Equality, Quasi-Implicit Products, and Large Eliminations

Vilhelm Sjöberg
Computer and Information Science
University of Pennsylvania
vilhelm@cis.upenn.edu

Aaron Stump
Computer Science
The University of Iowa
astump@acm.org

Abstract

This paper presents a type theory with a form of equality reflection: provable equalities can be used to coerce the type of a term. Coercions and other annotations, including implicit arguments, are dropped during reduction of terms. We develop the metatheory for an undecidable version of the system with unannotated terms. We then devise a decidable system with annotated terms, justified in terms of the unannotated system. Finally, we show how the approach can be extended to account for large eliminations, using what we call quasi-implicit products.

1 Introduction

The main goal of this paper, as of several recent works, is to facilitate external reasoning about dependently typed programs [9, 2]. This is hampered if one must reason about specificational data occurring in terms. Specificational data are data which have no effect on the result of the computation, and are present in program text solely for verification purposes. In traditional formal methods, specification data are data which have no effect on the result of the computation, and are dependently typed programs [9, 2]. This is hampered if one must reason about specificational data occurring in program text solely for verification purposes.

We might wish to prove that \(\text{append} \) is associative. In type theories such as CoQ’s Calculus of Inductive Constructions, we would do this by showing that the following type is inhabited:

\[
\Pi l_1 : \text{nat}. \Pi l_2 : \text{nat}. \Pi v_1 : \langle \text{vec} \phi l_1 \rangle. \Pi v_2 : \langle \text{vec} \phi l_2 \rangle. \langle \text{vec} \phi (\text{plus} l_1 l_2) \rangle
\]

We might wish to prove that \(\text{append} \) is associative. In type theories such as CoQ’s Calculus of Inductive Constructions, we would do this by showing that the following type is inhabited:

\[
\Pi l_1 : \text{nat}. \Pi l_2 : \text{nat}. \Pi l_3 : \text{nat}. \Pi v_1 : \langle \text{vec} \phi l_1 \rangle. \Pi v_2 : \langle \text{vec} \phi l_2 \rangle. \Pi v_3 : \langle \text{vec} \phi l_3 \rangle.
\]

\[
(\text{append} (\text{plus} l_1 l_2) l_3 (\text{append} l_1 l_2 v_1 v_2)) = (\text{append} l_1 (\text{plus} l_2 l_3) v_1 (\text{append} l_2 l_3 v_2))
\]

Notice how the lengths of the vectors are cluttering even the statement of this theorem. Tools like CoQ allow such arguments to be elided, when they can be uniquely reconstructed. So the theorem to prove can be written in the much more palatable form:

\[
\Pi l_1 : \text{nat}. \Pi l_2 : \text{nat}. \Pi l_3 : \text{nat}. \Pi v_1 : \langle \text{vec} \phi l_1 \rangle. \Pi v_2 : \langle \text{vec} \phi l_2 \rangle. \Pi v_3 : \langle \text{vec} \phi l_3 \rangle.
\]

\[
(\text{append} (\text{append} v_1 v_2) v_3) = (\text{append} v_1 (\text{append} v_2 v_3))
\]

This is much more readable. But as others have noted, while the indices have been elided, they are not truly erased. This means that the proof of associativity of \(\text{append} \) must make use of associativity also of \(\text{plus} \), in order for the lengths of the two vectors (on the two sides of the equation) to be equal. Indeed, even stating this equation may require some care, since the types of the two sides are not definitionally equal: one has \((\text{plus} (\text{plus} l_1 l_2) l_3) \) where the other has \((\text{plus} l_1 (\text{plus} l_2 l_3)) \). This is where techniques like heterogeneous equality come into play [7].

One solution to this problem is via intersection types, also called in this setting implicit products, as in the Implicit Calculus of Constructions [8]. An implicit product \(\forall x : \phi. \phi' \) is the type for functions...
whose arguments are erased during conversion (cf. [9, 2]). Such a type can also be viewed as an infinite intersection type, since its typing rule will assert $\Gamma \vdash t : \forall x : \phi \phi'$ whenever $\Gamma, x : \phi \vdash t : \phi'$. This rule formalizes (approximately) the idea that t is in the type $\forall x : \phi \phi'$ whenever it is in each instance of that type (i.e., each type $[u/x] \phi'$ for $u : \phi$). Thus, membership in the \forall-type follows from membership in the instances of the body of the \forall-type, making the \forall-type an intersection of those instances. Note that this is an infinitary intersection, and thus different from the classical finitary intersection type of [4]. We note in passing that the current work includes first-class datatypes, while the other works just cited all rely on encodings of inductive data as lambda terms.

We seek to take the previous approaches further, and erase not just arguments to functions typed with implicit products, but all annotations. This is not the case in the Implicit Calculus of Constructions, for example, or its algorithmic development ICC [2], where typing annotations other than implicit arguments are not erased from terms. When testing β-equivalence of terms, we will work with unannotated versions of those terms, where all type- and proof-annotations have been dropped. For associativity of append, the proof does not require associativity of plus. From the point of view of external reasoning, append on vectors will be indistinguishable from append on lists (without statically tracked length).

The T^vec Type Theory. This paper studies versions of a type theory we call T^vec. This system is like Gödel’s System T, with vectors and explicit equality proofs. We first study an undecidable version of T^vec with equality reflection, where terms are completely unannotated (Section [2]). We establish standard meta-theoretic results for this unannotated system (Section [3]). We then devise a decidable annotated version of the language, which we also call T^vec (the context will determine whether the annotated or unannotated language is intended). The soundness of annotated T^vec is justified by erasure to the unannotated system (Section [4]). We consider the associativity of append in annotated T^vec, as an example (Section [4.1]). This approach of studying unannotated versus annotated versions of the type theory should be contrasted with the approach taken in NuPRL, based on Martin-Löf’s extensional type theory [3][6]. There, one constructs typing derivations, as separate artifacts, for unannotated terms. Here, we unite the typing derivation and the unannotated term in a single artifact, namely the annotated term.

Large eliminations. Type-level computation poses challenges for our approach. Because coercions by equality proofs are erased from terms, if we naively extended the system with large eliminations (types defined by pattern matching on terms) we would be able to assign types to diverging or stuck terms. We propose a solution based on what we call *quasi-implicit products*. These effectively serve to mark the introduction and elimination of the intersection type, and prohibit call-by-value reduction within an introduction. This saves Normalization and Progress, which would otherwise fail. We develop the meta-theory of an extension of the unannotated system with large eliminations and call-by-value reduction, including normalization (Section [5]).

The basic idea of basing provable equality on the operational semantics of unannotated terms has been implemented previously in the GURU dependently programming language, publicly available at [http://www.guru-lang.org][10]. The current paper improves upon the work on GURU, by developing and analyzing a formal theory embodying that idea (lacking in [10]).

2 Unannotated T^vec

The definition of unannotated T^vec uses unannotated terms a (we sometimes also write b):

$$a ::= x \mid (a d') \mid \lambda x.a \mid 0 \mid (S a) \mid (R_{\text{nat}} a d' d'') \mid \text{nil} \mid (\text{cons} a d') \mid (R_{\text{vec}} a d' d'') \mid \text{join}$$

Here, x is for λ-bound variables and S is for successor (not the S combinator). R_{nat} is the recursor over natural numbers, and R_{vec} is the recursor over vectors. We have constructors nil and cons for vectors. The term construct join is the introduction form for equality proofs. We will not need an
elimination form, since our system includes a form of equality reflection. For readability, we sometimes use meta-variable \(l \) for terms \(a \) intended as lengths of vectors. Types \(\phi \) are defined by:

\[
\phi ::= \text{nat} \mid \langle \text{vec} \phi \rangle a \mid \Pi x : \phi.\phi' \mid \forall x : \phi.\phi' \mid a = a'
\]

The first \(\Pi \)-type is as usual, while the second is an intersection type abstracting a specificational \(x \). This \(x \) need not be \(\lambda \)-abstracted in the corresponding term, nor supplied as an argument when that term is applied, similarly to Miquel’s implicit products [8].

The reduction relation is the compatible closure under arbitrary contexts of the rules in Figure 1.

Figure 2 gives type assignment rules for \(T_{vec} \), using a standard definition of typing contexts \(\Gamma \). We define \(\Gamma \Ok \) to mean that if \(\Gamma \equiv \Gamma_1, x : \phi, \Gamma_2 \), then \(\text{FV}(\phi) \subseteq \text{dom}(\Gamma_1) \). We use \(a \downarrow a' \) to mean that \(a \) and \(a' \) are joinable with respect to our reduction relation (i.e., there exists \(\hat{a} \) such that \(a; * \hat{a} \) and \(a'; * \hat{a} \)).

Perhaps surprisingly we do not track well-formedness of types, and indeed the \(\text{join} \) and \(\text{conv} \) rules can introduce untypable terms into types. However, they preserve the invariant that terms deemed equal are joinable, and that turns out to be enough to ensure type safety.

Type assignment is not syntax-directed, due to the \(\text{conv} \), \(\text{spec-abs} \), and \(\text{spec-app} \) rules, and not obviously decidable. This will not pose a problem here as we study the meta-theoretic properties of the system. Section 4 defines a system of annotated terms which is obviously decidable, and justifies it by translation to unannotated \(T_{vec} \). We work up to syntactic identity modulo safe renaming of bound variables, which we denote \(\equiv \).

