
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220906582

Verified programming in Guru

Conference Paper · January 2009

DOI: 10.1145/1481848.1481856 · Source: DBLP

CITATIONS

37
READS

66

5 authors, including:

Morgan Deters

New York University

27 PUBLICATIONS 1,105 CITATIONS

SEE PROFILE

All content following this page was uploaded by Morgan Deters on 03 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220906582_Verified_programming_in_Guru?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220906582_Verified_programming_in_Guru?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Morgan-Deters?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Morgan-Deters?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_York_University2?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Morgan-Deters?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Morgan-Deters?enrichId=rgreq-58055b5c43425bb3c15b14f1c11895fb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkwNjU4MjtBUzoxMDM5Mzg3OTE1NzU1NThAMTQwMTc5MjM0NzM5Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Verified Programming in GURU

Aaron Stump
Computer Science

The University of Iowa
Iowa City, Iowa, USA

April 6, 2009

2

Contents

1 Introduction 5
1.1 Verified Programming . 5
1.2 Functional Programming . 5
1.3 What is GURU? . 6
1.4 Installing GURU . 6
1.5 The Structure of This Book . 7
1.6 Acknowledgments . 7

2 Monomorphic Functional Programming 9
2.1 Preview . 9
2.2 Inductive Datatypes . 10

2.2.1 Unary natural numbers . 10
2.2.2 Unary natural numbers in GURU . 11

2.3 Non-recursive Functions . 12
2.3.1 Definitions . 12
2.3.2 Multiple arguments . 13
2.3.3 Function types . 13
2.3.4 Functions as inputs . 13
2.3.5 Functions as outputs . 14
2.3.6 Comments . 14

2.4 Pattern Matching . 15
2.4.1 A note on parse errors . 16

2.5 Recursive Functions . 16
2.6 Summary . 17
2.7 Exercises . 18

3 Equational Monomorphic Proving 21
3.1 Preview . 21
3.2 Proof by Evaluation . 22
3.3 Foralli and Proof by Partial Evaluation . 23

3.3.1 A note on classification errors . 24
3.3.2 Terms, types, formulas, and proofs . 25
3.3.3 Instantiating Forall-formulas . 25

3.4 Reflexivity, Symmetry and Transitivity . 26
3.4.1 Error messages with trans-proofs . 27

3.5 Congruence . 27
3.6 Reasoning by Cases . 28
3.7 Summary . 30
3.8 Exercises . 31

3

4 Inductive Equational Monomorphic Proving 33
4.1 Preview . 33
4.2 Induction and Terminating Recursion . 33
4.3 A First Example of Induction, Informally . 35
4.4 Example Induction in GURU . 35

4.4.1 The base case . 36
4.4.2 The step case . 37

4.5 A Second Example Induction Proof in Guru . 37
4.6 Commutativity of Addition in GURU . 40
4.7 Summary . 41
4.8 Exercises . 41

5 Logical Monomorphic Proving 43
5.1 Preview . 43
5.2 Reasoning with Implication . 44
5.3 Existential Introduction . 44

5.3.1 Another example . 45
5.4 Existential Elimination . 46
5.5 Proving a Function Terminates . 47

5.5.1 Registering a function as total . 48
5.5.2 Aside: show-proofs . 49

5.6 Reasoning with Disequations . 49
5.7 Case Splitting on Terminating Terms . 51
5.8 Summary . 52
5.9 Exercises . 52

6 Polymorphic Programming and Proving 55
6.1 Preview . 55
6.2 Polymorphic Datatypes . 55
6.3 Polymorphic Functions . 56
6.4 Polymorphic Proving . 58
6.5 The Fold-Right Function . 59

6.5.1 Using foldr’ to compute length . 60
6.5.2 Using foldr’ to map a function . 60
6.5.3 Some complications due to compilation . 61

6.6 Exercises . 62

7 Dependently Typed Programming 65
7.1 Preview . 66
7.2 Indexed Datatypes . 66
7.3 Programming with Indexed Types . 67

7.3.1 The assumption variable for types . 67
7.3.2 Starting the base case of vector append . 68
7.3.3 Injectivity reasoning . 68
7.3.4 Finishing the base case of vector append . 69
7.3.5 Finishing vector append . 69

7.4 Binary Search Trees . 70
7.5 Summary . 71
7.6 Exercises . 71

4

8 Specificationality and Dependently Typed Proving 73
8.1 Preview . 73
8.2 Specificationality for Datatypes . 74

8.2.1 Specificationality for vectors . 74
8.2.2 Specificationality for binary search trees . 75

8.3 Existential Elimination in Terms . 76
8.4 Induction Over Indexed Datatypes . 77
8.5 Dependently Typed Proving . 78

8.5.1 The base case . 79
8.5.2 Case-proofs in the step case . 79
8.5.3 The first subcase . 80
8.5.4 The third subcase . 80
8.5.5 The second subcase . 81

8.6 Hypjoin . 83
8.6.1 Default clauses . 85
8.6.2 Finishing the bst proof . 85

8.7 Summary . 85

9 Resource Management with CARRAWAY 87
9.1 What is a Resource? . 87
9.2 CARRAWAY Overview . 88
9.3 Reference Counting for Inductive Data . 89
9.4 Reference Counting in CARRAWAY . 90
9.5 Programming with Reference-Counted Data . 91
9.6 Pinning References and owned . 92
9.7 Standard Input . 94
9.8 Lists and Polymorphism . 96
9.9 Exercises . 96

10 Compiling CARRAWAY 99
10.1 A Restriction on Functions . 99
10.2 Linearization . 100

10.2.1 The linearization algorithm . 101
10.2.2 An example execution of the linearization algorithm . 102

10.3 Compiling Inductive Datatypes . 105
10.3.1 Allocating, clearing, and deleting with malloc . 105
10.3.2 Allocating, clearing, and deleting with free lists . 106

10.4 Watching C Code Execute with gdb . 108
10.5 Exercises . 109

5

6

Chapter 1

Introduction

1.1 Verified Programming
Software errors are estimated to cost the U.S. economy $60 billion a year, and they contribute to computer security
vulnerabilities which end up costing U.S. companies a similar amount [12, 15]. Possibly buggy software cannot be
used for safety critical systems like biomedical implants, nuclear reactors, airplanes, and utilities infrastructure, at
least not without costly backup mechanisms to handle the case of software failure. These reasons alone are certainly
enough to motivate our efforts to eliminate the possibility of bugs from our software.

But there is another reason to seek to create software that is absolutely guaranteed to be free from errors: the basic
desire we have as computer scientists to create excellent software. How dissatisfying it is to write code that we know
we cannot truly trust! Even if we test it heavily, it may still fail. It has famously been said that testing can establish the
presence of bugs, but not their absence: we might always have missed that one input scenario that breaks the system.
For anyone who loves the construction of elaborate virtual edifices and intricate logical structures, verification has to
be an addicting activity.

Indeed it is. The approach we will follow in this book is to construct, along with our software, proofs that the
software is correct. These proofs are formal artifacts, just like programs. The compiler checks that they are completely
logically sound – no missing cases or incorrect inferences, for example – when it compiles our code. If the proofs
check, then we can be much more confident that our software is correct. Of course, it is always possible there is a bug
in the compiler (or in the operating system or standard libraries the compiler relies on), but assuming there is not, then
we know our code truly has the properties we have proved it has. No matter what inputs we throw at it, it will always
behave as our theorems promise us it will.

Constructing programs and proofs together is, quite possibly, the most complex engineering activity known to
humankind. It can be quite challenging, and at times frustrating, for example when proofs fail to go through not
because the code is buggy, but because the property one wishes to prove must be carefully rephrased. But building
verified software is extremely rewarding. The mental effort required is very stimulating, even if we will never again
write a line of machine-checked proof. Furthermore, even if we verify only fairly modest properties of a piece of code
– and any verification is necessarily incomplete, since can never exhaust the things we might potentially wish to prove
about a piece of code – it is my experience that even lightly verified code tends to work much, much better right from
the start than unverified code.

1.2 Functional Programming
Mainstream programming languages like JAVA and C++, while powerful and effective for many applications, pose
problems for program verification. This is for several reasons. First, these are large languages, with many different
features. They also come with large standard libraries, which have to be accounted for in order to verify programs that
use them. Also, they are based on programming paradigms for which practically effective formal reasoning principles
are still being worked out. For example, reasoning about programs even with such a familiar and seemingly simple

7

feature as mutable state is not at all trivial. Mutable state means that the value stored in a variable can be changed later.
The reader perhaps has never even dreamed there could be languages where this is not the case (where once a variable
is assigned a value, that value cannot be changed). We will study such a language in this chapter. Object-orientation
of programs creates additional difficulties for formal reasoning.

Where object-oriented languages are designed around the idea of an object, functional programming languages
are designed around the idea of a function. Modern examples with significant user communities and tool support
include CAML (pronounced “camel”, http://caml.inria.fr/) and HASKELL (http://www.haskell.org/). HASKELL is par-
ticularly interesting for our purposes, because the language is pure: there is no mutable state of any kind. Indeed,
HASKELL programs have a remarkable property: any expression in a program is guaranteed to evaluate in exactly
the same way every time it is evaluated. This property fails magnificently in mainstream languages, where expres-
sions like “gettimeofday()” are, of course, intended to evaluate differently each time they are called. Reasoning
about impure programs requires reasoning about the state they depend on. Reasoning about pure programs does
not, and is thus simpler. Nevertheless, pure languages like HASKELL do have a way of providing functions like
“gettimeofday()”. We will consider ways to provide such functionality in a pure language in a later chapter.

1.3 What is GURU?
GURU is a pure functional programming language, which is similar in some ways to Caml and Haskell. But GURU
also contains a language for writing formal proofs demonstrating the properties of programs. So there are really two
languages: the language of programs, and the language of proofs. When the compiler checks a program, it computes
a type for it, just as compilers for other languages like JAVA do. But in GURU, such types can be significantly richer
than in mainstream or even most research programming languages. These types are called dependent types, and they
can express non-trivial semantic properties of data and functions. Analogously, when the compiler checks a proof, it
computes a formula for it, namely the formula the proof proves. So we really have four kinds of expressions in GURU:
programs (which we also call terms) and their types; proofs and their formulas.

GURU is inspired largely by the COQ theorem prover, used for formalized mathematics and theoretical computer
science, as well as program verification [14, 1]. Like COQ, GURU has syntax for both proofs and programs, and
supports dependent types. GURU does not have as complex forms of polymorphism and dependent types as COQ does.
But GURU supports some features that are difficult or impossible for COQ to support, which are useful for practical
program verification. In COQ, the compiler must be able to confirm that all programs are uniformly terminating: they
must terminate on all possible inputs. We know from basic recursion theory or theoretical computer science that this
means there are some programs which really do terminate on all inputs that the compiler will not be able to confirm
do so. Furthermore, some programs, like web servers or operating systems, are not intended to terminate. So that
is a significant limitation. Other features GURU has that COQ lacks include support for functional modeling of non-
functional constructs like destructive updates of data structures and arrays; and better support for proving properties
of dependently typed functions.

So GURU is a verified programming language. In this book, we will also refer to the open-source project consisting
of a compiler for GURU code, the standard library of GURU code, and other materials as “GURU” (or “the GURU
project”). Finally, the compiler for GURU code, which includes a type- and proof-checker, as well as an interpreter, is
called guru. We will work with version 1.0 of GURU.

1.4 Installing GURU

This book assumes you will be using GURU on a Linux computer, but it does not assume much familiarity with Linux.
To install GURU, first start a shell. Then run the folllowing SUBVERSION command:

svn checkout http://guru-lang.googlecode.com/svn/branches/1.0 guru-lang

This will create a subdirectory called guru-lang of your home directory. This directory contains the JAVA source
code for GURU version 1.0 itself (guru-lang/guru), the standard library written in GURU (guru-lang/lib),

8

this book’s source code (guru-lang/doc), and a number of tests written in GURU (guru-lang/tests). A few
things in the distribution currently depend on its being called guru-lang, and residing in your home directory.

Before you can use GURU, you must compile it. To do this, in your shell, you should change to the guru-lang
directory. Then run the command make from the shell. This will invoke the JAVA compiler to compile the JAVA source
files in guru-lang/guru. After this is complete, you can run guru-lang/bin/guru from the shell to process
GURU source files. This will be further explained in Section 2.2.2 below.

1.5 The Structure of This Book
We begin with monomorphic functional programming in GURU. Monomorphic means that code operates only over
data of specific known types. We will see further how to write proofs demonstrating that such functions satisfy prop-
erties we might be interested in verifying. Next, we consider polymorphic, or generic, programming, where code may
operate generically over data of any type, not known in advance by the code. We again see how to write proofs showing
that such functions have the properties we might be interested in. The next step is dependently typed programming.
Here, the types of data and functions themselves capture the properties we are interested in verifying. There is no
separate proof to write for such properties, rather the program contains proofs to help the type checker check that the
code really meets its specification. We will then see how to write additional proofs about dependently typed programs.
Finally, we see how non-functional constructs like updatable arrays are handled in GURU via functional modeling.

Since this book is being used for a class, it contains a few references to matters of course organization. Anyone
reading it who is not part of such a class can, of course, just ignore those references. Also, I will usually begin chapters
with a preview, which gives an advance peek at the chapter’s material; and end with a summary. Feel free to skip
especially the previews, if you prefer not to see the material without a full explanation: all the material is explained in
detail in the chapter.

1.6 Acknowledgments
The following people, listed alphabetically, have assisted me with with either the theory or implementation of GURU or
its standard library: Morgan Deters, Henry Li, Todd Schiller, Timothy Simpson, Daniel Tratos, and Edwin Westbrook.
This research has been partially supported by the National Science Foundation under grant CCF-0448275.

9

10

Chapter 2

Monomorphic Functional Programming

Like most other functional programming languages, the heart of the GURU’s programming language is very compact
and simple: we can define inductive datatypes, write (recursive) functions, decompose inductive data using a simple
pattern-matching construct, and apply (aka, call) functions. That is essentially it. Recursion is such a powerful
idea that even with such a simple core, we can write arbitrarily rich and complex programs. We will consider first
inductive datatypes, then non-recursive functions, pattern matching, and finally recursive functions. When we turn to
polymorphic and especially dependently typed programming in later chapters, we will have to revisit all these concepts
(inductive types, recursive functions, pattern matching, and function applications), which become richer in those richer
programming settings. So the syntax in this chapter will be enriched in later chapters.

2.1 Preview
For those who like an overview in advance, here briefly is the syntax for the programming features we will explore in
this chapter. (For those who dislike reading things without a full explanation, just skip this section and you will see it
all in great detail in the rest of the chapter.)

• Inductive datatypes are declared using a command like this one, for declaring the unary natural numbers:

Inductive nat : type :=
Z : nat

| S : Fun(x:nat).nat.

• Applications of functions to arguments are written like the following, for calling the plus function (which is
defined, not built-in) on x and y:

(plus x y)

• Non-recursive functions like this one to double an input x are written this way:

fun(x:nat). (plus x x)

• Pattern matching on inductive data is written as follows, where we have one match-clause for when x is Z, and
another for when it is S x’ for some x’. This is returning boolean true (tt) if x is Z, and boolean false (ff)
otherwise:

match x with
Z => tt

| S x’ => ff
end

11

• Recursive functions like plus can be written with this syntax:

fun plus(n m : nat) : nat.
match n with

Z => m
| S n’ => (S (plus n’ m))
end

2.2 Inductive Datatypes

At the heart of functional programming languages like CAML and HASKELL – but not functional languages like
LISP and its dialects (e.g., SCHEME) – are user-declared inductive datatypes. An inductive datatype consists of data
which are incrementally and uniquely built up using a finite set of operations, called the constructors of the datatype.
Incrementally built up means that bigger data are obtained by gradual augmentation from smaller data. Uniquely
means that the same piece of data cannot be built up in two different ways. Let us consider a basic example.

2.2.1 Unary natural numbers

The natural numbers are the numbers 0, 1, 2, We typically write numbers in decimal notation. Unary notation is
much simpler. Essentially, a number like 5 is represented by making 5 marks, for example like this:

| | | | |

A few questions arise. How do we represent zero? By zero marks? It is then hard to tell if we have written zero or
just not written anything at all. We will write Z for zero. Also, how does this fit the pattern of an inductive datatype?
That is, how are bigger pieces of data (i.e., bigger numbers) obtained incrementally and uniquely from smaller ones?
One answer is that a number like five can be viewed as built up from its predecessor 4 by the successor operation,
which we will write S. The successor operation just adds one to a natural number. In this book, we will write the
application of a function f to an input argument x as f x or (f x). This is in contrast to other common mathematical
notation, where we write f(x) for function application. So the five-fold application of the successor operation to zero,
representing the number 5, is written this way:

(S (S (S (S (S Z)))))

Every natural number is either Z or can be built from Z by applying the successor operation a finite number of
times. Furthermore, every natural number is uniquely built that way. This would not be true if in addition to Z and
S, we included an operation P for predecessor. In that case, there would be an infinite number of ways to build every
number. For example, Z could be built using just Z, or also in these ways (and others):

(S (P Z))
(S (S (P (P Z))))
(S (S (S (P (P (P Z))))))
. . .

The operations Z and S are the constructors of the natural number datatype.
The simplicity of unary natural numbers comes at a price. The representation of a number in unary is exponentially

larger than its representation in decimal notation. For example, it takes very many slash marks or applications of S
to write 100 (decimal notation) in unary. In contrast, it only takes 3 digits in decimal. On the other hand, it is much
easier to reason about unary natural numbers than binary or decimal numbers, and also easier to write basic programs
like addition. So we begin with unary natural numbers.

12

2.2.2 Unary natural numbers in GURU

GURU’s standard library includes a definition of unary natural numbers, and definitions of standard arithmetic func-
tions operating on them. To play with these, first create a subdirectory called scratch of your home directory where
you will keep scratch GURU files (we will later use such a subdirectory for homework and the project, so we will
start off that way for uniformity). Then start up a text editor, and create a new file in your scratch subdirectory called
test.g. Start this file with the following text:

Include "../guru-lang/lib/plus.g".

This Include-command will tell guru to include the file plus.g from the standard library. Then include the
following additional command:

Interpret (plus (S (S Z)) (S (S Z))).

This Interpret-command tells GURU to run its interpreter on the given expression. The interpreter will evaluate
the expression to a value, and then print the value. This expression is an application of the function plus, which we
will see how to define shortly, to 2 and 2, written in unary. Naturally, we expect this will evaluate to 4, written in unary.

To run guru on your test.g file, first make sure you have saved your changes to it. Then, start a shell, and run
the following command in your home directory

guru-lang/bin/guru scratch/test.g

This runs the guru tool on your file. You should see it print out the expected result of adding 2 and 2 in unary:

(S (S (S (S Z))))

The declaration of the unary natural numbers is in guru-lang/lib/nat.g, which is included by the file
plus.g which we have included here. If you look in nat.g, you will find at the top:

Inductive nat : type :=
Z : nat

| S : Fun(x:nat).nat.

This is an Inductive-command. It instructs GURU to declare the new inductive datatype nat. The “nat :
type” on the first line of the declaration just tells GURU that nat is a type. We will see other examples later which
use more complicated declarations than just “: type”. In more detail, “nat : type” means that type is the classifier
of nat. The concept of classifier is central to GURU. For example, the next two lines declare the classifiers for Z (zero)
and S (successor). So what is a classifier? In GURU, some expressions are classifiers for others. For example, type
is the classifier for types. Following the processing of this Inductive-command, we will also have that nat is the
classifier for unary natural numbers encoded with Z and S. The classifier for S states that it is a function (indicated with
Fun) that takes in an input called x that is a nat, and then produces a nat. Generally speaking, classifiers partition
expressions into sets of expressions that have certain similar properties. Every expression in GURU has exactly one
classifier.

An additional simple piece of terminology is useful. The constructor Z returns a nat as output without being
given any nat (or any other data) as input. In general, a constructor of a type T which has the property that it returns
a T as output without requiring a T as input is called a base constructor. In contrast, S does require a nat as input. In
general, a constructor of a type T which requires a T as input is called a recursive constructor.

We should note finally that GURU does not provide decimal notation for unary natural numbers. Indeed, GURU
currently does not provide special syntax for describing any data. There are no built-in datatypes in GURU: all data
are inductive, constructed by applying constructors (like S and Z) to smaller data.

13

2.3 Non-recursive Functions

Suppose we want to define a doubling function, based on the plus function we used before. We have not seen how to
define plus yet, since it requires recursion and pattern matching. But of course, we can write a function which calls
plus, even if we do not know how plus is written. The doubling function can be written like this:

fun(x:nat).(plus x x)

Let us examine this piece of code. First, “fun” is the keyword which begins a function, also called a fun-term. After
this keyword come the arguments to the function, in parentheses. In this case, there is just one argument, x. Arguments
must be listed with their types (with a colon in between). In this case, the type is nat. After the arguments we have a
period, and then the body of the fun-term. The body just gives the code to compute the value returned by the function.
In this case, the value returned is just the result of the application of plus to x and x, for which the notation, as we
have already seen, is (plus x x).

To use this function in GURU, try the following. In your scratch subdirectory (of your home directory), create a
file test.g, and begin it with

Include "../guru-lang/lib/plus.g".

As for the example in Section 2.2.2 above, this includes the definitions of nat and plus. Next write:

Interpret (fun(x:nat).(plus x x) (S (S Z))).

Save this file, and then from your home directory run GURU on your file:

guru-lang/bin/guru scratch/test.g

You should see it print out the expected result of doubling 2, in unary:

(S (S (S (S Z))))

This example illustrates the fact that fun(x:nat).(plus x x) is really a function, just like plus. Just as we
can apply plus to arguments x and y by writing (plus x x), we can also apply fun(x:nat).(plus x x)
to an argument (S (S Z)) by writing (fun(x:nat).(plus x x) (S (S Z))), as we did in this example.

2.3.1 Definitions

Most often we write a function expecting it to be called in multiple places in our code. We would like to give the
function a name, and then refer to it by that name later. In GURU, this can be done with a Define-command. To
demonstrate this, add to the bottom of test.g the following:

Define double := fun(x:nat).(plus x x).

Interpret (double (S (S Z))).

The Define-command assigns name double to the fun-term. We can then refer to that function by the name
double, as we do in the subsequent Interpret-command. If you run GURU on test.g, you will see the same
result for this Interpret-command as we had previously: (S (S (S (S Z)))).

14

2.3.2 Multiple arguments
The syntax for functions with multiple arguments is demonstrated by this example:

Define double_plus := fun(x:nat)(y:nat). (plus (double x) (double y)).

This function is supposed to double each of its two arguments, and then add them. The nested application (plus
(double x) (double y)) does that. The fun-term is written with each argument and its type between paren-
theses, as this example shows. There is a more concise notation when consecutive arguments have the same type,
demonstrated by:

Define double_plus_a := fun(x y:nat). (plus (double x) (double y)).

Multiple consecutive arguments can be listed in the same parenthetical group, followed by a colon, and then their type.

2.3.3 Function types
You can see the classifier that GURU computes for the double function as follows. In your test.g file (in your
home directory, beginning with an Include-command to include plus.g, as above), write the following:

Define double := fun(x:nat).(plus x x).

Classify double.

If you (save your file and then) run GURU on test.g, it will print

Fun(x : nat). nat

This is a Fun-type. Fun-types classify fun-term by showing the input names and types, and the output type. We can
see that GURU has computed the (correct) output type nat for our doubling function.

Earlier it was mentioned that every expression in GURU has a classifier. You may be curious to see what the
classifier for Fun(x : nat). nat is. So add the following to your test.g and re-run GURU on it:

Classify Fun(x : nat). nat.

You will see the result type. If you ask GURU for the classifier of type, it will tell you tkind. If you ask for
the classifier of tkind, GURU will report a parse error, because tkind is not an expression. So the classification
hierarchy stops there. We have the following classifications (this is not valid GURU syntax, but nicely shows the
classification relationships):

fun(x:nat).(plus x x) : Fun(x:nat).nat : type : tkind

2.3.4 Functions as inputs
Now that we have seen how to write function types, we can write a function that takes in a function f of type
Fun(x:nat).nat and applies f twice to an argument a:

Define apply_twice := fun(f:Fun(x:nat).nat)(a:nat). (f (f a)).

There is no new syntax here: we are just writing another fun-term with arguments f and a. The difference from
previous examples, of course, is that the type we list for f is a Fun-type. An argument to a fun-term (or listed in
a Fun-type) can have any legal GURU type, including, as here, a Fun-type. You can test out this example like this
(although before you run it, try to figure out what it will compute):

Interpret (apply_twice double (S (S Z))).

15

2.3.5 Functions as outputs
Functions can be returned as output from other functions. This is actually already possible with functions we have
seen above. For example, consider the plus function. Its type, as revealed by a Classify-command, is

Fun(n : nat)(m : nat). nat

Now try the following:

Classify (plus (S (S Z))).

GURU will say that the classifier of this expression is:

Fun(m : nat). nat

This example shows that we can apply functions to fewer than all the arguments they accept. Such an application is
called a partial application of the function. In this case, plus accepts two arguments, but we can apply it to just the
first argument, in this case (S (S Z)). The result is a function that is waiting for the second argument m, and will
then return the result of adding two to m. This point can be brought out with the following:

Define plus2 := (plus (S (S Z))).

Interpret (plus2 (S (S (S Z)))).

We define the plus2 function to be the partial application of plus to (S (S Z)), and then interpret the application
of plus2 to three. GURU will print five (in unary), as expected.

For another example of using functions as outputs, here is a function to compose two functions, each of type
Fun(x:nat).nat:

fun(f g : Fun(x:nat).nat). fun(x:nat). (f (g x))

The inputs to this fun-term are functions f and g. The body, which computes the output value returned by the
function, is

fun(x:nat). (f (g x))

This is, of course, a function that takes in input x of type nat, and returns (f (g x)). In GURU, what we have
written as the definition of our composition function is equivalent to:

fun(f g : Fun(x:nat).nat)(x:nat). (f (g x))

That is, due to partial applications, we can write our composition function as a function with three arguments: f, g,
and x. We can then just apply it to the first two, to get the composition.

2.3.6 Comments
This is not a bad place to describe the syntax for comments in GURU. To comment out all text to the end of the line,
we use %. For example:

Define plus2 := (plus (S (S Z))). % This text here is in a comment.

Comments can also be started and stopped by enclosing them betwee %- and -%, as in:

%- Comments can also be written using
this syntax. -%

Comments can be placed anywhere in GURU input, including in the middle of expressions, like this:

Interpret (plus %- here is a comment -% Z).

Finally, it is legal to nest comments.

16

2.4 Pattern Matching
Like other functional languages that rely on inductive datatypes, GURU programs can use pattern matching to analyze
data by taking it apart into its subdata. To demonstrate this, we will write a simple function to test whether a nat is
zero (Z) or not. For this, we need the definition of booleans, provided in guru-lang/lib/bool.g. This file is
included by nat.g (included by plus.g), so we do not need to include bool.g explicitly. It is worth noting that it
is not an error in GURU to include a file multiple times: GURU keeps track of which files have been included (by their
full pathnames), and ignores requests after the first one to include the file. So suppose our test.g file in our home
directory starts off as above:

Include "../guru-lang/lib/plus.g".

This will pull in the declaration of the booleans, which is:

Inductive bool : type :=
ff : bool

| tt : bool.

Just as for the declaration of nat above, this Inductive-command instructs GURU to add constructors tt (for true)
and ff (for false), both of type bool. Now we can define the iszero function as follows:

Define iszero :=
fun(x:nat).

match x with
Z => tt

| S x’ => ff
end.

Let us walk through this definition. First, we see it is written across several lines, with changing indentation. Whites-
pace in GURU, as in most sensible languages, has no semantic impact. So the indentation and line breaks are just
(intended) to make it easier to read the code. It would have the same meaning if we wrote it all on one line, like this:

Define iszero := fun(x:nat). match x with Z => tt | S x’ => ff end.

To return to the code: we have a Define-command, just as we have seen above. We are defining iszero to be a
certain fun-term. This fun-term takes in input x of type nat, and then it matches on x. Here is where the pattern
matching comes into play.

We have “match x with”. In this first part of the match-term, we are saying we want to pattern match on x.
We are allowed to match on anything whose type is an inductive type (i.e., declared with an Inductive-command).
We cannot match on functions, for example, because they have Fun-types, which are not inductive. The term we are
matching on is called the scrutinee (because the match-term is scrutinizing – i.e., analyzing – it).

Next come the match-clauses, separated by a bar (“|”):

Z => tt
| S x’ => ff

We have one clause for each constructor of the scrutinee’s type. The scrutinee (x in “match x with”) has type
nat, which has constructors Z and S, so we have one clause for each of those constructors. It is required in GURU to
list the clauses in the same order as the constructors were declared in the Inductive-command which declared the
datatype. Our declaration of nat (back in Section 2.2.2) lists Z first and then S, so that explains the ordering of the
match-clauses here.

Each match-case starts out with a pattern for the corresponding constructor. The pattern starts with the construc-
tor, and then lists different variables for each of the constructor’s arguments. So we have the patterns Z and S x’.
The first pattern has no variables, since Z takes no arguments. The second pattern has the single variable x’, for the

17

sole argument of S. These variables are called pattern variables. They are declared by the pattern, and their scope is
the rest of the match-clause.

After the pattern, each match-clause has “=>”, and then its body. This is similar to the body of a fun-term: it
gives the code to compute the value returned by the function. For our iszero function, we return tt in the zero (Z)
case, and ff in the successor (S) case. If we then run the following example, we will get the expected value of tt:

Interpret (iszero Z).

2.4.1 A note on parse errors

GURU generally tries to provide detailed error messages. One exception, unfortunately, is parse errors. These are
errors in syntax, for example, writing something like “(plus Z Z” where the closing parenthesis is missing. Let
us see one example of the kind of error message GURU will give for a parse error. Suppose we write our iszero
function, but forget to put a period after the list of arguments:

Define iszero :=
fun(x:nat)

match x with
Z => tt

| S x’ => ff
end.

