
Fast and Flexible Proof Checking for SMT

Duckki Oe, Andrew Reynolds, and Aaron Stump

Computer Science, The University of Iowa, USA

Abstract. Fast and flexible proof checking can be implemented for SMT
using the Edinburgh Logical Framework with Side Conditions (LFSC).
LFSC provides a declarative format for describing proof systems as sig-
natures. We describe several optimizations for LFSC proof checking, and
report experiments on QF IDL benchmarks showing proof-checking over-
head of 30% of the solving time required by our clsat solver.

1 Introduction

Correctness of the results of SMT solvers has long been a concern in the SMT
community. While noteworthy efforts have been made to apply formal verifica-
tion techniques to solver algorithms [4] and even actual solver code [6], solver
implementors for now are mostly using runtime proof production to increase con-
fidence when the solver reports unsatisfiability. CVC3, Fx7, and Z3 are example
solvers which have the ability to emit refutation proofs [7, 8, 3]. We motivate
the contribution of this paper by comparing the approaches to proof production
taken by these three solvers.

Proof format. CVC3’s proofs are in the format of the HOL Light theorem
prover [5], while Fx7 and Z3 use custom proof formats. Fx7 uses a custom
rewriting-based meta-language to enable concise and understandable expression
of proof rules, to increase trust; while Z3 uses a particular natural deduction
proof system with its own custom checker. For both Fx7 and Z3, introduction
of new names during, for example, CNF conversion is an issue: Fx7 uses ad hoc
restrictions on proof terms to ensure skolem constants are introduced properly,
while Z3 uses quotation to introduce a variable named pφq for formula φ.

Proof checker size. The proof checkers used for CVC and Fx7 are quite
small, with HOL Light based on a trusted core of 1500 lines of OCaml, and
Fx7’s C-language prover taking 1500 lines. (Line counts for a proof checker are
not given for Z3 in [3].)

Proof checking overhead. We define proof-checking overhead to be the
ratio of the time to produce and check the proof to the time required just for
solving the benchmark without producing a proof. For Fx7, while proof checking
time is reported as taking less than 1 second on average per benchmark for several
thousand benchmarks of the AUFLIA division of SMT-COMP 2007 [1], proof-
checking overhead is not reported. Since the AUFLIA benchmarks are generally
solved very quickly by Fx7 (and other solvers), it is hard to draw conclusions
about the overhead from the empirical data of [8]. No comparison of solving to

proof checking time is given for Z3 in [3], although slowdowns of 1.1x to 3x are
reported due to proof generation (apparently not including proof checking) for
five sample benchmarks from SMT-LIB [10]. For pigeon-hole SAT benchmarks
in CVC3, numbers are reported showing that the time for HOL Light to certify
a theorem by invoking CVC3 and checking the produced proof is (averaging the
ratios for the numbers reported) around 40x slower than just running CVC3 and
producing the proof [5].

Contributions. This paper demonstrates a flexible and efficient approach
to confirming unsatisfiability results from SMT solvers by proof checking. We
describe how to use the Edinburgh Logical Framework with Side Conditions
(LFSC, Section 3) to encode SMT proofs for integer difference logic (QF IDL).
Advanced implementation techniques, including compilation (Section 6) and de-
ferred resolution (Section 5), are used to check proofs efficiently which are pro-
duced by a modern SMT solver called clsat. Our main result: with our sys-
tem, proof-checking overhead is on average 30% of solving time for the difficulty
0-3 unsatisfiable SMT-LIB QF IDL benchmarks (Section 7). This improves sig-
nificantly on the overhead reported in the literature for CVC3 and Z3 (we give
a confirming empirical comparison in the appendix). Our empirical evaluation,
in addition to being more thorough than those of the cited related work, is pub-
licly available at http://www.smtexec.org. The trusted core is still reasonably
small, indeed possibly verifiable: the proof checker is 3500 lines of C++. LF’s
native support for higher-order abstract syntax (HOAS) [9] enables a principled
solution to the problem of introducing new names, which we demonstrate via a
new approach to CNF conversion using partial clauses (Section 4).

2 Prover Architecture

In order to solve SMT formulas, we use an SMT solver/proof generator (clsat),
and a proof verifier (lfsc). The solver clsat bested CVC3 in the QF IDL
division in SMT-COMP 2008, although solving many fewer benchmarks than
the winning Barcelogic system [2]. clsat is built on top of a SAT solver that
generates resolution proofs. In proof generating mode, all of the CNF conversion
steps are recorded and recorded as lemmas. If the benchmark is unsatisfiable,
clsat prints a sequence of deduction steps that derive the empty clause. clsat
optimizes the size of proofs by pruning unnecessary CNF conversion steps and
lemmas.

