd number of arrow type constructors. Here, the

restriction is on the constructor in and destructor out, and it is to

require the existence of a monotonicity witness for F in the style

of Matthes [20]. In the case of in, when t is an F -collection of µF
predecessors, andm is a proof that F is monotonic, then in -m t
constructs the successor value of type µF . The type ofm,Mono · F ,
is the definition of monotonicity in the preorder whose underlying

set is the set of CDLE types and whose ordering relation is type

inclusions, Cast.

Mendler-style iteration. Mendler-style inductive types, first pro-

posed by Mendler [21, 22] for impredicative encodings of datatypes

in polymorphic type theory, provide an alternative to the conven-

tional initial F -algebra semantics for inductive types (c.f. [29] for

the categorical account). Roughly, the key difference between the

conventional and Mendler-style formulation is that the latter in-

troduces higher-rank polymorphism and higher-order functions.

Starting simply, compare the Mendler-style encoding of naturals

below to the familiar Church encoding:

MNat = ∀X :⋆.X → (∀R :⋆. (R → X ) → R → X )︸                                ︷︷                                ︸
successor

→ X

It is helpful to read the universally quantified type variable R as

standing in for recursive occurrences of the type MNat itself. Thus,
the interpretation of successor is as a polymorphic higher-order

function taking a handle for making recursive calls (R → X ) on
predecessors, a predecessor of type R, and returns the appropriate

next result. The polymorphic typing ensures that the interpretation

of successor cannot make recursive calls on arbitrary terms of type
MNat, and helps to explain why Mendler-style recursion schemes

are guaranteed to be terminatingwhen general recursion for natural

numbers (which has a similar shape) is not.

The type family Alg gives the generic shape of the types of

functions used in Mendler-style iteration. A function of type Alg ·F ·
T is given an F -collection of datatype predecessors at the universally
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Γ ⊢ T1 : ⋆ Γ, x :T1 : T2 : ⋆
Γ ⊢ Σ x :T1.T2 : ⋆

Γ ⊢ t1 : T1 Γ ⊢ t2 : [t1/x]T2
Γ ⊢ (t1, t2) : Σ x :T1.T2

Γ ⊢ t : Σ x :T1.T2 Γ ⊢ f : Π x :T1.Πy :T2. P (t1, t2)

Γ ⊢ Σ-elim t f : P t

Figure 7: Dependent pair types

quantified type R, and a handle of type R → T for making recursive

calls. Again, the polymorphic typing ensures only well-founded

recursive calls are well-typed. For the typing rule of the generic

recursive combinator fold for Mendler-style iteration, we take some

t1 : Alg · F · T and data t2 : µF ; for the computation rule at the

bottom of Figure 6, fold t1 acts on a value constructed with in by

calling t1 with a handle fold t1 for recursive calls on the subdata.

5.2 Signature Containment
Wenow summarize in Proposition 5.2 the result of Diehl et al. [9] we

use in our generic development. First, we give a precise definition of

the signature containment relation, SigSub, for first-order datatype

signatures. Diehl et al. call this relation an “identity algebra,” and

the idea behind it can be traced back to Hinze [15] and Abel et

al. [1] where it is generalized to higher-order type schemes (but

formulated in terms of function types, not type inclusions).

Definition 5.1 (Signature containment). The signature contain-
ment relation SigSub is defined as:

SigSub · F ·G = ∀X :⋆. ∀Y :⋆.Cast ·X ·Y → Cast · (F ·X ) · (G ·Y )

If there is a witness of SigSub · F ·G for two type schemes F ,G , we
say that F is contained in G, or F is a subsignature of G.

Proposition 5.2. For two type schemes F ,G : ⋆→ ⋆ that both
satisfy the predicate Mono, if F is contained inG then µF is included
(via Cast) into µG.

Proof. The proof is formalized in Cedille in the code repository

associated with this paper. It comes as a direct consequence of the

reuse combinator ifix2fix of Diehl et al. [9].