GURU will print an error message like the following in this case:

"/home/stump/guru-lang/doc/test.g", line 5, column 4: parse error.
Expected "." parsing fun term

The error message begins with the location of the error, including the file where the error occurred, the line number
and column within that line:

"/home/stump/guru-lang/doc/test.g", line 5, column 4

Next comes a very short statement of the rough kind of error in question. This is indeed a parse error, meaning that it
is arose while trying to parse the text in test.g into a legal GURU expression. Then comes the more detailed error
message, which in this case as for most parse errors is pretty short:

Expected "." parsing fun term

This happens to be somewhat informative, but regrettably, especially for parse errors, that is not often the case.

2.5 Recursive Functions
We are finally in a position now to see how to define recursive functions. GURU does not have iterative looping
constructs like while- or for-loops. Instead, all looping is done by recursion. Here is the code for plus, taken
from guru-lang/lib/plus.g:

fun plus(n m : nat) : nat.
match n with

Z => m
| S n’ => (S (plus n’ m))
end

18

This is a recursive fun-term. There are two main differences from the non-recursive fun-terms we have seen above.
First and foremost, the “fun” keyword is followed by a name for the recursive function. This name can be used in
the body of the function to make a recursive call. We see it used in the second match-clause. We will walk through
the match-clauses in just a moment, but before that we note the second distinctive feature of a recursive fun-term:
after the argument list (“(n m : nat)”), there is colon and then the return type of the fun-term is listed (“ :
nat”). Since plus returns a nat, that is the return type. The reason GURU requires us to list the return type here for
a recursive fun-term is that it makes it much easier to type check the term. Wherever plus is called in the body of
the function, we know exactly what its input types and output type are. If GURU allowed us to omit the output type
here at the start of the fun-term, then the type checker would not know the type of the value that is being computed
by the recursive call to plus in the second match-clause.

Syntactically, there is nothing else new in the code. But let us try to understand how it manages to add two unary
natural numbers. The code is based on the following two mathematical equations:

0 + m = m (2.1)
(1 + n′) + m = 1 + (n′ + m) (2.2)

These are certainly true statements about addition. But how do they relate to the fun-term written above? Let us see
how to transform them step by step into that fun-term. First, we should recognize that 0 and 1 + x are just different
notation for zero and successor of x. If we use the notation we have used in GURU so far for these, the mathematical
equations turn into:

Z+ m = m

(S n′) + m = (S (n′ + m))

Now, we do not have infix notation in GURU for functions, so let us replace the infix + symbol with a prefix plus:

(plus Z m) = m

(plus (S n’) m) = (S (plus n’ m))

Now look at the right hand sides of the equations we have derived by this simple syntactic transformation. They are
exactly the same as the bodies of the match-clauses for the recursive fun-term for plus. The final connection can
be made between these equations and that fun-term by observing that the equations are performing a case split on the
first argument (called n in the fun-term): either it is Z, or else it is S n’ for some n’. This case split is done in the
fun-term using pattern matching. The final point to observe is that where we use plus on the right hand side of the
second equation, we are making a recursive call to plus. This corresponds to the recursive call in the fun-term. In
fact, we can observe that with each recursive call, the first argument gets smaller. It is (S n’) to start with, and then
decreases to n’, which is structurally smaller than (S n’). Structurally smaller means that n’ is actually subdata
of (S n’). While we do not need this observation now, it will be critical when reasoning with plus, since it implies
that plus is a total function. That is, plus is guaranteed to terminate with a value for all inputs we give it.

2.6 Summary
In this chapter, we have seen the four basic programming features of GURU, in the setting of monomorphic program-
ming:

• inductive datatypes, like nat for unary natural numbers, which has constructors Z for zero and S for the
successor of a number;

• applications like (S Z) of a function (which happens to be a constructor) S to argument Z, and like (plus x
y) for applying the function plus to arguments x and y;

• non-recursive functions, like the doubling function fun(x:nat).(plus x x), and recursive ones, like
plus; and

19

• pattern matching, which allows us to analyze (i.e., take apart) a piece of data (the scrutinee) into its subdata.

We have also seen how to run GURU on simple examples, drawing on code from the GURU standard library (like the
code for plus).

2.7 Exercises
1. The standard library files in guru-lang/lib/ define several other functions that operate on unary natural

numbers. List at least three, and say what you think they do.

2. The plus function defined above (Section 2.5) analyzes its first argument. Write a similar function plus’
that also adds two natural numbers, but analyzes its second argument. Test your function by adding 2 and 3 (in
unary), using the appropriate Interpret-command and plus’.

3. Define a inductive datatype called day, with one constructor for each day of the week. Then define a function
next day which takes a day as input and returns a day as output. Your function should return the next day
of the week. Test your function by getting the next day after Saturday (using an Interpret-command).

4. Using the function next day, write a function nth day of type Fun(d:day)(n:nat).day. Your func-
tion should return the n’th next day after the given day d. For example, if d is Monday and n is 2, you should
return Wednesday. Test your function by getting the 2nd day after Monday.

5. Look at the function mult defined in mult.g. Write mathematical equations corresponding to the fun-term
for mult, like those labeled (2.1) in Section 2.5 above. Give a brief informal explanation of why those equations
are true mathematical facts.

6. The following equations return a tt or ff depending on whether or not two nats are in a certain relationship
to each other. What is that relationship?

(f Z Z) = ff
(f (S x) Z) = tt
(f Z (S y)) = tt
(f (S x) (S y)) = (f x y)

Define a function (in GURU) to implement these mathematical equations. Hint: because the equations analyze
each argument, you will need to use nested pattern matching. Match first on one argument, and then in each
resulting match-clause, match on the other. Test your function on 2 and 3.

7. The following mathematical equations define the n-fold iteration of a unary (“one argument”) function f on an
argument a:

(iter Z f a) = a
(iter (S n) f a) = f (iter n f a)

First, write down the type (in GURU notation) that you expect iter to have. Next implement iter, and
test your function with this testcase: (iter (S (S (S Z))) double (S Z)), where double is the
doubling function of Section 2.3 above (before you run GURU on this: what do you think it will compute?).

8. Write a function first which, given a function P of type Fun(x:nat).bool returns the smallest natural
number n such that (P n) evaluates to tt. Hint: you will probably need to write a second helper function
which takes as an additional argument the next number to try (for whether P returns tt or ff for that number).

Test your function with the following commands. Here, eqnat is a function, defined in nat.g, which takes
two nats as input and returns tt if they are equal, and ff otherwise). Also, nine is defined in nat.g to be
9 in unary.

20

Include "../guru-lang/lib/mult.g".

Interpret (first fun(x:nat). (eqnat (mult x x) nine)).

Give an informal description of the mathematical relationship between the value this returns and 9.

21

22

Chapter 3

Equational Monomorphic Proving

The material from the last chapter is probably not entirely alien to most readers, since, although the functional pro-
gramming paradigm is quite a bit different from the iterative imperative programming which most computer scientists
know best, it is, after all, still programming. In this chapter, we will move farther afield from what is most of our
experience as programmers, and enter the world of formal, machine-checked proofs about programs. Proofs have
a lot in common with typed programs. Both are written according to certain rules of syntax, and both have a rigid
compile-time semantics: programs must type check, and proofs must proof check. In GURU, the compiler attempts to
compute a formula for a proof in a very similar way as it computes a type for a program. The formula in question is
the one proved by the proof.

Before we begin, it should be noted that the particular style of writing proofs used here is not the only one, and
indeed, there are other styles which are more widely used. For an important example, tools like COQ are based not on
proofs directly, but rather on proof scripts. These are higher level scripts that instruct COQ on how to build the actual
proof. The level of indirection introduced by proof scripts can make life easier for us program provers, at least in the
short run: there is less detail that needs to be written down in a proof script than in a proof. But in the long run, proof
scripts have serious problems: because they are indirect, they are very hard or impossible to read; and they can be
quite brittle, breaking badly under even minor changes to the program or proof in question. In contrast, fully detailed
proofs make the proof information more explicit, and so are – while still quite difficult to read, usually – somewhat
more readable than proof scripts. Also, minor changes do not so immediately lead to broken proofs.

The focus in this chapter is on equational reasoning. In Chapter 5 we will look at logical reasoning. The distinction
I am drawing here is between reasoning which is primarily about the equational relationships between terms (that is
equational reasoning); and reasoning which is primarily about the logical relationships between formulas. An example
of equational reasoning is proving that for all nats x, x plus zero equals x. An example of logical reasoning is proving
that if x and y are non-zero, then so is (plus x y).

The most powerful and most difficult to master method of proof is proof by datatype induction, introduced in
Chapter 4. Every program prover has to cope with this proof method, and learn to apply it effectively. We will begin
in this chapter, however, with much more manageable forms of proof.

For the next several chapters, we will be using very simple examples of programs, like the addition program that
adds two numbers. This is certainly not the most exciting program, but it seems to provide a good balance of simplicity
and interesting theorems to prove. Please be assured that we will get to more complex and realistic programming
examples after we get the basics of monomorphic programming and proving down.

3.1 Preview

We consider two of the five kinds of formulas in GURU (the rest are introduced in the next chapter):

• equations, like { (plus Z Z) = Z }. This one states that zero (Z) plus zero equals zero. There are also
disequations {t1 != t2} stating that two entities t1 and t2 are not equal.

23

• Forall-formulas, like Forall(x:nat).{ (plus Z x) = x}. This one states that zero plus x equals
x, for any nat x. This formula is provable in GURU, since indeed, adding zero to any number just returns that
number.

The forms of proof covered in this chapter are:

• join t1 t2, where t1 and t2 are terms. This tries to prove the equation {t1 = t2} just by evaluating t1 and t2
with the GURU interpreter, and seeing if the results are equal. We use partial evaluation to evaluate terms which
contain variables.

• foralli(x:nat).P, where P is another proof, is a Forall-introduction: it lets us prove the formula
Forall(x:nat).F, when P is a proof of F using an arbitrary x, about which nothing is known. If we have a
proof P of a Forall-formula, we can instantiate the Forall quantifier, to replace the quantified variable with
a value term t, using the syntax [P t].

• refl t: this proves {t = t}.

• symm P: if P proves {t1 = t2} , then the symm-proof proves {t2 = t1}.

• trans P1 P2: if P1 proves {t1 = t2} and P2 proves {t2 = t3}, then the trans-proof proves {t1 = t3}.

• cong t* P: if P proves {t1 = t2}, then the cong-proof proves {t ∗ [t1] = t ∗ [t2]}, where t ∗ [t1] is our
notation (not GURU’s) for the result of substituting t1 for a special variable ∗ occurring in term context t∗.

• case-proofs, which are syntactically quite similar to match-terms, and allow us to prove a theorem by cases
on the form of a value in an inductive datatype.

3.2 Proof by Evaluation
Probably the simplest form of proof in GURU, and other similar tools, is proof by evaluation. For example, we
have seen above that (plus (S (S Z)) (S (S Z))) evaluates using an Interpret-command to (S (S
(S (S Z)))). Let us write two for (S (S Z)) and four for (S (S (S (S Z)))) – in fact, nat.g makes
such definitions. Then we can easily record this fact as a theorem, like this:

Define plus224 := join (plus two two) four.

Classify plus224.

This code defines plus224 to be a certain proof. The proof is a join-proof. The syntax for such a proof is
join t1 t2, where t1 and t2 are terms. Here, t1 is (plus two two), and t2 is four. If you run GURU on this
example, it will print, in response to the Classify-command, the following:

{ (plus two two) = four }

This is GURU syntax for an equation. An equation is provable in GURU only if the left and right hand sides both
diverge (run forever), or both converge to a common value. A join-proof join t1 t2 attempts to prove the equation
{t1 = t2} by evaluating t1 and t2 (using the interpreter), and checking to see if the results are equal. In this case, they
are, since (plus two two) evaluates to four, and of course, four also evaluates to four.

Based on this description of how join-proofs work, we can already see how to prove some slightly less trivial
theorems: we do not have to put a value like four on the right hand side, but instead, we can put some other term that
evaluates to the same value as the left hand side. So we could prove the formula

{ (plus two two) = (plus one three) }

using this join-proof:

24

join (plus two two) (plus one three)

Proof by evaluation may seem rather trivial, but since in GURU we are reasoning about programs based directly on
their operational behavior – that is, on the behavior they exhibit when they are evaluated – it is in some sense the
cornerstone of all other forms of proof we might want to use. Our reasoning about programs ultimately is based on
running them.

3.3 Foralli and Proof by Partial Evaluation
Our next proof method is a slight extension of proof by evaluation, based on the following observation: we often do
not need all the inputs to be known values in order to see how a program will run. Let us recall, for example, the plus
function:

fun plus(n m : nat) : nat.
match n with

Z => m
| S n’ => (S (plus n’ m))
end

We can see here that it is not necessary to know what m is in order to evaluate (plus n m). We do need to know
what n is, because plus pattern-matches on it right away. But the code for plus does not inspect m at all: it never
pattern-matches on m, and it does not call any other functions which might do so. That suggests that we should be able
to prove theorems like

{ (plus Z m) = m }

just by evaluating the application (i.e., (plus Z m)). Since we usually think of evaluation as requiring all arguments
to be known values, we call this proof by partial evaluation (as this is the name used in computer science for evaluating
programs with some arguments left as unknowns).

To demonstrate proof by evaluation, we have to be able to introduce an unknown value m into our proof. One way
to do this is with a foralli-proof. This foralli stands for “Forall-introduction”, and it is a simple way to prove
that some statement is true for every m of some type. For our example, we will prove:

Forall(m:nat). { (plus Z m) = m}

This is a Forall-formula. It says that for every m of type nat, (plus Z m) = m. Here is how we prove this
formula in GURU, using join and foralli:

Define Zplus := foralli(m:nat). join (plus Z m) m.

Classify Zplus.

If you run GURU on this, it will indeed print out, in response to the Classify-command:

Forall(m : nat) . { (plus Z m) = m }

Let us look at our Zplus proof in more detail. The proof begins with “foralli(m:nat)”. This is quite similar
to a fun-term. Just the way a fun-term shows how to compute an output from any input m, in a similar way a
foralli-proof like this one shows how to prove a formula for any m. Logically speaking, we are going to reason
about an arbitrary nat m, about which we make no constraining assumptions other than that it is indeed a nat. Since
our reasoning will make no assumptions about m, it would work for any nat we chose to substitute for m. It is in this
way that it soundly proves a Forall-formula.

In this case, we are proving the formula {(plus Z m) = m}. That is done by the join-proof, which here is
the body of the foralli-proof. As we noted above, we can evaluate (plus Z m) to m without knowing anything
about m. This is because partial evaluation only needs to evaluate the pattern-match on the first argument (Z), and it
can see that the first clause of the match-term is taken.

25

3.3.1 A note on classification errors

A join-proof works in the case we have just been considering, only because the first argument is a known value, and
plus only inspects that first argument. If we try switching the arguments, we will get a classification error:

Define plusZa := foralli(m:nat). join (plus m Z) m.

Classify plusZ.

If you run this in GURU, you will get a pretty verbose error message (where I have truncated parts of it with “...”):

"/home/stump/guru-lang/doc/test.g", line 20, column 37: classification error.
Evaluation cannot join two terms in a join-proof.
1. normal form of first term: match m by n_eq n_Eq return ...
2. normal form of second term: m

These terms are not definitionally equal (causing the error above):
1. match m by n_eq n_Eq return ...
2. m

Because dealing with compile-time errors is a constant part of our work in typed programming and even more so in
proving, it is worth stopping to take a look at this one. First, as for the parse error example in the previous chapter
(Section 2.4.1), the error message begins with the location where the error occurred, and a brief description of the kind
of error it is. This is a classification error, meaning that the expression in question is syntactically well-formed, but an
error arose trying to compute a classifier for it. Then comes the more detailed error message:

Evaluation cannot join two terms in a join-proof.
1. normal form of first term: match m by n_eq n_Eq return ...
2. normal form of second term: m

This says that the two terms t1 and t2 given to join do not evaluate to the same normal forms – that is, final values
that cannot be further evaluated. We use the terminology “normal form” here instead of “value”, because in partial
evaluation, we might be forced to stop (partially) evaluating before we get a value. This typically happens when we
try to pattern-match on an unknown. Partial evaluation gets stuck in such a case, because it does not know what the
unknown looks like, and so cannot proceed with the pattern-match. The error message here is telling us that the left
hand side evaluated to match m by ..., while the right hand side evaluated to just m. Indeed, this makes sense:
the plus function wants to pattern-match on its first argument, which here is m, and that is where partial evaluation
got stuck, just as I was mentioning.

Finally, whenever an error is due to the failure of two expressions to be the same, we get a further piece of
information:

These terms are not definitionally equal (causing the error above):
1. match m by n_eq n_Eq return ...
2. m

In this case, that does not shed much light on the problem, but in other cases, this information can be very useful. “Def-
initionally equal” is GURU’s terminology for being the same expression, ignoring certain trivial syntactic differences.
For example, one and (S Z) are definitionally equal, since one is defined to be (S Z). Differences in folding or
unfolding definitions (going from (S Z) to one is folding, and vice versa is unfolding) are considered trivial, and so
fall under definitional equality.

26

3.3.2 Terms, types, formulas, and proofs
This is a good place to highlight briefly the fact mentioned earlier that GURU has four distinct classes of expression:

• terms: these constitute programs and data, as described in Chapter 3. An example is (plus Z Z).

• types: these classify terms. Examples are nat and Fun(x:nat).nat.

• proofs: these prove formulas (and formulas classify proofs). We have just seen the examples of join-proofs
for partial evaluation and foralli to prove a universal.

• formulas: these make statements about terms (and, we will see later, also about types). Examples we have seen
so far are equations like { (plus two two) = four }; and Forall-formulas (also called universal
quantifications or universal formulas), like Forall(m:nat). { (plus Z m) = m }.

These classes use different syntax, except for a few commonalities like variables; and so we can generally tell just
by looking at a GURU expression (and not needing to run GURU, for instance) what kind of expression it is: term,
type, proof, or formula. Terms and proofs are similar, and types and formulas are similar: the latter pair classifies the
former pair.

3.3.3 Instantiating Forall-formulas
To return to our methods of proof: we have just defined (in Section 3.3) Zplus to be a proof of the following formula:

Forall(m:nat). { (plus Z m) = m }

When we have a proof of a Forall-formula, we know that something is true for every value we can substitute for
the quantified variable (m in this case). This substitution is called an instantiation of the Forall-formula. There is a
form of proof for instantiating Forall-formulas. It is similar to application of a fun-term, but is written with square
brackets. To instantiate the formula proved above by Zplus with, for example, three, we write:

[Zplus three]

So, our complete test.g file in our scratch subdirectory of our home directory – just to refresh this after all the
previous discussion – can be written like this to demonstrate this instantiation:

Include "../guru-lang/lib/plus.g".

Define Zplus := foralli(m:nat). join (plus Z m) m.

Classify [Zplus three].

In response to the Classify-command, GURU will print:

{ (plus Z three) = three }

In this case, there is no need for instantiation, since we could have proved the same formula just as easily by join
(plus Z three) three. Using instantiation is just for explanatory purposes. We will see a bit later a situation
where using instantiation in a case like this can be necessary.

Now is not a bad time to see what classifies a formula:

Classify { (plus Z three) = three }.

GURU will print: formula. If you ask GURU what the classifier of formula is, it will say: fkind. There is no
classifier of fkind, as it is not considered an expression. So we see that we have these classification relationships for
proofs and formulas:

27

[Zplus three] : { (plus Z three) = three } : formula : fkind

This is similar to the classifications described in Section 2.3.3 above for terms and types:

fun(x:nat).(plus x x) : Fun(x:nat).nat : type : tkind

We call formula and type kinds (the distinction between tkind and fkind is not important in the current version
of GURU).

3.4 Reflexivity, Symmetry and Transitivity
The basic equivalence properties of equality are captured in the refl, symm and trans proof forms. Suppose we
have these definitions, similar to one we had in Section 3.2 above:

Define plus224 := join (plus two two) four.
Define plus413 := join four (plus one three).

These proofs prove:

{ (plus two two) = four }
{ four = (plus one three) }

We can put these two proofs together using a trans-proof:

Classify trans plus224 plus413.

GURU will respond with:

{ (plus two two) = (plus one three) }

If we want to swap the left and right hand side of this equation, we put a symm around our existing proof:

Classify symm trans plus224 plus413.

GURU will respond with:

{ (plus one three) = (plus two two) }

Note that we do not use parentheses here. GURU uses parentheses exclusively for application terms. The parsing rules
for symm and trans determine how things are grouped: the syntax is symm P1 and symm P1 P2, where P1 and
P2 are proofs. Judicious use of indentation is used to improve readability. These example show that there can be more
than one way to prove something: we could have proved the theorems we just got using trans and symm a different
way, namely with join directly.

Here is an example of a refl-proof:

Classify refl (fun loop(b:bool):bool. (loop b) tt).

This proves that

{ (fun loop(b : bool) : bool. (loop b) tt)
= (fun loop(b : bool) : bool. (loop b) tt) }

This example is somewhat interesting, because the term (fun loop(b : bool) : bool. (loop b)
tt) runs forever, as you will see if you run GURU with:

Interpret (fun loop(b : bool) : bool. (loop b) tt).

In most cases, the work of refl t can be done with join t t, but when t runs for a long time or does not
terminate, refl is preferable or even necessary.

28

3.4.1 Error messages with trans-proofs
It is very easy to make a mistake trying to connect two equational subproofs using trans. Let us look at an example,
so it is not shocking when such an error arises. Suppose we have these proofs:

Define plus224 := join (plus two two) four.
Define plus134 := join (plus one three) four.

We cannot, of course, glue them together with trans, because the right hand side of the equation proved by one must
be the same as the left hand side of the equation proved by the other. If we try the following, we will get an error:

Classify trans plus224 plus134.

The error from GURU is:

"/home/stump/guru-lang/doc/test.g", line 12, column 14: classification error.
A trans-proof is attempting to go from a to b and then b’ to c,
where b is not definitionally equal to b’.

1. First equation: { (plus two two) = four }
2. Second equation: { (plus one three) = four }

These terms are not definitionally equal (causing the error above):
1. (S three)
2. (plus one three)

As above, we see the location of the error message first, and the fact that it is a classification error (i.e., the proof is in
the correct syntax, but GURU encountered an error trying to compute a classifier for it). The error message states that
the right hand side of equation 1 is not definitionally equal to the left hand side of equation 2. That is, they are not
syntactically the same expression (ignoring certain minor syntactic differences). Then we see the last part of the error
message:

These terms are not definitionally equal (causing the error above):
1. (S three)
2. (plus one three)

The first term listed is definitionally equal to four, the right hand side of equation 1. The second term is the left hand
side of equation 2. GURU expects these to be definitionally equal, but they are not.

3.5 Congruence
Along with reflexivity, symmetry, and transitivity, the main equational reasoning inference is congruence. Consider
again our simple proof plus224 from above:

Define plus224 := join (plus two two) four.

As we have seen several times now, this proves:

{ (plus two two) = four }

From this, we can also prove:

{ (S (plus two two)) = (S four) }

29

That is, we can prove that the successor of two plus two is equal to the successor of four (namely five). What we
are doing is substituting the left and right hand sides of our first equation into a pattern (S *) to get the second
equation. The pattern is called a term context, and it uses the special symbol ∗ to indicate the position or positions
where the substitution should take place. With these ideas, we can understand the cong form of proof in GURU which
formalizes this congruence reasoning:

Classify cong (S *) plus224.

GURU will respond with the following, as expected:

{ (S (plus two two)) = (S four) }

As another demonstration of cong, try the following in GURU:

Classify cong (plus * *) plus224.

3.6 Reasoning by Cases
With the proof forms we have seen so far, we cannot prove very exciting theorems. For interesting theorems, we
usually have to use induction. Induction involves a form of reasoning by cases. So as a warmup for induction, we will
consider now a proof construct for reasoning by cases, without doing induction. This is the case proof construct.

To demonstrate case-proofs, let us look at a definition of boolean negation:

Define not :=
fun(x:bool).

match x with
ff => tt

| tt => ff
end.

This Define-command defines not to be a function (i.e., a fun-term) that takes input x of type bool and pattern-
matches on it. If x is ff (boolean true), then we return tt for its negation, and vice versa (if it is tt, we return ff).
Notice that we have to list the match-clauses in this order, since that is the order in which the constructors for the
bool datatype are declared, in bool.g:

Inductive bool : type :=
ff : bool

| tt : bool.

We will now see how to prove the following slightly interesting theorem:

Forall(b:bool). { (not (not b)) = b }

Informally, the reasoning needed to prove this theorem is very simple. Suppose we have an arbitrary value b of type
bool. Either b is ff or it is tt, given the declaration of the bool datatype. So suppose b is ff. Then (not (not
b)) is equal to (not (not ff)), which evaluates to ff, which is again equal to b. So by transitivity of equality,
(not (not b)) = b. We can write this down (informally) with the following three equational steps:

(not (not b)) = (not (not ff)) = ff = b

Similar reasoning applies in the case where b is tt.
We can write this proof formally in GURU, as follows:

30

Define not_not : Forall(b:bool). { (not (not b)) = b } :=
foralli(b:bool).

case b with
ff => trans cong (not (not *)) b_eq

trans join (not (not ff)) ff
symm b_eq

| tt => trans cong (not (not *)) b_eq
trans join (not (not tt)) tt

symm b_eq
end.

You can find this theorem in guru-lang/lib/bool.g. We will walk through this and see how it works. First, this
is a Define-command, but it uses one feature of Define that we have not seen previously. We can list a classifier
that the defined expression is supposed to have, and GURU will check for us that it does. So what we have written is
of the form:

Define not_not : expected_classifier := proof.

GURU will compute a formula for the proof, and then make sure that that formula is definitionally equal (i.e., equal
ignoring a few minor syntactic variations, like folding and unfolding defined symbols) to expected classifier.

Looking now at the actual proof that is given in the definition, it is:

foralli(b:bool).
case b with

ff => trans cong (not (not *)) b_eq
trans join (not (not ff)) ff

symm b_eq
| tt => trans cong (not (not *)) b_eq

trans join (not (not tt)) tt
symm b_eq

end.

This is a foralli-proof (see Section 3.3 above). We are assuming an arbitrary value b of type bool, just as in our
informal proof above. The body of the foralli-proof is a case-proof, again corresponding to our informal case
reasoning above. The syntax for a case-proof is very similar to the syntax for a match-term. We are performing a
case analysis on the scrutinee b, and we have one clause for each form of b. The body of each case-clause gives the
proof of the theorem in the case where b equals the pattern listed for the clause. To understand this better, let us look
at the proof given as the body of the clause for ff:

trans cong (not (not *)) b_eq
trans join (not (not ff)) ff

symm b_eq

This consists of the following three subproofs, which are glued together with trans (Section 3.4):

1. cong (not (not *)) b eq

2. join (not (not ff)) ff

3. symm b eq

Let us try to compute what theorem is proved by each of these subproofs. They all use familiar syntax, except that
at this point, we have not seen what b eq is. This is an assumption variable introduced by the case-proof. If the
scrutinee is a symbol (as b is), then the case-proof introduces two assumption variables about b: b eq and b Eq. We
will not use the second until quite a bit later. The variable b eq can be used as a proof in the body of each case-clause

31

that the scrutinee is equal to the pattern. For indeed, when this code is run, if we enter the body of the clause for ff,
say, that can only be because b is, in fact, ff. So for the first of our three subproofs, let us determine what formula it
proves. Our assumption variable b eq proves

{ b = ff }

and we are applying cong to this proof. So the first subproof (i.e., “cong (not (not *)) b eq”) proves

{ (not (not b)) = (not (not ff)) }

The second subproof is a join-proof, proving

{ (not (not ff)) = ff }

Finally, the third subproof is symm b eq. We know symm P just switches the left and right hand side of the equation
proved by P. So here, our symm-proof proves

{ ff = b }

We can see that putting these three steps together with transitivity corresponds to the three informal equational reason-
ing steps we saw above:

(not (not b)) = (not (not ff)) = ff = b

This does indeed prove { (not (not b)) = b }, as required, and completes the proof in the ff case-clause.
The proof in the tt case-clause is similar, except that there, our assumption variable b eq proves

{ b = tt }

and the rest of the proof uses tt instead of ff appropriately.

3.7 Summary

The forms of proof we have seen in this chapter are:

• proof by evaluation and proof by partial evaluation, both written in GURU using the syntax join t1 t2,
which tries to prove { t1 = t2 } by evaluating the two terms to a common normal form. A normal form is
an expression which cannot evaluate further, either because it is a value like three or because evaluation is stuck
trying to pattern match on a variable (during partial evaluation).

• foralli-proofs and instantiation proofs, the latter written like term applications except with square brackets
instead of parentheses. These are for proving a Forall-formula, and for substituting a value for the quantified
variable in a proven Forall-formula, respectively.

• equivalence reasoning and congruence reasoning, using refl, symm, trans, and cong.

• case-proofs for reasoning by cases on the form of a piece of inductive data.

32

3.8 Exercises
1. Include guru-lang/lib/mult.g, and prove the following theorems by evaluation. Here, lt is less-than

and le is less-than-or-equal on nats, defined in nat.g:

• { (mult zero three) = zero }
• { (lt zero three) = tt }
• { (le one three) = tt }

2. Now prove the following, using foralli and join:

Forall(x:nat). { (mult Z x) = Z }

3. Prove the following formula using foralli and join:

Forall(x : nat)(y : nat) . { (lt Z (plus (S x) y)) = tt }

Note that you can introduce multiple variables in a foralli-proof in a similar way as you accept multiple
inputs in a fun-term.

4. The and function defined in bool.g computes the conjunction of two bools. Prove the following theorem
about and:

Forall(x:bool). { (and ff x) = ff }

5. Formulate and prove the theorem that and’ing any boolean with itself just returns that same value.

6. Prove the following formula using foralli and then a case-proof scrutinizing the universally quantified
variable x:

Forall(x : nat) . { (le Z x) = tt }

7. Consider the following datatype for buildings on The University of Iowa Pentacrest:

Inductive penta : type :=
MacBride : penta

| MacLean : penta
| Schaeffer : penta
| Jessup : penta
| OldCapitol : penta.