For proof checking, we use lfsc, a highly optimized type checker for the
Edinburgh Logical Framework with Side Conditions. Various object logics can
be succinctly declared via an LFSC signature. A signature defines the syntax
for the logic’s formulas, and its axioms and inference rules. This approach gives
us the flexibility to define different proof formats based on different user-defined
signatures. Additionally, LFSC extends LF by allowing the user to define com-
putational side condition for inference rules, in a simple functional programming
language. Our optimized approach to proof checking involves the compilation of
these side conditions into the lfsc code base (Section 6).

3 LF with Side Conditions

Figure 1 gives typing rules for LFSC. Previous preliminary work gave only an
informal semantics for LFSC [12]. The rules are based on the rules of so-called
canonical forms LF [13]. There are judgment forms Γ ⇐ t : T for checking that
term t has type T in context Γ (where Γ , t, and T are inputs to the judgment);
and Γ ⇒ t : T for computing a type T for term t in context Γ (where Γ and t are
inputs and T is output). The rules, read from conclusion to premises, determine
deterministic type checking and type computation algorithms. We work up to
a standard definitional equality, write x as a meta-variable for variables and
constants declared in the context Γ , and use standard notation for capture-
avoiding substitution (e.g., [t/x]T).

We focus here on the connection to side condition code, in the second rule for
applications. Side conditions are of the form run C t, and are checked as part of
checking an application, by testing whether or not evaluating C results in term
t. C is a code term, with stateful operational semantics σ;C ↓ C ′;σ′, where C
is the initial code term, C ′ the resulting value, σ is an initial state, and σ′ the
resulting state. States map LF variables x to a boolean mark, which is useful
for operations like removing duplicate literals from a clause. For space reasons,
the operational semantics and typing rules for code terms are relegated to the
Appendix. The rules of Figure 1 enforce that bound variables cannot introduce
side conditions, since the types of bound variables must be classified by the kind
type, while types involving side conditions are classified by typec.

We assume for all typing rules that contexts are well-formed in a standard
sense, for which we omit rules. We have one additional requirement, not for-
malized in the figure. Suppose Γ declares a constant d whose type is of the
form Πx1 : T1. · · ·Πxn : Tn.T of kind typec, where T is of the form either c
or (c t1 · · · tm). Then neither c nor an application of c may be used as the
domain of a Π-type. This is to ensure that applications requiring side condition
checks never appear in types. Our implementation supports holes “ ”, which are
arguments to applications whose values are determined by the types of later ar-
guments. These are crucial to avoid bloating proofs with redundant information.

Define an operation |T | on types by erasing side condition constraints from
Π-abstractions in T . Also, define |typec| to be type. Extending this to contexts
in the natural way, we may then easily prove the following by induction on the
LFSC typing derivation:

Theorem 1. If Γ ` t : T in LFSC, then |Γ | ` t : |T | in LF.

4 Proof Encoding

Our LFSC signature is composed of several subsignatures for different aspects
of the QF IDL logic, totaling just 880 lines. To prove the unsatisfiablity of the
input formula, φ, we derive false assuming φ. In LF, it can be stated as Γ, f :
(th holds φ) ` t : (holds empty) where Γ is the axiom of the object logic, f is the

Γ ⇒ type : kind Γ ⇒ typec : kind

Γ (x) = T

Γ ⇒ x : T

Γ ⇒ t1 : Πx : T1. T2 Γ ⇐ t2 : T1

Γ ⇒ (t1 t2) : [t2/x]T2

Γ, x : T1 ⇐ t : T2

Γ ⇐ λx. t : Πx : T1. T2

Γ ⇒ t1 : Πx : T1 | run C t. T2 Γ ⇐ t2 : T1 ∅ | [t2/x]C ↓ [t2/x]t | σ
Γ ⇒ (t1 t2) : [t2/x]T2

Γ ⇐ T1 : type Γ, x : T1 ⇒ T2 : κ κ ∈ {type, typec, kind}
Γ ⇒ Πx : T1. T2 : κ

Γ ⇐ T1 : type Γ, x : T1 ⇒ T2 : type Γ, x : T1 ⇒ C : T Γ, x : T1 ⇒ t : T

Γ ⇒ Πx : T1|run C t. T2 : typec

Fig. 1. Bidirectional Typing Rules for LFSC

assumption variable for the formula and t is the proof expression that derives
false. About half the proof rules concern CNF conversion, which are designed
to derive clauses out of given SMT formula. The rules give full control over
the decision about which subformulas to rename by introducing a new variable,
thanks to the notion of partial clause.