□

5.3 Generic Sufficient Condition For
Constructor Subtyping

We now generalize our scheme for defining datatype signatures sup-

porting flexible constructor subtyping so that we may instantiate

these generic frameworks.

Definition 5.3 (Sig, the generic datatype signature). Given A : ⋆

(the labeling type) and a type family B : ⋆ → A → ⋆ (the type

family of constructor arguments indexed over labels a : A), we
define the generic datatype signature Sig as

Sig · A · B = λ R :⋆. Σa :A. B · R a

where Σ is the derivable type constructor for dependent pairs (sum-

marized in Figure 7). Here, the role of the abstracted type R is to

stand in for recursive occurrences of the datatype µ(Sig · A · B) in
the constructor argument types.

The type family Sig over-generalizes the signatures of datatypes

CSNat and CSInt: we do not assume that A has decidable equal-

ity, nor that B is formed from intersections of types whose first

argument is an erased equational constraint on the given label. Re-

strictions on A and B would instead be enforced in the translation

of syntax for datatype declarations supporting constructor subtyp-

ing to impredicative encodings. However, Sig provides additional

flexibility for a surface-language implementation, as it permits each

datatype signature to use a different labeling set (rather than the

single type L we have used in our case studies).

To use the datatype µ(Sig · A · B), we must be able to determine

when the type scheme Sig ·A · B is covariant. We have this when B
is covariant in its type argument.

Lemma 5.4 (Covariance of Sig · A · B). Assume A : ⋆ and B :

⋆→ A → ⋆. If for all a : A the type scheme λ R :⋆. B · R a is Mono,
then so is Sig · A · B.

Proof. Straightforward, as Σ is a positive type constructor. □

The main result of this section is a sufficient condition for sig-

nature containment for type schemes defined using Sig. This, in

combination with Proposition. 5.2, gives in turn a sufficient condi-

tion for when datatypes whose signatures are defined using Sig are

in the subtyping relation.

Theorem 5.5. Assume labeling types A1,A2 : ⋆ and type families
for constructor argument types B1 : ⋆ → A1 → ⋆ and B2 : ⋆ →

A2 → ⋆ that are covariant in their respective type arguments. If

• A1 is a subtype of A2, witnessed by c
• and for all a1 : A1 and R : ⋆, we have B1 · R a1 is a subtype of
B2 · R (cast -c a1)

Then Sig · A1 · B1 and Sig · A2 · B2 are in the signature containment
relation SigSub (Def. 5.1)

Proof. Formalized in the Cedille code repository. □

We unpack the statement of Theorem 5.5. Our first condition is

that the set of labels of type A1 is contained within the set of labels

of typeA2. The second condition requires that the constructor argu-

ments types corresponding to the same label are in the subtyping

relation when all recursive occurrences of both datatypes have been

replaced by R. This means in particular that an implementation

needs only to consider the assignment of labels and the types of

the constructor arguments modulo those recursive occurrences.

5.4 Example: Naturals and Integers
We now return to our earlier motivating example of constructor

subtyping for natural numbers and integers to demonstrate the use

of the generic development. Unlike the earlier formulation in which

the types of constructors were themselves packaged together in a

type family, the generic framework of Firsov et al. [11] provides a

single generic constructor in, and for the encoding we pack together

just the constructor argument types.
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A surface-language implementation using L to label all datatype

constructors could elaborate the datatype declaration for Nat to:

NatPack · R ℓ = ({ℓ ≃ lzero} ⇒ Unit)

∩ ({ℓ ≃ lsucc} ⇒ R)

∩ (¬{ℓ ≃ lzero} ∩ ¬{ℓ ≃ lsucc} ⇒ ⊥)

NatSig = Sig · L · NatPack

Nat = µNatSig

where Unit is the singleton type (for constructors with no argu-

ments) and ⊥ is the empty type, and ¬T = T ⇒ ⊥. Note that by

choosing L for the labeling set, we require an explicit constraint

that there are no other constructors. This could be avoided by in-

stead using a subtype of L that only contains lzero and lsucc. Also,

it is clear that NatPack is positive in its type argument.