• Define a function clockwise that takes a penta as input, and returns the next building in clockwise
order (looking down on the Pentacrest) around the perimeter. We will consider the Old Capitol to be
clockwise from itself.

• Similarly, define a function counter that returns the next building in counter-clockwise order, again
considering the Old Capitol to be counter-clockwise from itself.

• Formulate and prove the theorem that going clockwise and then counter-clockwise gets you back to the
same building.

33

34

Chapter 4

Inductive Equational Monomorphic
Proving

In this chapter, we take our first look at proof by induction in GURU. We will use induction to prove equational
theorems about monomorphic functions. In later chapters we will prove more complex theorems about polymorphic
and dependently typed functions, but beginning with this simple setting will make induction in GURU easier to master.
When we wish to prove properties of recursive functions – which are, of course, the most interesting functions and
the ones we have to use to accomplish most non-trivial tasks – we generally need induction. Proof by induction and
definition by recursion are very similar. Indeed, a deeper understanding of the connection helps in mastering induction,
so we will start with that. Then we will see several examples of proof by induction in GURU.

4.1 Preview
The syntax for induction-proofs is demonstrated by this skeleton for induction on a nat n:

induction(n:nat) return F with
Z => P1

| S n’ => P2
end

This will prove Forall(n:nat).F, where F is a formula mentioning n; assuming that P1 and P2 are the base and
step case proofs of F. In each of these (P1 and P2), two special variables are available, which the induction-proof
automatically declares:

• n eq: in the body of each clause, this is an assumption that n equals the pattern of the clause (Z or (S n’),
respectively).

• n IH: in the step case (P2), this serves as a proof of the induction hypothesis. It proves Forall(n:nat).F,
but may only be instantiated with n’, the subdatum (smaller piece of data) of n.

4.2 Induction and Terminating Recursion
In GURU, we are allowed to define functions by general recursion: we can make recursive calls on any inputs we
want, even if that means the function might not terminate. For example, we saw the following simple example of a
looping function in Chapter 3:

fun loop(b:bool):bool. (loop b)

35

This function calls itself recursively on the input it was given. Hence, when we call this function on an argument b, it
will loop forever, as it tries again and again to evaluate the term (loop b).

If we want to define a function that terminates on all inputs, however, we cannot use recursion in an unrestricted
manner. A typical simple restriction to ensure (uniform) termination is the following:

• The function has a single input called the parameter of recursion.

• In every recursive call in the function’s code, the argument passed for the parameter of recursion is smaller than
the input parameter. In more detail, recursive calls can only be made on the parameter of recursion’s subdata,
obtained via pattern matching.

Functions that satisfy this requirement are called structurally terminating. For example, the plus function we saw is
structurally terminating:

fun plus(n m : nat) : nat.
match n with

Z => m
| S n’ => (S (plus n’ m))
end

The parameter of recursion is input n. In the recursive call in the second match-clause, the argument given for the
parameter of recursion is n’. This is indeed the subdatum of n, obtained by pattern-matching. So plus is structurally
terminating. Functions like this are indeed guaranteed to terminate for all inputs (as long as any other functions they
call are also terminating), because the argument given for the parameter of recursion cannot get smaller and smaller
forever: eventually there are no more subdata to extract. In the case of nat, for example, we eventually reach Z, which
has no subdata.

We will be interested later in proving termination of functions like plus. For now, though, the reason to consider
structurally terminating functions is that they are very similar to induction proofs. Indeed, proof by induction can
be thought of as the structurally terminating recursive construction of a proof. For example, for natural number
induction, which the reader has probably seen in a discrete mathematics class, our goal is to prove that some formula
φ(x) mentioning x is true for all natural numbers x. Proof by induction tells us that to do this, it is sufficient to prove:

• φ(Z)

• φ(n) implies φ(S n).

The first case is called the base case, while the second is called the inductive (or step) case. Informally, proof by
induction is sound for the following reason. Every natural number x is constructed by applying S some finite number
of times (possibly zero) to Z. To prove φ(x) for a particular such x, we must merely use the second fact above n
times, starting with the first fact. For example, if we want to prove φ(S (S (S Z))) (that is, φ(3)), we reason like this:

• We have φ(Z) by the first fact above.

• We get φ(S Z) from φ(Z), which we just derived, using the second fact above.

• We get φ(S (S Z)) from φ(S Z), which we just derived, using the second fact above.

• We get φ(S (S (S Z))) from φ(S (S Z)), which we just derived, using the second fact above.

Another way to view what is happening with proof by induction is to think of the step case as making a recursive
call to the proof. That is, we are trying to prove φ(S n), but we are allowed to use the assumption, usually called the
induction hypothesis (IH), that φ(n) holds. Here we can see the structural decrease in the parameter of induction from
(S n) to n. This is similar to what we saw in the case of structural termination of recursive functions. When we appeal
to the induction hypothesis, it is like we are making a structurally recursive call to the proof we are in the middle of
writing. Even though this looks like circular reasoning, it is sound for the same reason that structurally terminating
functions terminate: the argument given for the parameter of induction is getting structurally smaller. This cannot
happen forever, so eventually the self-referential reasoning will “bottom out”; that is, will terminate in a base case.

Most students who have not studied induction previously find it takes a while to get used to. We will continue to
try to provide intuition for why induction is sound, as we turn now to simple examples of induction proofs in GURU.

36

4.3 A First Example of Induction, Informally
In Section 3.3, we proved the following formula in GURU using partial evaluation and foralli:

Forall(m:nat). { (plus Z m) = m}

We also saw in Section 3.3.1 that a similar proof did not succeed in proving

Forall(m:nat). { (plus m Z) = m}

The reason is that as we have defined it, plus performs a pattern-match on its first argument. For the theorem we
succeeded in proving, the first argument is Z, and so partial evaluation can evaluate the pattern-match, even though
the second argument is just a variable m. For the theorem we failed to prove, partial evaluation gets stuck trying to
pattern-match on the variable m, and so the proof cannot go through.

Here, we will see how to prove the second theorem by induction. Let us begin with a proof in English, and then
see how this can be written in GURU. We wish to prove Forall(m:nat).{ (plus m Z) = m} by induction
on m. For this, as described in Section 4.2, it suffices to prove the following base case and step case:

• {(plus Z Z) = Z }

• If {(plus n Z) = n }, then also {(plus (S n) Z) = (S n) }

The base case is easily proved by partial evaluation. For the step case, we first assume {(plus n Z) = n }. This
is the induction hypothesis. Now we must prove, under this assumption, that {(plus (S n) Z) = (S n) }.
We can prove by partial evaluation that

{ (plus (S n) Z) = (S (plus n Z)) }

This follows because, as we noted before, plus is pattern-matching on its first argument, so partial evaluation can
proceed past that pattern-match, up to the recursive call. Now using our induction hypothesis and congruence, we can
prove

(S (plus n Z)) = (S n)

Chaining the two equational steps we have done with transitivity, we conclude the desired formula:

{ (plus (S n) Z) = (S n) }

4.4 Example Induction in GURU

Now let us write the above proof in GURU. In fact, since the theorem we are proving, while simple, turns out to be
rather important, we already have a proof of it in guru-lang/lib/plus.g:

Define plusZ : Forall(n:nat). { (plus n Z) = n } :=
induction(n:nat) return { (plus n Z) = n } with

Z => trans cong (plus * Z) n_eq
trans join (plus Z Z) Z

symm n_eq
| S n’ => trans cong (plus * Z) n_eq

trans join (plus (S n’) Z) (S (plus n’ Z))
trans cong (S *) [n_IH n’]

symm n_eq
end.

37

Let us walk through this. First, this is a Define-command, just like ones we have already seen. We are defining
plusZ, and instructing GURU to confirm that what we are defining it to equal has the classifier listed between the
colon and the colon-equals, namely Forall(n:nat).{ (plus n Z) = n }. Then, after the colon-equals,
comes the proof:

induction(n:nat) return { (plus n Z) = n } with
Z => trans cong (plus * Z) n_eq

trans join (plus Z Z) Z
symm n_eq

| S n’ => trans cong (plus * Z) n_eq
trans join (plus (S n’) Z) (S (plus n’ Z))
trans cong (S *) [n_IH n’]

symm n_eq
end.

This begins with the induction keyword. Next comes the parameter of induction, with its type. Notice that this
looks very similar to the argument list for a fun-term. We will see more complex versions of the argument list
later, but this is typical for now. Then comes a return-clause, consisting of the return keyword, followed by
the classifier { (plus n Z) = n }. This classifier is the formula proved, for all n, by the induction proof. Each
clause of the induction-proof must prove this formula. GURU requires a return-clause here for the same reason
that it requires recursive fun-terms to specify their return type: it makes bottom-up type checking easy. Without
this return-clause, GURU would have to infer the induction hypothesis. With the return-clause, however, the
induction hypothesis can be easily computed.

After the return-clause, we have the keyword with, as for pattern-matching and case-proofs. Then come the
induction-clauses, one for each constructor of the datatype, in the order the constructors are listed in the datatype’s
declaring Inductive-command. Let us look at the bodies of those induction-clauses.

4.4.1 The base case
The first subproof is for when n is zero:

trans cong (plus * Z) n_eq
trans join (plus Z Z) Z

symm n_eq

This proof consists of three subproofs, glued together with trans:

• cong (plus * Z) n eq

• join (plus Z Z) Z

• symm n eq

Remember that we are obliged to prove { (plus n Z) = n } in this clause (and in the clause for S). Just as in
a case-proof (Section 3.6), we get an assumption variable n eq that we can use in each clause as a proof that the
parameter of induction (i.e., n) equals the pattern in the clause. So in the body of the clause for Z, we have

n_eq : { n = Z }

The first step uses n eq and congruence to prove:

{ (plus n Z) = (plus Z Z) }

The second step uses proof by evaluation (i.e., join) to prove:

38

{ (plus Z Z) = Z }

Finally, the third step proves

{ Z = n }

Chaining these steps together, we have this reasoning:

(plus n Z) = (plus Z Z) = Z = n

Notice that this is a bit more detailed than in the informal proof above, because we have to map from n to Z and back
using n eq.

4.4.2 The step case
The second subproof of our example induction-proof is for when n is (S n’):

trans cong (plus * Z) n_eq
trans join (plus (S n’) Z) (S (plus n’ Z))
trans cong (S *) [n_IH n’]

symm n_eq

Just as in the base case, we must map from n to (S n’) and back using n eq. That is what is happening in the first
and last of the four subproofs glued together by trans. So let us look at the middle two:

• join (plus (S n’) Z) (S (plus n’ Z))

• cong (S *) [n IH n’]

The first is a proof by partial evaluation, corresponding to the first step we took above in our informal proof (Sec-
tion 4.3). The second uses congruence and the induction hypothesis. The induction hypothesis is n IH, whose name
is automatically derived from the name of the parameter of induction, as for n eq. In the GURU formalization of
induction, the induction hypothesis proves exactly the same theorem as the proof. So in this case, we have

n_IH : Forall(n:nat) . { (plus n Z) = n }

But as discussed above, the use of the induction hypothesis is restricted. We can only instantiate the Forall-quantifier
here with a strict subterm (subdatum) of the parameter of induction. The GURU compiler will ensure that this restric-
tion is met, and report an error if the induction hypothesis is not instantiated accordingly. So in our subproof, we
have [n IH n’] for the instantiation of the Forall-formula with n’. Since n’ is indeed a strict subterm (from
the pattern of the induction-clause for n), this is a legal use of the induction hypothesis. Finally, we use cong
similarly to the way we used congruence in our informal proof above.

4.5 A Second Example Induction Proof in Guru
Let us look now at a second example induction-proof. The proof we will be constructing in this section can also
be found as the lemma plusS in guru-lang/lib/nat.g. We wish to prove the formula

Forall(n m : nat). { (plus n (S m)) = (S (plus n m))}

Here we are faced with a small puzzle: we have two universally quantified variables n and m, so which one should
be our parameter of induction? Furthermore, whichever variable we select for the parameter of induction, how do we
handle the other variable? The answers to these questions are relatively easy to reach for this example, but for other
more complicated ones can be trickier. The basic hint we should always keep in mind is:

39

Theorem Proving Hint 1 As a first idea, we should choose our parameter of induction to be a variable which is used
as the parameter of recursion (see Section 4.3) for one of the functions in our theorem.

Of course, this hint only applies when a function has a (structurally decreasing) parameter of recursion. Not all
interesting recursive functions do. Also, this hint does not tell us exactly what to do when there are multiple functions
mentioned in the theorem, since then we may have several different variables all used as parameters of recursion.
Nevertheless, induction and recursion do go hand in hand, and so a rough rule of thumb is to perform induction on a
variable which is analyzed by recursion.

To return to our second example theorem: of our two variables, n and m, only one is used as a parameter of
recursion by a call to plus: this is n. Our definition of plus analyzes its first argument, and we pass n as this
argument in both recursive calls in the theorem (i.e., (plus n (S m)) on the left hand side of the equation, and
(plus n m) on the right). So following Theorem Proving Hint 1, we should try doing induction on n. So we
start our proof with “induction(n:nat).”. Now we must list the return-clause for our induction-proof,
as described in our first example above. This return-clause must give the rest of the formula being proved. So our
induction-proof starts with:

induction(n:nat)
return Forall(m : nat). { (plus n (S m)) = (S (plus n m))}

The theorem we are proving, also called our goal formula, begins with “Forall(n m:nat).”, which GURU views
as definitionally equal to “Forall(n :nat). Forall(m:nat).”. That explains why, once we have started
proving our goal formula with “induction(n:nat)”, the return-clause starts with a Forall-quantification of
the variable m.

There is really no choice what to write next; we have to have clauses for each way of constructing the nat n (after
the keyword with):

induction(n:nat)
return Forall(m : nat). { (plus n (S m)) = (S (plus n m))}

with
Z => ...

| S n’ => ...
end

We are not ready yet to fill in the bodies of the clauses, where I have written “...” (not GURU syntax). A good strategy
for developing a proof like this is to put something – anything, or almost anything – in for those “...”, so that GURU can
parse our proof and start trying to classify it. I find this is more effective and less frustrating than writing a large proof
and then trying to get it to go through the GURU compiler all at once. It is better to write the proof incrementally, and
get each piece of it through GURU, since then the inevitable error messages you are dealing with are ones concerning
the proof you are just focused on writing (not one you wrote twenty minutes ago when you started your proof). A
good placeholder to put instead of “...” is truei. This proves the formula True. It is indeed a proof, so the GURU
parser can parse it. Of course, it does not prove the right theorem yet, so we will definitely get a classification error.
But that is alright, since we will gradually fill in more and more of the proof properly, and eventually eliminate all
those errors. This gives rise to:

Theorem Proving Hint 2 Write down a skeletal proof using truei as a placeholder for missing subproofs, and
gradually refine it to a proof that can pass GURU’s proof checker by replacing those uses of truei with the correct
subproof.

So in this example, we could write the following Classify-command:

Classify
induction(n:nat)

return Forall(m : nat). { (plus n (S m)) = (S (plus n m))}
with

40

Z => truei
| S n’ => truei
end.

If we run this through GURU, as expected we will get this classification error:

"/home/stump/guru-lang/doc/ch4.g", line 7, column 2: classification error.
The classifier computed for the body of a case in an induction-proof
is different from the expected one.
1. computed classifier: True
2. expected classifier: Forall(m : nat) . { (plus n (S m)) = (S (plus n m)) }
3. the case: Z

These terms are not definitionally equal (causing the error above):
1. Forall(m : nat) . { (plus n (S m)) = (S (plus n m)) }
2. True

This exactly describes what we knew would happen: we have put a proof of True in each of the clauses of our
induction-proof, where a proof of Forall(m : nat) . { (plus n (S m)) = (S (plus n m))
} was expected.

Now, let us start refining our proof by replacing some of these truei-proofs with the correct proofs for the
cases. When n is Z, we know that (plus n m) equals m, and similarly (plus n (S m)) equals (S m). That is
because of how plus partially evaluates when its first argument is Z. So our proof for the Z case is similar to proofs
we did above. We start it with foralli, to introduce the universal variable m:

Classify
induction(n:nat)

return Forall(m : nat). { (plus n (S m)) = (S (plus n m))}
with

Z =>
foralli(m:nat).
trans cong (plus * (S m)) n_eq

trans join (plus Z (S m)) (S (plus Z m))
cong (S (plus * m)) symm n_eq

| S n’ => truei
end.

When we run this proof through GURU, we get this error message:

"/home/stump/guru-lang/doc/ch4.g", line 25, column 2: classification error.
The classifier computed for the body of a case in an induction-proof
is different from the expected one.
1. computed classifier: True
2. expected classifier: Forall(m : nat) . { (plus n (S m)) = (S (plus n m)) }
3. the case: (S n’)

These terms are not definitionally equal (causing the error above):
1. Forall(m : nat) . { (plus n (S m)) = (S (plus n m)) }
2. True

Notice that item (3) listed in the message has changed from our first error message. GURU proof-checks the induction-
clauses in order starting with the one which is textually first. We have successfully gotten the proof for the Z case
through the proof checker, since our error message now concerns the second case (the one for (S n’)).

41

Now we are ready to tackle the S case. We can expect we will need to use our induction hypothesis, since we make
a recursive call in the S case for plus, and uses of the induction hypothesis tend to mirror recursive calls. Let us see
informally what our reasoning will be:

(plus (S n’) (S m)) = (S (plus n’ (S m))) = (S (S (plus n’ m))) = (S (plus (S n’) m))

The first step is by partial evaluation. The second step uses the induction hypothesis to get:

{ (plus n’ (S m)) = (S (plus n’ m)) }

The second step then uses congruence. The third step is again by partial evaluation. Formalizing this reasoning in
GURU, we get the following final proof, which successfully checks:

Classify
induction(n:nat)

return Forall(m : nat). { (plus n (S m)) = (S (plus n m))}
with

Z =>
foralli(m:nat).
trans cong (plus * (S m)) n_eq

trans join (plus Z (S m)) (S (plus Z m))
cong (S (plus * m)) symm n_eq

| S n’ =>
foralli(m : nat).
trans cong (plus * (S m)) n_eq
trans join (plus (S n’) (S m)) (S (plus n’ (S m)))
trans cong (S *) [n_IH n’ m]
trans join (S (S (plus n’ m))) (S (plus (S n’) m))

cong (S (plus * m)) symm n_eq
end.

We have a new subproof in the S n’ clause, corresponding to the informal proof we just did above. We have to map
from n to (S n’) using the assumption variable n eq, just as above. Then we do some partial evaluation (with
join), then use the appropriately instantiated induction hypothesis (that is [n IH n’ m]), do some more partial
evaluation, and then map back from (S n’) to n.

4.6 Commutativity of Addition in GURU

As a final example, let us use the lemmas proved in the previous two sections to prove commutativity of addition:

Forall(n m:nat). { (plus n m) = (plus m n) }

The proof is in guru-lang/lib/plus.g, and it uses the following lemmas, which we proved above and which
are also defined in plus.g:

plusZ : Forall(n:nat). { (plus n Z) = n }
plusS : Forall(n m : nat). { (plus n (S m)) = (S (plus n m))}

Indeed, we proved those lemmas just so we could prove commutativity of plus. The informal reasoning is as follows.
We proceed by induction on n, and then in each case assume arbitrary m. So for the base case we must prove

(plus Z m) = (plus m Z)

The left hand side partial-evaluates to m, while the right hand side is equal to m by our plusZ lemma.
For the step case, we must prove

42

(plus (S n’) m) = (plus m (S n’))

under the assumption (the induction hypothesis) that {(plus n’ m) = (plus m n’)}. Our equational reason-
ing is as follows:

(plus (S n’) m) = (S (plus n’ m)) = (S (plus m n’)) = (plus m (S n’))

The first step is by partial evaluation. The second is by the induction hypothesis (and congruence). The third is by our
plusS lemma. That concludes our informal proof.

The proof in GURU mirrors this reasoning, although in a bit more detailed way:

induction (n : nat) return Forall(m : nat).{ (plus n m) = (plus m n) } with
Z => foralli(m : nat).

trans cong (plus * m) n_eq
trans join (plus Z m) m
trans cong * symm [plusZ m]

cong (plus m *) symm n_eq
| S n’ => foralli(m : nat).

trans cong (plus * m) n_eq
trans join (plus (S n’) m) (S (plus n’ m))
trans cong (S *) [n_IH n’ m]
trans cong * symm [plusS m n’]

cong (plus m *) symm n_eq
end

This is not terribly fun to read, but we can spot the uses of the induction hypothesis [n IH n’ m] in the (S n’)
case, and the uses of plusZ and plusS.

4.7 Summary
We have seen several examples of induction-proofs for proving equations about monomorphic programs like
plus. Induction-proofs are similar to structurally terminating recursive functions: uses of the induction hypoth-
esis are like recursive calls, which construct the desired proof for a structurally smaller piece of data. We have seen
also several theorem proving hints, which can help make it easier to tackle a proof.

4.8 Exercises
As you browse through the GURU standard library, you will come across proof methods we have not seen yet, partic-
ularly hypjoin. For these exercises, you should use only the proof methods we have seen so far in this book.

1. Include guru-lang/lib/mult.g and prove by induction on n:

Forall(n:nat).{ (mult n Z) = Z }

2. Including guru-lang/lib/plus.g, prove the following, but do not use induction. Just use existing theo-
rems in plus.g (in particular, plus assoc and plus comm):

Forall(x y z:nat). { (plus x (plus y z)) = (plus z (plus y x)) }

3. Again including mult.g, prove the following by induction, first determining which variable you should do
induction on:

43

Forall(x y z :nat).{(mult (plus x y) z) = (plus (mult x z) (mult y z))}

Hint: my proof uses the lemma plus assoc from guru-lang/lib/plus.g (and that is the only lemma
I need).

4. The exclusive-or function is defined as xor in guru-lang/lib/bool.g. Prove the following (this does
not need induction):

Forall(x y : bool). { (xor (not x) y) = (not (xor x y)) }

5. The mod2 function defined in guru-lang/lib/pow.g takes a nat n as input, and returns ff if n is even,
and tt if n is odd. In this problem, we will prove the following non-trivial property of mod2:

Forall(n m : nat). { (mod2 (plus n m)) = (xor (mod2 n) (mod2 m)) }

An intuitive way to view this theorem is as saying how the parity of numbers is combined when the numbers
are added. When we add an even number and an even number we get another even number; when we add odd
and even we get odd; and when we add odd and odd we get even. With ff for even and tt for odd, we see that
this description corresponds to exclusive-or: ff (even) and ff (even) gives ff (even); ff (even) and tt (odd)
gives tt (odd); and tt (odd) and tt (odd) gives ff (even). This is, of course, a fact about addition of numbers.

To prove this theorem, first identify which variable you should most likely do induction on. During the course
of the proof, I found I needed to use the lemma proved in the previous problem.

44

Chapter 5

Logical Monomorphic Proving

The last two chapters focused on equational proofs about monomorphic programs. That is, we were just trying to
prove universally quantified equations, like Forall(x y:nat).{(plus x y) = (plus y x)}. Of course,
there are other kinds of logical statements we would like to make. For one simple example, we might like to prove
that if x plus y equals zero, then x must be zero, for x and y of type nat (of course, y must also be zero in this case).
An “if-then” statement is called an implication. In GURU, implications are written with Forall, which turns out to
make notation a bit more concise. So the statement would be written this way in GURU:

Forall(x y:nat)(u : { (plus x y) = Z }). { x = Z }

We need some other proof constructs to reason in the presence of implications. These will be introduced in this chapter.
We will also see conjunctions, for “and” statements; and existential formulas, for saying that something exists with a
certain property. As usual, we will try these out with several examples.

5.1 Preview
In this chapter we will see these additional kinds of formulas:

• Implications, which say that F1 implies F2, are written as Forall(u:F1).F2. This can be thought of as
saying that for any proof u of F1, F2 is true.

• Exists-formulas, like Exists(y:nat). { (plus y (S Z)) = Z }. This one states that there is a
nat y such that y plus one (that is, “(S Z)”) equals zero. This is not provable in GURU, because for natural
numbers, there is no number we can add to one to get zero. Of course, if we had negative numbers, we could
prove this. But we are making a statement about nats y, not integers y.

The forms of proof covered in this chapter are:

• Implication-introduction and elimination are done using Forall-introduction and elimination.

• existsi t F* P, where t is a term, F* is a formula context, and P is a proof. This is to prove the formula
Exists(x:nat).F*[x]. The situation is that we have a term t and a proof P that that term has a certain
property. The property is described using a formula context, which is a formula containing the special symbol
∗. A shorthand for proving a conjunction (written as an Exists-formula) is andi P1 P2.

• existse P1 P2. If P1 is a proof of the formula Exists(x:nat).F, and if P2 is a proof of the formula
Forall(x:nat)(u:F).F2 for some F2 not mentioning x, then the existse-proof also proves F2.

• clash t1 t2. If t1 and t2 are values built with different constructors, like (S x) and Z, this proves the
disequation { t1 != t2 }. We will also see how to use symm and trans with disequations.

• contra P F. If P proves { t != t }, then this proof proves F. It is used to prove any formula F you
happen to need in your proof, if you have derived a contradictory statement (i.e., { t != t }).

45

5.2 Reasoning with Implication
An implication is an if-then formula. It says if formula F1 is true, then so is F2. An example is, “x is zero, then x plus
x equals zero.” In GURU, implications are written using Forall. The example implication just mentioned is written

Forall(u : { x = Z }). { (plus x x) = Z}

You can think of this as saying, for all proofs u of { x = Z }, we have {(plus x x) = Z}. Using Forall for
implications makes formulas a little more concise than they might otherwise be. For example, we can write:

Forall(x:nat)(u : { x = Z }). { (plus x x) = Z}

This quantifies over x of type nat, and then continues with the example implication. This idea of combining impli-
cation and universal quantification comes from other languages, for example COQ [14].

We reason with implications in exactly the same way as universal quantifications. To prove an implication, we use
foralli. For example, here is the proof of our example formula:

Define plusZ’ :=
foralli(x:nat)(u : { x = Z }).

trans cong (plus * *) u
join (plus Z Z) Z.

Here, u is an arbitrary proof of {x = Z}. So u acts as an assumption that {x = Z}. We use this assumption to
transform x into Z in (plus x x). This is done by the cong-proof. Then we can join (plus Z Z) with Z.

To use an implication, we instantiate it using the square brackets notation. This makes for a rather convenient
notation for instantiating theorems. For example, to use this plusZ’ theorem we have just proved, we can write:

[plusZ’ Z refl Z]

Here, we are instiating x in the theorem with Z (the first argument), and u with refl Z (the second argument.

5.3 Existential Introduction
An existential formula is one that states that there is a value x of some type T which satisfies a stated property. Here
is an example:

Forall(x:nat). Exists(y:nat). { (le x y) = (le y x) }

In English, this formula says, “for all x of type nat, there exists a y of type nat such that the (boolean) value returned
by (le x y) is equal to that returned by (le y x).” In other words, for every nat x, there is a nat y such that
x is less than y if and only if y is less than x. The only number with this property, in fact, is x itself. This uses the le
function for less-than-or-equal-to on the unary natural numbers, which is defined in guru-lang/lib/nat.g.

To prove an existential, we must specify a value that has the property. That value is called the witness of the
existential. So in this case, we will specify x as the witness, since {(le x x) = (le x x)}. Notice that this last
formula has four occurrences of x in it. Two of these we wish to view as occurrences of our witness, and two are part
of the property. This is indicated by using a formula context, which is a formula with a ∗ in it:

{ (le x *) = (le * x) }

To prove our existential, we will use an existsi-proof, to introduce the existential. The syntax for an existsi-
proof is existsi t F* P, where t is the witness, F* is the formula context corresponding to the property the
witness is supposed to have, and P is a proof that t has that property. In particular, P is a proof of the formula F*[t],
which is our notation (not GURU’s) for the formula you get if you substitute the witness t for the ∗ in F*. Note that it
is required that the witness term t be a value. So here, we will write:

46

existsi x { (le x *) = (le * x) } P

where P is a proof of

{ (le x x) = (le x x) }

The complete proof in GURU is:

Define ltcomm : Forall(x:nat).Exists(y:nat). { (le x y) = (le y x) } :=
foralli(x:nat).

existsi x { (le x *) = (le * x) } refl (le x x)

We start off with foralli, to introduce the variable x for an arbitrary nat. Then comes our existsi-proof. We
can just use refl (le x x) as the proof P of {(le x x) = (le x x)} mentioned above. You can see the
importance of the formula context in existsi-proofs by considering this modification of the proof:

foralli(x:nat).
existsi x { (le x *) = (le * *) } refl (le x x)

The only change is that we are using a different formula context, one with three ∗s instead of two. The formula proved
by this proof is

Forall(x:nat).Exists(y:nat). { (le x y) = (le y y) }

This says something quite different from the formula proved above.

5.3.1 Another example

Let us prove this formula:

Forall(x:nat). Exists(y:nat). { (le x y) = tt}

In English, this formula says, “for all x of type nat, there exists a y of type nat such that x is less than or equal to
y.” To prove this formula, we must just show how to find, for every nat x, a nat y such that x is less than or equal
to y y. Of course, for any x, there are an infinite number of numbers that would serve for such a y: all the numbers
greater than or equal to x. We must just pick one of them to serve as the witness of the existential quantification (i.e.,
the value that has the desired property). We will pick x as the witness, since there is a theorem x le x defined in
guru-lang/lib/nat.g which proves:

Forall(a:nat).{ (le a a) = tt}

In GURU, our proof looks like this:

Define existsle : Forall(x:nat).Exists(y:nat). {(le x y) = tt } :=
foralli(x:nat). existsi x { (le x *) = tt } [x_le_x x].