4.1 Partial Clauses

In order to convert an SMT formula like Φ1∨Φ2∨. . .∨Φn (Φi is an atomic formula)
into a Boolean clause, we might wish to be able to declare n variables at once,
for the subformulas. However, in LF, a rule can introduce only a fixed number
of variables. Thus, it has to be done in multiple steps. To solve this problem
and give provers choice of renaming, we introduce a new kind of formula called
partial clause. Partial clauses store intermediate states between SMT formulas
and Boolean clauses. Each partial clause is a tuple of a formula list and a clause.
Its meaning (given by [[·]]) is the disjunction of all of elements in the formula list
and the clause. Additionally, a list of partial clauses means their conjunction:

[[(φ1, · · · , φn; l1, · · · , ln)]] = φ1 ∨ . . . ∨ φn ∨ l1 ∨ . . . ∨ ln
[[(φ1; l1), · · · , (φn; ln)]] = [[(φ1; l1)]] ∧ . . . ∧ [[(φn; ln)]]

4.2 CNF Conversion Rules

CNF conversion starts with one partial clause (φ, ·) in the partial clause database,
where φ is the original formula. Then, other partial clauses can be added to the
database using CNF conversion rules. Figure 2 gives several representative CNF
conversion rules.

In the rename pos and decl atom pos rules, new Boolean variables v are
introduced. This is easily done in LF, due to its support for higher-order ab-
stract syntax. The rule decl atom pos records the connection between v and φ,

dist pos: (φ1 ∧ φ2, φ;C), Π ⇒ (φ1, φ;C), (φ1, φ;C), Π

dist neg: (¬(φ1 ∧ φ2), φ;C), Π ⇒ (¬φ1,¬φ2, φ;C), Π

flat pos: (φ1 ∨ φ2, φ;C), Π ⇒ (φ1, φ2, φ;C), Π

flat neg: (¬(φ1 ∨ φ2), φ;C), Π ⇒ (¬φ1, φ;C), (¬φ1, φ;C), Π

rename pos: (φ, φ;C), Π ⇒ (φ; v, C), (φ;¬v), (¬φ; v), Π (v is new var)

decl atom pos: (φ, φ;C), Π ⇒ (φ; v, C), Π (v 7→ φ recorded)

Fig. 2. Sample CNF conversion rules (Π is the rest of partial clauses)

while rename pos adds new partial clauses for the definition of v. Conversion is
continued until every partial clause is in the form of (·, l). Then, the clausify
rule is used to convert a partial clause with empty formula part into a Boolean
clause. Those rules can be seen as a non-deterministic top-down CNF conver-
sion algorithm. Depending on the decision strategy, the actual algorithm could
be the Tsetin algorithm, one that introduces a smaller number of variables, or
one that produces a smaller number of clauses. However, CNF conversion proofs
are just records of those decisions, and any top-down implementations can pro-
duce proofs regardless of their specific algorithms.

4.3 Theory Reasoning

When a theory solver detects a contradiction in the current model, it generates a
clause that corrects the current model w.r.t its theory, which is in the Horn form:
φ1 → φ2 → · · · → φn → false. This clause should be converted to a Boolean
clause of the form: ¬l1∨¬l2∨ . . .∨¬ln where li is the (negated) Boolean variable
that corresponds to (negated) φi. By witnessing vi 7→ φi or vi 7→ ¬φi recorded
during CNF conversion, φi is replaced with ¬vi or vi, respectively.

For QF IDL logic, idl contra rule is used to recognize a contradiction in
the IDL theory: x − x ≤ c, where x is a constant symbol and c is a negative
integer value. And transitivity is the basic rule to derive a contradictory formula
in IDL. Even in QF IDL logic, SMT-LIB does not require atomic formulas to
be strictly in the form of x − y ≤ c. It could be in a simpler form, and one of
the other equality or inequality predicates can be used instead. Thus, a number
of normalization rules are provided to construct the strict IDL form. LFSC side
conditions are used to verify the constant arithmetic constraints in each rule.

