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Abstract

It is by now well known that congruence closure (CC) algorithms can be viewed
as implementing ground completion: given a set of ground equations, the CC algo-
rithm computes a convergent rewrite system whose equational theory conservatively
extends that of the original set of equations. We call such a rewrite system a CC for
the original set. This paper describes work in progress to create an implementation
of a CC algorithm which is validated, in the following sense. Any non-aborting,
terminating run of the implementation is guaranteed to produce a CC for the input
set of equations. Note that aborting or failing to terminate can happen for imple-
mentations of CC algorithms only due to bugs in code; the algorithms themselves
are usually proved terminating and correct. Validation of an implementation of a
CC algorithm is achieved by implementing the algorithm in RSP1, a dependently
typed programming language. Type checking ensures that proofs of convergence
and conservative extension are well-formed.

1 Introduction

Thanks to work of Kapur and Bachmair and Tiwari, it is now clear that congruence
closure (CC) algorithms can be viewed as a form of ground completion [5, 2]. The cited
works show that many congruence closure algorithms from the literature can be viewed
as constructing a convergent rewrite system for an input set of ground equations. The
rewrite system is expressed over an extension of the signature for the input equations.
Hence, the equational theory of the rewrite system produced by the CC algorithm is
a conservative extension of the equational theory of the input equations, but generally
not equivalent.

There is ongoing interest in the automated reasoning community in validity checking
tools that can produce independently checkable evidence for the results they report.
When a tool reports a formula to be valid, the evidence is a proof of validity. When a
tool reports a formula to be invalid, the evidence is a countermodel. Producing proofs is
important for exporting results from validity checkers to proof assistants, and for some
approaches to applications like proof-carrying code [3, 4, 7]. Producing independently
checkable proofs can also increase confidence in the results of the validity checker, which
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is often a highly optimized and complex piece of software. Proof production can also
be used to increase performance of certain kinds of validity checkers (see [8] and works
cited there).

In previous work, Rob Klapper and I describe how to implement certain proof-
producing decision procedures, including one based on CC, which are statically validated
in the following sense [6]. Any non-aborting, terminating run of the decision procedure
that reports the input formula valid is guaranteed to produce a well-formed proof of
validity for that formula. Note that the issue here is the possibility of bugs in the im-
plementation of the proof-producing decision procedure. The decision procedure itself,
as an algorithm, has been proven (on paper) to terminate and produce a well-formed
proof if the input formula is valid. But it is all too easy in mainstream programming
languages to write code which accidentally produces ill-formed proofs. Tracking down
the sources of ill-formed proofs can be extremely time-consuming, particularly for large
input formulas. With validated proof production, such bugs never arise: the proofs are
guaranteed to check.

Our approach to achieving a validated implementation is to implement the decision
procedure in RSP1, an imperative programming language with dependent types [9].
Leaving aside the imperative features, which are not used in this paper, RSP1 can be
thought of as a dependently typed version of the core functional part of a language
like Ocaml. Just as in Ocaml, datatypes can be declared by the user. Unlike in Ocaml,
these datatypes can be indexed by terms. So instead of having just a datatype of proofs,
we can have a datatype of proofs indexed by the formula (encoded as an element of a
datatype of formulas) which is proved. Proofs of encoded formula phi have type pf

phi. A function’s expectation of a proof of a particular formula can thus be recorded
in a type, and compile-time type checking then ensures that proofs are manipulated
in a type-safe way. Pattern-matching constructs are available, just like in Ocaml, but
are dependently typed to enable manipulation of term-indexed datatypes. A compiler
for RSP1 to Ocaml has been implemented, enabling reasonably fast execution of code
validated by the RSP1 type checker. RSP1 currently lacks parametric polymorphism,
so some datatypes, notably lists, must have different versions for different types of
constituent data.