3 Metatheory of Unannotated \(T_{vec} \)

\(T_{vec} \) enjoys standard properties: Type Preservation, Progress (for closed terms), and Strong Normalization. These are all easily obtained, the last by dependency-erasing translation to another type theory (as done originally for LF in [5]). Here, we consider a more semantically informative approach to Strong Normalization. Omitted proofs may be found in a companion report on the second author’s web page (see http://www.cs.uiowa.edu/~astump/papers/ITRS10-long.pdf).

Theorem 1 (Type Preservation). If \(\Gamma \vdash a : \phi \) and \(a \leadsto a' \), then \(\Gamma \vdash a' : \phi \).

Theorem 2 (Progress). If \(\Gamma \vdash a : \phi \) and \(\text{dom}(\Gamma) \cap \text{FV}(a) = \emptyset \), then either \(a \) is a value or \(\exists a'.a \leadsto a' \). Here a value is a term of the form

\[
v ::= \lambda x.a \mid 0 \mid (S v) \mid \text{nil} \mid (\text{cons} v v') \mid \text{join}
\]

3.1 Semantics of equality

For our Strong Normalization proof, a central issue is providing an interpretation for equality types in the presence of free variables. We would like to interpret equations like \((\text{plus} 2 2) = 4 \) (where the numerals abbreviate terms formed with \(S \) and 0 as usual, and \(\text{plus} \) has a standard recursive definition), as simply
\[
\begin{align*}
\Gamma(x) & \equiv \phi & \Gamma \vdash x : \phi & \text{var} \\
a \downarrow a & & \Gamma \vdash a = a' & \text{join} \\
\Gamma, x : \phi \vdash a : \phi & \quad x \not\in FV(a) & \Gamma \vdash \forall x : \phi'. \phi & \quad \text{spec-abs} \\
\Gamma, x : \phi \vdash a : \phi & \quad x \not\in FV(a) & \Gamma \vdash a : [a'/x] \phi & \quad \text{spec-app} \\
\Gamma \vdash \lambda x. a : \Pi x : \phi'. \phi & \Gamma \vdash a : [a'/x] \phi & \Gamma \vdash a' : \phi' & \text{abs} \\
\Gamma \vdash a : \phi & \Gamma \vdash a : [a'/x] \phi & \Gamma \vdash a : \phi & \text{app} \\
\Gamma \vdash \text{zero} & \quad \text{conv} \\
\Gamma \vdash \text{nil} : \langle \text{vec} \ \phi \ \text{0} \rangle & \quad \text{nil} \\
\Gamma \vdash a : \phi & \Gamma \vdash a' : \phi' & \Gamma \vdash \text{plus} : \phi & \text{cons} \\
\Gamma \vdash \langle \text{vec} \ \phi \ \text{l} \rangle & \Gamma \vdash \text{cons} & \Gamma \vdash a : [0/l] \phi & \text{Rvec} \\
\Gamma \vdash \langle \text{vec} \ \phi \ \text{l} \rangle & \Gamma \vdash a' : \phi'. \forall l : \text{nat}. \Pi l : [y/l] \phi. [\Pi y : \text{nat}. [\Pi v : [y/v] \phi] & \Gamma \vdash a' : \phi'. \forall l : \text{nat}. \Pi l : [y/l] \phi. [\Pi v : [y/v] \phi] & \text{cons} \\
\Gamma \vdash \langle \text{vec} \ \phi \ \text{l} \rangle & \Gamma \vdash a : [0/l] \phi & \Gamma \vdash a : [0/l] \phi & \text{Rvec} \\
\Gamma \vdash a' : \phi'. \forall l : \text{nat}. \Pi l : [y/l] \phi. [\Pi v : [y/v] \phi] & \Gamma \vdash a' : \phi'. \forall l : \text{nat}. \Pi l : [y/l] \phi. [\Pi v : [y/v] \phi] & \Gamma \vdash a : [0/l] \phi & \text{Rvec} \\
\end{align*}
\]

Figure 2: Type assignment system for unannotated \(T^{vec} \)

(plus 2 2) ↓ 4. But when the two terms contain free variables – e.g., in \(<\text{plus} x y\> = <\text{plus} y x\>\) – or when the context is inconsistent, the semantics should make the equation true, even though its sides are not joinable. So our semantics for equality types is joinability under all ground instances of the context \(\Gamma \). The notation for this is \(a \sim_{\Gamma} a'\). The definition must be given as part of the definition of the interpretation of types, because we want to stipulate that the substitutions \(\sigma \) replace each variable \(x \) by a ground term in the interpretation of \(\sigma \Gamma(x) \). When \(\Gamma \) is empty, we will write \(a \sim_{\Gamma} a'\) as \(a \sim a'\). We use a similar convention for other notations subscripted by a context below.

3.2 The interpretation of types

The interpretation of types is given in Figure 3. In that figure, we write \(\Rightarrow \) and \(\Leftrightarrow \) for meta-level implication and equivalence, respectively, and give \(\Leftrightarrow \) lowest precedence among all infix symbols, and \(\Rightarrow \) next lowest precedence. We stipulate up front (not in the clauses in the figure) that \(a \in [\phi]_\Gamma\) requires \(a \in SN\) (where \(SN\) is the set of strongly normalizing terms) and \(\Gamma \vdash a : \phi\). The definition in Figure 3 proceeds by well-founded recursion on the triple \(([\Gamma], d(\phi), l(a))\), in the natural lexicographic ordering. Here, \(|\Gamma|\) is the cardinality of \(\text{dom}(\Gamma) \), and if \(a \in SN\), then we make use of a (finite) natural number \(l(a)\) bounding
\[
\begin{align*}
a \in \llbracket \text{nat} \rrbracket_\Gamma &\iff \top \\
a \in \llbracket \langle \text{vec} \phi \ l \rangle \rrbracket_\Gamma &\iff (a \leadsto^* \text{nil} \implies l \leadsto^* 0) \land \\
&\land \forall a'. \forall a''. a \leadsto^* (\text{cons} \ a' \ a'') \implies (i) \ a' \in \llbracket \phi \rrbracket_\Gamma \land \exists l'. \\
&(ii) \ a'' \in \llbracket \langle \text{vec} \phi \ l' \rangle \rrbracket_\Gamma \land \\
&(iii) \ l \leadsto^* (S l')
\end{align*}
\]

\[
\begin{align*}
a \in [\Pi x : \phi \cdot \phi]\rrbracket_\Gamma &\iff \forall a' \in [\phi']_\Gamma. (a \ a') \in [[a'/x]\phi]_\Gamma \\
a \in [\forall x : \phi \cdot \phi]\rrbracket_\Gamma &\iff \forall a' \in [\phi']_\Gamma. a \in [[a'/x]\phi]_\Gamma \\
a \in [a_1 = a_2]\rrbracket_\Gamma &\iff (a \leadsto^* \text{join} \implies a_1 \leadsto^* a_2)
\end{align*}
\]

where:
\[
\begin{align*}
\frac{}{a \leadsto^* \Gamma a'} &\iff \forall \sigma. \sigma \in [\Gamma] \implies (\sigma a) \downarrow (\sigma a') \\
a \in [\phi]_+ \iff a \in [\phi]_\Gamma \land (|\Gamma| > 0 \implies \forall \sigma \in [\Gamma]. \sigma a \in [\sigma \phi])
\end{align*}
\]

and also:
\[
\begin{align*}
\frac{}{a \in [\sigma \phi]_\Delta \quad \sigma \in [\Gamma]_\Delta}{\sigma \cup \{ (x, a) \} \in [\Gamma, x : \phi]_\Delta}
\end{align*}
\]

Figure 3: The interpretation \(a \in [\phi]_\Gamma\) of strongly normalizing terms with \(\Gamma \vdash a : \phi\)

the number of symbols in the normal form of \(a\). We need to assume confluence of reduction elsewhere in this proof, so it does not weaken the result to assume here that each term has at most one normal form. While we believe confluence for this language should be easily established by standard methods, that proof remains to future work. The quantity \(d(\phi)\) is the depth of \(\phi\), defined as follows:

\[
\begin{align*}
d(\text{nat}) &= 0 & d(\langle \text{vec} \phi \ l \rangle) &= 1 + d(\phi) \\
d(\Pi x : \phi, \phi') &= 1 + \max(d(\phi), d(\phi')) & d(\forall x : \phi, \phi') &= 1 + \max(d(\phi), d(\phi')) \\
d(a = a') &= 0
\end{align*}
\]

Note that \(d(\phi) = d([a/x]\phi)\) for all \(a, x, \) and \(\phi\). Also, in the clause for \text{vec}-types, since the right hand side of the clause conjoins the condition \(a \in SN, l(a)\) is defined, and we have \(l(\phi) < l(\text{cons} \ a' \ a'')\). The figure gives an inductive definition for when \(\sigma \in [\Gamma]_\Delta\). We call such a \(\sigma\) a closable substitution.