Γ ` x− x ≤ c {c < 0}
Γ ` false idl contra

Γ ` t1 − t2 ≤ a Γ ` t2 − t3 ≤ b {a+ b = c}
Γ ` t1 − t3 ≤ c

idl trans

5 Deferred Resolution

Standard binary resolution with factoring computes a resolvent from clauses C1

and C2 by removing all positive occurrences of a given variable p from C1, all

negative occurrences from C2, and concatenating the resulting clauses. To keep
clauses short, duplicate literals are then dropped. In our previous preliminary
work, our LFSC proofs computed the resolvent in this way for each resolution
inference [12]. Resolutions are used only during conflict clause generation, how-
ever, and are guaranteed by the conflict clause generation algorithm to be linear:
one clause is always a member of the clause database. This paves the way for a
more efficient functional computation of the final conflict clause.

We defer the computation of the resolvent until it is time to register the
conflict clause as a lemma. When a resolution takes place, we employ a new
clause of the form (literal, clause) that is interpreted to mean ”clause with the
given literal removed”. Using this strategy, the resultant clause of a resolution
can now be written simply as a union of two such pairs. The computation of
such deferred resolutions is constant time per resolution.

The cost incurred with this approach is deferred to a final simplification step,
in which the deferred resolution clause must be converted into a real clause. A
formal description is shown in Figure 3. Clauses are either the empty clause
(cln), a concatenation of a literal to a clause (clc), a removal of a literal from
a clause (clr), or a concatenation of two clauses (concat). The state σ refers to
a list of variables that have been marked for the sake of duplicate elimination.
This algorithm returns a clause that does not contain clr or concat constructs.
Since LFSC allows us to mark variables (but not other expressions), we use
two passes: the first with b = false, and the second with b = true, computing
[[[[C]]∅ff]]∅tt for clause C. The first pass processes negative instances of literals in
clr constructs, and the second positive instances. We structure resolutions so
that the first clause given to concat is always from the clause database. Since
the append operation (++) runs in time proportional to its first argument, this
reduces the cost of appending the simplified clauses.

C ::= cln | clc L C | clr L C | concat C1 C2

[[cln]]σb = cln

[[(clc L C)]]σb = if(var(L) ∈ σ && pol(L) = b) [[C]]σb else (clc L [[C]]
σ + var(L)
b)

[[(clr L C)]]σb = if(pol(L) = b) ([[C]]
σ + var(L)
b) else (clr L [[C]]σb)

[[(concat C1 C2)]]σb = if(b) ([[C1]]σb + + [[C2]]σb) else (concat [[C1]]σb [[C2]]σb)

Fig. 3. Computing clauses from deferred resolutions

6 Optimizations for LFSC

Side condition compilation. Significant performance optimization has been
achieved in LFSC by compiling side condition code to C++, and including it with
the rest of the LFSC code base. This improves greatly upon simply interpreting

side condition code, as done in our previous work [12]. LFSC reads in the side
condition code and emits new C++ code for checking it, based on standard
compilation techniques for functional programming. LFSC is then recompiled
with the newly emitted code. A diagram of this process is shown in Figure 4.

Fig. 4. Proof checking architecture using LFSC

Spine form applications. We have found that using spine form for the
application construct, where arguments to function and program calls reside
on the first level of the syntax tree, as opposed to left-nested applicative form
leads to significant performance improvement in LFSC, in particular during the
execution of compiled side condition code.

Path compression for holes. When a hole “ ” is filled in during type
checking, a pointer is set from the hole to the term t filling it. Something similar
happens during β-reduction, when a pointer is set from a variable to a term
t being substituted for it. When these pointers are set, as an optimization we
make sure to follow all such pointers from t, if t is itself a hole or variable. This
also contributes to a significant performance improvement.

Incremental checking. As described in previous work [11], lfsc interleaves
parsing and checking of proofs. This results in significant performance improve-
ments over parsing the whole proof into memory and then checking it, and opens
the way for checking proofs too large to fit into main memory.

Simple type caching. Whenever a Π-abstraction is created within LFSC,
the program will calculate whether or not its input variable is free within its body.
This result is stored as a bit in the data field of the PI abstraction expression,
and is used to determine if a simply typed function is being applied while type
checking. This enables several optimizations, including the possibility of not
constructing the argument term in memory (see [11]).