We are proving the theorem, which we call existsle, by first introducing the variable x for an arbitrary nat using
foralli. Then we have our existsi-proof, with the witness x, the formula context {(le x *) = tt}, and
the proof [x le x x], which instantiates the x le x theorem with x to conclude {(le x x) = tt }.

47

5.4 Existential Elimination
If we have a proof of an Exists-formula, stating that there is a value which has a certain property, we can make use
of that proof as follows. We may introduce a new variable x for the value that is stated to exists. We may also assume
that this x has the stated property. In GURU, this is done using an existse-proof. The syntax is unfortunately a little
cumbersome, although this is a problem with how existential elimination has been done in logic for around 80 years.
We write existse P1 P2, where for any type T:

• P1 proves Exists(x:T).F.

• P2 proves Forall(x:T)(u:F).F’, where x may not be mentioned by the formula F’.

The role of P1 is clear enough: this is our proof of the existential. The role of P2 is a bit more puzzling. It proves
some other formula F’, but the proof is allowed to make use of arbitrary x of type T, and an assumption u that x has
property F. This corresponds to the informal intuition above: we introduce a variable x for the value that is stated to
exist, along with an assumption that x has the stated property. The formula proven (F’) is not allowed to mention x,
because the entire existse-proof then proves F’ (and if F’ mentioned x, that x would be used outside its scope,
which is the Forall-formula).

Here is a simple example of existential elimination. In Section 5.3.1 just above, we proved:

Forall(x:nat). Exists(y:nat). { (le x y) = tt}

So for any value x of type nat, there is a value y of type nat such that x is less than or equal to y. Let us introduce
variable y for this value, and assume that {(le x y) = tt}. Since y is less than (S y), we can conclude that
(lt x (S y)). Taking (S y) as our witness, we may conclude that there exists a z such that (lt x z). This
informal argument proves, in a somewhat roundabout way:

Forall(x:nat). Exists(z:nat). { (lt x z) = tt}

We may write this proof in GURU, making use of several lemmas from guru-lang/lib/nat.g:

lt_S : Forall(a:nat).{ (lt a (S a)) = tt}

lelt_trans : Forall(a b c:nat)(u:{ (le a b) = tt })(v:{ (lt b c) = tt }).
{ (lt a c) = tt }

The first lemma says a is less than (S a). The second says that if

1. a ≤ b, and

2. b < c,

then a < c. So this is a form of transitivity combining less-than-or-equals and less-then. The proof is then the
following (the line numbers are not valid GURU syntax):

0. Define existslt : Forall(x:nat). Exists(z:nat). {(lt x z) = tt } :=
1. foralli(x:nat).
2. existse [existsle x]
3. foralli(y:nat)(u:{(le x y) = tt}).
4. existsi (S y) { (lt x *) = tt }
5. [lelt_trans x y (S y) u [lt_S y]].

Let us walk through this line by line.

1. Introduce our arbitrary x of type nat.

48

2. Use existential elimination. The proof [existslt x] is our instantiation of the previously proved theorem.
It proves Exists(y:nat).{(le x y) = tt}. This is the first proof that existse requires, namely, the
proof that something exists which has a certain property.

3. The second proof existse requires begins here and stretches for the rest of the proof. This proof begins by
assuming arbitrary y of type nat, along with an assumption u that {(le x y) = tt}.

4. Now we use existsi to prove the formula Exists(z:nat).{(lt x z) = tt}. There is no mention
of the variable z in the proof itself. In fact, by default GURU names the variable x, keeping track of the fact that
this x is different from other variables in scope which might have the same name.

5. Here we instantiate lelt trans. We provide five arguments corresponding to the five inputs of lelt trans:

• x for a:nat

• y for b:nat

• (S y) for c:nat

• u for u:{ (le a b) = tt }
• [lt S y] for v:{ (lt b c) = tt }

The lelt trans-proof then proves the desired {(lt x (S y)) = tt}.

5.5 Proving a Function Terminates
One of the most basic properties one might want to prove about a recursively defined function is that it terminates for
all inputs. When the function is structurally terminating (see Section 4.2), this can be easily done by induction. To
do this, we must first formalize the statement that the function terminates. In GURU, this is done by stating that for
all inputs to the function, there exists an output of the function on those inputs. For example, here is the formalized
statement that plus terminates on all inputs:

Forall(x y : nat). Exists(z:nat).{(plus x y) = z}

Quantifiers in GURU range over values of the given types. So this says that for all values x and y of type nat, there
exists a value z such that (plus x y) equals z. As stated earlier, if an equality between terms is provable in GURU,
it implies that the two terms either both diverge (run forever) or both converge to a common value. Since the variable
z ranges over values, this implies that (plus x y) converges to z (since z evaluates just to itself).

The proof in guru-lang/lib/plus.g that plus is total is called plus total:

induction (x : nat) return Forall(y:nat). Exists(z:nat).{(plus x y) = z} with
Z => foralli(y:nat).

existsi y {(plus x y) = *}
trans cong (plus * y) x_eq

join (plus Z y) y
| S x’ => foralli(y:nat).

existse [x_IH x’ y] foralli(z’:nat)(u:{(plus x’ y) = z’}).
existsi (S z’) {(plus x y) = *}

trans cong (plus * y) x_eq
trans join (plus (S x’) y) (S (plus x’ y))

cong (S *) u
end.

We will not walk through this in all detail, but focus just on the clause for (S x’). Here, we use an instantiation of
the induction hypothesis, [x IH x’ y], to prove:

49

Exists(z:nat). {(plus x’ y) = z}

The existse-proof’s second subproof, which begins foralli(z’:nat), picks up from this existential formula.
It introduces a variable z’ for the value z such that {(plus x’ y) = z}. It is fine to use a different name (here
z’) for the variable introduced by foralli than for the variable mentioned by the Exists-formula (here z). The
rest of the clause is:

existsi (S z’) {(plus x y) = *}
trans cong (plus * y) x_eq
trans join (plus (S x’) y) (S (plus x’ y))

cong (S *) u

The reasoning here is as follows. If {(plus x’ y) = z’}, then (plus (S x’) y) can be shown to be equal
to (S z’); and so {(plus x y) = (S z’)}. This reasoning is done by the last three lines of the subproof. So
we will take (S z’) as our witness for the existential statement that there exists z such that {(plus x y) = z}.
That is why the existsi-proof begins with (S z’): that is the witness.

5.5.1 Registering a function as total
When a function has been proved total in the sense just discussed, we can register it as total with GURU, using a
Total-command. For example, in guru-lang/lib/plus.g, this command is used to register plus as total,
where plus total is defined to be the proof discussed in the previous section:

Total plus plus_total.

The first expression is a symbol defined to be a function, and the second is a proof that for all inputs that may be given
to the function, there exists an output produced by the function on those inputs. Why is it useful to register functions as
total? Because of an important restriction on Forall-elimination and Exists-introduction which we have glossed
over up to now. When instantiating a Forall-formula, the argument given must be a terminating term. Similarly, the
witness used to prove an Exists-formula must also be a terminating term. The reason is simple. As remarked above,
quantifiers in GURU range over values. So when we have a proof of a formula like Forall(x:nat).{(plus x
Z) = x}, that x ranges over values. So it is not legal to instantiate it with a term which might not terminate in a
value; i.e., a non-terminating term. Similarly, since existential quantifications range over values, it is not legal to offer
as a witness a term which might fail to terminate. For this reason, proving termination of functions is quite important
in GURU. When a function has been registered as total, it may then be used in terms which will instantiate universal
quantifiers or witness existential ones. If we try to instantiate a quantifier with a term including a function that has not
been registered as total, GURU will report an error. For example, suppose we run the following:

Include "../guru-lang/lib/plus.g".

Define loop := fun f(x:nat):nat.(f x).

Classify [plusZ (loop Z)].

GURU will report:

Forall(x : nat)(u : { x = Z }) . { (plus x x) = Z }
"/home/stump/guru-lang/doc/test.g", line 37, column 17: classification error.
Checking termination, the head of an application is neither
declared total nor a term constructor.
1. the application in spine form: (loop Z)
2. the head: loop

We have defined loop as a looping function (since it just takes in x and immediately makes a recursive call on x).
The GURU proof checker then reports an error when we attempt to instantiate the universal formula proved by plusZ
with (loop Z), since that term is not known to be terminating (in fact, it is non-terminating).

50

5.5.2 Aside: show-proofs

Sometimes while we are incrementally developing a proof, it is useful to see exactly what formula some subproof
proves. There is a way to do that in GURU. You simply use a show-proof. The syntax is:

show P1 ... Pn end

where P1 through Pn are proofs. GURU will compute the classifiers for those proofs and print them. It will then stop
any other classification, as if we had a classification error. For example, to see the equational steps in the S-clause of
the proof from the previous section that plus is a total function, we can use show:

induction (x : nat) return Forall(y:nat). Exists(z:nat).{(plus x y) = z} with
Z => foralli(y:nat).

existsi y {(plus x y) = *}
trans cong (plus * y) x_eq

join (plus Z y) y
| S x’ => foralli(y:nat).

existse [x_IH x’ y] foralli(z’:nat)(u:{(plus x’ y) = z’}).
existsi (S z’) {(plus x y) = *}

show
trans cong (plus * y) x_eq
trans join (plus (S x’) y) (S (plus x’ y))

cong (S *) u
end

end.

GURU will then print:

"/home/stump/guru-lang/doc/test.g", line 14, column 20: classification error.
We have the following classifications:

1. (plus x y) =

2. (plus (S x’) y) =

3. (S (plus x’ y)) =

4. (S z’)

GURU lists this as an error, but of course, it is really just informational. We see the four equational steps going into the
trans-proof that is being displayed with show. GURU prints trans-proofs specially with show, by printing what
is proved by its subproofs. For any other kind of proof, GURU will print just the formula proved by the entire proof.

5.6 Reasoning with Disequations

For some theorems, particularly implications, we need disequational reasoning: that is, we need to use disequalities
between terms, which state that the terms do not either converge to different values (this is the case we are interested
in) or do not both diverge (I have never had a case like this of interest). Here is a simple example. We would like to
prove the following formula:

Forall(x:nat)(u:{(le x Z) = tt}). {x = Z}

51

This says that for all x of type nat, if x is less than or equal to zero, then x must equal zero. We certainly believe this
to be true (for natural numbers), but how is it proved? Let us assume an arbitrary x of type nat, and let us assume
that x is less than or equal to Z. Now let us do a case split on x. If x is zero, then we are done, since that is what
we are supposed to prove. If x is (S x’) for some x’, then our assumption that x is less than or equal to zero is
contradicted. If we evaluate (le (S x’) Z), we will get ff. But our assumption says that (le (S x’) Z)
evaluates to tt. And tt is disequal to ff. So we reach a contradiction, because we have:

tt = (le (S x’) Z) = ff

and also { tt != ff }. From a contradiction we can conclude anything, since false implies anything. So in
particular we can conclude { x = Z }.

The two parts of reasoning used in this informal proof which we have not seen formalized in GURU are the use of
the contradiction to prove any formula, and the proof of the disequation {ff != tt}.

• To prove a disequation like {ff != tt}, the syntax in GURU is

clash ff tt

A clash-proof takes any two values built with different constructors, and proves that they are disequal. So
another example is clash Z (S Z), which proves { Z != (S Z)}.

• To derive a formula from a contradiction in GURU, we use a contra-proof. The syntax is contra P F,
where P proves that { t != t } for some term t. The contra-proof then proves F, which may be any
formula we want.

Before we can formalize our proof of Forall(x:nat)(u:{(le x Z) = tt}).{x = Z} in GURU, we need
one more ingredient, which is how to do equational reasoning for disequations. It works quite easily. The proof rules
symm and trans work also with proofs of disequations. If

P : { t1 != t2 }

then we have:

symm P : { t2 != t1 }

And if we have

P1 : { t1 = t2 }
P2 : { t2 != t3 }

then we also have:

trans P1 P2 : { t1 != t3 }

So with trans, the first subproof must prove an equation, but the second one can prove an equation or a disequation.
Notice that we cannot conclude anything about the relationship between t1 and t3 if we have two disequations { t1
!= t2} and {t2 != t3}. That is why trans requires the first proof to prove an equation. Now we have the tools
we need to formalize our informal reasoning above in GURU:

Define le_Z1 : Forall(x:nat)(u:{(le x Z) = tt}). {x = Z} :=
foralli(x:nat)(u:{(le x Z) = tt}).
case x with

Z => x_eq
| S x’ =>

contra

52

trans symm u
trans cong (le * Z) x_eq
trans join (le (S x’) Z) ff

clash ff tt
{ x = Z }

end.

We start off by assuming arbitrary x of type nat such that {(le x Z) = tt}, using foralli. Now we case split
on x, just as in our informal proof. The base case is really easy, since x eq is a proof that {x = Z}, and that is what
we are supposed to prove. For the step case, we have the following equational steps, which you can see by putting a
show around the first argument to contra (i.e., from “trans symm u” to the end of the clash-proof):

1. tt =

2. (le x Z) =

3. (le (S x’) Z) =

4. ff !=

5. tt

This chain of steps proves {tt != tt}, which is just the kind of contradictory equation that contra requires for its
subproof. Then we give contra the formula {x = Z}, since that is what we wish to derive from our contradiction.

5.7 Case Splitting on Terminating Terms
For case-proofs (Section 3.6), the expression we are case splitting on must be a terminating term, like the instantiating
and witnessing terms discussed in Section 5.5.1. If the term is something other than just a symbol, we need to use
a feature of case-proofs we have not seen up until now, which is a by-clause. Suppose we are trying to prove the
following:

Forall(x y:nat). {(eqnat x y) = (eqnat y x)}

Here, eqnat is a function testing whether or not nats x and y are equal. We could prove this theorem by induction
on x, but there is actually an easier proof using the following theorems in nat.g:

eqnatEq : Forall(n m:nat)(u:{(eqnat n m) = tt}). { n = m }

eqnatNeq : Forall(n m:nat)(u:{(eqnat n m) = ff}). { n != m }

neqEqnat : Forall(n m : nat)(u:{n != m}).{ (eqnat n m) = ff }

The idea of this easier proof is to case split on (eqnat x y). This is allowed since eqnat is registered as a total
function in nat.g. In the case where (eqnat x y) is tt, we can use the theorem eqnatEq to conclude that {x
= y}. Using that fact, we can easily transform (eqnat y x) into (eqnat x y). In the case where (eqnat x
y) is ff, we can use eqnatNeq to conclude that {x != y}. From this we obtain {y != x} by symmetry, and
from there, we get {(eqnat y x) = ff} by neqEqnat.

Here is the formalization of this proof in GURU, which I added to nat.g while writing this section. The new
feature is the by-clause at the very start of the case-proof, which we will explain just below.

Define eqnat_symm : Forall(x y:nat). { (eqnat x y) = (eqnat y x) } :=
foralli(x y:nat).

53

case (eqnat x y) by u ign with
ff => trans u

symm [neqEqnat y x symm [eqnatNeq x y u]]
| tt => trans cong (eqnat * y) [eqnatEq x y u]

cong (eqnat y *) symm [eqnatEq x y u]
end.

Our case-proof begins with “case (eqnat x y) by u ign with”. We have the case keyword, and then
the terminating term (aka, the scrutinee) on which we are case splitting. Next comes the by-clause “by u ign”,
and then the with keyword. The by-clause is used when case splitting on a term which is not literally a symbol (like
x). Here, we are splitting on (eqnat x y), which is not a symbol; it is an application. GURU does not attempt
to introduce a name automatically for the assumption variable relating the scrutinee with the pattern in each case,
unless the scrutinee is a symbol, say x. In that case, we have seen that GURU automatically introduces this assumption
variable, with the name x eq. When splitting on a term that is not a symbol, it is up to us to choose the name of the
assumption variable. There are actually two such variables introduced by a case-proof. The first one is the one we
need here, and I have called it u. The second one, “ign” is ignored here. We will see what it is does, when we study
dependently typed programming.

The clauses for the case proof are a bit dense, but they do follow the informal reasoning mentioned above. Let
us just consider part of the ff-clause. The subproof [eqnatNeq x y u] proves that {x != y}. We use symm to
reverse this. Call that proof P. It proves {y != x}. Then [neqEqnat y x P] proves {(eqnat y x) = ff},
as you can see if you instantiate the variables in the formula listed above for neqEqnat as [neqEqnat y x P]
is doing.

5.8 Summary
We have seen how to reason with implications, existential formulas, and disequations. Implications are written using
Forall, and then Forall-introduction and elimination are used for implications. To prove an existential, we must
give to existsi a witness, which is a value that has the specified property. The property is specified to existsi
with a formula context (a formula containing ∗). We have seen also how to state that a function terminates: for all
possible inputs to the function, there exists an output such that the function applied to the inputs equals the output.
We may instantiate universal quantifiers and witness existential ones only with values, which are terms guaranteed
to terminate. Once we have proved a function terminates on all inputs, we can register it as total using a Total-
command. This function may then be used in instantiating or witnessing terms.

5.9 Exercises
As usual, please use only the proof constructs we have seen so far in the book. You are free, however, to use any
lemmas proved in the standard library (files in guru-lang/lib/).

1. Give an informal English translation of the following GURU formula:

Forall(a b:nat)(u:{ (le (S a) b) = tt }).{ (le a b) = tt }

2. Prove the following formula:

Forall(x:nat)(u:{(lt Z x) = tt}). Exists(x’:nat). { x = (S x’) }

HINT: my proof does not require induction, just a case split on x, and then in the Z case, a proof using contra
and clash.

3. Write a formula in GURU that says that raising natural number x to the power 1 gives you x. What is the name
of that theorem in the standard library (where it is indeed proved)?

54

4. Prove

Forall(x y:nat)(u:{(mult y (S x)) = Z}). { y = Z }

HINT: this can be proved by induction without using any other lemmas, just reasoning directly about the behav-
ior of mult (and plus).

5. Prove the following theorem about the exponentiation function pow, defined in guru-lang/lib/pow.g:

Forall(b e : nat)(u:{ b != Z }). { (le (S Z) (pow b e)) = tt }

HINT: my proof begins by case splitting on (pow b e) (see Section 5.7), so that in the base case I can use
the lemma pow not zero, defined in pow.g. In the step case I made use of lemmas S le S and leZ from
nat.g.

55

56

Chapter 6

Polymorphic Programming and Proving

Up until now, we have limited ourselves to monomorphic programming, where programs operate just on particular
specified types of data. With polymorphic programming, also known as generic programming, we can write functions
that operate polymorphically (or generically) for any type of data. This kind of polymorphism, the only kind we will
study in this book, is crucial for implementing generic data structures, which can hold any type of data. Such data
structures are, of course, of central importance for achieving code reuse. We do not wish to code up a different list
datatype for every new type of data we might wish to store in a list. With a generic list datatype, we design one
datatype for lists of any single type of data, and write functions operating on such lists. With verified programming,
we of course also have the burden of writing proofs about those programs. Naturally, those proofs are also generic,
proving theorems for any kind of data stored in the generic data structure.

6.1 Preview
The main differences we find moving to generic programming are:

• polymorphic datatypes are described using datatype constructors, also just called type constructors. A type
constructor constructs a type when applied, at the type level, to some arguments (here, just other types). The
notation for type-level application uses angle brackets. So for example, <list nat> is GURU notation for
applying the type constructor list to the type nat to get the type of lists which store nats.

• pattern-matching will automatically equate type variables A in the type of the scrutinee with corresponding
variables A′ in the type of the pattern.

• the class of examples we can consider becomes much richer, because we are now working with data structures
– i.e., structures designed to hold other data – rather than basic data like nats and bools.

6.2 Polymorphic Datatypes
In GURU, we use polymorphic datatypes to implement generic data structures. Polymorphic datatypes are declared like
monomorphic datatypes, using an Inductive-command. The difference is that they use type variables in several
places, instead of particular types. We will begin by looking at a representative and frequently used polymorphic
datatype, the type for polymorphic lists. We are all familiar with various list datatypes in object-oriented programming
languages. Lists in functional languages are implemented a bit differently, because they must be described as inductive
datatypes, where bigger data are incrementally and uniquely built from smaller data (see Section 2.2).

Before we look at the polymorphic type, let us consider how we would implement a monomorphic datatype nlist
for lists of nats. As an inductive datatype, lists are usually considered to be built up from the empty list by gradually
adding elements (nats for nlists) one at a time to the front of the list. The constructor to do this is traditionally

57

called cons (going back to LISP). The constructor for the empty list is nil. Here is the declaration in GURU for
this:

Inductive nlist : type :=
nil : nlist

| cons : Fun(n:nat)(l:nlist).nlist.

The value in GURU for the list “1,2,3” would then be (cons one (cons two (cons three nil))). We
apply cons three times to incrementally grow our final list from the starting list nil, the empty list. Now let us see
how to declare the polymorphic list datatype:

Inductive list : Fun(A:type).type :=
nil : Fun(A:type).<list A>

| cons : Fun(A:type)(a:A)(l:<list A>). <list A>.

This is similar to the definition for nlist: we still have constructors nil and cons, for example. But obviously,
there are some significant differences. The first line of the Inductive-command declares list to have classifier
Fun(A:type).type. This makes list a type constructor. We can think of it as a function that takes an input A
which is a type, and returns a type as output. The input type A is the type for elements of the list, and the output type
is they type for lists of As.

Let us look now at the types of the constructors. The type for nil says that nil takes an input A which is a
type, and then returns an output of type <list A>. This notation, with the angle brackets, is for applying a type
constructor to arguments. Such an application is called a type-level application, since it takes place at the level of
types; in particular, it produces a type as output. Here, list is the type constructor, and the argument is A. Since
A has classifier type, and since list expects its argument to have classifier type, this application (i.e., <list
A>) is allowed, and has classifier type. Sometime classifiers like type and Fun(A:type).type, which classify
types and type constructors, are called kinds (see also Section 2.3.3, where the classification hierarchy for terms is
mentioned).

Finally, we have the type for cons, which is Fun(A:type)(a:A)(l:<list A>).<list A>. This type
says that cons takes three inputs: a type A, a value a of type A, and a list l of As. Then cons produces as output
another list of As. Here we see how type variables like A enable us to describe generic datatypes. For any type A we
like, we can pass a piece of data “a” of type A to cons, to be stored in the list. Notice that a single list can hold data
of just a single type A. Such lists are sometimes called homogeneous. We cannot store a nat and a bool in the same
list. Lists that allow different types of data in the same list are sometimes called heterogeneous. As an example of how
the datatype works, here is the value that we will write for the list “1,2,3”:

(cons nat one (cons nat two (cons nat three (nil nat))))

The sole argument to nil is a type, and the first argument to cons is a type. Here, the type is nat. It is a bit annoying
that nat is repeated all these times, and it would be an improvement to GURU if it could be instead inferred from
the types of the data values like one that are stored in the list. Functional programming languages like OCAML and
HASKELL provide powerful type inference mechanisms to support polymorphic programming without type annota-
tions in code such as these uses of nat as arguments here. Unfortunately, in the presence of the kind of polymorphism
supported by GURU, the problem of inferring a type for a term with no type annotations is provably unsolvable (sim-
ilarly to the way the more familiar halting problem, of whether or not a Turing machine halts, is unsolvable). So
type inference is necessarily limited or approximate in some way for such languages. At the moment, GURU does not
attempt to provide such type inference, and we must live with writing annotations like type arguments to polymorphic
functions.

6.3 Polymorphic Functions
Programming with polymorphic data is similar to programming with monomorphic data, except that we use type
variables. For example, let us write an append function, for concatenating two polymorphic lists. As a warmup, here

58

is code for appending monomorphic nlists, where we will rename the constructors slightly so that they do not clash
with those for lists:

Inductive nlist : type :=
nnil : nlist

| ncons : Fun(n:nat)(l:nlist).nlist.

Define nappend : Fun(l1 l2:nlist).nlist :=
fun(l1 l2:nlist).

match l1 with
nnil => l2

| ncons n l1’ => (ncons n (nappend l1’ l2))
end.

The basic idea behind this function can perhaps be easier seen via these equations:

(nappend nnil l2) = l2
(nappend (ncons n l1’) l2) = (ncons n (nappend l1’ l2))

If the first list is empty, then we just return the second (that is what the first equation says). If the first list consists of
a nat n followed by a sublist l1’, then we recursively append the sublist to l2. This is done with (nappend l1’
l2) in the second equation. Then we put n at the front of the result. This code has the effect of working through the
first list completely until it reaches nnil, which it replaces with l2. So the first list is rebuilt starting with l2 instead
of with nnil.

Now let us see the polymorphic version of append, working on polymorphic lists. We can include the definition
of list given in the previous section from guru-lang/lib/list.g. Because some of the theorems in that file
take a while to check, it is helpful to do the include of list.g like this:

Include trusted "../guru-lang/lib/list.g".

The “trusted” option tells GURU not to check any proofs that are Defined in the included file or recursively any
files that file includes. A better long-term solution is to implement separate compilation for GURU, where once a file
has been checked, a summary of its declarations and definitions is created which can be used later without rechecking
the file. This has not been implemented yet, however. When GURU terminates, it will print a list (which can get rather
long) of all the theorems whose proofs it is trusting due to the use of “trusted”. To return: the code for append
can be written as follows. Note that a much more complicated definition is given in list.g, for reasons which we
will explain later. We call our version here append’ to avoid a name conflict.

Define append’ : Fun(A:type)(l1 l2:<list A>).<list A> :=
fun append’(A:type)(l1 l2:<list A>):<list A>.

match l1 with
nil _ => l2

| cons _ a l1’ => (cons A a (append’ A l1’ l2))
end.

There are, clearly, several differences from the monomorphic nappend defined above. First, append’ takes a type
A as its first argument. The second and third arguments are then of type <list A>, meaning that they are lists whose
elements are of type A. Then append’ returns a list of As. Other differences include the fact that A is passed as an
argument to cons, and also in the recursive call to append. This makes sense from a classification perspective, since
cons and append require a type as their first arguments, and that type has to match up in the appropriate way with
later arguments. One feature we have not discussed yet is used for the patterns of the cases. Here, an underscore is
written for the type argument (the first argument to nil and cons). There is no special meaning to underscore: it is
just another pattern variable in this case. I am using underscore here just to indicate informally that that variable is not
used later. So it is essentially an ignored variable. Again, this is all informal: GURU does not check that it is ignored.

59

The one subtle point we must note here is that for the second pattern, say, to classify, it must be the case that the
pattern variable a has classifier . This is because cons’s type says that the first argument is some type, here , and
the second argument then has that type. So a really has type . How then can we treat it as if it has type A, for example
when we pass it to cons in the body of the clause for cons? Because GURU automatically equates and A in this
situation. The algorithm GURU uses is the following.

1. Compute the type, call it TS , for the scrutinee. Here, the scrutinee is l1, and its type is <list A>.

2. Then for each clause, compute the type, call it TP , for the clause’s pattern. In the clause for cons, for example,
the type of the pattern is <list >.

3. Match TS against TP . That is, treat TP as a pattern, and pattern match it against TS . Pattern variables occurring
in TP are considered variables which can be instantiated by this pattern matching. So here, we are matching
<list A> against <list >, where is considered an instantiable variable (because is a variable in the
pattern cons a l1’). The instantiation that makes these two types equal is the one which maps to A.

4. Extend definitional equality in the body of the clause to equate any variables instantiated by pattern matching
with whatever they were instantiated to. So in the body of the clause for cons, definitional equality is extended
to equate and A.

5. Now classify the body of the case with the extended definitional equality. This explains why (cons A a)
type checks in the body of the cons-clause: once we have given A as the first argument to cons, the second
argument is expected to have type A; the given second argument “a” actually has type ; but these are considered
definitionally equal in this case, so the application type checks.

We will see later situations where this simple algorithm is not sufficient, particularly for dependently type pro-
gramming. In those situations, explicit type casts are used in code, which begin with the keyword cast. You will
see some of these in library files, including list.g (for reasons explained in Section 6.5.3). But for polymorphic
programming as we usually encounter it (certainly in OCAML or HASKELL without some of its recent extensions to
the type system), this is enough to make the connection between the type of the scrutinee and the type of the pattern,
in a fully automatic way.

6.4 Polymorphic Proving
Let us now prove that append’ is associative. The theorem we wish to prove is written this way in GURU:

Forall(A:type)(l1 l2 l3 : <list A>).
{ (append’ l1 (append’ l2 l3)) = (append’ (append’ l1 l2) l3) }

There are two points to explain here. First, we are quantifying over a type A, similarly to the way our code for
append’ above takes in a type A. The second point, which is somewhat subtle, is in the phrasing of the equation
we are proving. Notice that here, unlike in our code above, no type argument is given to append’. We just call
append’ with the two lists. Here we are seeing in action one of the main features of GURU over related proving
environments like COQ. Equations are always stated and proved between terms without any type annotations. In fact,
GURU’s definitional equality erases type annotations from terms. So (nil bool) and (nil nat) are considered
definitionally equal, when we compare classifiers. In fact, note that when we drop their type annotations, we get just
nil, with no parentheses.

The rationale for this approach is that we are interested in reasoning about the computational behavior of programs,
which in GURU does not depend on type annotations. So we may reason about the programs with their annotations
dropped. Practically speaking, this greatly simplifies reasoning about code with annotations, since they are erased
for purposes of equational reasoning. Tools like COQ do not erase such annotations, which then clutter proofs. The
problem becomes much worse with dependently typed programming, where programs contain much more complex
annotations than just a few type arguments here for polymorphic programming.

60

Define append’_assoc :
Forall(A:type)(l1 l2 l3 : <list A>).

{ (append’ l1 (append’ l2 l3)) = (append’ (append’ l1 l2) l3) } :=
foralli(A:type).
induction(l1:<list A>)
return Forall(l2 l3 : <list A>).