Our previous work concerns validated proof production from congruence closure (and
other automated reasoning algorithms). The current paper is concerned with validated
model generation from a CC algorithm. In particular, work in progress is described
to implement a validated version of Shostak’s algorithm, as cast in the framework of
Abstract Congruence Closure [2]. The implementation explicitly manipulates proofs
showing the rewrite system constructed by the algorithm is convergent and has an
equational theory conservatively extending the ground equations supplied as input. It
is not our goal to develop a formal theory of convergence from first principles (see
instead, e.g., [1]). Instead, we take the classic results of such a theory for granted,
and simply seek to establish statically that conditions sufficient (by that theory) for
convergence hold. The proofs of these conditions can be produced by the implementation
and independently checked. But as for the previous implementation of validated proof-
producing congruence closure, the implementation is done in RSP1, and RSP1 type
checking statically ensures that those conditions will hold for the CCs produced. It
has turned out that getting an implementation with validated model generation has
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required a different, more intricate approach to the CC algorithm than was necessary
for validated proof production. In particular, it has proven useful to model the data
structures used in Abstract Congruence Closure much more faithfully than was necessary
to get validated proof production. Hence, the implementation described below is done
from scratch, without any code or proof reuse from the earlier implementation.

What use is it to have model generation from a CC algorithm statically validated?
After all, it is relatively inexpensive to check that the (ground) rewrite system produced
(the CC) is convergent, particularly since the algorithm produces a shallow system: all
right hand sides of rules are constant symbols and all left hand sides are either constants
or applications of a function symbol to a list of constant symbols as arguments. It can
also be easily checked that the CC produced entails the original equations. It is not
immediately obvious how to check that the equational theory of the CC is a conser-
vative extension of the equational theory of the original equations, although perhaps
this can be done. So having statically validated model generation may not greatly in-
crease confidence in the individual results reported by the implementation. It certainly
should increase confidence in the correctness of the implementation itself. Furthermore,
having an implementation like the one (in progress) described in this paper actually
implemented in a proof assistant based on dependent type theory, like Coq, would con-
fer an additional benefit: the proof assistant could trust that any CC produced by the
implementation was correct, without actually having to build any of the proofs. Type
checking shows that the proofs would check if produced. There are a few places in the
current implementation where some modest changes would be required to support this.
In particular, there are a few places where a type checker cannot easily see that the code
cannot fail. It should be possible to eliminate these, but it proved more convenient not
to insist on avoiding all such situations here.

In the rest of the paper, the current implementation in progress is described. This
implementation comprises 2000 lines of RSP1, including a number of currently unproved
lemmas. In the setting of this paper, the implementation is presented at the level of
datatypes and function specifications. Hence, familiarity with the syntax of RSP1 is not
necessary for reading the rest of the paper. Detailed knowledge of BT (I will use this
abbreviation from now on to refer to [2]) is also not required, though it will be useful. The
implementation currently comprises the simplification and extension phases of Shostak’s
CC algorithm (in the terminology of Abstract Congruence Closure). The latter is non-
trivial in this context, since it is where new constant symbols are introduced, and hence
where conservative extension must be shown. The work yet remaining to be done is
admittedly substantial: orientation, deletion, deduction, collapse, and composition must
be implemented. Nevertheless, many important issues show up just in simplification and
extension, including design of the datatype for the CC, with which we begin.

2 The Datatype for CCs

Abstract Congruence Closure (ACC) problems consist of a set of equations to be pro-
cessed and the convergent rewrite system resulting from the processing so far. In addi-
tion, in BT, the set of new constant symbols introduced so far is also part of an ACC
problem, but we maintain information about the new constants in a different way, dis-
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cussed below. As mentioned above, the rewrite system is shallow. There are two kinds
of rewrite rules. C-rules are of the form c → d, where c and d are constant symbols
not occuring in the original input equations. D-rules are of the form f(c1, . . . , cn) → d,
where c1, . . . , cn and d are all new constant symbols not occurring in the original equa-
tions. Note that n may be 0 in this case, to map a constant from the original equations
to a new constant. Hence, in the implementation, we take the following definitions for
ACC problems:

cc_t :: type;;

mkcc :: olist => l:crlist => drlist l => cc_t;;

These declare that cc t is a type, and that to form one, using the term constructor
mkcc, you must supply three things. The first is an olist, whose declaration as the
datatype of lists of formulas is omitted here. Also omitted is the simple declaration of
the datatype o of formulas. The second item needed by mkcc is an element of the type
crlist, which we declare (see below) as the datatype for lists of C-rules. The third item
is a drlist l, which is a list of D-rules. The index l in the type drlist l indicates,
as we shall see below, that no constants used in any D-rule in the list appears as the
left hand side of a C-rule in l.