With the generic encoding, an implementation would be able to

define now constructors that may be reused for both the datatype

Nat and all future declarations of datatypes that extend it. We begin

with the polymorphic constructors for NatPack, which discharge

impossible cases with the strong Principle of Explosion (Figure 5)

to ensure the erasures of each component of the intersection are

equal. Then, the constructors for the signature NatSig simply tuple

these constructors with the appropriate label.

zeroP : ∀N :⋆.NatPack lzero · N

zeroP = [Λ e . unit, [Λ e . explode -(δ − e) β{unit},

Λ e . explode -(e .1 -β) β{unit}]]

succP : ∀N :⋆.N → NatPack lsucc · N

succP n = [Λ e . explode -(δ − e) β{n}, [Λ e .n,

Λ e . explode -(e .2 -β) β{n}]]

zeroS = (lzero, zeroP)

succS n = (lsucc, succP n)

For the extensible constructors of Nat, we take as module param-

eters a datatype signature F whose monotonicity is witnessed by

mono and for which we have a proof sub : SigSub · NatSig · F that

F contains NatSig (we expect an implementation to produce these).

An immediate consequence of sub and the erasure of cast is the

existence of an injection function ns2f : ∀X :⋆.NatSig ·X → F ·X
which erases to λ x . x . With ns2f , we can define the zero and suc-

cessor constructors for the (arbitrary) supertype µF of Nat.

zeroE = in -mono (ns2f zeroS)

succE n = in -mono (ns2f (succS n))

The constructors zero and succ of Nat itself, then, arise from in-

stantiating the module parameters with NatSig for the type scheme,

the proof it is monotonic, and a lemma that every monotonic sig-

nature is a subsignature of itself.

Our declaration for Int given at the outset of this section explic-

itly requires that the labels for the constructors izero and isucc be
the same as the labels for the constructors zero and succ of Nat.

From this, an implementation could elaborate:

IntPack · R ℓ = ({ℓ ≃ lzero} ⇒ Unit)

∩ ({ℓ ≃ lsucc} ⇒ R)

∩ ({ℓ ≃ lipred} ⇒ R)

∩ (¬{ℓ ≃ lzero} ∩ ¬{ℓ ≃ lsucc} ∩ ¬{ℓ ≃ lipred}

⇒ ⊥)

IntSig = Sig · L · IntPack

Int = µIntSig

where lipred is some new label. Again we see that IntPack is positive
in its first argument.

It is at this point that an implementation must prove that, with

the given identification of constructor labels, NatSig is a subsig-

nature of IntSig. Once signature containment is established, by

Theorem 5.2 we have that Nat is a subtype of Int. This also enables

us to reuse the extensible constructors for Nat as constructors izero
and isucc for Int, the purpose of which we will see in Section 5.5.

Proposition 5.6. NatSig is a subsignature of IntSig.

Proof. Formalized in the Cedille code repository. As this is a

proof we expect an implementation to generate, we also give it in

plain language to illustrate the reasoning that is to be automated.

By Theorem 5.5, it suffices to show an inclusion of the type

NatPack · R ℓ into IntPack · R ℓ for all ℓ : L and R : ⋆. This, in turn,

is done by defining a function from the first type to the second type

that behaves like the identity function.

So, assume we have some x : NatPack · R ℓ. To return something

of type IntPack · R ℓ, we must give four terms that are all equal

to x and each of whose types correspond to the types that are

intersected in the definition of IntPack.

• {ℓ ≃ lzero} ⇒ Unit:

This is precisely the type of x .1, which erases to x .
• {ℓ ≃ lsucc} ⇒ R:
This is precisely the type of x .2.1, which erases to x .

• {ℓ ≃ lipred} ⇒ R:
We assume {ℓ ≃ lipred}, which implies that ¬{ℓ ≃ lzero}

and ¬{ℓ ≃ lsucc}. These two consequences can be defined

such that they share the same erasure (see the code repos-

itory for this), meaning we have a proof of ¬{ℓ ≃ lzero} ∩

¬{ℓ ≃ lsucc}. From this and x .2.2 we have a proof of ⊥, and
since the argument of x .2.2 is erased, the whole proof erases
to x .