In general, the inductive definition of closable substitution \(\sigma \in [\Gamma]_\Delta\) allows the range of the substitution to contain open terms. When \(\Delta\) is empty, \(\sigma\) is a closing substitution. The definition of \([\,\cdot\,]\) for types uses the definition of closable substitutions in a well-founded way. We appeal only to \([\Gamma]\) (with an empty context \(\Delta\)) in the definitions of \([\phi]_\Gamma\) and \([\phi]_+\). Where the definition of \([\Gamma]_\Delta\) appeals back to the interpretation of types, it does so only when this \(\Gamma\) was non-empty, and with an empty context given for the interpretation of the type. So \([\Gamma]\) has indeed decreased from one appeal to the interpretation of types to the next.

3.3 Critical properties

A term is defined to be neutral iff it is of the form \((a \ a')\) or \((R_B \ a \ a' \ a'')\) (with \(B \in \{ \text{nat}, \text{vec} \}\)), or if it is a variable. We prove three critical properties of reducibility at type \(\phi\), by mutual induction on \(|\Gamma|, d(\phi), l(a)\). Here we write \(\text{next}(a) = \{ a' \mid a \leadsto a' \}\).

R-\text{Pres}. If \(a \in [\phi]_\Gamma\), then \(\text{next}(a) \subset [\phi]_\Gamma\).

R-\text{Prog}. If \(a\) is neutral and \(\Gamma \vdash a : \phi\), then \(\text{next}(a) \subset [\phi]_\Gamma\) implies \(a \in [\phi]_\Gamma\).

R-\text{Join}. Suppose \(a_1 \leadsto^*_\Gamma a_2; \Gamma \vdash a' : a_1 = a_2\) for some \(a'\); and \(x \notin \text{dom}(\Gamma)\). Then \([a_1/x]\phi]_\Gamma \subset ([a_2/x]\phi]_\Gamma\).
3.4 Soundness of typing with respect to the interpretation

Our typing rules are sound with respect to our interpretation of types (Figure 3). As usual, we must strengthen the statement of soundness for the induction to go through. We need a quasi-order \(\subset \) on contexts, defined by: \(\Delta \subset \Gamma \iff \forall x \in \text{dom}(\Delta). \Delta(x) = \Gamma(x) \).

Theorem 3 (Soundness for Interpretations). Suppose \(\Gamma \vdash a : \phi \). Then for any \(\Delta \vdash k \) with \(\Delta \subset \Gamma \) and \(\sigma \in [\Gamma]_{\Delta} \), we have \((\sigma a) \in [\sigma \phi]_{\Delta} \).

Critically, we quantify over possibly open substitutions \(\sigma \), whose ranges consist of closable terms.

Corollary 1 (Strong Normalization). If \(\Gamma \vdash a : \phi \), then \(a \in SN \).

Corollary 2. If \(\Gamma \vdash a : \phi \) and \(\Gamma \vdash a' : \phi' \), then \(a \downarrow a' \) is decidable.

Corollary 3 (Equational Soundness). If \(\cdot \vdash a : b_1 = b_2 \), then \(b_1 \downarrow b_2 \).

Corollary 4 (Logical Soundness). There is a type \(\phi \) such that \(\vdash a : \phi \) does not hold for any \(a \).

Proof. By Equational Soundness, we do not have \(\vdash a : 0 = (S \, 0) \) for any \(a \).

4 Annotated \(T^{\text{vec}} \)

We now define a system of annotated terms \(t \), and a decidable type computation system deriving judgments \(\Gamma \models t : \phi \), justified by dropping annotations via \(\cdot | \cdot \) (defined in Figure 4). The annotated terms \(t \) are the following. Annotations include types \(\phi \), possibly with designated free variables, as in \(x.\phi \) (bound by the dot notation).

\[
\begin{align*}
t & ::= x \mid (t \, t') \mid (t \, t')^\neg \mid \lambda x: \phi.t \mid \lambda^\neg x: \phi.t \mid 0 \mid (S \, t) \mid (R_{\text{nat}} \cdot x.\phi \, t \, t''') \\
& \quad \mid (\text{nil} \, \phi) \mid (\text{cons} \, t \, t') \mid (R_{\text{vec}} \cdot x.\phi \, t
\end{align*}
\]

Three new constructs correspond to the typing rules (spec-abs), (spec-app), and (conv) of Figure 3: \(\lambda^\neg x: \phi'.\phi \), \((t \, t')^\neg \) and \((\text{cast} \, x.\phi \, t \, t') \). Figure 5 gives syntax-directed type-computation rules, which constitute a deterministic algorithm for computing a type \(\phi \) as output from a context \(\Gamma \) and annotated term \(t \) as inputs. Several rules use the \(\cdot | \cdot \) function, since types \(\phi \) (as defined in Section 2 above) may mention only unannotated terms.

Theorem 4 (Algorithmic Typing). Given \(\Gamma \) and \(a \), we can, in an effective way, either find \(\phi \) such that \(\Gamma \models a : \phi \), or else report that there is no such \(\phi \).

This follows in a standard way from inspection of the rules, using Corollary 2 for the join-rule.

Theorem 5 (Soundness for Type Assignment). If \(\Gamma \models t : \phi \) then \(\Gamma \vdash t : \phi \).

4.1 Example

Now let us see versions of the examples mentioned in Section II available in the guru-lang/lib/vec.g library file for GURU (see www.guru-lang.org). The desired types for vector append (“\(\text{append} \)” and for associativity of vector append are:

\[
\begin{align*}
\text{append} & : \forall l_1 : \text{nat}.\forall l_2 : \text{nat}.
\Pi v_1 : \langle \text{vec} \, \phi \, l_1 \rangle, \Pi v_2 : \langle \text{vec} \, \phi \, l_2 \rangle, \langle \text{vec} \, \phi \, (\text{plus} \, l_1 \, l_2) \rangle \\
\text{append_assoc} & : \forall l_1 : \text{nat}.\forall l_2 : \text{nat}.
\Pi v_1 : \langle \text{vec} \, \phi \, l_1 \rangle, \Pi v_2 : \langle \text{vec} \, \phi \, l_2 \rangle, \Pi v_3 : \langle \text{vec} \, \phi \, l_3 \rangle, \\
& \quad (\text{append} \, (\text{append} \, v_1 \, v_2) \, v_3) = (\text{append} \, v_1 \, (\text{append} \, v_2 \, v_3))
\end{align*}
\]
We consider now annotated inhabitants of these types. The first is the following:

\[
\begin{align*}
|l| &= x & |(t')| &= (|l| \rhd |t'|) \\
|(t')^-| &= |t| & |\lambda x : \phi. t| &= \lambda x. |t| \\
|\lambda x : \phi. t| &= |t| & |0| &= 0 \\
|(S t)| &= (S |t|) & |(\text{nil } \phi)| &= \text{nil} \\
|\text{cons } t'\rangle| &= (\text{cons } |t| \rhd |t'|) & |(R_{\text{nat }} x. \phi \ r t' t'')| &= (R_{\text{nat }} |t| \rhd |t'| \rhd |t''|) \\
|R_{\text{vec }} x. y. \phi \ r t' t''| &= (R_{\text{vec }} |t| \rhd |t'| \rhd |t''|) & |(\text{join } t'')| &= \text{join} \\
\end{align*}
\]

Figure 4: Translation from annotated terms to unannotated terms

\[
\begin{align*}
\Gamma \vdash t : \phi & \quad \Gamma \vdash t' : \phi' \quad |t| \downarrow |t'| & \quad \Gamma \vdash (\text{join } t'') : |t| \rhd |t'| \\
\Gamma \vdash t : a = a' & \quad \Gamma \vdash t' : [a/x] \phi & \quad \Gamma \vdash x. \phi' \vdash t : x \notin \text{FV}(|t|) \\
\Gamma \vdash (\text{cast } x. \phi t t') : [x'/x] \phi & \quad \Gamma \vdash \lambda x : \phi'. t : \forall x. \phi'. \phi \\
\Gamma \vdash t : \forall x. \phi'. \phi & \quad \Gamma \vdash t' : |t'| = |t'| \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash t'' : \langle \text{vec } \phi' l \rangle & \\
\Gamma \vdash t : [0/x, \text{nil}/y] \phi & \\
\Gamma \vdash t' : \forall x. \Pi x : \phi'. \Pi v : \langle \text{vec } \phi' l \rangle. \Pi u : [l/x, v/y] \phi. & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash (S l)/x, (\text{cons } z v)/y \phi & \\
\end{align*}
\]

Figure 5: Type-computation system for annotated \(\tau_{\text{vec }}\) (selected rules)

We consider now annotated inhabitants of these types. The first is the following:

\[
\begin{align*}
\text{append} &= \lambda l_1 :: \text{nat}. \lambda l_2 :: \text{nat}. \lambda v_1 : \langle \text{vec } \phi l_1 \rangle. \lambda v_2 : \langle \text{vec } \phi l_2 \rangle. \\
& \quad (R_{\text{vec }} x. y. \langle \text{vec } \phi (\text{plus } x l_2) \rangle) \\
& \quad (\text{cast } x. \langle \text{vec } \phi x \rangle P_1 v_2) \\
& \quad (\lambda l : \text{nat. } \lambda x : \phi. \lambda v_1 : \langle \text{vec } \phi l \rangle. \lambda r : \langle \text{vec } \phi (\text{plus } l l_2) \rangle) \\
& \quad (\text{cast } x. \langle \text{vec } \phi x \rangle P_2 \text{ (cons } r)) \\
& \quad v_1 \\
\end{align*}
\]