7 Empirical Results

Solver Score Unknown Timeout Time 1 Time 2

clsat r453 (w/o proof) 542 / 622 50 30 20168.7s 31843.6s
clsat+lfsc r591 (optimized) 538 / 622 51 33 23741.4s 41420.8s
clsat+lfsc r453 (unoptimized) 485 / 622 58 79 52373.8s n/a

Table 1. Summary of results (timeout: 1800 seconds)

Unsatisfiable QF IDL benchmarks of difficulty 0 through 3 were used for this
test. The experiments were performed on the SMT-EXEC service (http://www.
smtexec.org), and the results are publicly available in two jobs: clsat-lfsc-2009
and r591 (cf. a combined job clsat-lfsc-2009.3, still running at the time of
writing). A timeout of 1800 was used. The results for clsatr453 are for solving
only, with no proof production or proof checking. We consider both unopti-
mized and fully optimized lfsc configurations. The unoptimized configuration
does not use any of the optimizations of Section 6 except incremental check-
ing. The optimized configuration uses all optimizations and deferred resolution.
The “Score” column gives the number of benchmarks each configuration finished
successfully. The “Unknown“ column gives the number of benchmarks each con-
figuration failed before timeout. The “Time 1” column gives times taken for 485
benchmarks that all of the configurations could solve. The “Time 2” column
gives times taken for 538 benchmarks that the fast two configurations could
solve. The optimized lfsc showed a 2.2x improvement over the unoptimized
version for the 485 benchmarks. And the overhead of proof generation and proof
checking over solving was only 17.71% on average for those benchmarks. For
the 538 benchmarks, the overhead was 30.08% on average. (See Appendix E for
comparison with other systems.)

Figure 5, generated by SMT-EXEC, compares clsat+lfsc to clsat (with-
out proof recording and printing). It turned out that the proofs from certain
families of benchmarks are more difficult to verify than those of other families.
Those families are fischer, diamonds, planning and post office. The worst case
is diamonds.11.3.i.a.u.smt as its proof generation + checking time was 2.2
seconds while its solving time was 0.2 seconds. However, the figure also shows
that the more difficult the benchmarks are, the closer the time for clsat+lfsc
is to the time for just clsat. Figure 6 shows the very large improvement given
by the proof checking optimizations of Sections 5 and 6 over unoptimized proof
checking. Note that these optimizations had different levels of effectiveness on
improving the proof checking time (see Appendix D).

Acknowledgments. This work was partially supported by NSF award CCF-
0841554. Many thanks to Morgan Deters for answering bug reports and feature
requests for SMT-EXEC during the course of this work.

Fig. 5. Solving versus solving + optimized proof checking

Fig. 6. Solving + optimized proof checking versus solving + unoptimized proof check-
ing

References

1. C. Barrett, M. Deters, A. Oliveras, and A. Stump. Design and Results of the 3rd
Annual Satisfiability Modulo Theories competition (SMT-COMP 2007). Interna-
tional Journal of Artificial Intelligence Tools, 2008. to appear.

2. M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio.
The Barcelogic SMT Solver. In A. Gupta and S. Malik, editors, 20th International
Conference on Computer Aided Verification (CAV), pages 294–298, 2008.

3. L. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In B. Konev,
R. Schmidt, and S. Schulz, editors, 7th International Workshop on the Implemen-
tation of Logics (IWIL), 2008.

4. J. Ford and N. Shankar. Formal verification of a combination decision procedure.
In A. Voronkov, editor, 18th International Conference on Automated Deduction,
2002.

5. John Harrison. HOL Light: A Tutorial Introduction. In Mandayam Srivas and
Albert Camilleri, editors, Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design (FMCAD’96), pages 265–269, 1996.

6. S. Lescuyer and S. Conchon. A Reflexive Formalization of a SAT Solver in Coq.
In Emerging Trends of the 21st International Conference on Theorem Proving in
Higher Order Logics (TPHOLs), 2008.

7. S. McLaughlin, C. Barrett, and Y. Ge. Cooperating Theorem Provers: A Case
Study Combining HOL-Light and CVC Lite. Electr. Notes Theor. Comput. Sci.,
144(2):43–51, 2006.

8. M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In C. Ramakrishnan
and J. Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 2008.

9. F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIGPLAN
Symposium on Language Design and Implementation, 1988.

10. S. Ranise and C. Tinelli. The SMT-LIB Standard, Version 1.2, 2006. Available
from the ”Documents” section of http://combination.cs.uiowa.edu/smtlib.

11. A. Stump. Proof Checking Technology for Satisfiability Modulo Theories. In
A. Abel and C. Urban, editors, Logical Frameworks and Meta-Languages: Theory
and Practice, 2008.

12. A. Stump and D. Oe. Towards an SMT Proof Format. In C. Barrett and
L. de Moura, editors, International Workshop on Satisfiability Modulo Theories,
2008.

13. K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logi-
cal Framework I: Judgments and Properties. Technical Report CMU-CS-02-101,
Carnegie Mellon University, 2002.