• ¬{ℓ ≃ lzero} ∩ ¬{ℓ ≃ lsucc} ∩ ¬{ℓ ≃ lipred} ⇒ ⊥:

From a proof e that ℓ is neither lzero, lsucc, nor lipred, we
have that [e .1, e .2.1] has type ¬{ℓ ≃ lzero} ∩ ¬{ℓ ≃ lsucc}.

From this and x .2.2 we have a proof of ⊥, and since the

argument to x .2.2 is erased, the whole proof erases to x .

□

To complete the definition of the datatype Int, we need to de-

fine the constructor ipred and can reuse zeroE for izero and succE
for isucc. The definition of ipred follows the same format as for

the two constructors of Nat: first define the polymorphic construc-

tors ipredP and ipredS for the signature IntSig, then the extensible

constructor ipredE from which ipred follows as a special case.
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t : NatSig · N t1 : T t2 : N → T

caseNatSig t t1 t2 : T

|caseNatSig zeroS t1 t2 | = |t1 |
|caseNatSig (succS t) t1 t2 | = |t2 t |

Figure 8: Case-distinction principle for NatSig

5.5 Example: Extending Addition for Naturals
Using the extensible constructors for Nat, we can define extensible

functions also. The idea follows the datatypes á la carte approach of

Swierstra [28], though without the benefit of Haskell’s type class

instance resolution to automatically insert these coercions. As an

example, we show how one could give a definition for addition over

natural numbers that can be reused for supertypes.

We first illustrate the idea with pseudocode. In a higher-level sur-

face language, we would like to write something like the following

for an extensible definition of addition.

add : ∀D ⩾ Nat.Nat → D → D

add zero n = n

add (sucm′) n = D.succ (add m′ n)

That is, we wish to quantify over all supertypes D of Nat and
compute a sum of type D, where in the successor case we use

the constructor of D corresponding to succ. The function nadd
for addition over natural numbers would then be recovered as an

instance: nadd = add · Nat.
While the second argument of add has the supertype D, here

we propose to require that the first argument has type Nat. This is
because the first argument is the one over which add is inductively

defined, and we would like the implementation’s coverage checker

to confirm add is total. Therefore, we are really considering two
forms of reuse: one using bounded quantification, and one in which

we extend the list of clauses of a recursive definition. For example,

to extend add to Int, we would like to write the following.

iadd : ∀D ⩾ Int. Int → D → D

iadd = extend add where

iadd (ipred m′) n = D.ipred (iadd m n)

We now demonstrate how these features for function reuse can be

realized by the generic encoding.

Assume we have a type scheme F : ⋆→ ⋆ that is monotonic and

a supersignature of NatSig. The shape of our recursive definition
for add is given by addAlg.

addAlg : Alg · NatSig · (µF → µF )

addAlg add m n = caseNatSigm n

λm′. succE (add m′ n)

The bound variable add of type R → µF → µF is the handle for

recursive calls, R is (implicitly) a type argument to addAlg (see

Alg in Figure 6), and caseNatSig is the case distinction principle

for NatSig, whose typing and computation rule are summarized in

Figure 8. The supertype’s constructor for successor, written D.succ

in the pseudocode listing, is implemented with the extensible con-

structor succE. Ordinary addition for natural numbers is obtained

by instantiating F with NatSig and using fold (Figure 6):

nadd = fold addAlg

To extend a function recursively defined over Nat to some su-

pertype, the implementation must determine the set of constructor

labels not shared with Nat and require the user to provide clauses

for the constructors associated to those labels. For Int, we are only
missing a clause for ipred. Function n2ia below shows how this

extension, invoked by the “extend” keyword in the pseudocode

listing, is achieved with the encoding.

n2iA : ∀X :⋆.Alg · NatSig · X →

Alg · (IntPack lipred) · X → Alg · IntSig · X

n2iA a p rec i = caseIntSig i (a rec zeroS) (λ i ′. a rec (succS i ′))

(λ i ′.p rec (ipredP i ′))

The first argument a of n2iA is the shape of the (arbitrary) func-

tion for naturals we wish to extend, and the second argument p
explains how to extend this function for the ipred constructor. In the
definition, we use the case distinction principle caseIntSig for IntSig
(with similar typing and computation rules as that of caseNatSig)
on the given i : IntSig · Int. In the case that it is zero or constructed

with successor, we dispatch to the given function for naturals; if it

is constructed using predecessor, we invoke the extension p given

just for this case.