{ (append’ l1 (append’ l2 l3)) = (append’ (append’ l1 l2) l3) }
with

nil _ =>
foralli(l2 l3 : <list A>).

trans cong (append’ * (append’ l2 l3)) l1_eq
trans join (append’ nil (append’ l2 l3)) (append’ (append’ nil l2) l3)

cong (append’ (append’ * l2) l3) symm l1_eq
| cons _ a l1’ =>

foralli(l2 l3 : <list A>).
trans cong (append’ * (append’ l2 l3)) l1_eq
trans join (append’ (cons a l1’) (append’ l2 l3))

(cons a (append’ l1’ (append’ l2 l3)))
trans cong (cons a *) [l1_IH l1’ l2 l3]
trans join (cons a (append’ (append’ l1’ l2) l3))

(append’ (append’ (cons a l1’) l2) l3)
cong (append’ (append’ * l2) l3) symm l1_eq

end.

This proof does not use any features we have not already discussed. The algorithm described in the previous section
for connecting the scrutinee’s type and the pattern’s type is used here also for the clauses of the induction-proof
(the same algorithm is used for case-proofs, too). We do induction on the first list l1, following Hint 1, since l1 is
used twice in an analyzed argument position, here the first argument position of append (while l2 is used once and
l3 not at all in such a position). Otherwise, we just perform straightforward equational reasoning, where as explained
just above, we do not need to include the type annotations in any of the terms we use in equational reasoning. In
particular, we give completely unannotated terms to join and cong.

6.5 The Fold-Right Function
An important polymorphic function often defined on lists is the fold-right function, which we will call foldr’; the
name is to avoid a conflict with a more complex version foldr defined in guru-lang/lib/list.g, which we
will discuss below. The basic idea is that foldr’ should take a function “f” of type Fun(a:A)(b:B).B and a
starting value b of type B. It will iterate f over the elements of the list, starting with value b and accumulating a
resulting value of type B for the whole list. For example, given a list like “a1,a2,a3” of elements of type A, foldr’
with f and b will return:

(f a1 (f a2 (f a3 b)))

We will see in just a moment why this is useful, but let us first write the type for foldr’:

Fun(A B:type)
(f:Fun(a:A)(b:B).B)
(b:B)
(l:<list A>).B

I have split this across multiple lines for readability. We can see that we must first take in the types A and B. Then we
take in the function f and the starting value b, and finally the list of As. The code for foldr’ is easy to write:

61

fun foldr’(A B:type)(f:Fun(a:A)(b:B).B)(b:B)(l:<list A>):B.
match l with

nil _ => b
| cons _ a l’ => (f a (foldr’ A B f b l’))
end.

When the list l is empty, we return our starting value b. When it consists of an element “a” and a sublist l’, we apply
f to a and also to the result of folding f on l’.

6.5.1 Using foldr’ to compute length
As a simple example, we can use foldr’ to give a very concise (and non-recursive) definition of a function to
compute the length of a list:

Define length’ :=
fun(A:type)(l:<list A>).

(foldr’ A nat fun(a:A)(n:nat).(S n) Z l).

First we should confirm that this type checks. For example, the third argument’s type is Fun(a:A)(n:nat).nat,
which is correct given that the first two arguments are A and nat. To understand how this definition of length
works, let us look at what foldr’ will return for a list “a,b,c”. Writing F for the function fun(a:A)(n:nat).(S
n), the returned value is computed by:

(F a (F b (F c Z)))

The starting value we have given foldr’ is the fourth argument, Z. So we see “Z” at the right of the expression just
above. Then we have the iteration of F through the data of the list. We can easily see that { (F x y) = (S y) }
for all x and y. Transforming the above expression one step at a time (just for emphasis), we see that the expression is
indeed equal to the length of the list (namely, three):

(F a (F b (F c Z))) =
(S (F b (F c Z))) =
(S (S (F c Z))) =
(S (S (S Z)))

6.5.2 Using foldr’ to map a function
Another common operation in polymorphic functional programming with lists is to transform an input list of As into
a list of Bs by applying a function f of type Fun(x:A).B to the elements of the input list. This operation is called
map. We can implement a version of this called map’ using foldr’, as follows:

Define map’ :=
fun(A B:type)(f:Fun(x:A).B)(l:<list A>).

(foldr’ A <list B> fun(x:A)(l2:<list B>).(cons B (f x) l2) (nil B) l).

The second argument to foldr’ is always the type of the data that is being computed by the function we are folding
across the list’s data. We wish to compute a list of Bs from a list of As, so the final result we want from our folding
operation is of type <list B>. That explains the second argument to foldr’. For the third, we can confirm it has
the correct type:

Fun(x:A)(l2:<list B>).<list B>

This fits the pattern for these functions: their types should be of the form Fun(x:X)(b:Y).Y, for some types X and
Y. The function we are folding takes in the element of the list first, as x of type A, and it takes the result of folding the
function over a sublist (L, say), and returns the result of folding the function over (cons A a L). So we just use
cons to put together (f x) and the result l2 of mapping the sublist. Our starting value for this folding operation is
(nil B), the empty list at type B.

62

6.5.3 Some complications due to compilation
If you look in guru-lang/lib/list.g, you will see first our definition of polymorphic lists (from Section 6.2),
and definitions of functions foldr, map, and length that behave just like the functions with similar names that we
have defined above. But the definitions are more complicated, and indeed a bit ugly. For example, foldr is declared
to have this type:

Fun(A B C: type)(owned cookie:C)
(fcn: Fun(owned cookie:C)(owned x:A)(y:B).B)
(b:B)(owned l : <list A>).B

This is similar to, but not the same as, the type for foldr’ that we have above:

Fun(A B: type)
(f: Fun(x:A)(y:B).B)
(b:B)(l : <list A>).B

The difference (other than the different name for the function which is being folded – a purely syntactic difference
with no semantic import) is that the type of foldr takes three types, A, B, and C; where foldr’ takes just A and B.
Then foldr expects a cookie of type C, and the function fcn that it takes as its fifth input expects to be called with
such a cookie. Furthermore, the keyword owned, which we have not seen up to now, is used in several places. What
is going on?

What is going on is that we are, for the first time, encountering code that is actually intended to be compiled to C
code and executed efficiently. Up until now, all the code we have considered is not intended for compilation to C, but
rather just in specifying such code. After all, what computation do we really want to do with unary natural numbers?
Efficient computations should be done with machine integers, which we will discuss in a later section. Unary nats are
much better than machine integers for specification, however, since they are much easier to reason with. The boolean
datatype is used heavily in practice, but it is so simple it turns out to constitute a special case: it is just an enumeration,
and those can be handled specially during compilation to C code. But with the list datatype, we actually encounter a
non-trivial datatype that we wish to use in compiled code. So here, we run into several issues in GURU as it currently
stands, that must be dealt with. These issues are not fundamental to the language; we could change GURU so that
we did not have to deal with them. But it turns out there are some reasons for not doing so, even though it results
in somewhat less pleasant code. We will explore all three of these issues in more detail later. For now, this is just a
preview so we can handle the code in lib/list.g.

1. When GURU programs are compiled to C, memory is managed using reference counting, not garbage collection
as is typical in other memory-safe languages (a memory-safe language is, at least roughly, one where we it is
not possible to read uninitialized memory or read or write freed memory). GURU uses ownership annotations
like owned here to help reduce the cost of reference counting.

2. When compiling fun-terms to C, the compiler requires that they do not contain any free variables. For example,
a fun-term like fun(x:nat).(plus x y) is disallowed by the compiler. Such fun-terms are supported
by functional languages like OCAML and HASKELL, and indeed, many would consider them crucial to the
functional programming methodology. They are disallowed in the current version of GURU for reasons again
related to memory management. A language that supports (compilation of) functions with free variables is said
to support closures (this is the name of the compiler technique used to support functions with free variables).

3. In code which will be compiled, again for reasons related to memory management, it is sometimes necessary to
use explicit type casts, even though the algorithm presented at the end of Section 6.3 succeeds in connecting the
type of the scrutinee with the type of a pattern in a match-term. The syntax for these casts is

cast t by P

where t is a term of type T, and P is a proof of { T = T’}, for some type T’. The cast then has type T’.

63

So, our foldr code includes some owned annotations related to memory management. The type C for cookies is
to accomodate functions that might want to rely on auxiliary data. If GURU supported closures, we would not need
these cookies, since auxiliary data could be included in the function itself via free variables. Since we do not support
closures, the auxiliary data must be passed in via a cookie, which is some other data structure that exists just to hold
that auxiliary data.

The functions foldr and map in lib/list.g are written to use cookies, just in case the functions being folded
or mapped need to use cookies. The length function just uses a trivial cookie unit of type Unit, defined in
lib/unit.g. For purposes of proving lemmas about these functions, it should be possible to:

• Ignore ownership annotations completely in your proofs. You should never have to type a keyword like owned
anywhere in your proofs. This is because these annotations are dropped out by definitional equality inside proofs
(though not inside terms).

• Reason about those functions as if they had the simpler definitions above. They do the same thing, except that
they pass cookies around in some cases where the simpler definitions do not.

When writing new code using these functions, we can also avoid ownership annotations by using the spec option
with the Define-command. For example, the following definition uses foldr (the one from lib/list.g with
cookies) to define a function concat that takes a list whose elements are lists of As and appends all those elements
to get just a list of As. Without the spec option just after the Define keyword, this will not type check in GURU due
to the lack of ownership annotations:

Define spec concat : Fun(A:type)(l:<list <list A>>).<list A> :=
fun(A:type)(l:<list <list A>>).

(foldr <list A> <list A> Unit unit
fun(u:Unit)(l1 l2:<list A>).(append A l1 l2)
(nil A) l).

6.6 Exercises
The usual restriction on using proof methods discussed in the book so far applies.

1. Prove the following theorem about the fill function in guru-lang/lib/list.g:

Forall(A:type)(a:A)(n m:nat).
{ (fill a (plus n m)) = (append (fill a n) (fill a m)) }

In the code for fill, you will see inc a. This inc is for incrementing a reference count. In proofs, inc a
is definitionally equal to a.

HINT: I proved this using induction on one of the variables (which one would it most likely be?), and I did not
need any other lemmas.

2. Prove that fill is total.

3. Prove the following theorem, which states that mapping “f” and then mapping “g” is the same as mapping their
composition. Note how fun-terms are written with annotations dropped, on the right hand side of the equation
(for the composition of “f” and “g”). The type for cookies is taken to be just Unit, for simplicity.

Forall(A B C:type)
(f:Fun(u:Unit)(x:A).B)
(g:Fun(u:Unit)(x:B).C)
(l:<list A>).

{ (map unit g (map unit f l)) = (map unit fun(u x).(g u (f u x)) l) }

64

HINT: my proof is by induction on one of the variables (which?), and uses no other lemmas.

4. Using foldr defined in guru-lang/lib/list.g, define a function some with the same type as the func-
tion all defined at the bottom of lib/list.g. This function some should return tt if the given function f
returns tt for some element of the list, and ff otherwise. In contrast, the all function returns tt if f returns
tt for all elements of the list, and ff otherwise.

5. Write down two universally quantified formulas in GURU syntax, where each one mentions two functions from
{ foldr, length, append, foldr, all, some, fill }, and where you believe the formula to
be provable in GURU. Your formulas should not be trivially provable, in the sense that they should not be
provable using only foralli and join: induction or at least case-proofs should be required to prove
the formulas.

Optional: prove one of the formulas you have written.

65

66

Chapter 7

Dependently Typed Programming

In the preceding chapters, we have seen how to write monomorphic and later polymorphic programs, and to prove
properties about their operational (i.e., run-time) behavior. Those proofs are external to programs, in the sense that
they reside outside the code for the functions in question, and from that external position prove operational properties
of the code. With external verification, proofs and programs are distinct and separate artifacts.

In this chapter, we study internal verification, where a program and a proof are written as a single combined
artifact. Syntactically this artifact is a program (i.e., a term), but it contains proofs inside it. These proofs are there
to demonstrate to the type checker that the code has a semantically rich type, called a dependent type. The semantic
richness and the dependency of these types arises because dependent types are allowed to mention (“depend on”)
terms. We have seen in the previous chapter how types can mention other types: the type <list A> of lists of As
mentions the type A. More concretely, <list nat> mentions the type nat. With dependent types, we can have a
type like <vec A n>, where n is a nat, and hence a term. This <vec A n> is the type for lists (“vectors”) of As
of length n. A dependent datatype like this is also sometimes called an indexed type (where vec is considered to be
indexed by n). The length n is present in the type, which allows the expression of more complex relationships between
the types of program data than we have seen up to now. For example, we may write an append function on vectors that
takes a <vec A n> and a <vec A m> as inputs, and produces a <vec A (plus n m)> as output. At various
places in the code for this vector append function, it is necessary to use a proof to convince the GURU type checker
that two types are equivalent. For example, we might need to convince the type checker that <vec A (plus n
m)> and <vec A (plus m n)> are equivalent. We can do this using congruence and commutativity of plus.

Programming with dependent types has been studied intensively in the past few years, with a number of different
research languages for dependently typed programming proposed [8, 9, 10, 13, 5, 2, 16, 7]. The motivation for this is
that programming with rich dependent types seems to be closer to more traditional programming than a combination
of traditional programming and external theorem proving, and still can give stronger correctness properties than are
possible with traditional type checking. The GHC implementation of HASKELL has recently added support for a limited
kind of dependent types called Guarded Algebraic Datatypes (GADTs) [4]. Dependent types arose much earlier than
these works, in type theoretic formulations of logic. A well-known example is Martin-Löf type theory [6].

Because practical dependently typed programming is rather new, there is not yet consensus on effective method-
ology for using it. One question is, when to use dependent types and when to use external verification (assuming a
language supports both, as GURU does). One simple practical answer is that it can quickly become infeasible to use
external verification for large functions. Certainly in GURU, external verification relies heavily on partial evaluation,
which will become unbearable with functions more than a few tens of lines long: otherwise we will end up joining
one gigantic program term with another, which will bloat proofs unacceptably. In such cases, dependent types are very
useful, because we need never write a proof about the large function. Instead, we give it a rich type which captures
some critical properties of it, the way the type mentioned above for vector append captures the property that the length
of the output list is equal to the sum of the lengths of the input lists.

67

7.1 Preview
In this chapter we will see how to define dependent types like <vec A n>, and how to write dependently typed
programs operating on such types. In the next chapter we will discuss external verification of dependently typed
programs.

• A dependent type like vec is declared using an Inductive-command like this:

Inductive vec : Fun(A:type)(n:nat).type :=
vecn : Fun(A:type).<vec A Z>

| vecc : Fun(A:type)(n:nat)(a:A)(l:<vec A n>).
<vec A (S n)>.

• Proofs of type equivalence enter code in cast-terms, mentioned at the end of the last chapter.

• Previously, we have seen how match-terms, case-proofs, and induction-proofs introduce an assumption
variable like n eq for a match on “n”. This variable proves that the scrutinee is equal to the pattern in each
clause of the expression. These expressions also have a second assumption variable, which is n Eq for “n”.
This proves that the scrutinee’s type is equal to the pattern’s type. These assumptions can be needed to reason
based on the fact that indices to the scrutinee’s type are equal to corresponding indices of the pattern’s type.
Injectivity, embodied in inj-proofs, is used to go from the proof that the types are equal to the proof that the
indices are equal.

7.2 Indexed Datatypes
The declaration for the indexed datatype vec for vectors (i.e., lists) of As of length n in GURU is:

Inductive vec : Fun(A:type)(n:nat).type :=
vecn : Fun(A:type).<vec A Z>

| vecc : Fun(A:type)(n:nat)(a:A)(l:<vec A n>).
<vec A (S n)>.

You can find this declaration in guru-lang/lib/vec.g (ignoring for now the spec keyword that appears in
one place there). In the first line, we declare vec to be a type constructor, similarly to the declaration we have in
Section 6.2 for list. Here we see that vec’s classifier (its kind) is Fun(A:type)(n:nat).type. So when we
apply vec – which is done at the type level using angle brackets, as we saw for list – we will have to supply two
arguments: a type and a nat. So for example, <vec nat Z> is a correct type-level application of vec, and will
have classifier type. So <vec nat Z> is a type.

Now let us look at the declarations of the constructors, vecn and vecc. This vecn corresponds to nil for lists:
it creates the vector of As of length zero. That is indeed what its type tells us. Given A that is a type, vecn will return
a value of type <vec A Z>. To extend a vector by adding a new element to the front, we use vecc, corresponding
to cons for lists. This takes in a type A, a nat “n”, an element a of type A (this is the element to add to the front of
the vector), and a subvector l. The subvector should have type <vec A n>. Since “n” is the length of the subvector,
the length for the new vector being built by vecc is (S n). This is because we have added one element to the front
of “l”, thus yielding a list whose length is one greater than l’s.

The interpretation of “n” in <vec A n> as the length of the vector is not machine-checked. We have given the
index n this interpretation informally. We have not proven any theorem relating this n to the length of the vector as
computed by some length function.

Here is an example value built using vecc and vecn:

(vecc nat (S Z) three (vecc nat Z four (vecn nat)))

This value has type <vec nat (S (S Z))>. This is a vector of length two (the “(S (S Z))” in this type). The
data stored in this vector are three and four (so the list looks like “3,4”). We have a type annotation nat in three
places. We also have annotations Z and (S Z) for the lengths of sublists. These are given as the second argument to
vecc in each case.

68

7.3 Programming with Indexed Types
Let us now see how to write the append function on vectors. As mentioned above, we wish to write this function so
that it has the following type:

Fun(A:type)(n m:nat)(l1 : <vec A n>)(l2 : <vec A m>).<vec A (plus n m)>

We will take in A that is the type of elements in the vectors, “n” and “m” that are the lengths of the vectors, and then
the vectors themselves. We will return a vector of length (plus n m). This function will behave very similarly to
append on lists, except for the presence of the indices to vec for the lengths of the lists. It is these which require
some extra work for dependently typed programs.

Just like list append, vec append will use the first list as its parameter of recursion. Let us think for a moment
about the base case, when this vector l1 is the empty vector. In this case, we wish just to return l2. This is exactly
what list append does. Our only difficulty is with the types. Our “l2” has type <vec A m>, but we are supposed
to return (from vec append) a value of type <vec A (plus n m)>. Of course, we are in the case where l1 is
empty, so its length “n” is equal to zero. That means that the type <vec A (plus n m)> is actually equal to
<vec A m>, since in this case:

(plus n m) = (plus Z m) = m

We just need to prove that type equality to GURU. This can be done by standard GURU equational reasoning with
cong, join, and the rest, as long as we can get that proof that { n = Z}. How do we do that?

7.3.1 The assumption variable for types

We have seen how all the constructs in GURU that have clauses – match-terms, case-proofs, and induction-
proofs – make available an assumption variable in each clause that says that the scrutinee is equal to the pattern. For
example, in Section 3.6, we saw this simple case-proof:

Define not_not : Forall(b:bool). { (not (not b)) = b } :=
foralli(b:bool).

case b with
ff => trans cong (not (not *)) b_eq

trans join (not (not ff)) ff
symm b_eq

| tt => trans cong (not (not *)) b_eq
trans join (not (not tt)) tt

symm b_eq
end.

In each clause, the assumption variable b eq is automatically declared. In the ff-clause its classifier is { b = ff
}, while in the tt-clause its classifier is { b = tt }. So b eq serves as a proof of the assumption that the scrutinee
matches the pattern in each clause.

For dependently typed programs, we need to reason about indices to types. For this purpose, clausal constructs
in GURU provide a second assumption variable. Where the first assumption variable proves, in each clause, that the
scrutinee is equal to the pattern of the clause, the second assumption variable proves that the scrutinee’s type is equal
to the pattern’s type. Where the first assumption variable is automatically named x eq for scrutinee “x”, the second
is automatically named x Eq.

For monomorphic code, this assumption is never interesting, since the types involved do not have any structure.
For example, in the not not proof above, the second assumption variable, whic is automatically named b Eq, proves
{ bool = bool}. This is because the type of the scrutinee “b” is bool, and the type of the patterns (ff and tt)
is bool. Let us return to the code for vec append to see a more interesting example.

69

7.3.2 Starting the base case of vector append

Here is the code for vector append (found in guru-lang/lib/vec.g), not including the clause for vecc:

fun vec_append(A:type)(n m:nat)(l1 : <vec A n>)(l2 : <vec A m>):
<vec A (plus n m)>.

match l1 with
vecn _ => cast l2 by

cong <vec A *>
symm trans cong (plus * m)

inj <vec ** *> l1_Eq
join (plus Z m) m

| vecc _ n’ x l1’ => ...
end.

The function begins as we would expect based on the type it is supposed to have. It does a match on l1. As for
polymorphic match-terms, GURU makes the connection between and A, and declares them definitionally equal in
the bodies of the clauses (see Section 6.3). We then see a cast-term. The syntax of such terms is cast t by P,
where “t” is a term and P is a proof. If “t” has type T, and P proves {T = T’}, then the whole cast-term has type
T’. In other words, a cast-term is used to change the type of t from T to T’, where P proves these types are equal.
In our case here, the goal is to change the type of l2 from <vec A m> to <vec A (plus n m)>. Let us walk
through the proof to see how this is done.

First, if we use show on the trans-proof, we will see it proves these equational steps:

1. (plus n m) =

2. (plus Z m) =

3. m

The only new part of the trans-proof is how we obtain the fact that {n = Z}. This is done with an inj-proof, inj
<vec ** *> l1 Eq, which we explain next.

7.3.3 Injectivity reasoning

Suppose we have a proof P that {(S x) = (S y)}. This should mean that {x = y}, but up until now, we have
not seen how to conclude this in GURU. The way to do so is to use injectivity reasoning. Term and type constructors
are injective. A function f is injective iff f(x) = f(y) implies x = y. In other words, the only way f can map x and
y to the same output is if x and y are the same input. If x 6= y, then f(x) 6= f(y).

In GURU, injectivity reasoning is done with inj-proofs. The general syntax is slightly complicated, so let us start
with our example using successor. If P proves {(S x) = (S y)}, the inj (S *) P proves {x = y}. We use
a context here to indicate which position is of interest to us (marked with ∗, as for congruence).

The general syntax of an inj-proof is inj C P, where C is an injectivity context and P is a proof. An injectivity
context is a constructor term or a type with a hole ∗ in it, indicating a position of interest. In addition, a second hole ∗∗
is used to indicate positions we wish to ignore. The use of the injectivity context is as follows. We check that the proof
P proves a formula of the form {C[e,e1,...,en] = C[e’,e1’,...,en’]}, where C[e,e1,...,en]
means the expression obtained by substituting e for the first hole and ei for the i’th occurrence of the second hole
in C. In other words, the left and right hand sides of the equation proved by P share a common top-level structure
described by C, differing in one place we care about (indicated with ∗) and several places we do not (indicated by ∗∗).
Then the inj-proof proves {e = e’}.

70

7.3.4 Finishing the base case of vector append
Now we may return to the base case of vector append, to understand the proof used to cast l2 from type <vec A m>
to <vec A (plus n m)>:

cong <vec A *>
symm trans cong (plus * m)

inj <vec ** *> l1_Eq
join (plus Z m) m

The inj-proof here uses the second assumption variable l1 Eq (see Section 7.3.1). This variable has the following
classifier:

{ <vec A n> = <vec _ Z> }

The left hand side is the type of the scrutinee “l1”, while the right hand side is the type of the pattern (vecn).
From this we wish to conclude that {n = Z}. We must tell inj to disregard the difference between A and in the
first argument position of the two expressions. For that we use **, so we have <vec ** *> as our context. The only
other point to note in our proof is that we use cong with a type context <vec A *>. This works exactly as cong
with a term context. Here, the cong-proof goes from a proof that {m = (plus n m)} (note the use of symm to
get this from the trans-proof) to a proof that:

<vec A m> = <vec A (plus n m)>

This is what we need to cast l2 to be able to return it in the base case.

7.3.5 Finishing vector append
The full code for vector append is:

fun vec_append(A:type)(n m:nat)(l1 : <vec A n>)(l2 : <vec A m>):
<vec A (plus n m)>.

match l1 with
vecn _ => cast l2 by

cong <vec A *>
symm trans cong (plus * m)

inj <vec ** *> l1_Eq
join (plus Z m) m

| vecc _ n’ x l1’ =>
cast

(vecc A (plus n’ m) x (vec_append A n’ m l1’ l2))
by cong <vec A *>

trans symm join (plus (S n’) m)
(S (plus n’ m))

cong (plus * m)
symm inj <vec ** *> l1_Eq

end.

Let us look now at the vecc-clause. In this case, l1 is a vecc-term, where the subvector is l1’, of type <vec
n’>. The data at the front of the vector is x of type . The type of this pattern is then

<vec _ (S n’)>

As remarked for the base case, GURU makes the connection between and A. But we need to help GURU make the
connection between the length n of l1 and (S n’). This is again done by injectivity reasoning: at the very end of
the body of this clause, we have again inj <vec ** *> l1 Eq, proving in this case that

71

{ n = (S n’) }

Let us see what the cast is doing. First, we should figure out what type the term has which is being cast. The term is

(vecc A (plus n’ m) x (vec_append A n’ m l1’ l2))

From the type of vec append specified at the very start of the recursive fun-term, we can compute that the term
(vec append A n’ m l1’ l2) has type <vec A (plus n’ m)>. Notice how, in this term, the indices n’
and m have to relate to the types of l1’ and l2. Once we have specified to vec append that the lengths of the
vectors are n’ and m, then we really need to give vectors whose types say they have those lengths. Turning now to the
entire vecc-term, we can compute that it has this type:

<vec A (S (plus n’ m))>

This is because we are adding an element x to the front of the vector built by the recursive call to vec append. We
have already seen that that vector has type <vec A (plus n’ m)>. Adding one to that length leads to the type
<vec A (S (plus n’ m))>.

So the cast-term is changing the type of this vecc-term from

<vec A (S (plus n’ m))>

to

<vec A (plus n m)>

The critical part of this, of course, is changing from (S (plus n’ m)) to (plus n m), which we well know
how to do at this point, using equational reasoning.

7.4 Binary Search Trees
As another example, we will define an indexed datatype for binary search trees in such a way that any value of that
datatype truly satisfies the binary search tree property: if we go left from a node with data x in the tree, we will only
ever see data less than or equal to x; and if we go right, we will see data greater than or equal to x. To enforce these
invariants, the solution here is to index the type of binary search trees by lower and upper bounds on the data stored in
the tree. To do this in a generic way, we do not build in the comparison, le, but allow it to be specified by users of our
datatype. So our type for binary search trees is:

<bst A le l u>

Here, A is the type for data stored in the tree, le is the comparator, and l and u are the lower and upper bounds,
respectively. Here is the declaration for this datatype:

Inductive bst : Fun(A:type)(le:Fun(a b:A).bool)(l u : A).type :=
leaf : Fun(A:type)(le:Fun(a b:A).bool)(a:A).

<bst A le a a>
| node : Fun(A:type)(le:Fun(a b:A).bool)

(a l1 u1 l2 u2:A)
(t1 : <bst A le l1 u1>)
(t2 : <bst A le l2 u2>)
(q1:{ (le u1 a) = tt})
(q2:{ (le a l2) = tt}).
<bst A le l1 u2>.

We are supposing here that we always have two children, and that leaves store data. In the next chapter, we will revisit
these assumptions. Let us walk through this declaration. First, the kind for bst is declared to be:

72

Fun(A:type)(le:Fun(a b:A).bool)(l u : A).type

This means that for <bst A le l u> to be a type, we must have le be a function that takes two As as inputs, and
produces a bool telling whether or not the first is less than the second. The lower and upper bounds (l and u) must
have type A, naturally. The type for leaf says that a leaf storing data “a” has lower and upper bounds a: the return
type for leaf is <bst A le a a >.

The type for node is more complicated. The basic idea is that we want to make a new tree with left and right
subtrees t1 and t2, respectively, where the new tree stores data “a” (at the top of the tree). Here is where we enforce
our invariants that going left should give you data less than or equal to “a”, while going right should give you greater
than or equal data. Let l1 and u1 be the lower and upper bounds on the data in t1. Then u1 should be less than or
equal to “a”. Similarly, if l2 and u2 are lower and upper bounds on the data in t2, we should have “a” less than or
equal to l2. When node is applied, proofs of these facts must be given, for the parameters q1 and q2. We then get a
new tree with lower bound l1 and upper bound u2.

Programming with datatypes like bst that have such strong invariants is not easy. For example, we might wish
to write a function insert, to insert a piece of data in the bst. If we were using external verification, we would
have one modestly tricky piece of code to write, and one more complicated theorem proving that the tree produced by
inserting a piece of data into a binary search tree is again a binary search tree. With our indexed bst datatype, the
proof and the program have to be combined, resulting in a single, more compact artifact that the separate proof and
program, but one that is more complicated, perhaps, than either of them separately would be.

7.5 Summary
We have seen how to design indexed datatypes for internal verification. In some cases, our indices simply provide
information about the data, as the length index for vectors does, without constraining the data at all. Such information
can be used for internal verification of functions operating on the data, such as verifying the relationship between
input and output lengths to the vector append function. In other cases, like the binary search tree example, indices are
actually used to help state constraints on the data. We have seen how to use injectivity and casts to work with indexed
data in GURU programs. In the next chapter, we will see how to prove properties of dependently typed functions.

7.6 Exercises
1. Declare an indexed datatype slist for sorted lists of nats. Your declaration should make <slist n> a type

for any nat n. Your datatype should be designed in such a way that if L is of type <slist n>, then either L
is empty and n is zero (“Z”), or else L is the head of the list.

2. Define a function insert which takes a nat x and a sorted list, and returns a new sorted list where x has been
inserted. In more detail, your function’s type should begin like this:

Fun(x n:nat)(l:<slist n>).

It should return a sorted list. The first question you should try to answer is, what index to slist will be used
in the return type? Mine uses a certain arithmetic function applied to x and n. Writing insert then requires
several lemmas about this arithmetic function, which you can find proved already in one of the files in the
standard library (guru-lang/lib/*g).

3. Explain in English what the type of vec cat, defined in lib/vec.g, is saying about what that function does.
Similarly, explain what the type of vec get, also defined in lib/vec.g, says about what that function does.