A LFSC Typing Rules for Code Terms

Figure 7 gives typing rules for LFSC code terms. These are completely standard
for a pure monomorphic functional programming language. We use only our type
computation judgment here. We write N for any arbitrary precision integer, and
use several arithmetic operations on these; others can be easily modularly added.
Function applications are required to be simply typed. In the typing rule for
pattern matching expressions, patterns P must be of the form c or (c x1 · · ·xm),

where c is a constructor, not a bound variable (we do not formalize the machinery
to track this difference). In the latter case, ctxt(P) = {x1 : T1, . . . xn : Tn},
where c has type Πx1 : T1. · · ·xn : Tn.T . We sometimes write (do C1 C2) as an
abbreviation for (let x C1 C2), where x 6∈ FV(C2).

Γ (x) = T

Γ ⇒ x : T Γ ⇒ N : mpz

Γ ⇒ t1 : mpz Γ ⇒ t2 : mpz

Γ ⇒ t1 + t2 : mpz

Γ ⇒ t : mpz

Γ ⇒ − t : mpz

Γ ⇒ C1 : T ′ Γ, x : T ′ ⇒ C2 : T

Γ ⇒ (let x C1 C2) : T

Γ ⇒ C1 : mpz Γ ⇒ C2 : T Γ ⇒ C3 : T

Γ ⇒ (ifneg C1 C2 C3) : T

Γ ⇒ C : T
Γ ⇒ (markvar C) : T

Γ ⇒ t1 : Πx : T1. T2 Γ ⇒ t2 : T1 x 6∈ FV(T2)

Γ ⇒ (t1 t2) : T2

Γ ⇒ T : type

Γ ⇒ (fail T) : T

Γ ⇒ C1 : T ′ Γ ⇒ C2 : T Γ ⇒ C3 : T

Γ ⇒ (ifmarked C1 C2 C3) : T

Γ ⇒ C : T ∀i ∈ {1, . . . , n}.(Γ ⇒ Pi : T Γ, ctxt(Pi)⇒ Ci : T ′)

Γ ⇒ (match C (P1 C1) · · · (Pn Cn)) : T ′

Fig. 7. Typing Rules for Code Terms

B LFSC Operational Semantics for Code Terms

The big-step operational semantics for LFSC code terms is given in Figure 8.
States σ map LF variables x to a boolean mark. We write N for any arbitrary
precision integer, and use several arithmetic operations on these; others can
be easily modularly added. We use standard notation for functional updating
(σ[x 7→ v]). The last rule of the figure is for applications of top-level recur-
sively defined functions p, whose singly recursive definition is given by def(p)
(we omit the straightforward typing rules for these definitions). If no rule ap-
plies, evaluation and hence type checking fails. This can happen for example,
when evaluating an explicit (fail T) code term (typing rule in the Appendix) or
if a pattern match fails. We do not enforce termination of side condition pro-
grams, nor do we attempt to provide facilities for formal reasoning about the
behavior of such programs.

σ1;N ↓ N ;σ1 σ1;x ↓ x;σ1

σ1;C ↓ x;σ2

σ1; (markvar C) ↓ x;σ2[x 7→ ¬σ2(x)]

σ1; t ↓ N ;σ2 N ′ = −N
σ1;− t ↓ N ′;σ2

σ1; t1 ↓ N1;σ2 σ2; t2 ↓ N2;σ3 N1 +N2 = N

σ1; t1 + t2 ↓ N ;σ3

σ1;C1 ↓ N ;σ2 N < 0 σ2;C2 ↓ C′
2;σ3

σ1; (ifneg C1 C2 C3) ↓ C′
2;σ3

σ1;C1 ↓ N ;σ2 N ≥ 0 σ2;C3 ↓ C′
3;σ3

σ1; (ifneg C1 C2 C3) ↓ C′
3;σ3

σ1;C1 ↓ x;σ2 σ2(x) σ2;C2 ↓ C′
2;σ3

σ1; (ifmarked C1 C2 C3) ↓ C′
2;σ3

σ1;C1 ↓ x;σ2 ¬σ2(x) σ2;C3 ↓ C′
3;σ3

σ1; (ifmarked C1 C2 C3) ↓ C′
3;σ3

σ1;C1 ↓ C′
1;σ2 σ2; [C′

1/x]C2 ↓ C′
2;σ3

σ1; (let x C1 C2) ↓ C′
2;σ3

∀i ∈ {1, . . . , n}, (σi;Ci ↓ C′
i;σi+1)