Note that while constructor subtyping is zero-cost, function

extension as provided by n2ia is not: even if we avoid rebuilding

subdata with constructors after performing case distinction, as

occurs in n2iA, in order to downcast some IntPack ℓ · R to the type

NatPack ℓ · R we must dynamically check the label ℓ to ensure that

ℓ = lzero or ℓ = lsucc, introducing runtime overhead.

Finishing the example, for the definition of iadd we have:

iaddAlg = n2ia addAlg

(λ iadd. λm′. λ n. ipredE (iadd (m′.2.2.1 -β) n))

iadd = fold iaddAlg

In iaddAlg,m′
corresponds to the value of the same name bound

by the pattern ipred m′
in the pseudocode definition of iadd. Here

m′
has type IntPack lipred, so we use intersection projection and

the proof β (here checked against type {lipred ≃ lipred}) to retype

it. Finally, iadd itself is implemented using fold and iaddAlg.

6 RELATEDWORK
As previously mentioned, calculi with constructor subtyping and

other desirable properties have been developed and explored by

Barthe et al. [3, 4]. However, there are many other approaches

to subtyping that could enable similar features such as coercive

subtyping [19, 30], algebraic subtyping [10], and semantic subtyp-

ing [5, 12, 13] to name a few. The encoding we present in this paper

corresponds to semantic subtyping, except that the subtyping rela-

tion is internally derived. To our knowledge, Constructor subtyping

of indexed types has not been explored before in any subtyping

framework. The syntactic subtyping approaches (Barthe’s calculi,
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coercive subtyping, algebraic subtyping, etc) place a heavier burden

on the meta-theory of the language and limit the potential flexibility

of the subtyping relation at the point of definition. In contrast, our

encoding shifts the burden to internal semantic subtyping which

requires proofs of the subtyping relationship (as opposed to it being

a syntactic check or inference).

Research in Object Oriented Programming (OOP) has exten-

sively explored the idea of method overloading [6, 7, 25]. Indeed,

method overloading is a common feature of almost all industry

OOP languages. A closely related notion, inheritance, enables sim-

ilar features to the structural subtyping discussed in functional

languages. It is not clear that our method of encoding could be used

to model inheritance. Moreover, in this work we present a method

of function extension similar to data types à la carte [28] which is

not the same as function overloading via mechanisms like type

classes present in functional languages like Haskell.

Ornaments have been used for proof reuse of inductive datatypes

in Coq, although they require the same inductive structure [24].

Proof and program reuse was not the principal goal of this work,

however ornaments yield linear time reuse for inductive data types

defined via the ornament mechanism. While zero-cost construc-

tor subtyping yields constant time reuse for proofs and functions

(though not zero-cost function extension, as seen in Section 5.5).

7 CONCLUSIONS AND FUTUREWORK
In this paper we have devised a way to derive inductive datatypes

that support constructor subtyping where the subtyping relation is

type inclusion. At its core, the encoding works by deriving a form

of disjoint union of constructors over some indexing label type.

This encoding continues a line of work in Cedille of constructing

inductive data via lambda encodings that aims to demonstrate that

its theory, CDLE, can serve as a kernel language for interactive

theorem provers with expressive surface-language features. Our

generic result in particular makes progress towards realizing an im-

plementation of zero-cost constructor subtyping in Cedille. Looking

forward, we believe that the method of function extension described

in Section 5 can be further improved. Indeed, the labeling type used

in the encoding was required to have decidable equality, but in

principle many additional properties can be imposed (such as a

total order) which could reduce the overhead of label comparisons.
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