2.1 The Datatype for Lists of C-rules

Lists of C-rules may be built using the datatype determined by the following declara-
tions:

crlist :: type;;

crn :: crlist;;

crc :: c2:const =>

c1:const =>

gtc c2 c1 =>

l:crlist =>

const_apart c2 l =>

const_apart c1 l =>

crlist;;

The empty list of C-rules is formed using the 0-ary constructor crn. To add a
C-rule to an existing crlist, the constructor crc is used. It requires the left and
right hand sides (c2 and c1, respectively) of the C-rule. We declare const as the
type for new constant symbols; the definition involves a trick, and is postponed to the
discussion of conservative extension below. The constructor crc next requires a proof
that c2 is greater than c1 in a certain basic ordering on the new constant symbols.
This requirement is taken from BT. We will associate natural numbers with consts,
and then order consts by number (discussed below). Next, crc requires the crlist

to which the C-rule c2 → c1 is to be added. Finally, proofs that c2 and c1 are apart

from l are required. The intended meaning of const apart c l for any c and l is that
c does not appear as the left hand side of any rule in the list of C-rules l. The rules
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for const apart are straightforward, although they rely on an auxiliary judgment neqc
that two consts are distinct.

So when a list of C-rules is built, it is guaranteed to be convergent: the left hand
side of each rule is less than the right hand side, and no const appears on the left hand
side of two C-rules in the list. We do not formally express in our RSP1 implementation
the property of being convergent. As remarked above, developing a full formal theory
of convergent rewrite systems is beyond the scope of this project. Hence, we formally
express other conditions, which are sufficient for convergence. The proof of sufficiency
is done outside RSP1, on paper.

2.2 The Datatype for Lists of D-rules

As remarked at the start of this Section, the type for lists of D-rules all of whose consts
are apart from a list l of C-rules (where a const is apart from a C-rule if it is different
from that C-rule’s left hand side) is drlist l:

drlist :: crlist => type;;

drn :: l:crlist => drlist l;;

drc :: n:nat =>

f:func n =>

cs:clist n =>

d:const =>

l:crlist =>

L:drlist l =>

A:const_apart d l =>

T:term_apart n f cs l L =>

As:const_list_apart n cs l =>

drlist l;;

The first declaration says that drlist is a datatype indexed by crlists. For any
crlist l, the empty list of D-rules apart from l can be formed using the constructor
drn. To add a D-rule to an existing list of D-rules, the constructor drc is used. Recall
that a D-rule is of the form f(c1, . . . , cn) → d, where c1, . . . , cn, d are new constant
symbols (consts) not occurring in the original input equations. The first four arguments
to drc are all the constituent pieces of the D-rule. The type func n is for function
symbol of (fixed single) arity n, which is declared to be of type nat. The latter is the
standard datatype for natural numbers in unary, with constructors z (for zero) and s

(for successor). The type clist n is the type for lists of length n of consts. Then drc

requires an l which is a crlist, and the existing drlist l to which to add the new
D-rule. BT shows termination is preserved in this situation, since each such new D-rule
is contained in a natural reduction ordering. To ensure local confluence, drc requires
several proofs about items’ being apart. All the consts in the new D-rule must be
apart from l, which is expressed in the types for arguments A and As. And the left hand
side, f(c1, . . . , cn), of the new D-rule is required to be different from the left hand side
of any D-rule in the existing list of D-rules (L). The declarations for term apart and
const list apart are unsurprising and omitted here.
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2.3 Datatypes for Terms and Lists of Terms

Our implementation of Shostak’s CC algorithm processes equations between terms.
Terms are declared as follows:

i :: type;;

apply :: n : nat => func n => ilist n => i;;

injconst :: c:const => i;;

A term, of type i, is either an application of a function symbol of arity n (func n) to
a list of n terms (ilist n); or an injection of one of our new constant symbols. The
datatype for lists of terms is declared as follows. Note that the type ilist for such
lists is indexed by a nat, which gives the length of the list (this is a standard trick in
dependently typed programming):

ilist :: nat => type;;

ilistn :: ilist z;;

ilistc :: i => n : nat => ilist n => ilist (s n);;