σ1; (x C1 · · · Cn) ↓ (x C′
1 · · · C′

n);σn+1

σ1;C ↓ (c C′
1 · · · C′

k);σ2 Pi = (c x1 · · · xk) σ2; [C′
1/x1, . . . , C

′
k/xk]Ci ↓ C′;σ3

σ1; (match C (P1 C1) · · · (Pn Cn)) ↓ C′;σ3

∀i ∈ {1, . . . , n}, (σi;Ci ↓ C′
i;σi+1)

def(p) = λx1. · · ·λxn.C σn+1; [C′
1/x1, . . . , C

′
n/xn]C ↓ C′;σn+2

σ1; (p C1 · · · Cn) ↓ C′;σn+2

Fig. 8. Operational Semantics of Code

C Compiled Side Condition Code

An example of a side condition and the corresponding compilable code is dis-
played below. Note that the C++ code here has been simplified for the sake of
clarity.

(program append ((c1 clause) (c2 clause)) clause
(match c1 (cln c2) ((clc l c1’) (clc l (append c1’ c2)))))

Expr* f_append(Expr* c1, Expr* c2){
Expr* e0;
Expr* e1 = c1->get_head();
static Expr* e2 = symbols->get("cln");
static Expr* e3 = symbols->get("clc");
if(e1==e2){

e0 = c2;
}else if(e1==e3){

Expr* l = c1->kids[1];
Expr* c1h = c1->kids[2];
Expr* e4;
e4 = f_append(c1h, c2);
static Expr* e5 = symbols->get("clc");

e0 = new CExpr(APP, e5, l, e4);
}else{

std::cout << "Could not find match for expression";
}
return e0;

}

This outputted code sequence is a reflection of what code would have been
executed by the interpreter if LFSC had not utilized compiled side condition
code. However, the code is now unrolled in a form that does not require LFSC
to traverse the syntax tree of the side condition, and rather can run the compiled
code directly.

D Results of Individual Optimizations

clsat+lfsc configurations using individual optimizations (deferred resolution,
compiled scc, path compression) have been compared over the same set of bench-
marks described in Section 7.

Solver Score Unknown Timeout Total Time
clsat+lfsc (unoptimized) 485 / 621 57 79 52373.8s
clsat+lfsc (fully optimized) 538 / 621 50 33 41420.8s
clsat+lfsc (deferred resolution) 526 / 621 58 37 49603.7s
clsat+lfsc (compiled scc) 515 / 621 58 48 44362.2s
clsat+lfsc (path compression) 511 / 621 57 53 52035.3s

At the time of writing, one of the benchmarks was not finished on the SMT-
EXEC job. So, shown are the results of 621 benchmarks finished. It shows that
the fully optimized version is better than any of the individual optimizations,
especially in the number of unknown results. In terms of scores, deferred reso-
lution was the winner among the individual optimizations. However, the other
optimizations also showed quite a bit of improvements over the unoptimized
version.

E Comparison with other SMT proof checkers

We consider CVC3 and Fx7 that are known to be able to produce proofs and
verify them. For CVC3, cvchol was used. cvchol is an extension to HOL light
that embeds CVC3’s functionality and verifies proofs returned by the embeded
CVC3. For Fx7, the C version of trew was used to verify proofs that generated
by Fx7.

cvchol required OCaml runtime that was not available on the SMT-EXEC
machines at the time of writing. So, it was not possible to compare these solvers
on SMT-EXEC. Instead, we sampled 25 unsatisfiable benchmarks from SMT-
COMP 2008 that CVC3 solved in 300 seconds. Each solver and combination with

proof checker were tested against those benchmarks. The tests were performed
on a Athlon 64 X2 3800+ machine with 2GB of memory running Ubuntu linux
9.04. A timeout of 600 was used. Note that the results here may be different
from that of SMT-COMP 2008 because unscrambled benchmarks were used.