73

74

Chapter 8

Specificationality and Dependently Typed
Proving

In this chapter, we discuss an important feature of GURU for dependently typed programming, which is specification-
ality. Arguments to term constructors and to recursive functions can be designated as specificational. This means that
they are only to be used when type checking code, and they will disappear, just like type annotations, when reasoning
about code. Indices to indexed types are very often specificational. For example, code working with vectors typically
does not need the length of the vector to compute a desired output value. The length is really just specificational,
allowing us to state properties about operations on vectors by relating indices of input and output vectors (as we did
in the type of vector append). The one rule about specificational data, naturally enough, is that non-specificational
data cannot be computed from specificational data. GURU enforces this be disallowing pattern matching (in code)
on specificational data, and by requiring that specificational data can be passed to term constructors or to recursive
functions only in positions which have been designated (by the term constructor or the function) as specificational. It is
fine, however, to use non-specificational data in a specificational argument position. Specificationality makes external
verification of dependently typed code easier, since specificational data are dropped during equational reasoning. We
will see examples of that in this chapter, as we consider proving properties of dependently typed functions.

8.1 Preview

• We will see how to mark arguments as specificational using the spec keyword, and how this feature is used
with vectors and binary search trees.

• Specificationality is also useful for a rather rarely used feature of GURU, which is existse term. This is like
existse, but is a term construct, rather than a proof construct. The name we introduce for the value which has
been proven to exist must be marked as specificational, since we must prohibit non-specificational values from
being computed from it.

• We will see examples of proving properties of dependently typed code. The main differences to note are that
specificational data are considered annotations, similar to type annotations, and are dropped during equational
reasoning; and that the form of induction-proofs is generalized to allow quantification over indices used by
the type of the parameter of induction. So to induct over a vector, we will start with “induction(n:nat)(l:<vector
A n>)”. Without this extra generality, we would typically not be able to apply the induction hypothesis, for
typing reasons.

• We will also introduce hypjoin, which tries to join terms (similarly to join), except that it also performs
substitutions using a given set of proven equations.

75

8.2 Specificationality for Datatypes
The vector datatype we saw in the last chapter is indexed by the length of the vector. The types of functions can
then state non-trivial semantic properties via relationships between indices to input and output vectors. For example,
the type of vector append state a non-trivial property of the input and output vectors by stating that the length index
of the output vector is the sum of the length indices of the input vectors. In this example and many others, we can
regard the index as just being part of the specification of the function. The function itself does not pattern match on
indices, or perform other operations with them that would affect the output value computed. Hence, these indices are
typically computationally irrelevant, just like type annotations. So we should be able to drop them during compilation
and during theorem proving, if we wish. Of course, to do this we need a way to distinguish between arguments (to
recursive functions and term constructors) that are only specificational, like the length of a vector, and arguments that
are computational, in the sense that the final output value may depend on them. GURU provides a mechanism for
distinguishing computational arguments and specificational arguments, using the spec keyword.

8.2.1 Specificationality for vectors
Let us look at the declaration of vec as it actually appears in lib/vec.g:

Inductive vec : Fun(A:type)(n:nat).type :=
vecn : Fun(A:type).<vec A Z>

| vecc : Fun(A:type)(spec n:nat)(a:A)(l:<vec A n>).
<vec A (S n)>.

The argument n to vecc is labeled specificational with the spec keyword. This keyword is itself an annotation
that will be dropped during theorem proving by definitional equality. It just indicates that arguments given for n are
specificational, and computational values should not depend on them.

For an example of how this works, consider a vector storing just the natural number two. With its type annotations,
this is written just as it would be without the spec annotation:

(vecc nat Z two (vecn nat))

If we had not marked the length argument to vecc as specificational, then dropping annotations would result in this
term, where the length Z still remains in the term:

(vecc Z two (vecn nat))

But with the spec keyword in our declaration of vec, the length is considered an annotation, and dropping annota-
tions actually yields the pleasantly simplified:

(vecc two vecn)

The vector append function may now also mark the lengths of its input vectors as specificational. From lib/vec.g,
we have the following, where P1 and P2 are standing in for the same two proofs we had in the previous chapter for
vec append (see Section 7.3.5):

Define vec_append :=
fun vec_append(A:type)(spec n m:nat)(l1 : <vec A n>)(l2 : <vec A m>):

<vec A (plus n m)>.
match l1 with

vecn _ => cast l2 by P1
| vecc _ n’ x l1’ =>

cast
(vecc A (plus n’ m) x (vec_append A n’ m l1’ l2))

by P2
end.

76

Note the use of the spec keyword where n and m are declared. When GURU type checks this fun-term, it will make
sure that n and m are only used in specificational argument positions of applications. We can confirm by eye that indeed
they are: n is not used anywhere. For m, it is used as the third argument, which is specificational, to the recursive call to
vec append; and also in the application of plus. But that application is itself used in a specificational position, and
hence satisfies the criteria on use of specificational data: they may only appear in specificational argument positions.
The length n’ of l1’ in the vecc-clause is also specificational (since the declaration of vecc says it is), but it is
also used only in specificational positions.

When the code for vec append is compiled, all data in specificational argument positions are dropped. So the
term (plus n’ m) will not be evaluated at run-time, since it is used (only) in a specificational argument position to
vecc. It is important that (plus n’ m) will be dropped in this case, since otherwise vec append would run in
time quadratic in the length of the first input list: we would execute an addition that takes time linear in this length for
each recursive call. With (plus n’ m) dropped, however, the function runs in time linear in the length of the first
input list.

Similarly, when it is time to reason externally about vec append, we will do so using its unannotated version,
which it definitionally equals:

fun vec_append(l1 l2).
match l1 with

vecn => l2
| vecc x l1’ => (vecc x (vec_append l1’ l2))
end.

Notice that terms of the form cast t by P are replaced by just t when we drop annotations. Specificational input
variables have been dropped from the fun-term, and similarly from patterns in match-terms. Again, this code is
clearly much more succinct and easier to manage, for external reasoning, than the annotated version, and we might
wish we could write only this. Annotations are the price of internal reasoning.

8.2.2 Specificationality for binary search trees
At the end of the previous chapter, we considered a polymorphic datatype of binary search trees. Here, we will work
with the following monomorphic datatype of binary search trees of nats:

Inductive bst : Fun(l u : nat).type :=
leaf : Fun(a:nat).<bst a a>

| node : Fun(a l1 u1 l2 u2:nat)
(t1 : <bst l1 u1>)
(t2 : <bst l2 u2>)
(q1:{ (le u1 a) = tt})
(q2:{ (le a l2) = tt}).
<bst l1 u2>.

Similarly to what we had before, the type <bst l u> is for binary search trees whose data are bounded between l
and u. The node constructor takes a piece of data “a” to store at the root of the new tree, and then subtrees t1 and
t2. Those have their own lower and upper bounds, namely l1 and u1, l2 and u2.

One problem with this design arises because data are stored at the leaves, and nodes must have exactly two subtrees.
So we cannot have, for instance, a tree with just two pieces of data in it. We can have a leaf, which has one piece
of data, or a node built from two leaves, which has three; but nothing in between. Using specificationality, we can
solve this problem. Let us make our lower and upper bounds specificational data. This is surely sensible, since the
bounds themselves are not intended to have any computational role: they are just used to help enforce (at compile
time) the binary search tree property. What will our datatype look like then? Clearly the arguments l1,u1,l2, and
u2 to node should be specificational. The interesting question is, what about the argument to leaf? If we make it
specificational, then computationally speaking, leaves do not store any data. The argument to leaf is specificational,
indicating which lower and upper bounds the leaf should be viewed as having. (Indeed, we could imagine a different

77

definition where leaf takes possibly distinct specificational lower and upper bounds as arguments, instead of just the
single argument a.) The definition with spec annotations is:

Inductive bst : Fun(l u : nat).type :=
leaf : Fun(spec a:nat).<bst a a>

| node : Fun(a:nat)(spec l1 u1 l2 u2:nat)
(t1 : <bst l1 u1>)
(t2 : <bst l2 u2>)
(q1:{ (le u1 a) = tt})
(q2:{ (le a l2) = tt}).
<bst l1 u2>.

To build a tree storing just two, say, we could write:

(node two two two two two (leaf two) (leaf two)
[x_le_x two] [x_le_x two])

This is definitionally equal (dropping annotations) to just:

(node two leaf leaf)

The type annotation and the lower and upper bounds have all dropped away, since the corresponding argument posi-
tions of leaf and node are specificational. Proofs (using the x le x lemma from lib/nat.g, which says that any
x is less than or equal to itself) are considered annotations, too, so they have also disappeared. Of course, we could
wish to write just the simple unannotated term instead of the much more verbose annotated one, but the annotations
are the cost of our static guarantee that the node satisfies the binary search tree property. Finally, to build a tree storing
just one and two, which was not possible to do with the previous design for bst, without specificationality; we can
write:

(node one one one two two (leaf one)
(node two two two two two (leaf two) (leaf two)

[x_le_x two] [x_le_x two])
[x_le_x one]
join (le one two) tt)

8.3 Existential Elimination in Terms
Specificationality is useful for accomodating a rarely used feature of GURU, the existse term construct. This
allows us to do an existential elimination inside a term. Our interest here is not so much in existse term, as in the
utility of specificationality in bridging between proofs and terms in dependently typed code.

Recall the existe proof construct (Section 5.4, where the syntax is existse P1 P2, with:

• P1 : Exists(x:A).F1

• P2 : Forall(x : A)(u:F1).F2

The whole existse-expression is then a proof of F2. In contrast, the existse term P t is a term (not a proof),
of type B, when:

• P : Exists(x:A).F

• t : Fun(spec x : A)(u:F).B

78

The two constructs are clearly based on the same idea of a universal hypothetical interpretation of existentials. In the
case of existse term, the subterm t takes in the value proven to exist, together with a proof that that value has the
property described by F. Here, when we introduce the name x for that value, the existse term-construct requires
that we mark x as specificational. This ensures that our computational results cannot depend on the witness to the
existential. So existse term P t can be treated as definitionally equal to just t, similarly to the way cast t
by P is definitionally equal to just t: the witness introduced by P is computationally irrelevant, and hence P can
be treated as computationally irrelevant, too. This is consistent with the view of proofs as computationally irrelevant
where they are used in other places in terms.

8.4 Induction Over Indexed Datatypes
Proving properties about values of indexed datatypes and about dependently typed code is similar to the proving we
have done up to now, with two new points to note. First, the form of induction-proofs is generalized just slightly,
so that we may quantify over not just the parameter of induction, but also over indices mentioned in its type. This
gives us extra generality in our induction hypothesis, without which we would not be able to apply it, in many cases.
Second, proofs and specificational data occurring in terms are computationally irrelevant, and hence drop out during
external reasoning, just like type annotations do when reasoning about polymorphic programs.

For an example, let us prove a property of our bst datatype, which partially shows that we have designed it
correctly. The property is that if we have a bst with lower bound l and upper bound u, then l is really less than or
equal to u. Stated in GURU, the property is:

Forall(l u:nat)(b:<bst l u>). { (le l u) = tt}

Unfortunately, this is a sad case where Hint 1 misleads us. The only universal variable used as a parameter of recursion
in a function mentioned in our theorem is l, as the first argument to le. But in fact, we would get nowhere doing
induction on l in this case. This is an easy lemma, if we prove it by induction on b. I cannot think of a good rule
of thumb to help guide us here, except to observe that this is really a property of our binary search trees, not of their
lower and upper bounds. But how we know this, or what it means for this to be “really” a property of b rather than l
or u is something I do not know.

Leaving aside these difficulties, let us try the proof by induction on b. Suppose we begin the following way, which
will turn out not to work:

foralli(l u:nat).
induction(b:<bst l u>) return { (le l u) = tt}

All will be well in the base case. But in the step case, for when b is a node-value, we will run into difficulty applying
our induction hypothesis. There, we will have b of the form (node a l1 u1 l2 u2 t1 t2 q1 q2), where

• t1 : <bst l1 u1>

• t2 : <bst l2 u2>

Since t1 and t2 are subtrees of b, the requirement that the induction hypothesis be used only for structurally smaller
trees is fulfilled. But we have a problem with typing. The induction hypothesis for the proof as we have begun it is:

Forall(b:<bst l u>). { (le l u) = tt }

We may only instantiate this with a subtree of type <bst l u>. But our subtrees t1 and t2 have different types (e.g.,
<bst l1 u1> for t1). So typing constraints will not be satisfied if we try to instantiate the induction hypothesis
with a proof-level application like [b IH t1], and we will not be able to complete our proof.

The induction hypothesis we need to avoid this problem is one which includes the lower and upper bounds:

Forall(l u:nat)(b:<bst l u>). { (le l u) = tt }

79

Since the lower and upper bounds are now included in the quantification, a proof like [b IH l1 u1 t1] will now
pass the proof checker: we have instantiated the bounds in a way that allows us to instantiate the tree with t1. GURU’s
induction proof construct allows us to write this induction-proof in such a way that we get this more general
induction hypothesis. The straightforward syntax is demonstrated below, as well as the easy bodies of the clauses
(note that le trans is for transitivity of le, from lib/nat.g):

induction(l u:nat)(b:<bst l u>) return { (le l u) = tt}
with
leaf _ => trans cong (le l *) inj <bst ** *> b_Eq

[le_refl l]
| node a _ u1 l2 _ t1 t2 q1 q2 =>

[le_trans l a u
[le_trans l u1 a [b_IH l u1 t1] q1]
[le_trans a l2 u q2 [b_IH l2 u t2]]]

end.

This proof is called bst bounds in lib/bst.g.

8.5 Dependently Typed Proving
As mentioned, proofs and specificational data drop out of terms during external reasoning about them. Consider the
following code for testing whether or not a piece of data is in a bst:

Define bst_in : Fun(x:nat)(spec l u:nat)(t:<bst l u>). bool :=
fun bst_in(x:nat)(spec l u:nat)(t:<bst l u>): bool.

match t with
leaf _ => ff

| node a l1 u1 l2 u2 t1 t2 q1 q2 =>
match (eqnat x a) with

ff =>
match (le x a) with

ff => (bst_in x l2 u2 t2)
| tt => (bst_in x l1 u1 t1)
end

| tt => tt
end

end.

Let us prove the following theorem about this piece of code:

Forall(x l u:nat)(t:<bst l u>)(u:{(bst_in x t) = tt}). { (le l x) = tt }

That is, if x is in bst t with lower bound l and upper bound u, then l must be less than or equal to x (of course,
x must be also less than or equal to u, but we do not prove that here for simplicity). Let us write our proof using
refinement. You can find this proof in lib/bst-spec.g, as bst in le1 (bst-spec.g is just temporary, to
avoid confusion with bst.g as it is being used by homework 3 currently). Our starting point is just to write down the
initial foralli and induction parts:

foralli(x:nat).
induction(l u:nat)(t:<bst l u>) return

Forall(u:{(bst_in x t) = tt}). { (le l x) = tt } with
leaf _ => truei

| node a l1 u1 l2 u2 t1 t2 q1 q2 => truei
end.

80

8.5.1 The base case
Let us fill in the base case of this proof. There, we have that t is a leaf, but our assumption u tells us that x is in t.
This will give us a contradiction, since our code for bst in says that no data is stored in a leaf. We prove this using
unannotated terms, as we do for all theorem proving. The proof looks like this (with the equational steps to be shown
just below):

foralli(x:nat).
induction(l u:nat)(t:<bst l u>) return

Forall(u:{(bst_in x t) = tt}). { (le l x) = tt } with
leaf _ =>

foralli(u:{(bst_in x t) = tt}).
contra

trans symm u
trans cong (bst_in x *) t_eq
trans join (bst_in x leaf) ff

clash ff tt
{ (le l x) = tt }

| node a l1 u1 l2 u2 t1 t2 q1 q2 => truei
end.

The equational steps are:

1. tt =

2. (bst_in x t) =

3. (bst_in x leaf) =

4. ff !=

5. tt

Here we can clearly see that all the specificational data – in this case, the lower and upper bounds – have been dropped
from the bst in-terms.

8.5.2 Case-proofs in the step case
For the step case, where the tree t is a node-value, we will do case splits following the pattern matches in bst in,
and then fill in the proofs in each case. Putting in just the case splits to begin with, we can write the following, where
P1 is the proof of the base case considered above:

induction(l u:nat)(t:<bst l u>) return
Forall(u:{(bst_in x t) = tt}). { (le l x) = tt } with
leaf _ => P1

| node a l1 u1 l2 u2 t1 t2 q1 q2 =>
foralli(u:{(bst_in x t) = tt}).
case (eqnat x a) by v1 _ with

ff =>
case (le x a) by v2 _ with

ff => truei
| tt => truei
end

| tt => truei

81

end
end.

Notice that in our two case-proofs, we use by-clauses to introduce names – v1 for the first case-proof, v2 for
the second – for the assumptions that the scrutinee equals the pattern in each clause (see Section 5.7 for more on
by-clauses). So for example, at the point where the first truei is, we have:

• v1 : {(eqnat x a) = ff}

• v2 : {(le x a) = ff}

It is burdensome to have to pick and remember the names v1 and v2, which is why GURU assigns the standard names
ending with “ eq” (and “ Eq” for the equality between the type of the scrutinee and the type of the pattern) when it is
reasonable to do so (when the scutinee is a symbol).

8.5.3 The first subcase
The reasoning for the situation of the first truei is as follows (using conventional mathematical notation for less-
than-or-equal-to). We need to show l ≤ x. We first observe that it suffices to show l1 ≤ x. This is because GURU
considers l1 definitionally equal to l in the node-clause, after applying the algorithm of Section 6.3. In more detail,
the type of the scrutinee (here, the parameter of induction) is <bst l u>. The type of the pattern is <bst l1
u1>. The algorithm of Section 6.3 tries to pattern match the latter against the former, where pattern variables may be
instantiated by the pattern matching. Here the pattern variables are l1 and u1. We can indeed make the bst-types
identical by mapping l1 to l and u1 to u.

Continuing now with the inequality reasoning: we wish to show l1 ≤ x. Since x ≤ a is false, we can conclude,
using a lemma somewhat verbosely called le ff implies le in lib/nat.g, that a ≤ x is true. We have u1 ≤ a
by the assumption q1, since our node constructor (which introduces q1 as a pattern variable here) requires a proof
that the upper bound of the left subtree is less than or equal to the data a stored by the node. Also, by the bst bounds
lemma which we proved in Section 8.4, we have that l1 ≤ u1. So we have this chain of inequalities, which we can
glue together with le trans:

l1 ≤ u1 ≤ a ≤ x

The proof in GURU syntax is:

[le_trans l1 a x
[le_trans l1 u1 a [bst_bounds l1 u1 t1] q1]
[le_ff_implies_le x a v2]]

We have nested (proof-level) applications of le trans. The outer application goes from l1 to a to x. The inner one
goes from l1 to u1 to a. This corresponds to grouping our inequalities above like this:

(l1 ≤ u1 ≤ a) ≤ x

That is, we first (corresponding to the inner le trans) go from l1 to a, and then to x.

8.5.4 The third subcase
Our proof currently looks like this:

induction(l u:nat)(t:<bst l u>) return
Forall(u:{(bst_in x t) = tt}). { (le l x) = tt } with
leaf _ =>

foralli(u:{(bst_in x t) = tt}).

82

contra
trans symm u
trans cong (bst_in x *) t_eq
trans join (bst_in x leaf) ff

clash ff tt
{ (le l x) = tt }

| node a l1 u1 l2 u2 t1 t2 q1 q2 =>
foralli(u:{(bst_in x t) = tt}).
case (eqnat x a) by v1 _ with

ff =>
case (le x a) by v2 _ with

ff => [le_trans l1 a x
[le_trans l1 u1 a [bst_bounds l1 u1 t1] q1]
[le_ff_implies_le x a v2]]

| tt => truei
end

| tt => truei
end

end

Let us fill in the third subcase, where we have the second truei in the proof just listed. We will come back to the
second subcase after that. In the third case, we are in a situation where (eqnat x a) has returned tt. From this,
we should be able to conclude that {x = a}, and indeed, there is a lemma in lib/nat.g to that effect:

eqnatEq : Forall(n m:nat)(u:{(eqnat n m) = tt}). { n = m }

We have l1 ≤ u1 ≤ a using bst bounds and q1, so we just need to use le trans and then congruence to change
“a” to x. The proof in GURU is:

trans cong (le l *) [eqnatEq x a v1]
[le_trans l1 u1 a

[bst_bounds l1 u1 t1]
q1]

8.5.5 The second subcase
Our proof now looks like this:

induction(l u:nat)(t:<bst l u>) return
Forall(u:{(bst_in x t) = tt}). { (le l x) = tt } with
leaf _ =>

foralli(u:{(bst_in x t) = tt}).
contra

trans symm u
trans cong (bst_in x *) t_eq
trans join (bst_in x leaf) ff

clash ff tt
{ (le l x) = tt }

| node a l1 u1 l2 u2 t1 t2 q1 q2 =>
foralli(u:{(bst_in x t) = tt}).
case (eqnat x a) by v1 _ with

ff =>
case (le x a) by v2 _ with

83

ff => [le_trans l1 a x
[le_trans l1 u1 a [bst_bounds l1 u1 t1] q1]
[le_ff_implies_le x a v2]]

* | tt => truei
end

| tt =>
trans cong (le l *) [eqnatEq x a v1]

[le_trans l1 u1 a
[bst_bounds l1 u1 t1]
q1]

end
end

We have one truei left to fill in, on the line marked (not GURU syntax) with a ∗. I have saved this subcase for last,
because to prove it, we will make use of a new proof method in GURU called hypjoin. Let us try to do the proof
with the methods we know, and see where we run into trouble. In this subcase, we have the following assumptions:

• u: {(bst in x t) = tt}

• v1 : {(eqnat x a) = ff}

• v2 : {(le x a) = tt}

This corresponds to the case in our bst in code where we look for x in the left subtree t1, since x is less than or
equal to the data a stored at the root of the tree t. So (bst in x t) is equal to (bst in x t1) in this case. Our
assumption u tells us that (bst in x t) equals tt, so we can use trans (and symm) to conclude {(bst in x
t1) = tt}. At that point, we may apply our induction hypothesis to conclude that l1 ≤ x.

This informal reasoning is easily formalized in GURU, except for the step where we prove

{ (bst_in x t) = (bst_in x t1) }

Let us try to prove that in GURU using our assumptions u,v1, and v2 listed above, and see what goes wrong. Certainly
our first step is to change t to (node a t1 t2), with this proof:

cong (bst_in x *) t_eq

Now we have (bst in x (node a t1 t2)), and we would like to prove this equals (bst in x t1). That is
only true, of course, because of the way the pattern matches go when evaluating (bst in x (node a t1 t2)),
as described by our assumptions v1 and v2. The proof is intolerably verbose:

trans join (bst_in x (node a t1 t2))
match (eqnat x a) with

ff => match (le x a) with
ff => (bst_in x t2)

| tt => (bst_in x t1)
end

| tt => tt
end

trans cong match * with
ff => match (le x a) with

ff => (bst_in x t2)
| tt => (bst_in x t1)
end

| tt => tt
end

v1

84

trans join match ff with
ff => match (le x a) with

ff => (bst_in x t2)
| tt => (bst_in x t1)
end

| tt => tt
end

match (le x a) with
ff => (bst_in x t2)

| tt => (bst_in x t1)
end

trans cong match * with
ff => (bst_in x t2)

| tt => (bst_in x t1)
end

v2
join match tt with

ff => (bst_in x t2)
| tt => (bst_in x t1)
end

(bst_in x t1)

The problem here is we have had to repeat parts of the full code for bst in several times, as we alternate partial eval-
uation (via join) and congruence reasoning to take into account how (eqnat x a) and (le x a) are assumed
in this case to have evaluated. This is clearly unacceptable, as it results in a large proof which is dependent on the
exact details of the way bst in is written. Any change to bst in, even one which does not change its observable
pattern of recursive calls, will break this proof. Fortunately, there is a better way.

8.6 Hypjoin

As you have no doubt observed, proof in GURU is largely a very manual process. True, join allows us to take fairly
large equational steps all at once, but other than that, we have so far seen no automation to help us prove theorems,
until now. GURU implements one fairly powerful automated theorem proving method, called hypjoin. The theory
and implementation of hypjoin are due to Adam Petcher [11]. The syntax is:

hypjoin t1 t2 by P1 ... Pn end

In other words, we give hypjoin two terms, t1 and t2, and as many proofs P1 through Pn as we like, between the
by and end keywords. Then hypjoin will try to prove that t1 equals t2, using the formulas proved by P1 through
Pn. Those formulas are required to be equations. The remarkable property of hypjoin is that, under some natural
assumptions about termination of recursive functions used in t1, t2 and the equations; and assuming the equations
are consistent (a contradiction cannot be derived); then hypjoin will succeed if and only if there is a proof that t1
equals t2 which uses just equational reasoning (including cong), join, and the given equations. In other words,
hypjoin is sound – if it claims {t1 = t2} is provable, then it really is – and also complete – if they are provably
equal in the way described, then hypjoin will indeed report that they are.

Here is a very simple example demonstrating the use of hypjoin. Consider the following theorem about le,
called leZ in lib/nat.g:

Forall(a:nat). { (le Z a) = tt }

We can easily prove this by case-splitting on a, and then using equational reasoning:

foralli(a:nat).
case a with

85

Z => trans cong (le Z *) a_eq
join (le Z Z) tt

| S a’ => trans cong (le Z *) a_eq
join (le Z (S a’)) tt

end

Since the subproofs in the two clauses are both the kind that hypjoin is supposed to be able to find automatically,
we can use hypjoin to simplify this proof:

foralli(a:nat).
case a with

Z => hypjoin (le Z a) tt by a_eq end
| S a’ => hypjoin (le Z a) tt by a_eq end
end.

In each case, we are instructing hypjoin to try to join (le Z a) and tt, using the equation proved by a eq.
Essentially, hypjoin evaluates the two terms just the way join would, but where join would get stuck pattern-
matching on a variable (or other non-value), hypjoin tries to keep going by replacing the scrutinee of the pattern-
match using one of the equations. In this example, in the first case, a eq proves {a = Z}. To see how this works in
detail, we need to recall that the definition of le in lib/nat.g is:

Define le : Fun(a b:nat).bool :=
fun (a b: nat). (or (lt a b) (eqnat a b)).

So hypjoin will evaluate (le Z a) first like this (writing -->* for evaluation):

1. (le Z a)} -->*
2. (or (lt Z a) (eqnat Z a)) -->*
3. (or match a with

Z => ff
| S a’ => tt
end
match a with

Z => tt
| S a’ => ff
end)

The match-terms come from the definitions of lt and eqnat. At this point, regular evaluation is stuck, since we
are matching in both cases on a variable, namely “a”. But where join would stop here, hypjoin continues by
substituting Z for a, since the proof a eq given to hypjoin proves {a = Z}. So we continue with:

4. (or match Z with
Z => ff

| S a’ => tt
end
match Z with

Z => tt
| S a’ => ff
end) -->*

5. (or ff tt) -->*
6. tt

The evaluation performed by hypjoin in the other case is similar, except we end up substituting (S a’) for a.

86

8.6.1 Default clauses
As a final finishing touch, since the subproofs (of our original proof for leZ) in the case where a is Z and where a
is (S a’) are syntactically identical, we can use a default clause for the case-proof to write the subproof just
once. The syntax is that you can begin a case-proof (or match-term, or induction-proof) with a clause whose
pattern is just “default”. The body of the clause will be repeated for all constructors which do not have a subsequent
pattern in the case-proof. If the default clause is the only one given (as it will be in our case here), you must write
“default c” for the pattern, where c is the type constructor for the type of the scrutinee. In this case, c is just nat,
and our proof looks like this:

foralli(a:nat).
case a with

default nat => hypjoin (le Z a) tt by a_eq end
end.

8.6.2 Finishing the bst proof
To return to the final missing subcase of our bst proof, we can replace the page-long proof listed in Section 8.5.5
with just one call to hypjoin, resulting in this short proof (invoking the induction hypothesis) for the missing case
of our theorem:

[t_IH l1 u1 t1
symm
trans symm u

hypjoin (bst_in x t) (bst_in x t1)
by v1 v2 t_eq end]

8.7 Summary
We have seen how the spec keyword may be used in GURU to designate certain argument positions of term con-
structors or recursive functions as specificational. Specificational data and proofs are treated as annotations (like type
annotations from polymorphic programming), and are dropped during compilation and during theorem proving. This
greatly reduces clutter when reasoning externally about dependently typed code. We have seen how a more general
form of induction-proof is used when doing induction over an indexed datatype. We have also seen a rather com-
plex theorem about the dependently typed function bst in for checking if a piece of data is in a bst. During the
course of our proof, we saw the hypjoin proof construct, which extends the reach of partial evaluation as provided
by join, to make use of equational hypotheses proven by a set of proofs given to hypjoin.

87

88

Chapter 9

Resource Management with CARRAWAY

In the previous chapters, we have seen how to write pure functional programs and prove properties about them. Starting
with this chapter, we will consider how to write more realistic programs in GURU than just pure functional ones. We
will see how to do basic input/output, and how to implement mutable data structures including arrays. The single core
issue that it turns out we must address to do this while retaining the ability to prove properties about GURU code is
the issue of resource management. Input/output channels, mutable data structure, and other computational resources
can be accomodated in our functional setting by viewing them as resources to be managed. In this chapter, we study
resource management in GURU. Recently, I have factored out the resource management subsystem of GURU into a
stand-alone tool called CARRAWAY. CARRAWAY has its own input language, which is like a simplified version of
GURU’s, without proofs, indexed types, and nested functions. In addition, CARRAWAY has features which make it
possible to describe, as part of the input to CARRAWAY, a variety of resource management policies. GURU programs
will be compiled to CARRAWAY programs, which can then be compiled to C code by the CARRAWAY compiler.