The two cases in the \(R_{\text{vec }}\) term return a type-cast version of what would standardly be returned in an unannotated version of \text{append}. The proofs \(P_1\) and \(P_2\) used in those casts show respectively that \(l_2 = (\text{plus } 0 l_2)\) and \((\text{plus } S l_2 l_2) = (\text{plus } S l l_2)\). They are simple join-proofs:

\[
P_1 = (\text{join } l_2 \text{ (plus } 0 l_2)) \quad P_2 = (\text{join } (\text{plus } S l_2 l_2) \text{ (plus } S l l_2))
\]

Now for \text{append_assoc}, we can use the following annotated term:

\[
\begin{align*}
\text{append_assoc} &= \lambda l_1 :: \text{nat}. \lambda l_2 :: \text{nat}. \lambda v_1 : \langle \text{vec } \phi l_1 \rangle. \lambda v_2 : \langle \text{vec } \phi l_2 \rangle. \lambda v_3 : \langle \text{vec } \phi l_3 \rangle. \\
& \quad (R_{\text{vec }} x. y. (\text{append } (\text{append } v_1 v_2) v_3) = (\text{append } v_1 (\text{append } v_2 v_3))) \\
& \quad (\text{join } (\text{append } (\text{append } \text{nil } v_2) v_3) = (\text{append } \text{nil} \ (\text{append } v_2 v_3))) \\
& \quad (\lambda l :: \text{nat. } \lambda x : \phi. \lambda v_1 : \langle \text{vec } \phi l \rangle. \lambda r : \langle \text{append } v_1 (\text{append } v_2 v_3) \rangle) \\
& \quad v_1 \\
\end{align*}
\]
This extended language no longer normalizes under general \(\beta \)-reduction. Next we study an extended version of \(T \) which will prove that well-typed closed terms normalize under call-by-value evaluation \(\sim_\nu \). The type language is extended with the simplest possible form of large elimination, a type-level conditional \(\text{ifZero} \) which is introduced and eliminated by the \(\text{fold} \) and \(\text{unfold} \) rules. While type conversion and type folding/unfolding are completely implicit, we replace the \(\text{spec-abs/app} \) rules with new rules \(\text{spec-abs'/app'} \) which require the place where we introduce or eliminate the \(\forall \)-type to be marked by new quasi-implicit forms \(\lambda . a \) and \(a \square \). These forms do not mention the quantified variable or the term it is instantiated with, so we retain the advantages of specificational reasoning. The point of these forms is their evaluation behavior: \((\lambda . a) \square \sim_\nu a\), and \(\lambda . a \) counts as a value so CBV evaluation will never reduce inside it. Besides this, the CBV operational semantics is standard, so we omit it here.

In the language with large eliminations we no longer have normalization or type safety for arbitrary open terms. This is because the richer type system lets us make use of absurd equalities: whenever we have \(\Gamma \vdash a : \phi \) and \(\Gamma \vdash p : (S a') = 0 \), we can show \(\Gamma \vdash a : \phi' \) for any \(\phi' \) by going via the intermediate type \((\text{ifZero} 0 \phi (\alpha.\phi'))\). In particular, this means we can show judgments like

\[
p : 1 \vdash (\lambda x.x) (\lambda x.x) : \text{nat} \quad \text{and} \quad p : 1 \vdash 0 0 : \text{nat}.
\]

This is also the reason we introduce the quasi-implicit products. Using our old rule \(\text{spec-abs} \) we would be able to show \(\vdash 0 \square : \forall p : 1 = 0.\text{nat} \), despite 0 0 being a stuck term in our operational semantics.

Because of this \(\text{quod libet} \) property it is no longer convenient to prove Progress and Preservation before Normalization. While the proof of Preservation is not hard, Progress as we have seen depends on the logical consistency of the language, which is exactly what we hope to establish through Normalization. To cut this circle we design an interpretation of types (figure 7) that lets us prove type safety, Canonical Forms and Normalization in a single induction.

\[
\begin{align*}
\phi ::= & \ldots | \text{ifZero} a \phi \\
\Gamma, x : \phi' \vdash a : \phi & \quad x \not\in \text{FV}(a) \quad \text{spec-abs}' \\
\Gamma \vdash a : \forall x : \phi.\phi & \quad \text{spec-app}' \\
\end{align*}
\]

The omitted proof \(P_3 \) is an easy equational proof of the following type:

\[
(\text{append} (\text{append} (\text{cons} x \nu'_1) v_2) v_3) = (\text{append} (\text{cons} x \nu'_1) (\text{append} v_2 v_3))
\]

5 \(T^{\text{vec}} \) with Large Eliminations

Next we study an extended version of \(T^{\text{vec}} \) with large eliminations, i.e. types defined by pattern matching on terms. This extended language no longer is normalizing under general \(\beta \)-reduction \(\sim \), but we will prove that well-typed closed terms normalize under call-by-value evaluation \(\sim_\nu \). In particular, the language is type safe and logically consistent.

The additions to the language and type system are shown in figure 6.

The type language is extended with the simplest possible form of large elimination, a type-level conditional \(\text{ifZero} \) which is introduced and eliminated by the \(\text{fold} \) and \(\text{unfold} \) rules. While type conversion and type folding/unfolding are completely implicit, we replace the \(\text{spec-abs/app} \) rules with new rules \(\text{spec-abs'/app'} \) which require the place where we introduce or eliminate the \(\forall \)-type to be marked by new quasi-implicit forms \(\lambda . a \) and \(a \square \). These forms do not mention the quantified variable or the term it is instantiated with, so we retain the advantages of specificational reasoning. The point of these forms is their evaluation behavior: \((\lambda . a) \square \sim_\nu a\), and \(\lambda . a \) counts as a value so CBV evaluation will never reduce inside it. Besides this, the CBV operational semantics is standard, so we omit it here.

In the language with large eliminations we no longer have normalization or type safety for arbitrary open terms. This is because the richer type system lets us make use of absurd equalities: whenever we have \(\Gamma \vdash a : \phi \) and \(\Gamma \vdash p : (S a') = 0 \), we can show \(\Gamma \vdash a : \phi' \) for any \(\phi' \) by going via the intermediate type \((\text{ifZero} 0 \phi (\alpha.\phi'))\). In particular, this means we can show judgments like

\[
p : 1 \vdash (\lambda x.x) (\lambda x.x) : \text{nat} \quad \text{and} \quad p : 1 \vdash 0 0 : \text{nat}.
\]

This is also the reason we introduce the quasi-implicit products. Using our old rule \(\text{spec-abs} \) we would be able to show \(\vdash 0 \square : \forall p : 1 = 0.\text{nat} \), despite 0 0 being a stuck term in our operational semantics.

Because of this \(\text{quod libet} \) property it is no longer convenient to prove Progress and Preservation before Normalization. While the proof of Preservation is not hard, Progress as we have seen depends on the logical consistency of the language, which is exactly what we hope to establish through Normalization. To cut this circle we design an interpretation of types (figure 7) that lets us prove type safety, Canonical Forms and Normalization in a single induction.

\[
\begin{align*}
\phi ::= & \ldots | \text{ifZero} a \phi \\
\Gamma, x : \phi' \vdash a : \phi & \quad x \not\in \text{FV}(a) \quad \text{spec-abs}' \\
\Gamma \vdash a : \forall x : \phi.\phi & \quad \text{spec-app}' \\
\end{align*}
\]
If \(\vdash \) R-Join quasi-implicit products. The quasi-implicit products allow convenient reasoning about specificational properties. However, this approach can still interpret equality as joinability \(\downarrow \) when working with closed terms, where the definition can be simpler than in section 3. Perhaps surprisingly, even though we are interested in CBV-evaluation of programs, we can still interpret equality as joinability \(\downarrow \) under unrestricted \(\beta \)-reduction.

In the interpretation we use \(\sim \) for the program being evaluated, but \(\sim^* \) whenever we talk about terms occurring in types (namely in \(\text{vec} \), \(= \), and R-types). The \(\text{join} \) typing rule is specified in terms of \(\sim^* \), so when doing symbolic evaluation of programs at type checking time the type checker can use unrestricted reduction, which gives a powerful type system than can prove many equalities.

\[
\begin{align*}
a \in \llbracket \text{nat} \rrbracket & \iff \exists n. a \sim^*_v n \\
a \in \llbracket (\text{vec} \phi l) \rrbracket & \iff (a \sim^*_v \text{nil} \land l \sim^* 0) \lor \\
& \quad \exists v. v \sim^*_v n. \ a \sim^*_v (\text{cons} v \nu') \land l \sim^* (S n) \\
a \in \llbracket \Pi x : \phi. \phi' \rrbracket & \iff \exists a'. a \sim^*_v (\lambda x. a') \land \forall a' \in \llbracket \phi' \rrbracket. (a a') \in \llbracket [a'/x]\phi \rrbracket \\
a \in \llbracket \forall x : \phi. \phi' \rrbracket & \iff \exists a'. a \sim^*_v \text{join} \land a_1 \downarrow a_2 \\
a \in \llbracket \text{ifZero} b \phi \phi' \rrbracket & \iff \begin{cases} a \in \llbracket \phi \rrbracket & \text{if } b \sim^* 0 \\ \text{False} & \text{otherwise} \end{cases}
\end{align*}
\]

Figure 7: Type interpretation \(a \in \llbracket \phi \rrbracket \) and context interpretation \(\sigma \in \llbracket \Gamma \rrbracket \) for \(T^\text{vec} \) with large eliminations

5.1 Semantics of Equality

We need to pick an interpretation for equality types. Since we are only interested in closed terms, this can be less elaborate than in section 3. Perhaps surprisingly, even though we are interested in CBV-evaluation of programs, we can still interpret equality as joinability \(\downarrow \) under unrestricted \(\beta \)-reduction.