2.4 The Intrinsic Style

The style of encoding used here for CCs is what we might call the intrinsic style.
Datatypes whose elements are intended to have some property are declared in such
a way that only elements which have the property can actually be constructed. This is
because the constructors take in proofs of all the required properties. Here, the prop-
erties are those which show convergence (apartness of constant symbols and left hand
sides of D-rules, and containment of C-rules in the basic well-founded ordering on con-
stants). We cannot form an element of type cc t which does not have those properties.
Hence, a certain kind of soundness is built right in to the datatype for CCs. This is a
strong protection against soundness bugs. Unfortunately, it also seems to complicate
the rest of the implementation substantially, since every time a CC or constituent part
of one must be manipulated, many proofs are required. Some of these proofs might not
be essential to the soundness of the operation in question, but they must typically be
supplied anyway. In contrast, an extrinsic style would not require proofs to construct
elements of a datatype like cc t. The proofs would be kept completely separate from the
data, and passed around as additional arguments as necessary. It would be interesting
to try the implementation again in the extrinsic style, but for the time being, we forge
ahead intrinsically to the simplification and extension phases of Shostak’s CC algorithm
in RSP1.

3 Simplification and Extension

The simplification phase of Shostak’s CC algorithm, in the Abstract Congruence Closure
framework, is intended to put terms into canonical form with respect to the current list
of C-rules and D-rules computed thus far. Our implementation just uses linear search
through the lists of C-rules and D-rules to find a match, simplifying terms bottom-up;
it is conceivable that an indexing data structure could be used for better efficiency.
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rec

simplify :: l:crlist =c>

e:olist =c>

L:drlist l =c>

b1:nat =c>

bound_crlist b1 l =c>

bound_drlist b1 l L =c>

q:{x:i, B:bound_term b1 x} =c>

{y:i,

D:provese (mkcc e l L) (equals q.x y),

C:canonical y l L,

B:bound_term b1 y} = ...

Figure 1: Declaration for simplify

After a term has been put into canonical form by simplification, it is handed off to
the extension phase. Extension introduces new constant symbols bottom-up for every
subterm of the input term which is not already the injection of a const. At the end
of extension, the input term has been reduced to a single const, and new D-rules of
the form t → d have been added for any subterm t of the input term for which a new
const d was introduced. Since such consts must be fresh, some mechanism is needed
to enable simplification to keep track of what the next const to be introduced may
safely be. The mechanism used here is to associate a number with each const, and
then bound the set of consts used in the C-rules and D-rules. The next fresh const to
generate may safely be any that has an associated number greater than the bound on
the consts already used by the C-rules and D-rules. Both simplification and extension
require fairly elaborate helper functions to process lists of arguments in applications.
Space limitations prevent further discussion of these, which are essentially the natural
extensions of simplification and extension to lists of terms.

3.1 Simplification

The declaration for simplify, which implements simplification, is given in Figure 1.
This declaration, whose body has been omitted (“...”), says that simplify is a re-
cursive computational function. The symbol =c> (as opposed to =>) is used in RSP1
to indicate that a function is computational and may pattern match on its argument.
The other function space (=>) is used for the types of term constructors. The notation
q:{x:i, B:bound term b1 x} declares that argument q is a dependent record consist-
ing of a term x and a proof term B of type bound term b1 x (more on this shortly). The
function simplify takes in all its arguments, and returns a record of resulting values
(“{y:i, ... }”).

Let us look at the arguments and the resulting values to simplify. The first three
arguments, l, e, and L are the constituent pieces of the CC with respect to which
simplify is supposed to rewrite a term. That term is given by the x field of the
argument q, which, as just explained, is a dependent record. In addition to the CC
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and the term to rewrite using that CC, simplify requires proofs that all the consts
occurring in several different entities are bounded. That is, the numbers associated
with those consts are less than the bound, which is the nat number b1. We require
for simplification a proof that the consts in the C-rules and the D-rules are bounded
(bound crlist b1 l and bound drlist b1 l L, respectively). We also require a proof
that all the consts appearing in the term x are bounded by b1 (bound term b1 x).
This will enable us to prove that any term returned by simplification has all its consts
bounded by that same bound; this is expressed by the field B in the record returned
by simplify. That record also contains a field y for the canonical form that simplify
computes for x, and a proof (field D) that the CC implies that x equals y (proof rules for
the provese judgment, that a CC derives a single formula, are omitted here for space
reasons). Finally, the record returned by simplify has a field C for a proof that the
canonical form y is indeed canonical with respect to the C-rules and D-rules supplied.