9.1 What is a Resource?

Let us see why the idea of a resource is crucial to implementing features like mutable state in GURU. Certain resource
management policies enable us to take a pure functional view of operations on resources. The operations as we desire
to implement them are not functional, because they destructively modify the program’s state in some way (as when we
update the value in an array) or do not depend functionally on that state as we normally think of it (as when we get the
time of day, for example). But if we manage them carefully, their behavior will be indistinguishable from a different
set of operations which are purely functional. For efficient execution – for example, when we compile code – we will
use the non-functional implementation. For formal reasoning, however, we can use the functional model.

A simple example, which we will consider in more detail in a later chapter, is that of mutable arrays. Suppose
there is at most one reference to a given array at a given point during execution. In our functional model, updating a
value in the array is done by creating a new array that is just like the old one, except where it holds the new value. In
our non-functional implementation, we destructively modify the array. If there were a second reference to the array,
the value of that reference would have to change when the array is updated via the first reference. Such a change
would be a non-local effect: variable x magically takes on a different value based on something we have done via
variable y. But if there is only one reference to the array, our functional and non-functional models are operationally
indistinguishable, since then there is no need for non-local communication of the fact that the array has changed.

In this array example, it is crucial to ensure that there is at most one reference to the array. This property turns out
to be crucial to management of other resources, too. We will consider a resource to be something that only one entity
can make use of at a time. This is true of real-world resources. For example, consider a bicycle. We can view it as a
resource, if we consider that only one person can ride it at a time. But, you might ask, what if someone sits on the seat
and someone else on the handlebars? Or what if it is a tandem bicycle, with two seats? In that case the bicycle is not
a monolithic resource, but rather consists of several resources: the handlebars and the seat would each be a resource,
and similarly for each of the two seats of the tandem.

89

By viewing a resource as something that only one entity can use at a time, we get a simple fundamental idea that
can form the basis for managing program resources. We need one more idea, however, as shown perhaps a bit more
naturally via another example. Consider a box set of the Harry Potter books. We could view each book as a resource,
if we consider that only one person can read it at a time. (In this case that is clearly a bit crude, since two people
could certainly read through it together simultaneously, but never mind.) If you want to read “The Sorcerer’s Stone”
and I want to read “The Goblet of Fire”, there is no problem, since each is a separate resource. But what if our friend
wants to borrow the whole box set? That is fine, as long as all the books are free at the moment. So in a sense, the
box set is a single resource, consisting of the individual books as resources. To use the box set, no one can be using
any of the individual books. In the general situation, we have one main resource which consists of several subsidiary
ones. To use the main resource, none of the subsidiary ones can be in use. If someone is using one of the subsidiary
resources, we will say the subsidiary resource is pinning the main resource, and that the main resource is pinned by
that subsidiary one. A pinned resource cannot be used until all the resources pinning it have been returned.

This serves as our basic foundation for resource management in the CARRAWAY language: resources which can
only be used by one entity at a time, and which can be pinned by other resources.

9.2 CARRAWAY Overview
This section gives an overview of the basic concepts in CARRAWAY. Subsequent sections will go through the syntax
and semantics in detail, via examples. CARRAWAY input files consist of commands, similarly to GURU input files.
CARRAWAY commands support three main activities:

• Declaring resource types and primitive operations for manipulating resources of those types (commands ResourceType,
Primitive, Init).

• Declaring datatypes, which may be either inductive datatypes, for which pattern-matching and the creation of
values using the type’s term constructors is allowed; or else unspecified datatypes, which can then only be
created by primitives (command Datatype).

• Defining functions and global variables (commands Function and Global).

CARRAWAY reads input files ending in “.w” and translates them to C files with the same name except ending instead in
“.c”. CARRAWAY checks that resources are used properly by functions and globals, according to the declared resource-
managing primitives. It emits code to allocate memory cells appropriately when term constructors are applied. Cells
store a numeric tag identifying which constructor of the datatype they belong to. Pattern-matching terms are translated
to C switch statements that switch on that tag. Primitives are basic resource-manipulating operations. A primitive
is specified by giving a CARRAWAY type that shows how it affects the resources it is given as arguments, along with a
piece of C code that actually implements the primitive.

CARRAWAY’s algorithm for checking that resources are used properly is based on tracking resources to check that
there is at most one reference to a resource at any given time, and that pinned resources are not used until the resources
pinning them have been returned. To return a resource, we just consume it, which we can think of as returning it to the
underlying runtime system. To consume a resource, we either:

• pattern-match on it (if it is an element of an inductive datatype),

• pass it as an argument to a function whose type declares that it consumes the resource, or else

• return it from the function

User-defined functions and primitives have some flexibility to declare that they do or do not consume certain argu-
ments. Constructors do not, however: they are considered to consume all their arguments. Arguments to functions and
primitives may be designated as treating the resource in one of the following three ways.

• consuming the resource, including possibly returning it directly or inside a data structure built with term con-
structors. This is the default.

90

• consuming the resource, but not returning it, neither directly nor inside a data structure. The annotation for this
is a caret (ˆ).

• not consuming the resource. The annotation for this is an exclamation point (!).

There is a built-in resource type called untracked for things that are not resources, and do not need to be tracked.
Additionally, types are runtime data in CARRAWAY, and values whose classifier is type are also considered untracked
data, not resources. Functions are not considered resources, and are not tracked if they are passed to constructors or
other functions.

Pattern-matching terms, whose syntax is similar to match-terms in GURU, consume the scrutinee, unless it has
type untracked or else comes from an input that was marked as not consumed. Except in those cases, the pattern-
match consumes the scrutinee either at the end of each case, which is the default; or else at the start of each case,
for which a $ annotation is used (between the match keyword and the scrutinee). CARRAWAY uses user-specified
initialization functions to initialize subdata extracted in the clauses of a pattern-match. This allows different resource
management policies to initialize extracted subdata in different ways.

Running CARRAWAY: The CARRAWAY program is guru-lang/bin/carraway, which works very similarly
to guru-lang/bin/guru.

9.3 Reference Counting for Inductive Data

The simplest resource management policy implemented in CARRAWAY is one for managing the memory allocated for
elements of inductive types. Unlike in other functional programming languages, GURU (also CARRAWAY) does not
rely on garbage collection to manage memory safely. The reason for avoiding garbage collection is that it can severely
impact performance in memory-pressured situations (see [17, 3]). In GURU, all our data are inductive data. Since
bigger data are built from strictly smaller data, there can be no cycles in our data. Define the reference graph of the
program at a particular point in execution as follows. We will allocate a cell (piece of memory) for each application
of a constructor. The set of cells which are reachable from a program variable is the set of nodes of the reference
graph. There is an edge from one cell to another if the piece of data corresponding to the first cell has the piece of data
corresponding to the second as one of its subdata. So immediately after executing (S Z), our reference graph will have
two cells: one for the application of S, and the other for the use of Z (which we should think of here as a degenerate
application of Z to 0 arguments). There is a single edge in the graph, pointing from the cell for the application of S
to the cell for the (degenerate) application of Z. With this definition of reference graph, all executions of all programs
have acyclic reference graphs at all points in time.

Whenever one is guaranteed to have only acyclic reference graphs, reference counting can be used to manage
memory. In each cell we keep an integer value, called the refcount, which tells how many references there are to this
cell from other cells or from program variables. Whenever a new reference is added, we increment the refcount. When
a reference is dropped – for example, when the scope of a local variable referring to the cell ends – then the refcount
is decremented. If the refcount falls to 0, that means the cell is garbage, since no one is referring to it. The cell can
be recycled in that case, either by returning it to the runtime system (e.g., by calling free()), or used for another
constructor application. If the refcount overflows, indicating more than the maximum number of references we can
store with the bits set aside in the cell for that purpose, then we will treat the cell as immortal, and never recycle it.
This may leak memory, since all those references may eventually be dropped and we will still not be able to recycle
the cell. But it will not corrupt memory by recycling a cell that is really still in use.

A compiler can easily insert code to increment and decrement reference counts for us. But executing these in-
crements and decrements at runtime adds overhead to the execution, which can be avoided in many cases, as we will
discuss. So GURU and CARRAWAY provide inc and dec functions, which we programmers use explicitly to indicate
when the reference count should change. To make sure that we perform inc and dec operations correctly, we treat
reference counted data as a resource, and track it with CARRAWAY’s reference tracking system, as described next.

91

9.4 Reference Counting in CARRAWAY

In this section, we will see how to describe reference counted data as a CARRAWAY resource type, and inc and dec as
primitives operating on that type. The code to do this may currently be found in guru-lang/tests/carraway/unowned.w.
This file begins with a declaration of the unowned resource type, for reference counted data:

ResourceType unowned with consume_unowned : Fun(A:type)(ˆ r:unowned).void <<END
void gconsume_unowned(int A, void *r) {

dec(r);
if (op(r) < 256)

release(A,r);
}

END

Here we see an example of the ResourceType command. We have the name of the resource type, which is
unowned in this case. Then the with keyword, and then the declaration of a primitive function for consuming
resources of this resource type. That function must be named “gconsume T”, where T is the name of the re-
source type. The type of that function comes next, which must be exactly the one given here. That type says that
gconsume unowned is a function that takes in a type as its first argument, and then an unowned r as its second.
The caret annotation means that r will not be returned by this function. The function returns void, which means that
it does not return a value at all. Finally, there is the punctuation “<<” followed immediately by a word (here “END”)
which will mark the end of the raw C code portion which follows. This C code defines how the unowned resource is
consumed. In our case, we use functions specially provided by CARRAWAY to decrement r’s refcount. The refcount
is stored in the high 24 bits of the first word (given by op(r)) of r’s memory cell. So to check if the refcount falls to
0, we check whether that first word falls below 256. If so, we call another function provided by CARRAWAY, to return
the memory associated with this cell to the runtime system. The raw C code, here and for all primitives, is expected to
have the same name as the CARRAWAY one, except with a “g” prefixing it.

Next, in unowned.w, we have declarations of primitive functions for incrementing and decrementing reference
counts. From a resource tracking perspective, incrementing a reference count creates a new resource, without consum-
ing the original one; and decrementing consumes a resource. This is indicated by the types of the primitives. The inc
function states, using the ! annotation, that it does not consume its input, but it does produce a new output. The dec
function states, via the caret annotation (ˆ), that it consumes and does not return its input.

Primitive inc : Fun(!y:unowned).unowned <<END
void *ginc(void *y) {

inc(y);
return y;

}
END

Primitive dec : Fun(A:type)(ˆy:unowned).void <<END
#define gdec(A,y) gconsume_unowned(A,y)

END

Finally, in unowned.w, there is an Init-command to declare an initialization function for unowned resources.

Init ginit_unowned_unowned : Fun(A:type)(! x:unowned)(y:unowned).unowned <<END
void *ginit_unowned_unowned(int A,void *x,void *y) {

ginc(y);
return y;

}
END

92

This function will be automatically used by CARRAWAY to initialize unowned subdata y when pattern matching on
an unowned scrutinee x. Since the scrutinee will be consumed in that case, initialization needs to increment the
subdatum’s refcount, since otherwise consumption of the scrutinee could cause the subdatum also to be consumed.

9.5 Programming with Reference-Counted Data
The file nat.w in guru-lang/tests/carraway/ gives an example of a datatype declaration and CARRAWAY
programs for reference-counted unary natural numbers. The datatype declaration is somewhat similar to what we have
in GURU:

Datatype nat := Z : unowned | S : Fun(x:unowned & nat).unowned.

The difference is in the input and output types we give for the constructors. Since this is returning reference counted
data, the input and output types are unowned in all cases. The notation “unowned & nat” indicates that the
resource type is unowned and the datatype is nat. All constructors must list datatypes for their input arguments,
each of which (as mentioned above) is considered consumed and possibly returned by the constructor. The datatypes
are used when we recycle a cell.

Now, let us finally see some examples of programming with reference-counted data. The definitions of plus and
mult are typical. The code for plus requires no uses of inc and dec at all:

Function plus(x:unowned)(y:unowned).unowned :=
match x with

Z => y
| S x’ => (S (plus x’ y))
end.

Let us think about why this code uses resources correctly, even though it contains no incs or decs. The inputs x and
y are marked as ones that are consumed by plus, and possibly returned (either directly or in a data structure). The
pattern match on x consumes it at the end of each case (as mentioned in Section 9.2). So we are sure that x is going
to be consumed by the time the function returns. In the Z-clause, we return y, which as mentioned in Section 9.2 is
considered a way of consuming it. So x and y are consumed in that case. In the S-clause, we produce a new reference
x’. This is initialized by incrementing its reference count, since this is what the code given in the Init-command
from unowned.w does (see the previous section). This reference, and y, are consumed by the recursive call to plus.
That call produces a new reference, which is consumed by the call to S, which in turn produces a new reference, which
is consumed by returning it from the function.

Now let us look at the code for mult, where we do need to use inc and dec:

Function mult(x:unowned)(y:unowned).unowned :=
match x with

Z => do (dec nat y) Z end
| S x’ => (plus (inc y) (mult x’ y))
end.

In the Z-clause, we need to consume y, because unlike in the Z-clause for plus, we here return just Z, and drop y.
We use our dec function from above, in a do-term. The syntax for those is just do t1 · · · tn end (where n is at least
2). This just executes t1 through tn in order, returning the value returned by tn. In the S-clause, we must call inc on
y, since it is used twice.

Let us see what kind of error messages we would get from CARRAWAY if we left off either of these. First, suppose
we leave off the dec of y in the Z-clause:

Function mult(x:unowned)(y:unowned).unowned :=
match x with

Z => Z
| S x’ => (plus (inc y) (mult x’ y))
end.

93

The error message from CARRAWAY is:

"/home/stump/guru-lang/tests/carraway/nat.w", line 20, column 3: simulation error.

Two match-cases consume different sets of earlier references.

1. the first case: gZ

2. the second case: gS

3. a reference created at: "/home/stump/guru-lang/tests/carraway/nat.w", line 17, column 25

4. the first case does not consume it.

5. the second case consumes it at: "/home/stump/guru-lang/tests/carraway/nat.w", line 20, column 27

This message is telling us that the two clauses of the match have different behavior with regard to references that
exist before the match begins. CARRAWAY requires that behavior to be the same in all clauses. The line and column
number mentioned in (3) is (in my modified nat.w containing this code) is for input variable y. The first case does
not consume y, as (4) states; and the second does, as (5) states. Suppose instead we leave off the inc of y in the
S-clause:

Function mult(x:unowned)(y:unowned).unowned :=
match x with

Z => do (dec nat y) Z end
| S x’ => (plus y (mult x’ y))
end.

Then the error message from CARRAWAY is the following, which just notes that we are consuming a resource twice:

"/home/stump/guru-lang/tests/carraway/nat.w", line 20, column 13: simulation error.

A reference that was already consumed is being consumed again.

1. the reference created at: "/home/stump/guru-lang/tests/carraway/nat.w", line 17, column 25

2. first consumed at: "/home/stump/guru-lang/tests/carraway/nat.w", line 20, column 21

9.6 Pinning References and owned
In order to avoid incrementing and decrementing reference counts, owned.w in guru-lang/tests/carraway
defines a resource type owned, for references which are owned by another entity, which is thus pinned. Since they are
owned by another entity, we do not need to decrement their reference counts: the owning entity cannot be consumed
until the owned one is, since the owned one pins the owning one. Thus, we cannot get into the situation where the
reference count of the owning entity falls to zero while we are using the owned entity. That situation, of course, would
jeopardize memory safety, since recycling the owning cell might cause the owned cell to be reclaimed as well, while
we still have a reference to it. By insisting that the owned cell is consumed before the owning cell is, we ensure this
cannot happen.

Here are the CARRAWAY commands defining the owned resource type and giving the central primitive, inspect,
which operates on owned data:

ResourceType owned with consume_owned : Fun(A:type)(ˆx:owned).void <<END
#define gconsume_owned(A,x)

94

END

Primitive inspect : Fun(!x:unowned).<owned x> <<END
void *ginspect(void *x) {

return x;
}

END

Consuming an owned resource does nothing, as the C code given for consume owned shows (that code is a C macro
definition, defining “gconsume owned(A,x)” to be nothing, so such expressions just disappear). Inspecting an
unowned resource does not consume it: the ! annotation given with the input x in the Fun-type for inspect
shows that. But the result of inspect is a pinning owned reference, as indicated by the return type <owned
x>. The notation for a pinning type is <T x1 ... xn>, where T is a resource type and x1 through xn are
symbols for pinned entities. Additional primitives for owned data allow us to pass back to an unowned reference
by incrementing the refcount of the owned data. This is done consuming the owned reference with the primitive
owned to unowned, and not consuming the owned reference with the primitive inc owned.

Primitive inc_owned : Fun(!y:owned).unowned <<END
void *ginc_owned(void *y) {

inc(y);
return y;

}
END

Primitive owned_to_unowned : Fun(ˆy:owned).unowned <<END
void *gowned_to_unowned(void *y) {

inc(y);
return y;

}
END

Primitive clone_owned : Fun(! y:owned).<owned y> <<END
void *gclone_owned(void *y) {

return y;
}

END

We can additionally clone an owned reference with clone owned. Notice that the result of this primitive is a new
owned reference which pins the owned reference y given to the primitive. Thus, we can build up chains of ownership:
an unowned x may be pinned by an owned y, which in turn (thanks to clone owned) may be pinned by an owned
z. CARRAWAY provides the construct to collapse two links in such a chain into one. In the situation just described,
“@ z” will cause z to pin x directly, and no longer pin y.

The files test.w and test2.w in guru-lang/tests/carraway give several examples of programming
with owned data. For example, here is an alternative definition of plus on unary natural numbers, which manages to
do no decrementing of refcounts at all (in contrast, the code for plus given in Section 9.5 will decrement one refcount
for each S-cell of the first argument):

Function plus2(ˆ x:owned)(ˆ y:owned).unowned :=
match x with

Z => (owned_to_unowned y)
| S x’ => (S (plus2 x’ y))
end.

95

The owned reference x is still consumed by the match, but consuming an owned reference does not cause the
refcount to be decremented. When we return y in the Z-clause, we have to increment y’s refcount, since it is being
consumed, and we have marked x and y as consumed but not returned (with the caret annotation). The advantage
of marking these as not returned is that when plus2 is called, CARRAWAY’s resource tracking algorithm knows that
since these references are definitely gone by the time this function exits, at that point they will no longer pin any
references they were pinning at the start of the function call. Notice that if we returned x or y, it would not be safe to
drop their pins of those other references: x (say) would still exist in the system, and could still be used to access the
pinned reference. So it must remain pinned.

Finally, in owned.w there are several Init-commands for initializing subdata at the start of match cases:

Init ginit_unowned_owned : Fun(A:type)(! x:unowned)(y:owned).owned <<END
#define ginit_unowned_owned(A,x,y) y

END

Init ginit_owned_owned : Fun(A:type)(! x:owned)(y:owned).owned <<END
#define ginit_unowned_owned(A,x,y) y

END

Init ginit_owned_unowned : Fun(A:type)(! x:owned)(y:unowned).<owned x> <<END
#define ginit_owned_unowned(A,x,y) y

END

The argument x is always the scrutinee, and the argument y the subdatum. The first Init says that if the scrutinee
is unowned and the subdatum is owned, then the subdatum is still owned following initialization. Similarly if the
scrutinee is owned instead of unowned (the second Init). But if the scrutinee is owned and the subdatum is
unowned, then we initialize the subdatum to an unowned piece of data which pins the scrutinee. So in this case, we
propagate the property of being owned from scrutinee to subdata.

9.7 Standard Input
The file stdin.w in guru-lang/tests/carraway/ gives a simple interface to a textual standard input channel
based on the our resource management ideas. The file begins by declaring two opaque datatypes, stdin t and char.
These are opaque in the sense that they are not inductively defined. We do not have constructors for them. The
CARRAWAY code is:

Datatype stdin_t with gdelete_stdin_t : Fun(ˆx:stdin_t).void <<END
#define gdelete_stdin_t(x) fclose(x)

END

Datatype char with gdelete_char : Fun(ˆc:char).void <<END
#define gdelete_char(c)

END

When an opaque datatype is defined, a primitive function to recycle the memory for elements of that datatype must
also be defined. The datatype stdin t is the type for the standard input channel. We recycle an element of this type
by calling the C library function “fclose” to close the channel. C programs usually do not close standard input when
they are done with it, but this example shows how we can use the delete function to return a resource to the runtime
system. Deleting a character does nothing, since characters do not occupy heap-allocated memory.

Next in stdin.w, we have a primitive declaration for stdin itself. We declare this to be unique, which is a
resource type with no primitives (except to consume the resource). This resource type is defined in unique.w, and
can be used for resources where we really require strict unique usage, without any additional management features
like increment and decrementing refcounts.

96

Primitive stdin : unique <<END
#include <stdio.h>

#define gstdin stdin
END

Next, we have primitives to get the current character from stdin, and to advance to the next character. Characters,
which have datatype char, have resource type untracked, because they do not require heap-allocated memory.
Hence, they are not really a resource, and we do not need to track them. We could, of course, if we needed to do so,
but in this case, it is more convenient not to track them. To get the current character, we use curc, which does not
consume the stdin resource. The C code for curc uses a global variable called curc to keep track if we have a
current character from stdin, or else need to call the C library function fgetc to get the next character. To advance
to the next character, the primitive nextc just clears this global variable, signaling that the curc primitive should
indeed call fgetc.

Primitive curc : Fun(!x:unique).untracked <<END

void *curc = 0;

int gcurc(void *s) {
if (curc == 0) {

int tmp = fgetc((FILE *)s);
curc = (tmp == -1 ? 0 : tmp);

}
return curc;

}
END

Primitive nextc : Fun(ˆx:unique).unique <<END
void *gnextc(void *x) {

curc = 0;
return x;

}
END

Finally, additional primitives are included to check if a character marks the end of the file (eof), print a character
(printc) and close standard input (close). The file stdin.w then defines functions read all to read all the
characters possible from stdin and return them in a ulist (discussed in a moment), and print list to print all
the characters in such a list using printc.

Primitive eof : Fun(c:untracked).untracked <<END
int geof(int x) {

return x == 0;
}

END

Primitive printc : Fun(c:untracked).void <<END
void gprintc(int c) {

putchar(c);
fflush(stdout);

}
END

97

Primitive close : Fun(ˆx:unique).void <<END
void gclose(void *s) {

fclose(s);
}

END

9.8 Lists and Polymorphism
The file list.w in guru-lang/tests/carraway/ defines two inductive datatypes for lists. One if for lists
of unowned elements, and the other is for lists of untracked elements. While these types are polymorphic in
the datatype of the data stored in the list, they are monomorphic in the resource type of that data. CARRAWAY does
not support resource type polymorphism at the moment. Such polymorphism appears challenging to support, since
functions may need to take different actions depending on the resource types of data, and it is not clear how to write
such functions in a uniform way. The datatype definitions for list (unowned elements) and ulist (untracked
elements) are:

Datatype list := nil : unowned
| cons : Fun(A:type)(x:unowned & A)(l:unowned & list).unowned.

Datatype ulist := unil : unowned
| ucons : Fun(x:untracked)(l:unowned & ulist).unowned.

These are similar to the datatype definition of nat (Section 9.5), except that the datatype listed for x in the cons
constructor for list is A, which is the first argument of cons. When cons is applied, we must supply an inductive
datatype for the first argument. That argument will not be thrown away during compilation, but really used at runtime,
so that where we need to recycle the memory of a cons-cell, we know which function should be used to consume the
resource x (which might require its memory to get recycled, at which point the datatype it belongs to must be known).
The list.w file defines append and length functions for lists.

9.9 Exercises
Note that the CARRAWAY program is guru-lang/bin/carraway, which runs similarly to guru-lang/bin/guru.
If you put your code in hw4.w, you can process the file with CARRAWAY by running:

guru-lang/bin/carraway hw4.w

This will create a file call hw4.c. You can compile that file using gcc (the Gnu C Compiler) like this:

gcc -o hw4 -O4 hw4.c

The “-o hw4” part instructs gcc to name the binary executable it is producing “hw4”. The “-O4” option tells it to
use optimization level 4.

1. Define a function length computes the length of a ulist (not a list). Critically, your function definition
should begin this way (indicating the input and output resource types):

Function length(l1:unowned).unowned :=

2. Define an append function on ulists (again, not lists), beginning like this:

Function append(l1:unowned)(l2:unowned).unowned :=

98

3. To test your functions, use a Global-command to write a piece of code which calls read all (from list.w)
to read all the characters from stdin into a ulist, then append that ulist to itself, and finally compute its
length. A good starting point for this can be found in guru-lang/tests/carraway/test3.w.

A few more steps will result in an interesting test. First, type limit stacksize unlimited into your
shell (if you are using the default shell, which is tcsh; if you are using bash, type ulimit -s unlimited).
This raises the amount of stack memory your program is allowed to consume, which is necessary in this case.
Run your compiled hw4 executable like this: time ./hw4 < shared196/labs/wrnpc11.txt. This
will cause the contents of the file shared196/labs/wrnpc11.txt to be sent to stdin of your hw4 pro-
gram. Placing time at the beginning will just cause the running time used to be printed when the program
terminates.

4. Define a length function which instead begins like this:

Function length(ˆl1:owned).unowned :=

5. Define an append function which instead begins like this:

Function append(ˆl1:owned)(ˆl2:owned).unowned :=

6. Use a Global-command to write a similar test as the one of problem (3) for these new functions. You may
wish to put the new functions and the new test in a separate file. Test the resulting executable as for problem (3).
Compare the running time of this executable with the version from problem (3).

7. Write a function sublist, which takes a nat n and a list l, and returns the sublist of l which starts
n levels deep in l. So (sublist (S Z) (cons nat Z (cons nat (S (S Z)) nil))) should
return (cons nat (S (S Z)) nil). Your function should start this way:

Function sublist(ˆn:owned)(!l:owned).<owned l> :=

Recall that matching on a resource which is marked not to be consumed will not consume it. So matching on
l will not consume l. But the subdata of l will be initialized according to the initialization rules for owned
scrutinees (see Section 9.6).

8. Extra Credit: include the command Set "use malloc" at the top of your test files for problems (3) and (6).
This instructs CARRAWAY to use the standard C library functions malloc and free to allocate and deallocate
memory (more about this in Section 10.3 below). Again compare the running times of your programs. I found
that something strange happened for the program for part (3) when I did this, which I was able to understand by
running:

valgrind hw4 < shared196/labs/wrnpc11.txt

This command uses the valgrind tool to watch for memory errors while running the program hw4. Assuming
you observe the same strange behavior: what is going on? Is it a bug in CARRAWAY?

99

100

Chapter 10

Compiling CARRAWAY

We continue to explore practical programming in GURU by looking at how to compile the CARRAWAY language,
which we are using as an intermediate language for compilation from GURU to C. Compilation of CARRAWAY demon-
strates a number of basic ideas in compilation of functional programming languages, as well as some optimizations
appropriate to our reference-counting approach to memory management for inductive data. In the sections below, we
describe the compilation process in CARRAWAY, as it occurs after CARRAWAY’s type checking and resource tracking
algorithms have run. Type checking inserts calls to the initialization functions for pattern variables in match-clauses
(see Section 9.4), and also calls to consume functions for the scrutinees of match-terms, as appropriate. We will not
present the type checking and resource tracking algorithms formally, but assume they have completed successfully in
the subsequent compilation steps.

10.1 A Restriction on Functions

Before we begin describing the compilation process from CARRAWAY to C, we note one restriction on the use of
functions in CARRAWAY. We have already mentioned that CARRAWAY disallows the definition of functions inside
other code. This will have to be enforced by compilations steps from GURU to CARRAWAY. But CARRAWAY’s
type checker also requires that in every application (f a1 · · · an), f is a (declared or defined) constant or variable
whose type explicitly lists that it takes n arguments as inputs. We will call this the argument requirement on applica-
tions. This simple property can fail for applications in GURU. For example, suppose we are using the type <list
Fun(x:nat).nat> of lists of unary operations on nats. That is, the elements of the list are all functions. Now
if l is such a list, and head gets the first element if there is one, we can easily write an application like (head
Fun(x:nat).nat l one), which violates the restriction just mentioned. For the type of head states that it takes
two arguments: the type of the list’s elements, and the list. But here we have applied it to three.

The simple solution to this problem available in CARRAWAY is based on introducing new names, using let, for
terms like (head Fun(x:nat).nat l) that CARRAWAY’s type system cannot tell are functional. So we would
first transform the offending application into

let f = (head Fun(x:nat).nat l) in
(f one)

This is not yet enough, since if we proceed with compilation, f still will not have functional type in CARRAWAY.
CARRAWAY provides explicit unsafe casts to coerce f to functional type. Passing from GURU to CARRAWAY, we will
get:

let f = cast Fun(x:unowned).unowned
(head l) in

(f one)

101

We have dropped the type argument to head, since a list of functions is treated, from the perspective of resource
management, as a list of untracked data. So the type of (head l) is just untracked. We then use a cast to
change the type of (head l) to the appropriate functional type. The syntax of cast in CARRAWAY is cast T t,
where T is a type and t is a term. Now f does have the proper functional type to be applied to one.

We will assume below that all applications in our CARRAWAY input already satisfy the argument requirement,
which will thus have to be imposed during initial compilation steps from GURU to CARRAWAY.

10.2 Linearization
The first step of compilation in CARRAWAY after the type checking and resource tracking steps is linearization. This
process takes nested let- and match-terms, which cannot be represented directly in C code, and flattens them out
so that they can be. For example, in CARRAWAY (or other functional programming languages), the following term is
syntactically perfectly legal:

let x = let y = Z in (plus y y) in
(plus x x)

But in C code, it is not, if we are translating let-terms to assignments. That is, suppose we wish to turn let x =
t in t’ into (where we use the C type “void *” as a catchall type for any reference-counted data):

void *x = t;
t’;

Then we cannot handle nested let-terms directly, since we cannot generally nest assignments in C in the way that
would be required. So before generating C code, we must first perform a transformation that flattens out nested
let-terms. This transformation should turn a term like the one above containing plus into something like:

let y = Z in in
let x = (plus y y) in

(plus x x)

We have pulled out the let-term defining y from the definition of x. Of course, it needs to come before the new
definition of x, since that definition references y in (plus y y).