In the interpretation we use \(\sim \) for the program being evaluated, but \(\sim^* \) whenever we talk about terms occurring in types (namely in \(\text{vec} \), \(= \), and R-types). The \(\text{join} \) typing rule is specified in terms of \(\sim^* \), so when doing symbolic evaluation of programs at type checking time the type checker can use unrestricted reduction, which gives a powerful type system than can prove many equalities.

5.2 Normalization to Canonical Form

We define the interpretation \(\llbracket \cdot \rrbracket \) as in figure 7 by recursion on the depth of the type \(\phi \). As we only deal with closed terms, the definition can be simpler than the one in section 3. The proof then proceeds much like the proof for open terms:

- **R-Canon.** If \(a \in \llbracket \phi \rrbracket \), then \(a \sim^*_v v \) for some \(v \). Furthermore, if the top-level constructor of \(\phi \) is \text{nat}, \(\Pi \), \(\forall \), \(= \), or \(\text{vec} \), then \(v \) is the corresponding introduction form.
- **R-Pres.** If \(a \in \llbracket \phi \rrbracket \) and \(a \sim^*_v a' \), then \(a' \in \llbracket \phi \rrbracket \).
- **R-Prog.** If \(a \sim^*_v a' \), and \(a' \in \llbracket \phi \rrbracket \), then \(a \in \llbracket \phi \rrbracket \).
- **R-Join.** If \(a_1 \downarrow a_2 \), then \(a \in \llbracket [a_1/x]\phi \rrbracket \) implies \(a \in \llbracket [a_2/x]\phi \rrbracket \).

Theorem 6. If \(\Gamma \vdash a : \phi \) and \(\sigma \in \llbracket \Gamma \rrbracket \), then \(\sigma a \in \llbracket \sigma \phi \rrbracket \).

Corollary 5 (Type Safety). If \(\vdash a : \phi \), then \(a \sim^*_v v \).

Corollary 6 (Logical Soundness). \(\vdash a : 1 = 0 \) does not hold for any \(a \).

6 Conclusion and Future Work

The \(T^\text{vec} \) type theory includes intersection types and a form of equality reflection, justified by translation to an undecidable unannotated system. The division into annotated and unannotated systems enables us to reason about terms without annotations, while retaining decidable type checking. We have seen how this approach extends to a language including large eliminations, by introducing a novel kind of quasi-implicit products. The quasi-implicit products allow convenient reasoning about specificationally complex terms.
data, while permitting a simple proof of normalization of closed terms. Possible future work includes formalizing the metatheory, and extending to a polymorphic type theory. Adding an extensional form of equality while retaining decidability would also be of interest, as in [1].

Acknowledgments: Thanks to members of the TRELLYS team, especially Stephanie Weirich and Tim Sheard, for discussions on this and related systems. This work was partially supported by the the U.S. National Science Foundation under grants 0910510 and 0910786.

References

A Proof of Type Preservation (Theorem 1)

More about contexts. In more detail, we consider a contexts Γ to be a function from a finite set of variables to types, together with a total ordering on its domain, and write \(\Gamma(x) : \phi\) for the function that behaves just like Γ, except that it returns \(\phi\) for \(x\), and places \(x\) after the variables in \(\text{dom}(\Gamma)\). When \(\Gamma \equiv \Gamma_1 \cup \Gamma_2\) with all the variables in \(\Gamma_2\) greater than those of \(\Gamma_1\) in the ordering, we write \(\Gamma_1, \Gamma_2\) (implying also that the domains of \(\Gamma_1\) and \(\Gamma_2\) are disjoint).

The proof of Type Preservation is by induction on the structure of the assumed typing derivation. We list all cases. Unless we introduce meta-variable \(b\) for another purpose, in each case we will assume the term in question reduces to \(b\). In cases where the term in question is a normal form, this will lead to a contradiction.

Case:

\[
\begin{align*}
\Gamma(x) & \equiv \phi \\
\Gamma \vdash x : \phi
\end{align*}
\]
This case cannot arise, since \(x \) is a normal form and so cannot reduce.

Case:

\[
\frac{a \downarrow a'}{
\Gamma \vdash \text{join}: a = a'}
\]

This case cannot arise, since \text{join} is a normal form.

Case:

\[
\frac{\Gamma \vdash a''': a' = a'' \quad \Gamma \vdash a : [a'/x] \phi \quad x \notin \text{dom}(\Gamma)}{
\Gamma \vdash a : [a''/x] \phi}
\]

(Recall that by convention in this proof, our second assumption is \(a \leadsto b \).) By the induction hypothesis, we have \(\Gamma \vdash b : [a'/x] \phi \). We may then reapply this rule to conclude \(\Gamma \vdash b : [a''/x] \phi \).

Case:

\[
\frac{\Gamma, x : \phi' \vdash a : \phi \quad x \notin \text{FV}(a)}{
\Gamma \vdash a : \forall x : \phi' . \phi}
\]

By the induction hypothesis, we have \(\Gamma, x : \phi' \vdash b : \phi \). Reduction cannot increase the set of free variables, so \(x \notin \text{FV}(b) \). We may then reapply this rule to obtain \(\Gamma \vdash b : \forall x : \phi' . \phi \).

Case:

\[
\frac{\Gamma \vdash a : \forall x : \phi' . \phi \quad \Gamma \vdash a' : \phi'}{
\Gamma \vdash a : [a'/x] \phi}
\]

By the induction hypothesis, we have \(\Gamma \vdash b : \forall x : \phi' . \phi \). We may then reapply this rule to obtain \(\Gamma \vdash b : [a'/x] \phi \).

Case:

\[
\frac{\Gamma, x : \phi' \vdash a : \phi}{
\Gamma \vdash \lambda x. a : \Pi x : \phi' . \phi}
\]

By the induction hypothesis, we have \(\Gamma, x : \phi' \vdash b : \phi \). We may then reapply this rule to obtain \(\Gamma \vdash \lambda x. b : \Pi x : \phi' . \phi \).

Case:

\[
\frac{\Gamma \vdash a : \Pi x : \phi' . \phi \quad \Gamma \vdash a' : \phi'}{
\Gamma \vdash (a a') : [a'/x] \phi}
\]

Suppose the reduction is from \(a \leadsto b \), so we have \((a a') \leadsto (b a') \). Then we apply the induction hypothesis to the first premise to obtain \(\Gamma \vdash b : \Pi x : \phi' . \phi \), and then reapply this rule to obtain \(\Gamma \vdash (b a') : [a'/x] \phi \).
Suppose now that the reduction is from \(a' \sim b' \), so we have \((a \ a') \sim (a \ b')\). Then we apply the induction hypothesis to the second premise to obtain \(\Gamma \vdash b : \phi' \). Reapplying this rule then gives us \(\Gamma \vdash (a \ b') : [b'/x]\phi \). We must now apply the \(\text{conv} \) rule (of Figure 2), using as the first premise the judgment \(\Gamma \vdash \text{join} : a' = b' \), which is derivable since \(a' \sim b' \) (because \(a' \sim b' \)). This gives us the desired result: \(\Gamma \vdash (a \ b') : [a'/x]\phi \).

Finally, suppose the reduction is because we have \(a \equiv \lambda x.b \) for some \(x \) and \(b \), and the application itself is being \(\beta \)-reduced. In this case, we need a lemma in order to limit the cases arising from inversion on the derivation of \(\Gamma \vdash \lambda x.b : \Pi x : \phi'.\phi \). We now need this lemma (proof in Section A.1):

Lemma 1 (Simplifying Inversion). Suppose \(\Gamma \vdash a : \phi \) is derivable, where \(a \) is an introduction form (i.e., of the form \(\text{join} \), \(\text{0} \), \((S \ b) \), \(\text{nil} \), \(\text{cons} \ b \ b' \), or \(\lambda x.b \)), and \(\phi \) has the corresponding form of type (e.g., \(\Pi \)-type for a \(\lambda \)-abstraction). Then \(\Gamma \vdash a : \phi \) is also derivable by a derivation starting with the corresponding introduction rule for the form of \(a \), using the same context \(\Gamma \), and followed by a sequence of \(\text{conv} \) inferences.