3.2 Extension

Figure 2 gives the declaration for extend, which implements extension. This function
takes in the same first three arguments as simplify, which are the constituent parts of
the CC as it stands before extension. Since extend may add new D-rules to the CC,
it returns a new drlist, as field L2 of the returned record. As simplify did, extend
also takes in a bound b1 on the consts occurring in the lists of C-rules and D-rules.
The record q required as the last argument contains the term x to extend, a proof C

that x is canonical, and a proof that all the consts occurring in x are bound by b1.
As discussed above, the latter two proofs are produced by simplify so they may be
provided to extend.

The record of values returned by extend returns quite an assortment of different
proofs for the different invariants maintained by the code. First, extension always
produces a const as its result, which is returned in the field c. This const, like all
consts, has an associated number, which is returned as the field z. A proof certifying
the association is also returned (field aa). Since extension may introduce new constants,
a new bound must be produced on the consts occuring in the list of C-rules and the
updated list (L2) of D-rules. This bound is returned in the field b, and proofs of the
new bounds on the lists of C-rules and D-rules are returned in fields B1 and B2.

Finally, we come to the proofs (d1 and d2) that the old CC is equivalent to the new
CC. Proof rules for the judgment provescc are omitted here, but they say, naturally
enough, that one CC entails another if it entails all the other’s equations, C-rules, and D-
rules. So we are insisting here that the equational theories of the two CCs are equivalent,
which seems incompatible with the fact that the new CC may be just a conservative
extension of the starting CC, due to the introduction of new constants. We return to
this point shortly, but first comment on the last of the returned values. The proof
returned in field d3 shows that the new CC entails that the input term (q.x) equals the
(injection of the) returned constant c. The proofs A1 and A2 show that the returned
const is apart from the C-rules and is not used in the left hand side of any D-rule in
the new CC, respectively. The latter is needed to show that the D-rule obtained by
non-trivially extending the arguments of an application does not have a left hand side
already occurring in the list of D-rules.
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rec

extend :: l:crlist =c>

e:olist =c>

L:drlist l =c>

b1:nat =c>

bound_crlist b1 l =c>

bound_drlist b1 l L =c>

q:{x : i, C:canonical x l L, D: bound_term b1 x} =c>

{c:const,

z:nat,

aa:assoc_num z c,

b:nat,

g1:gte b b1,

g2:gt b z,

L2:drlist l,

B1:bound_crlist b l,

B2:bound_drlist b l L2,

d1:provescc (mkcc e l L) (mkcc e l L2),

d2:provescc (mkcc e l L2) (mkcc e l L),

d3:provese (mkcc e l L2) (equals q.x (injconst c)),

A1:const_apart c l,

A2:const_apart2 c l L2} = ...

Figure 2: Declaration for extend
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Finally we come to the issue of conservative extension. The argument for conserva-
tive extension in BT proceeds by induction on the form of proofs of equalities between
terms without newly introduced constants that can be conducted in the new CC. It
shows how to transform such proofs into ones which can be conducted in the old CC.
Returning such a proof from extend would (most naturally) require returning a RSP1
function representing the inductive argument. While possible in RSP1, this is a bit out-
side the current programming methodology. We would prefer to return just an element
of a datatype for a proof, instead of an RSP1 function.

The trick we use for this comes in the declarations for const, and the associated
proof rule:

const :: type;;

mkcanon :: i => nat => const;;

peSpecial :: cc:cc_t => t:i => n:nat =>

provese cc (equals t (injconst (mkcanon t n)));;

We introduce new consts with the constructor mkcanon. The trick is that we index
new constants with the term they are intended to represent in the extension of the
CC. So mkcanon t n is the const, with associated number n, representing term t in
the extension. The peSpecial proof rule then just says that logically, the mkcanon

constructor is transparent: mkcanon expressions equal the terms (t) they are intended
to represent. Hence, the equational theories are the same, even though we introduce
new constants.
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