A similar problem arises for match-terms. We would like to translate these to switch-statements in C, where
we switch on the integer tag (mentioned in Section 9.2) stored in the cell for a piece of inductive data. That tag tells
which constructor of a given type the cell was built for. In GURU and CARRAWAY, it is syntactically legal for one
match-term to appear as the scrutinee of another, as in this example:

match match w with Z => ff | S x’ => tt with
ff => tt

| tt => ff
end

But in C, we cannot switch on another switch-statement. So we must pull out match-terms from the scrutinee
positions of other match-terms. We do this by creating a new C variable to hold the result of the nested match-term,
and then matching on that new variable

In general, certain constructs cannot appear nested in C, where a nested position includes the right hand side of an
assignment, the scrutinee of a switch statement, and argument positions of an application. Here, the non-nestable
constructs we are considering are just assignments (to which we translate let-terms) and switch-statements (to
which we translate match-terms). Wherever these occur in a nested position in a CARRAWAY term, they must be
pulled out to the top-level for translation to C.

Finally, as mentioned at the very start of the chapter, CARRAWAY’s type checking process inserts calls to the user-
specified initialization functions (Section 9.4) for pattern variables x. Those calls are inserted in the following form,
where arg-type is the run-time type of the argument, scrutinee holds the value of the scrutinee, and arg-name
is a name used to refer to the argument position corresponding to the pattern variable x, for the given constructor:

102

let x = (init_func arg-type scrutinee arg-name) in

We will assume this insertion has already been done. This initialization will subsequently be compiled to access the
field corresponding to arg-name for the memory cell pointed to by scrutinee.

10.2.1 The linearization algorithm
This section presents CARRAWAY’s linearization algorithm lin as a set of rules. The rules introduce terms using
several intermediate term constructs. To represent assignments to variables, we introduce a new term form x :=
t, where x is a variable and t is a term. When executed, this will store the value computed for t into variable x.
We temporarily treat return as a function symbol in linearized output, so that we can write (return x) for the
command to return the value of x from a function call. Also, variable declarations will be represented using a new
term form declarex.

The linearization rules define lin by constraining the form of calls to lin. A starting call to lin, with its result,
has this general form:

lin(t, θ) = t′

The meaning of such a call is that we are linearizing the CARRAWAY term t, and producing the resulting flattened
term t′. The argument θ is used to specify an action to be performed with the value computed by the term t, when it is
actually executed (after compilation). The options for this action are:

• Leave the result of computation available for use in a surrounding C code expression. For this, we use · as the
value for θ. We will use this action for t occurring in a nested position.

• Store the result of computation in a specified variable, for which we write x (or y) for θ. We will not use this
action unless the caller of lin will use t′ at the top-level (not in a nested position).

• Return the value from the function in which t occurs. For this we write return for θ. As for the previous
action, we will ensure that the caller of lin will use t′ only at the top-level, and not in a nested position.

In one situation, where a match-term has type void, we allow returning · for t′, when we know that will be discarded.
The definition of lin relies on a different, intermediate form of call to lin:

lin(t, θ, C,D) = (t′, C ′, D′)

Here, we use C as a list of variable declarations that need to appear in code before t′, and D as a list of extra top-level
commands that need to be executed before t′. When pulling a match-term out of a nested positions, for example, we
need to introduce a new variable for the result of the match; a declaration of this variable would be added to the end
of C. Also, we may need to add the match-term itself (modified to write its value to that new variable) to D, since
it must be computed before the value it stores in the new variable is used (by accessing that variable). The versions C
and D in the call are for those lists as they exist before the call, and the versions C ′ and D′ are those that have been
updated by linearization of t. Adding a term t to the end of C will be denoted C, t, and the empty list will be denoted
·.

The crucial properties of an intermediate call to lin are the following. First, executing the concatenation of the
declarations in C, then the extra top-level commands in D, and then t will have the same effect as executing the
concatenation of the declarations in C ′, then the commands in D′, and then t′. Furthermore, the latter concatenation
is a linear expression: no nested position contains a construct which C disallows fromoccurring in such a positions.
Finally, the value computed by t will be handled by t′ as specified by the action θ.

The rules for the algorithm may seem a bit daunting at first. They are given in Figure 10.1 for the central CAR-
RAWAY constructs (a few omitted ones are handled similarly). We will see examples in the next section which should
help understand how they work. If calls to lin above the line (the premises of the rule) return as stated, then the call
to lin given below the line (the conclusion of the rule) should also return as stated. The rules determine an algorithm
by matching the conclusions of the rules with a given call to lin which is to be executed, and then executing the calls

103

to lin in the premises of the matching rule as recursive calls. At most one rule applies (by matching its conclusion)
to any call to lin, so the algorithm is deterministic. In Figure 10.1, we write x for the base case of a variable and
also a term constructor taking no arguments. Note that in translating a match-clause (in the second to last rule of
the figure), we do not add declarations for the pattern variables, since they are let-declared to equal the results of
initialization calls, as explained just before the start of this section. Linearizing the let-term will ensure the pattern
variables are indeed declared with declare.

10.2.2 An example execution of the linearization algorithm
Let us see how the linearization algorithm works on an artificial but representatively tricky example. The code we
wish to linearize is the following, where for simplicity, I have elided the initialization terms and the consume terms
automatically added to the match-clauses during type checking:

Global G = let x = match (plus Z Z) with
Z => Z

| S x’ => x’
end in

(S x).

As we discussed above, the match-term nested in the let-term will not translate directly to legal C code, so we will
rely on linearization to pull it out of this nested position.

We can display a run of the linearization algorithm with a nested itemized list of calls to lin, where recursive
calls (coming from the premises of rules) issued to compute another call are listed in the sublist beneath that call. We
will build up such a list gradually, so we can explain how the rules are applied one at a time. To begin with, we have
our outermost call to linearize the let-term. The action we want to use is G: that is, we want our linearized version
of the let-term to write the value of that term into G.

1. lin(let x = match (plus Z Z) with Z => Z | S x’ => x’ end in (S x), G)

The only rule that can be applied – i.e., whose conclusion could match this expression – is the last rule. So we get:

1. lin(let x = match (plus Z Z) with Z => Z | S x’ => x’ end in (S x), G)

(a) lin(let x = match (plus Z Z) with Z => Z | S x’ => x’ end in (S x), G,·, ·)

Now the only rule that could apply is the let-rule. The first premise of that rule is shown next. To write the second
premise, we need information computed from the evaluation of the first, so we defer writing the second premise for a
moment:

1. lin(let x = match (plus Z Z) with Z => Z | S x’ => x’ end in (S x), G)

(a) lin(let x = match (plus Z Z) with Z => Z | S x’ => x’ end in (S x), G,·, ·)
i. lin(match (plus Z Z) with Z => Z | S x’ => x’ end, x, (·,declare x), ·)

Now let us separately compute the result for this most recently introduced call to lin, on the match-term. Naturally,
the only rule which could apply is the one for match:

1. lin(match (plus Z Z) with Z => Z | S x’ => x’ end, x, (·,declare x), ·)

(a) lin((plus Z Z), y, (·,declare x,declare y), ·)

We will not work through the premises for the rule for applications, but just show the result:

1. lin(match (plus Z Z) with Z => Z | S x’ => x’ end, x, (·,declare x), ·)

(a) lin((plus Z Z), y, (·,declare x,declare y), ·)
= (y := (plus Z Z), ·,declare x,declare y), ·)

Then here are the other premises for the match-term, corresponding to the match-clauses. Notice here how the
destination variable x is propagated to the calls for those clauses, and also how we do not pass the lists of declarations
and extra top-level terms in to those calls:

104

Rules for the intermediate form of calls:

lin(x, ·, C, D) = (x,C,D)

lin(x, y, C, D) = (y := x,C,D)

lin(x,return, C, D) = ((return x), C, D)

∀i ∈ {1, . . . , n},lin(ai, ·, Ci, Di) = (a′i, Ci+1, Di+1)
lin((f a1 · · · an), ·, C1, D1) = ((f a′1 · · · a′n), Cn+1, Dn+1)

∀i ∈ {1, . . . , n},lin(ai, ·, Ci, Di) = (a′i, Ci+1, Di+1)
lin((f a1 · · · an), y, C1, D1) = (y := (f a′1 · · · a′n), Cn+1, Dn+1)

∀i ∈ {1, . . . , n},lin(ai, ·, Ci, Di) = (a′i, Ci+1, Di+1)
lin((f a1 · · · an),return, C1, D1) = ((return (f a′1 · · · a′n)), Cn+1, Dn+1)

∀i ∈ {1, . . . , n − 1}, lin(ti, ·, Ci, Di) = (t′i, Ci+1, D
′
i), Di+1 = (D′

i, t
′
i)

lin(tn, θ, Cn, Dn) = (t′n, Cn+1, Dn+1)

lin(do t1 · · · tn end, θ, C1, D1) = (t′n, Cn+1, Dn+1)

lin(t1, x, (C1,declare x), D1) = (t′1, C2, D2) lin(t2, θ, C2, (D2, t
′
1)) = (t′2, C3, D3)

lin(let x = t1 in t2, θ, C1, D1) = (t′2, C3, D3)

x is a new variable
y is a new variable, if the type of the match is not void;

and · otherwise.
lin(t, x, (C1,declare x), D1) = (t′1, C2, D2)
∀i ∈ {1, . . . , n}, lin(Gi, y) = G′

i

lin(match t with G1 | · · · | Gn end, ·, C1, D1) = (y, C2, (D2, t
′
1,match x with G′

1 | · · · | G′
n end))

x is a new variable
θ is not ·
lin(t, x, (C1,declare x), D1) = (t′1, C2, D2)
∀i ∈ {1, . . . , n}, lin(Gi, θ) = G′

i

lin(match t with G1 | · · · | Gn end, θ, C1, D1) = (match x with G′
1 | · · · | G′

n end, C2, (D2, t
′
1))

Rules for the starting form of calls:

lin(t, θ) = t′

lin(c x1 · · · xn => t, θ) = c x1 · · · xn => t′

lin(t, θ, ·, ·) = (t′, C, D)
lin(t, θ) = do C D t′ end

Figure 10.1: Rules for Linearizing CARRAWAY Terms

105

1. lin(match (plus Z Z) with Z => Z | S x’ => x’ end, x, (·,declare x), ·)

(a) lin((plus Z Z), y, (·,declare x,declare y), ·)
= (y := (plus Z Z), ·,declare x,declare y), ·)

(b) lin(Z => Z, x)

(c) lin(S x’ => x’, x)

We will continue to elide the calls to initialization functions and consume functions, and just show the results for the
match-clauses:

1. lin(match (plus Z Z) with Z => Z | S x’ => x’ end, x, (·,declare x), ·)

(a) lin((plus Z Z), y, (·,declare x,declare y), ·)
= (y := (plus Z Z), ·,declare x,declare y), ·)

(b) lin(Z => Z, x) = Z => x := Z

(c) lin(S x’ => x’, x) = S x’ => x := x’

Finally we can finish computing the result for linearization of the entire match-term:

1. lin(match (plus Z Z) with Z => Z | S x’ => x’ end, x, (·,declare x), ·)
= (match y with Z => x := Z | S x’ => x := x’ end, (·,declare x,declare y), (·y := (plus
Z Z)))

Note that this result conforms to the properties we expressed above for intermediate calls to lin, in the sense that if we
do our declarations (of x and y) and then our extra top-level commands (y := (plus Z Z)), and then the match-
term we have produced; then this will have the same effect as the original match-term (preceded by its declarations
and extra commands), and also store the result produced by the match-term in the variable x.

We can now return to finish off the linearization of the let-term. We show next the second premise to the let-
rule:

1. lin(let x = match (plus Z Z) with Z => Z | S x’ => x’ end in (S x), G)

(a) lin(let x = match (plus Z Z) with Z => Z | S x’ => x’ end in (S x), G,·, ·)

i. lin(match (plus Z Z) with Z => Z | S x’ => x’ end, x, (·,declare x,declare y),
·)
= (match y with Z => x := Z | S x’ => x := x’ end, (·,declare x,declare y),
(·y := (plus Z Z)))

ii. lin((S x), G, (·,declare x,declare y), (·y := (plus Z Z),match y with Z => x
:= Z | S x’ => x := x’ end))

The result for this call (to linearize (S x)) is then G := (S x), with the same list of declarations, and the same
list of extra commands. This is returned for item (a). Finally, for item (1), we get this final result, which combines the
declarations, extra commands, and the linearized term G := (S x):

do
declare x
declare y
y := (plus Z Z)
match y with Z => x := Z | S x’ => x := x’
G := (S x)

end

106

10.3 Compiling Inductive Datatypes
Following linearization, CARRAWAY must also flatten nested function types, by introducing new type definitions. We
will not discuss this transformation, but turn to the final major step of compilation, which is the emission of C code
for basic operations on inductive data. The basic operations are:

• the allocation of a new cell when a term constructor is applied to its arguments.

• the reclaiming of the memory for that cell when the cell is no longer referenced. We call this operation deleting.

• pattern matching on cells.

All cells that are created during execution of the C code emitted for a CARRAWAY program will occupy a contiguous
chunk of memory. The first word of each cell has a special format. The first byte (the low 8 bits) holds an integer tag
telling which constructor built the cell. This tag only needs to differentiate among constructors for the same datatype,
so the restriction to 256 constructors is only a restriction on the number of constructors for any given datatype. The
total allowed number of constructors for all datatypes is much larger than this. The remaining bytes of the first word
of the cell are reserved for resource management. We will use them to hold the reference count of the cell.

After this first word of the cell, there is an additional word for each argument that the constructor takes. For
arguments which are other reference-tracked data, for example, we will store pointers to their cells in these fields. For
untracked data such as types or functions, we will store their values. In the case of a function, this is the address of the
function, and in the case of a type this is a distinct integer associated with the type.

For the datatype of unary natural numbers, CARRAWAY will generate the following C code based on these ideas.
That is, if we run it on the file nat.w in tests/carraway/, it will produce a C file called nat.c containing this
code:

#define gnat 2

#define op_gZ 0

#define op_gS 1

typedef struct {
int opval;

} gnat_gZ;

typedef struct {
int opval;
void *gx_12;

} gnat_gS;

This associates the integer 2 with the type nat, and then integers 0 and 1 with the constructors Z and S, respectively.
The code then defines C types gnat gZ and gnat gS. These are the types for cells for uses of Z and applications
of S, respectively. The first word of each cell type is called opval. This is the word which holds the constructor tag
and the reference count for the cell. The field gx 12 in gnat gS corresponds to the single input expected by S. The
name “gx 12” is derived from the name x given for that input in the type given for S.

Pattern matching is easily compiled making use of a macro ctor to extract the low 8 bits of the first word of each
cell, and then switching on that value.

10.3.1 Allocating, clearing, and deleting with malloc
The emitted code to allocate a cell for a use of Z and an application of S respectively, using the C standard library
function malloc, is the following:

107

void *gZ() {
gnat_gZ *x;
x = (gnat_gZ *)malloc(sizeof(void *)*1);
x->opval = 256 + op_gZ;
return x;

}

void *gS(void *gx_12) {
gnat_gS *x;
x = (gnat_gS *)malloc(sizeof(void *)*2);
x->opval = 256 + op_gS;
x->gx_12 = gx_12;
return x;

}

These functions call malloc to request (exactly) enough memory to hold the cell, and then cast that memory to the
appropriate type (this type cast is done where it says, for example, x = (gnat gZ *)...”). Finally, the fields of
the cell are filled in. We add 256 to the constructor tag, because 256 puts a 1 in the bit 9 of the first word of the cell.
The refcount starts (low bits) at bit 9, so this represents initializing with a refcount of 1.

When it is time to reclaim (delete) the memory associated with the cell, the code emitted by CARRAWAY will call
a function delete gnat. This function clears the fields of the cell by consuming their resources as appropriate.
Then it returns the memory to the operating system (in principle) by calling the C standard library function free.
Clearing is broken out separately, because when we manage memory with free lists instead of malloc/free, we still
need to clear cells. Note that since there are no fields of a Z cell, clearing such a cell does nothing, and hence can be
macro-defined away.

#define clear_gnat_gZ(x)

void clear_gnat_gS(void *_x) {
gnat_gS *x = (gnat_gS *)_x;
gconsume_unowned(gnat, x->gx_12);

}

void delete_gnat(void *x) {
switch ctor(x) {
case op_gZ:

clear_gnat_gZ(x);
free(x);
break;

case op_gS:
clear_gnat_gS(x);
free(x);
break;

}
}

10.3.2 Allocating, clearing, and deleting with free lists
One can often obtain significant performance improvements in low-level code by managing memory directly, without
using malloc and free. In this section, we describe one example of this technique, for managing memory for
inductive data using our own free lists. The idea is that for each constructor, we will keep a list of cells for that

108

constructor which have been previously freed. Such a list is called a free list. When it is time to allocate a new cell for
a use of a constructor, we will first check the constructor’s free list. If there is a cell available on the free list, we will
remove that cell from the free list, and use it instead of allocating more memory for the new cell.

There are several subtleties to the implementation of this basic idea in CARRAWAY. First, we have the question of
how to implement the free list of cells. We do not need to waste memory on a list data structure to hold cells. We can
instead just set pointers from one cell on the free list to the next, by abusing fields of the cells. All cells have at least
one word, so we will just use word 0 of each cell as this free list pointer.

The second subtlety is that we may wish to defer clearing the contents of the freed cell until it is removed from the
free list in response to an allocation request (let us call this “reallocation”). The reason for wishing to clear cells only
when they are reallocated is for real-time performance. If we clear cells immediately when they are deleted, we may
cause a large cascade of work, since clearing the contents of a cell may cause the data pointed to by that cell also to
be deleted. For example, if those data are reference counted data and consuming them causes their reference counts to
fall to 0, then they will be deleted. So we will not have any upper bound on the amount of time that a delete operation
will take, if we clear cell contents eagerly, right when the cell is deleted.

In contrast, if we clear cell contents lazily, when the cell is reallocated from the free list, then we will get an upper
bound on the amount of work needed for all our memory allocation operations. Deletion is constant time, since we
must just place the newly deleted cell on the appropriate free list. Allocation is now bounded by the amount of time
needed to clear a single cell, which will in general be O(k), where k is the number of words in the cell.

The emitted C code for managing free lists of cells for the S constructor of the nat datatype is:

void *free_gnat_gS = (void *)0;

void delete_gnat_gS(void *_x) {
void **x = (void **)_x;
x[0] = free_gnat_gS;
free_gnat_gS = x;

}

The first line declares the free list free gnat gS for cells associated with the constructor S, and initializes this
to 0, which in C is often used to represent the empty list. Then the delete function uses the statement x[0] =
free gnat gS to abuse word 0 of the cell x to point to the current start of the free list. The free list pointer is then
modified to point to x, making x the new head of the list.

The delete function for the gnat type is similar to the one shown before, except now we dispatch to the proper
delete function for the cell’s constructor:

void delete_gnat(void *x) {
switch ctor(x) {
case op_gZ:

delete_gnat_gZ(x);
break;

case op_gS:
delete_gnat_gS(x);
break;

}
}

Finally, we have allocation, which is a little more complex, because we have to see if our free list has a cell we can
reallocate (we consider here just the code for S, since the code for Z is similar). If our free list is indeed non-empty,
then we pull a cell off, and call the global clear function. Then we can initialize the cell as before. If the free
list is empty, we must request memory, ultimately from the operating system, for the new cell. This is done using
carraway alloc, which is a small and simple wrapper around the standard C function brk for requesting memory
from the operating system.

109

void *gS(void *gx_12) {
gnat_gS *x;
if (free_gnat_gS) {

x = (gnat_gS *)free_gnat_gS;
free_gnat_gS = ((void **)x)[0];
clear_gnat_gS(x);

}
else

x = (gnat_gS *)carraway_alloc(sizeof(void *)*2);
x->opval = 256 + op_gS;
x->gx_12 = gx_12;
return x;

}

10.4 Watching C Code Execute with gdb
To watch our compiled programs execute, (on linux) we can use the Gnu debugger gdb. To use the debugger effec-
tively, we need to compile the emitted C source file (for example, test3.c produced by CARRAWAY from the file
guru-lang/tests/carraway/test3.w) like this:

% gcc -o test3 -O0 -ggdb test3.c

I recommend running all these commands with the shell’s current directory set (by cd) to the guru-lang/tests/carraway
directory. To start gdb to debug the test3 executable (for example), run the following from the shell:

% gdb test3

This will put you into shell-like interaction with gdb. Here is a quick summary of the gdb commands I think you will
need (for example, for the homework):

• run (this can be abbreviated r): start the program running. The program will execute as normal, unless you
have set a breakpoint, as explained next.

• break main (can be abbreviated b main): set a breakpoint at the start of the main function, which will put
you right at the beginning of execution of the program. You can use a similar command with another function
besides main (e.g. break ginc).

• where: print the file name and line number where the current point of execution is (assuming the program is
running and has stopped at a breakpoint).

• list (can be abbreviated l): show a few lines of source code around the current point of execution.

• next (can be abbreviated n): take a single step forward of execution, but do not enter function calls if the
current point of execution is at the start of one.

• step (can be abbreviated s): like next, except we will enter a function call if the current point of execution is
at the start of one.

• print x (can be abbreviated p x): print the current value of C code expression x.

• continue (can be abbreviated c): resume execution.

The keystroke sequence “Control-p” will, just as in the shell, print the previous command from the list of previous gdb
commands (and if entered again, print previous commands before that one); and “Control-n” will print a subsequent
command from the current point in the list of previous gdb commands.

You can also use a graphical debugger like kdbg, which is just a wrapper around gdb. One note about kdbg: the
window labeled “program output” also accepts program input.

110

10.5 Exercises
Most of the exercises below are designed to get you familiar with the CARRAWAY compilation by having you explore
the C code emitted for compilation of guru-lang/tests/carraway/test3.w. You are free to use any means
necessary to answer the following questions, including modifying the generated C code by hand, or running gdb.
Another useful tool, at least when the emitted code is using malloc/free instead of free lists, is valgrind, which
runs a program and monitors its memory usage. You can run valgrind on test3, for example, like this:

% echo "hi" | valgrind ./test3

As a final note, if you give the gcc compiler the “-w” command-line option, it will not print any warning messages.

1. At the top of test3.w is a Set-command, to set the compiler flag use malloc. First, make sure this
command is uncommented (so it will actually be executed). Then compile test3.w, and run it like this:

% echo "hi" | ./test3

(a) Using gdb, print the contents of the cell corresponding to s from the definition of main in test3.w,
right after the call to read all. To do this, you can use the command:

(gdb) p *(the_type *)gs

where you must fill in the typewith the appropriate C type describing the cell. The notation “(the type

*)gs” is C notation for type-casting gs to have the type “the type *”. The star in front of that (just
after the “p”) then shows the contents of the cell. Explain why the values you see for the fields of this cell
make sense, given the explanation of Section 10.3 above.

(b) How many times is a reference count incremented by this run? How many times is a reference count
decremented? Explain why it makes sense that you see those numbers.

(c) How many bytes of memory are allocated per character in the input string? Justify your answer experi-
mentally, and explain why it makes sense.

2. This problem concerns a file test3a.w, which is very similar to test3.w, except that it has commented out
the Set-command at the top, so that the compiler flag use malloc will not be exectued. Also, it has an extra
allocation it does in main. Compile test3a.w, and run it as before, by echoing into it the input string ”hi”.
Note that using echo will ensure that there is no newline character included in the input; including such would
change the answers to the questions below. An alternative would be to put ”hi” into a test file data, and then
run

% cat data | ./test3a

An advantage of that approach is that within gdb, you can run the program being debugged on the data input
file with this command:

(gdb) r < data

(a) Draw a boxes-and-pointers diagram of the free list free gulist gucons as it exist immediately after
the call to (dec ulist s) in test3a.w. A box is drawn for a cell, and a pointer is drawn between
cells if the first cell references the second. Show any cells reachable from other pointers (besides the free
list pointers) from the cells in the free lists. Associate a unique number with your boxes (e.g., their address
in memory), that you can refer to in the next part.

(b) Show the state of memory, including free lists and the list produced by the call to (ucons tt unil),
right after that call to ucons (and before the next call to dec).

3. Show, in step by step fashion as in Section 10.2.2, how this call to lin is computed, including (of course) the
final linearized term it produces:

lin(let x = let y = Z in (S y) in (S x), ·)

111

112

Bibliography

[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of
Inductive Constructions. Springer Verlag, 2004.

[2] C. Chen and H. Xi. Combining Programming with Theorem Proving. In Proceedings of the 10th International
Conference on Functional Programming (ICFP05), Tallinn, Estonia, September 2005.

[3] Matthew Hertz and Emery D. Berger. Quantifying the Performance of Garbage Collection vs. Explicit Memory
Management. In Proc. 20th Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications, pages 313–326. ACM, 2005.

[4] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple Unification-Based Type Inference for
GADTs. In J. Reppy and J. Lawall, editors, ICFP, pages 50–61, 2006.

[5] D. Licata and R. Harper. A Formulation of Dependent ML with Explicit Equality Proofs. Technical Report
CMU-CS-05-178, Carnegie Mellon University School of Computer Science, December 2005.

[6] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

[7] C. McBride and J. McKinna. The View from the Left. Journal of Functional Programming, 14(1), 2004.

[8] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: Dependent Types for Imperative
Programs. In James Hook and Peter Thiemann, editors, The 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 229–240, 2008.

[9] U. Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD thesis, Chalmers
University of Technology, 2007.

[10] E Pasalic, J. Siek, W. Taha, and S. Fogarty. Concoqtion: Indexed Types Now! In G. Ramalingam and E. Visser,
editors, ACM SIGPLAN 2007 Workshop on Partial Evaluation and Program Manipulation, 2007.

[11] A. Petcher. Deciding Joinability Modulo Ground Equations in Operational Type Theory. Master’s thesis, Wash-
ington University in Saint Louis, May 2008. Available from http://www.cs.uiowa.edu/∼astump.

[12] Research Triangle Institute. The Economic Impacts of Inadequate Infrastructure for Software Testing, 2002.
Sponsored by the Department of Commerce’s National Institute of Standards and Technology.

[13] T. Sheard. Type-Level Computation Using Narrowing in Ωmega. In Programming Languages meets Program
Verification, 2006.

[14] The Coq Development Team. The Coq Proof Assistant Reference Manual, Version V8.0, 2004. http://coq.inria.fr.

[15] United States Federal Bureau of Investigation. 2005 FBI Computer Crime Survey.

[16] E. Westbrook, A. Stump, and I. Wehrman. A Language-based Approach to Functionally Correct Imperative
Programming. In Proceedings of the 10th International Conference on Functional Programming (ICFP05),
2005.

113

http://www.cs.uiowa.edu/~astump

[17] F. Xian, W. Srisa-an, and H. Jiang. Garbage Collection: Java Application Servers’ Achilles Heel. Sci. Comput.
Program., 70(2-3):89–110, 2008.

114 View publication statsView publication stats

https://www.researchgate.net/publication/220906582

	Introduction
	Verified Programming
	Functional Programming
	What is Guru?
	Installing Guru
	The Structure of This Book
	Acknowledgments

	Monomorphic Functional Programming
	Preview
	Inductive Datatypes
	Unary natural numbers
	Unary natural numbers in Guru

	Non-recursive Functions
	Definitions
	Multiple arguments
	Function types
	Functions as inputs
	Functions as outputs
	Comments

	Pattern Matching
	A note on parse errors

	Recursive Functions
	Summary
	Exercises

	Equational Monomorphic Proving
	Preview
	Proof by Evaluation
	Foralli and Proof by Partial Evaluation
	A note on classification errors
	Terms, types, formulas, and proofs
	Instantiating Forall-formulas

	Reflexivity, Symmetry and Transitivity
	Error messages with trans-proofs

	Congruence
	Reasoning by Cases
	Summary
	Exercises

	Inductive Equational Monomorphic Proving
	Preview
	Induction and Terminating Recursion
	A First Example of Induction, Informally
	Example Induction in Guru
	The base case
	The step case

	A Second Example Induction Proof in Guru
	Commutativity of Addition in Guru
	Summary
	Exercises

	Logical Monomorphic Proving
	Preview
	Reasoning with Implication
	Existential Introduction
	Another example

	Existential Elimination
	Proving a Function Terminates
	Registering a function as total
	Aside: show-proofs

	Reasoning with Disequations
	Case Splitting on Terminating Terms
	Summary
	Exercises

	Polymorphic Programming and Proving
	Preview
	Polymorphic Datatypes
	Polymorphic Functions
	Polymorphic Proving
	The Fold-Right Function
	Using foldr' to compute length
	Using foldr' to map a function
	Some complications due to compilation

	Exercises

	Dependently Typed Programming
	Preview
	Indexed Datatypes
	Programming with Indexed Types
	The assumption variable for types
	Starting the base case of vector append
	Injectivity reasoning
	Finishing the base case of vector append
	Finishing vector append

	Binary Search Trees
	Summary
	Exercises

	Specificationality and Dependently Typed Proving
	Preview
	Specificationality for Datatypes
	Specificationality for vectors
	Specificationality for binary search trees

	Existential Elimination in Terms
	Induction Over Indexed Datatypes
	Dependently Typed Proving
	The base case
	Case-proofs in the step case
	The first subcase
	The third subcase
	The second subcase

	Hypjoin
	Default clauses
	Finishing the bst proof

	Summary

	Resource Management with Carraway
	What is a Resource?
	Carraway Overview
	Reference Counting for Inductive Data
	Reference Counting in Carraway
	Programming with Reference-Counted Data
	Pinning References and owned
	Standard Input
	Lists and Polymorphism
	Exercises

	Compiling Carraway
	A Restriction on Functions
	Linearization
	The linearization algorithm
	An example execution of the linearization algorithm

	Compiling Inductive Datatypes
	Allocating, clearing, and deleting with malloc
	Allocating, clearing, and deleting with free lists

	Watching C Code Execute with gdb
	Exercises