Using Simplifying Inversion on the derivation \(\Gamma \vdash \lambda x.b : \Pi x : \phi'.\phi \), we may assume this derivation starts like this:

\[
\begin{align*}
\Gamma, x : \psi' & \vdash b : \psi \\
\Gamma & \vdash \lambda x.b : \Pi x : \psi'.\psi
\end{align*}
\]

The derivation then uses a sequence \(S \) of \(\text{conv} \) inferences to end in \(\Gamma \vdash \lambda x.b : \Pi x : \phi'.\phi \). Let \(S^{-1} \) be the sequence which is just the same except that for every first premise \(\Gamma \vdash d : c = c' \) of a \(\text{conv} \)-inference in \(S \), we have a \(\text{conv} \) inference with first premise \(\Gamma \vdash \text{join} : c' = c \), easily derived from \(\Gamma \vdash d : c = c' \). We now wish to show that the result of substituting our \(a' \) for \(x \) in \(b \) has the expected type \([a'/x]\phi \). For this, we must first apply the sequence \(S^{-1} \) to \(\Gamma \vdash a' : \phi' \). This gives us \(\Gamma \vdash a' : \psi' \). Now we apply Substitution (proved in Section A.2 below):

Lemma 2 (Substitution). If \(\Gamma, x : \phi, \Gamma' \vdash a' : \phi' \) and \(\Gamma \vdash a : \phi \), then \(\Gamma, [a/x] \Gamma' \vdash [a/x]a' : [a/x]\phi' \).

This gives us \(\Gamma \vdash [a/x]a' : [a/x]\psi \). We may apply \(S \) now to obtain \(\Gamma \vdash [a/x]a' : [a/x]\phi \).

Case:

\[\Gamma \vdash 0 : \text{nat}\]

This case cannot arise since \(0 \) is a normal form.

Case:

\[\Gamma \vdash \text{nil} : (\text{vec} \phi \ 0)\]

This case cannot arise since \(\text{nil} \) is a normal form.

Case:

\[
\begin{align*}
\Gamma & \vdash a : \text{nat} \\
\Gamma & \vdash (S \ a) : \text{nat}
\end{align*}
\]

By the induction hypothesis, we have \(\Gamma \vdash b : \text{nat} \), and we may then reapply this rule to obtain \(\Gamma \vdash (S \ b) : \text{nat} \).
If the reduction arises from \(a \leadsto b \) or \(a' \leadsto b \) or \(a'' \leadsto b \), then we apply the induction hypothesis to the corresponding premise and then reapply this typing rule. If the reduction arises because \(a'' \equiv 0 \) and the \(R_{nat} \)-term is itself being reduced to \(a \), then we have \(\Gamma \vdash a : [a''/x] \phi \) from the second premise to the rule, and the fact that \(a'' \equiv 0 \). Suppose the reduction arises because \(a'' \equiv (S\ b) \) and the \(R_{nat} \)-term is itself being reduced to \((a' \ b \ (R_{nat} \ a \ a' \ b)) \). Applying Simplifying Inversion (Lemma \(\square \)), we obtain \(\Gamma \vdash b : nat \). So we may apply the \(R_{nat} \) typing rule to obtain \(\Gamma \vdash (R_{nat} \ a \ a' \ b) : [b/x] \phi \). Applying the application typing rule twice gives us then \(\Gamma \vdash (a' \ b \ (R_{nat} \ a \ a' \ b)) : [(S\ b)/x] \phi \). This is the desired typing, since \(a'' \equiv (S\ b) \).

Case:

\[
\Gamma \vdash a : \phi \\
\Gamma \vdash a' : (\text{vec } \phi \ l) \\
\Gamma \vdash (\text{cons } a \ a') : (\text{vec } \phi \ (S\ l))
\]

The reduction must arise from \(a \leadsto b \) or \(a' \leadsto b \), so we apply the induction hypothesis to the corresponding premise and then reapply this typing rule.

Case:

\[
\Gamma \vdash a'' : (\text{vec } \phi' \ l) \\
\Gamma \vdash a : [0/y, \text{nil}/x] \phi \\
\Gamma \vdash a' : \Pi z : (\text{vec } \phi' \ l) . \forall x : \text{nat} . \Pi y : [l/y, v/x] \phi . (S\ l)(y, (\cons z v)/x) \phi \\
\Gamma \vdash (R_{vec} \ a \ a'' \ a') : [l/y, a''/x] \phi
\]

If the reduction arises from \(a \leadsto b \) or \(a' \leadsto b \) or \(a'' \leadsto b \), then we apply the induction hypothesis to the corresponding premise and then reapply this typing rule. If the reduction arises because \(a'' \equiv \text{nil} \) and the \(R_{nat} \)-term is itself being reduced to \(a \), then we have \(\Gamma \vdash a : [0/y, a''/x] \phi \) from the second premise to the rule, and the fact that \(a'' \equiv \text{nil} \). By Simplifying Inversion (Lemma \(\square \)), we know there is a derivation of \(\Gamma \vdash \text{nil} : (\text{vec } \phi' \ l) \) which starts with \(\Gamma \vdash \text{nil} : (\text{vec } \phi'' \ 0) \) and then has a sequence \(S \) of \((\text{conv}) \)-inferences. We may use this same series \(S \) to change \(0 \) to \(l \) in \(\Gamma \vdash a : [0/y, a''/x] \phi \), yielding the desired conclusion. Finally, suppose the reduction arises because \(a'' \equiv (\cons b' b'') \) for some \(b' \) and \(b'' \), and the \(R_{vec} \)-term itself is reduced to \((a' \ b' b'' \ (R_{vec} \ a \ a' \ b'')) \). By Simplifying Inversion again, we have a derivation of \(\Gamma \vdash (\cons b' b'') : (\text{vec } \phi' \ l) \) starting from a \(\text{cons} \)-introduction deriving \(\Gamma \vdash (\text{cons } b' b'') : (\text{vec } \phi'' \ (S \ l'')) \) from premises \(\Gamma b' : \phi'' \) and \(\Gamma b'' : (\text{vec } \phi'' \ l'') \); and then using a sequence \(S \) of \((\text{conv}) \)-inferences.

We may apply the sequence \(S \) of \((\text{conv}) \)-inferences to the typing for \(b'' \) to obtain \(\Gamma b'' : (\text{vec } \phi' \ lrangle, \text{for some } \hat{l} \text{ where } (S \ \hat{l}) \equiv l \). With this, we can reapply the typing rule for \(R_{vec} \) to get \(\Gamma \vdash (R_{vec} \ a \ a' \ b'') : [\hat{l}/y, b''/x] \phi \). Using this and the typing for \(b'' \) we derived just previously, we can obtain \(\Gamma \vdash (a' b' b'' \ (R_{vec} \ a \ a' \ b'')) : \text{vec } \phi' \ lrangle. \)
\[[(\tilde{S} \hat{l})/y, (\text{cons} \ b' \ b'')/x] \phi. \] Since \(a \equiv (\text{cons} \ b' \ b'') \) and \((\tilde{S} \hat{l}) \equiv I \), the type is equivalent to the desired one.

A.1 Proof of Simplifying Inversion (Lemma 1)

For the proof of this lemma, we begin by simplifying the derivation \(\mathcal{D} \) of \(\Gamma \vdash a : \phi \) by applying two transformations to the maximal path ending with the conclusion \(\mathcal{D} \), which is assigning a type to \(a \) (rather than a strict subterm of \(a \)). First, we remove all inferences of the following form:

\[
\frac{\Gamma, x : \phi' \vdash a : \phi}{\Gamma \vdash a : \forall x : \phi', \phi} \quad \frac{\Gamma \vdash a' : \phi'}{\Gamma \vdash a : [a'/x]\phi}
\]

We may replace this with the result of applying the Substitution Lemma proved in the next section, in the special case where \(x \notin FV(a) \). By inspection of the proof of Substitution, we see that while inferences of the form we are eliminating can be created, they must be created in a part of \(\mathcal{D} \) typing a strict subterm of \(a \). This is because \(a \) is an introduction form.

The second transformation simplifies this inference:

\[
\frac{\Gamma \vdash \hat{a} : a_1 = a_2 \quad \Gamma \vdash a : \forall y : [a_1/x] \phi', [a_1/x] \phi}{\Gamma \vdash a : \forall y : [a_2/x] \phi', [a_2/x] \phi} \quad \frac{\Gamma \vdash a' : [a_2/x] \phi'}{\Gamma \vdash a : [a'/y][a_2/x] \phi}
\]

Observing that the substitutions in question commute, we reduce this to the following, where \(\hat{a}' \) is easily constructed to show \(a_2 = a_1 \) from \(\hat{a} : a_1 = a_2 \):

\[
\frac{\Gamma \vdash \hat{a} : a_1 = a_2 \quad \Gamma \vdash a : \forall y : [a_1/x] \phi', [a_1/x] \phi}{\Gamma \vdash a : [a_1/x][a'/y] \phi} \quad \frac{\Gamma \vdash a' : [a_2/x] \phi'}{\Gamma \vdash a : [a'/y][a_2/x] \phi}
\]

For each of these transformations, the following measure is strictly decreased in the lexicographic ordering (combining two copies of the natural number ordering): the pair of the sum of the distances of occurrences of a \((\text{conv})\) inference on the maximal path typing \(a \); and the number of inferences of the form removed by the first transformation in that same path. Note that the \((\text{conv})\) inference introduced by the second transformation in the topmost rightmost position show above is not on the maximal path typing \(a \) (it is typing \(a' \)). Strict decrease of the stated measure implies that the transformations terminate. They also preserve the form of the derived judgment.