Benchmarks clsat clsat+lfsc cvc3 cvchol fx7 fx7+trew
01.100.graph.smt 0.29 0.38 1.48 1.25 1.93 FAIL
03.700.graph.smt 22.37 24.46 37.01 T/O ERR N/A
03.800.graph.smt 7.44 9.88 50.9 T/O ERR N/A
07.700.graph.smt 478.36 484.11 38.88 T/O ERR N/A
07.800.graph.smt 8.11 11.02 55.02 T/O ERR N/A
10.700.graph.smt 11.22 13.59 43.32 T/O ERR N/A
11.500.graph.smt 5.77 6.94 20.31 T/O 237.65 ERR
17.400.graph.smt 102.24 102.85 14.39 460.51 T/O N/A
17.800.graph.smt 8.68 11.09 59.85 T/O ERR N/A
18.600.graph.smt 5.82 7.44 33.89 T/O 81.66 ERR
20.300.graph.smt 1.09 1.45 9.51 131.21 34.1 ERR
20.700.graph.smt 8.21 10.15 44.79 T/O ERR N/A
22.600.graph.smt 3.9 5.25 32.88 T/O 25.36 ERR
24.400.graph.smt 9.4 9.98 12.53 318.79 T/O N/A
24.500.graph.smt 382.71 384.22 20.83 T/O T/O N/A
27.700.graph.smt 6.68 8.69 39.94 T/O ERR N/A
27.800.graph.smt 8.98 11.73 56.34 T/O ERR N/A
28.600.graph.smt 5.33 6.61 30.28 T/O 88.84 ERR
31.200.graph.smt 0.73 0.96 3.43 17.81 12.79 ERR
FISCHER10-10-ninc.smt 221.62 294.94 2.39 SEGV ERR N/A
FISCHER11-10-ninc.smt 293.96 383.3 2.77 SEGV ERR N/A
FISCHER11-11-ninc.smt T/O T/O 3.02 SEGV ERR N/A
FISCHER12-10-ninc.smt 282.41 376.48 2.87 SEGV ERR N/A
FISCHER12-11-ninc.smt T/O T/O 3.17 SEGV ERR N/A
FISCHER13-10-ninc.smt 310.04 403.59 3.14 SEGV ERR N/A

Fx7 competed in AUFLIA on SMT-COMP 2007. Even though QF IDL is a
subset of AUFLIA, Fx7 was not meant to compete in QF IDL. In our exper-
iments, Fx7 failed to either solve or produce proofs (reported as ERR on the
table) for most cases. There was one case (01.100.graph.smt) that Fx7 suc-
ceded to produce a proof, but its proof checker didn’t accept the proof. On the
other hand, cvchol could verify more benchmarks, but the fischer benchmarks
caused segmentation faults. Note that because cvchol runs on top of HOL light,
we subtracted the overhead of loading HOL light from the entire running time
of cvchol, so as to measure only the time for solving and proof checking.

F Small LFSC Examples

This section lists several small example proofs in our LFSC signature. We use
ascriptions of the form (: A t) to direct lfsc to check that term t has type A.

Finally, we use a type-computing lambda abstraction λx : A.t, written concretely
in lfsc as (% x A t).

(% p (term Bool)

(% @f (th_holds (and (p_app p) (not (p_app p))))

(: (holds cln)

(start _ @f

(\ @f0

(dist_pos _ _ _ _ @f0

(\ @f1 (\ @f2

(decl_atom_pos _ _ _ @f1

(\ @v0 (\ @a0 (\ @f3

(clausify _ @f3

(\ @x0

(subst_atom_neg _ _ _ _ @f2 @a0

(\ @f4

(clausify _ @f4

(\ @x1

(satlem _ _ _ (R _ _ @x0 @x1 @v0)

(\ @done @done))

))))))))))))))))))

Fig. 9. An example proof in LFSC of p ∧ ¬p⇒ false

(% x (term Int)

(% y (term Int)

(% z (term Int)

(% @f (th_holds (and (<= (- x y) (an_int (~ 1)))

(and (<= (- y z) (an_int (~ 2)))

(<= (- z x) (an_int (~ 3))))))

(: (holds cln)

(start _ @f

(\ @f0

(dist_pos _ _ _ _ @f0

(\ @f1 (\ @f2

(decl_atom_pos _ _ _ @f1

(\ @v0 (\ @a0 (\ @f3

(clausify _ @f3

(\ @x0

(dist_pos _ _ _ _ @f2

(\ @f4 (\ @f5

(decl_atom_pos _ _ _ @f4

(\ @v1 (\ @a1 (\ @f6

(clausify _ @f6

(\ @x1

(decl_atom_pos _ _ _ @f5

(\ @v2 (\ @a2 (\ @f7

(clausify _ @f7

(\ @x2

(satlem _ _ _

(R _ _ @x0

(R _ _ @x1

(R _ _ @x2

(assume_true _ _ _ @a0 (\ @h0

(assume_true _ _ _ @a1 (\ @h1

(assume_true _ _ _ @a2 (\ @h2

(idl_contra _ _

(idl_trans _ _ _ _ _ _ @h0

(idl_trans _ _ _ _ _ _ @h1

@h2)))))))))

@v2) @v1) @v0)

(\ @done @done))

)))))))))))))))))))))))))))))))

Fig. 10. A small QF IDL proof