We can now prove the lemma by induction on the simplified derivation \(\mathcal{D} \). It cannot end in a use of \((\text{spec-abs})\), since then \(\phi \) would be a \(\forall \)-type (and by assumption it is of the form corresponding to the introduction form which \(a \) is assumed to have). It also cannot be a \((\text{spec-app})\) inference, for the following reason. Consider the maximal consecutive sequence \(S \) of \((\text{spec-app})\) inferences ending at the conclusion of \(\mathcal{D} \), and typing \(a \). These inferences cannot start with the conclusion of either a \((\text{conv})\) or a \((\text{spec-abs})\) inference, since such patterns of inference have been eliminated by the above transformations. But these are the only possibilities, since \(a \) is an introduction form. Therefore, the derivation \(\mathcal{D} \) ends in a sequence of \((\text{conv})\) inferences, starting from a use of the introduction rule for \(a \). Since \((\text{conv})\) does not change the context, this introduction inference for \(a \) uses the same context, as required by the statement of the lemma.
A.2 Proof of Substitution (Lemma 2)

The proof is written using different variable names than the statement of the lemma, in order to not clash with the variable names in the typing rules. We prove:

If $\Gamma, y : \psi, \Gamma' \vdash a : \phi$ and $\Gamma \vdash b : \psi$, then $\Gamma, [b/y]\Gamma' \vdash [b/y]a : [b/y]\phi$.

The proof is by induction on the depth of $\Gamma, y : \psi, \Gamma' \vdash a : \phi$. The cases are:

Case:

$$\frac{(\Gamma, y : \psi, \Gamma')(x) \equiv \phi \quad \text{GOk}}{\Gamma, y : \psi, \Gamma' \vdash x : \phi}$$

There are three cases: $x \in \text{dom}(\Gamma)$, $x \in \text{dom}(\Gamma')$, or $x = y$. If $x \in \text{dom}(\Gamma)$, then by GOk we know $y \not\in FV(\phi)$, so $[b/y]\phi \equiv \phi$ and the conclusion follows by Var. If $x \in \text{dom}(\Gamma')$ the conclusion follows directly by Var. In the case $x = y$, we use the second assumption together with a weakening lemma:

Lemma 3 (Weakening). If $\Gamma \vdash a : \phi$, $\text{dom}(\Gamma) \subset \text{dom}(\Gamma')$, and $\Gamma'\text{Ok}$, then $\Gamma, \Gamma' \vdash a : \phi$.

Proof. Induction on $\Gamma \vdash a : \phi$. The only interesting cases are for Abs and Spec-Abs. There we have $\Gamma, x : \phi' \vdash a : \phi$ by assumption; by regularity, we get $\Gamma, x : \phi'\text{Ok}$, so then $\Gamma', x : \phi'\text{Ok}$ and the conclusion follows by IH.

Lemma 4 (Free variables of typable terms). If $\Gamma \vdash a : \phi$, then $\text{FV}(a) \subset \text{dom}(\Gamma)$.

The proof is a straightforward induction on the typing derivation.

We also need to note that by Lemma 4 $\text{FV}(b) \subset \text{dom}(\Gamma)$, and the substitution preserves well-scoping of contexts:

Lemma 5. If $\Gamma, y : \psi, \Gamma'\text{Ok}$ and $\text{FV}(b) \subset \text{dom}(\Gamma)$, then $\Gamma, [b/y]\Gamma'\text{Ok}$.

Proof. For each variable z in Γ', if the entire context looks like $\Gamma, y : \psi, \Gamma''', z : \phi, \Gamma'''$ we know that $\text{FV}([b/y]\phi) \subset \text{FV}(\phi) \cup \text{FV}(b) - \{y\}$ and $\text{dom}(\Gamma, [b/y]\Gamma'') = \text{dom}(\Gamma, y : \psi, \Gamma''') - \{y\}$, so $[b/y]\phi$ is still well-scoped.

Case:

$$\frac{a \downarrow a'}{\Gamma, y : \psi, \Gamma' \vdash x : \phi \vdash \text{join}: a = a'}$$

Immediate by the fact that substitution preserves joinability.

Case:

$$\frac{\Gamma, y : \psi, \Gamma' \vdash a'' : a' = a'' \quad \Gamma, y : \psi, \Gamma' \vdash a : [a'/x]\phi \quad x \not\in \text{dom}(\Gamma, y : \psi, \Gamma')}{\Gamma, y : \psi, \Gamma' \vdash a : [a''/x]\phi}$$

First, rename x in ϕ so that $x \not\in \text{FV}(b)$.

By IH we get $\Gamma, [b/y]\Gamma' \vdash [b/y]a'' = [b/y]a''$ and $\Gamma, [b/y]\Gamma' \vdash [b/y]a : [b/y][a'/x]\phi \equiv [[b/y]a'/x][b/y]\phi$. Now by (conv) we conclude $\Gamma, [b/y]\Gamma' \vdash [b/y][a'/x]\phi \equiv [b/y][a''/x]\phi$ as required.

Case:
\[
\Gamma, y : \psi, \Gamma', x : \phi' \vdash a : \phi \quad x \not\in FV(a)
\]
\[
\Gamma, y : \psi, \Gamma' \vdash a : \forall x : \phi'. \phi
\]

First, rename \(x\) in the derivation of \(\Gamma, y : \psi, \Gamma', x : \phi' \vdash a : \phi\) so that \(x \not\in FV(a) \cup FV(b)\). This can be done without changing the depth.

By IH we get \(\Gamma, [b/y]\Gamma', x : [b/y]\phi' \vdash [b/y]a : [b/y]\phi\). The conclusion follows by Spec-Abs.

Case:
\[
\Gamma, y : \psi, \Gamma' \vdash a : \forall x : \phi'. \phi \quad \Gamma, y : \psi, \Gamma' \vdash a' : \phi'
\]
\[
\Gamma, y : \psi, \Gamma' \vdash a : [a'/x] \phi
\]

Pick \(x \neq y\) and \(x \not\in FV(b)\).

By IH we get \(\Gamma, [b/y]\Gamma' \vdash [b/y]a : [b/y]\forall x : \phi'. \phi \equiv [\forall x : [b/y]\phi' \cdot [b/y]a] \cdot [b/y]a' : [b/y]\phi'\). Then by Spec-App, \(\Gamma, [b/y]\Gamma' \vdash [b/y]a : [[b/y]a'/x][b/y] \phi \equiv [b/y]a'/x] \phi\) as required.

Case:
\[
\Gamma, y : \psi, \Gamma' \vdash a : \phi
\]
\[
\Gamma, y : \psi, \Gamma' \vdash a : \forall x : \phi'. \phi \quad \Gamma, y : \psi, \Gamma' \vdash a' : \phi'
\]
\[
\Gamma, y : \psi, \Gamma' \vdash (a a') : [a'/x] \phi
\]

Similar to Spec-App.

Case:
\[
\Gamma \vdash 0 : \text{nat}
\]
Immediate.

Case:
\[
\Gamma \vdash \text{nil} : \langle \text{vec } \phi 0 \rangle
\]
Immediate.

Case:
\[
\Gamma \vdash a : \text{nat}
\]
\[
\Gamma \vdash (S a) : \text{nat}
\]
Immediate by IH.
Case:
\[
\Gamma, y_0 : \psi, \Gamma' \vdash a'' : \text{nat}
\]
\[
\Gamma, y_0 : \psi, \Gamma' \vdash a : [0/x] \phi
\]
\[
\Gamma, y_0 : \psi, \Gamma' \vdash \Pi y : \text{nat}. \Pi u : [y/x] \phi. [(Sy)/x] \phi
\]
\[
\Gamma, y_0 : \psi, \Gamma' \vdash (\text{R}_{\text{nat}} a a' a'') : [a''/x] \phi
\]

First rename \(x\) in \(\phi\) so that \(x \not\in \text{FV}(b) \cup \{z, y\}\).

IH gives
\[
\Gamma, [b/y_0] \Gamma' \vdash a : [b/y_0][0/x] \phi \equiv [0/x][b/y_0] \phi
\]

and
\[
\Gamma, [b/y_0] \Gamma' \vdash a' : [b/y_0] \Pi y : \text{nat}. \Pi u : [y/x][b/y_0] \phi. [(Sy)/x][b/y_0] \phi
\]

Then by \(\text{R}_{\text{nat}}\),
\[
\Gamma, [b/y_0] \Gamma' \vdash (\text{R}_{\text{nat}} a a' a'') : [(b/y_0)[a''/x][b/y_0] \phi \equiv [b/y_0][a''/x] \phi
\]

Case:
\[
\Gamma, y : \psi, \Gamma' \vdash a : \phi
\]
\[
\Gamma, y : \psi, \Gamma' \vdash a' : (\langle \text{vec} \phi [l] \rangle)
\]
\[
\Gamma, y : \psi, \Gamma' \vdash (\text{cons} a a') : (\langle \text{vec} \phi (S l) \rangle)
\]

Immediate by IH.

Case:
\[
\Gamma \vdash a'' : (\langle \text{vec} \phi' l \rangle)
\]
\[
\Gamma \vdash a : [0/y, \text{nil}/x] \phi
\]
\[
\Gamma \vdash a' : \Pi z : \phi'. \forall l : \text{nat}. \Pi v : \langle \text{vec} \phi' l \rangle. \Pi u : [l/y, v/x] \phi.
\]
\[
[(S l)/y, (\text{cons} z v)/x] \phi
\]
\[
\Gamma \vdash (\text{R}_{\text{vec}} a a' a'') : [l/y, a''/x] \phi
\]

Similar to \(\text{R}_{\text{nat}}\) case.

B Proof of Progress (Theorem 2)

The proof is by induction on \(\Gamma \vdash a : \phi\).

Case:
\[
\Gamma(x) \equiv \phi
\]
\[
\Gamma \vdash x : \phi
\]

Impossible by \(\text{dom}(\Gamma) \cap \text{FV}(v) = \emptyset\).
Case:

$$a \downarrow a'$$

$$\Gamma \vdash \text{join}: a = a'$$

join is a value, as required.

Case:

$$\Gamma \vdash a'' = a''' \quad \Gamma \vdash a : [a'/x] \phi \quad x \notin \text{dom}(\Gamma)$$

$$\Gamma \vdash a : [a''/x] \phi$$

Directly by the IH for $$\Gamma \vdash a : [a'/x] \phi$$.

Case:

$$\Gamma, x : \phi' \vdash a : \phi \quad x \notin \text{FV}(a)$$

$$\Gamma \vdash a \forall x : \phi', \phi$$

The condition $$x \notin \text{FV}(a)$$ ensures that $$\text{dom}(\Gamma, x : \phi') \cap \text{FV}(a) = \emptyset$$, so we can apply the IH for $$\Gamma, x : \phi' \vdash a : \phi$$.

Case:

$$\Gamma \vdash a \forall x : \phi', \phi \quad \Gamma \vdash a' : \phi'$$

$$\Gamma \vdash a : [a'/x] \phi$$

Directly by the IH for $$\Gamma \vdash a \forall x : \phi', \phi$$.

Case:

$$\Gamma, x : \phi' \vdash a : \phi$$

$$\Gamma \vdash \lambda x. a : \Pi x : \phi', \phi$$

$$\lambda x. a$$ is a value as required.

Case:

$$\Gamma \vdash a : \Pi x : \phi', \phi \quad \Gamma \vdash a' : \phi'$$

$$\Gamma \vdash (a a') : [a'/x] \phi$$

By the IH for $$\Gamma \vdash a : \Pi x : \phi', \phi$$, we know $$a$$ either steps or is a value. If $$a$$ steps, the entire expression $$(a a')$$ steps also, by $$\sim$$-congruence. If $$a$$ is a value, by Lemma 6, $$a = \lambda a.a_o$$, so $$(a a')$$ steps by $$\beta$$.

Case:

$$\Gamma \vdash 0 : \text{nat}$$

0 is a value as required.

Case:
\[\Gamma \vdash \text{nil}: (\text{vec } \phi \ 0) \]

\text{nil} is a value as required.

Case:

\[\Gamma \vdash a : \text{nat} \]
\[\Gamma \vdash (S\ a) : \text{nat} \]

By the IH for \(\Gamma \vdash a : \text{nat} \), we know \(a \) either steps or is a value; accordingly \(Sa \) steps or is a value.

Case:

\[\Gamma \vdash a' : \Pi y : \text{nat}. \Pi u : [y/x]\phi. [(Sy)/x]\phi \]
\[\Gamma \vdash (R_{\text{nat}}\ a\ a'\ a'') : [a''/x]\phi \]

By the IH for \(\Gamma \vdash a'' : \text{nat} \) and Lemma 6, we know that either \(a'' \) steps or \(a'' = 0 \) or \(a'' = S\ v \). Then \((R_{\text{nat}}\ a\ a'\ a'') \) steps by congruence or one of the two reduction rules, respectively.

Case:

\[\Gamma \vdash a' : \phi \]
\[\Gamma \vdash a' : \langle \text{vec } \phi \ l \rangle \]
\[\Gamma \vdash (\text{cons } a\ a') : \langle \text{vec } \phi \ (S\ l) \rangle \]

By the IH, \(a \) and \(a' \) either step or are values; accordingly \((\text{cons } a\ a') \) steps by congruence or is a value.

Case:

\[\Gamma \vdash a' : \langle \text{vec } \phi' \ l \rangle \]
\[\Gamma \vdash a : [0/y,\text{nil}/x]\phi \]
\[\Gamma \vdash a' : \Pi z : \phi' . \forall l : \text{nat}. \Pi u : \langle \text{vec } \phi' \ l \rangle. \Pi u : [(S\ l)/y, (\text{cons } z\ v)/x]\phi. \]
\[\Gamma \vdash (R_{\text{vec}}\ a\ a'\ a'') : [l/y, a''/x]\phi \]

By the IH for \(\Gamma \vdash a'' : \langle \text{vec } \phi' \ l \rangle \) and Lemma 6, we know that either \(a'' \) steps or \(a'' = \text{nil} \) or \(a'' = (\text{cons } v\ v') \). Then \((R_{\text{vec}}\ a\ a'\ a'') \) steps by congruence or by one of the two reduction rules, respectively.

B.1 Proof of Canonical Forms (Lemma 6)

Write \(\forall x. \phi \) for \(\forall x_1 : \phi_1', \forall x_2 : \phi_2', \ldots \forall x_n : \phi_n', \phi \).

Lemma 6 (Canonical Forms). If \(\text{dom}(\Gamma) \cap FV(v) = \emptyset \), then

- if \(\Gamma \vdash v : \forall x. \text{nat} \), then \(v = 0 \) or \(v = S\ v \).
- if \(\Gamma \vdash v : \forall x. \langle \text{vec } \phi \ l \rangle \), then \(v = \text{nil} \) or \(v = \text{cons } v'\ v'' \).
• if $\Gamma \vdash v : \forall x. \Pi x : \phi'. \phi$, then $v = \lambda x. a$
• if $\Gamma \vdash v : \forall x. a_1 = a_2$, then $v = \text{join}$.

Proof:

Induction on the typing judgment. The cases are

• **var** Impossible by $\text{dom}(\Gamma) \cap \text{FV}(v) = \emptyset$.

• **conv**

\[
\frac{\Gamma \vdash \alpha'' : \alpha' = \alpha'' \quad \Gamma \vdash a : \alpha' / x \phi \quad x \notin \text{dom}(\Gamma)}{\Gamma \vdash a : \alpha'' / x \phi}
\]

The types $[\alpha'' / x] \phi$ and $[\alpha' / x] \phi$ have the same top-level structure, so the IH applies.

• **spec-abs**

\[
\frac{\Gamma, x : \phi' \vdash a : \phi \quad x \notin \text{FV}(a)}{\Gamma \vdash a : \forall x : \phi'. \phi}
\]

The condition $x \notin \text{FV}(a)$ ensures that $\text{dom}(\Gamma, x : \phi') \cup \text{FV}(v) = \emptyset$. Also, the type ϕ still has the required form. So the IH applies.

• **spec-app**

\[
\frac{\Gamma \vdash a : \forall x : \phi'. \phi \quad \Gamma \vdash a' : \phi'}{\Gamma \vdash a : [\alpha' / x] \phi}
\]

If the type $[\alpha' / x] \phi$ has the required form, then $\forall x : \phi', \phi$ has required form also, so the IH applies.

• **join, abs, zero, nil, succ, cons** The value in the conclusion has the required form.

• **app, Rnat, Rvec** The term in the conclusion is not a value.

C Proof of Critical Properties (Section 3.3)

C.1 More basic notation

We will define a term context to be a term a^* with a designated free variable \ast, which may be instantiated in a capture-avoiding way by a term a' using the notation $a^*[a']$.

Also, if S is a set of terms, then we will allow ourselves to write a term which has S inserted for the hole of some context a^*. For example, we may write $\lambda x. \{x, (x \ x)\}$ (here $a^* = \lambda x. \ast$). The meaning of this notation is the set of terms $\{a^*[a'] | a' \in S\}$. So in the example: $\{\lambda x. x, \lambda x. (x \ x)\}$.

Finally, if $a \in SN$, we define $\nu(a)$ to be some bound on the lengths of the reduction sequences from a.

C.2 Preliminary observation

We will not explicitly prove strong normalization or typability in the cases for **R-Join** below. This is because **R-Join** assumes $\Gamma \vdash a' : a_1 = a_2$ for some a', so we will always be able to show $\Gamma \vdash a : [a_2 / x] \phi$ from $\Gamma \vdash a : [a_1 / x] \phi$ using (**conv**). Similarly, we will always have $a \in SN$, since it follows from $a \in [[a_1 / x] \phi]_R$.

C.3 Critical properties for \texttt{nat}

\textbf{R-Pres} holds using Type Preservation (Theorem \ref{thm:R-Pres}), and the fact that $a \in SN \Rightarrow \text{next}(a) \subset SN$. For \textbf{R-Prog}, we have $\text{next}(a) \subset SN \Rightarrow a \in SN$, and $\Gamma \vdash a : \text{nat}$ by assumption (of \textbf{R-Prog}). We have \textbf{R-Join} because all instances $[a/x]\text{nat} \equiv \text{nat}$ have the same (trivial) interpretation.

C.4 Critical properties for $\langle\texttt{vec} \phi l\rangle$

C.4.1 Proof of R-Pres

Suppose $a \in \llbracket \langle\texttt{vec} \phi l\rangle \rrbracket$, and $a \sim a'$. We have $a' \in SN$ from $a \in SN$, and $\Gamma \vdash a' : \phi$ by Type Preservation. To prove the second conjunct for $\llbracket \cdot \rrbracket$ at \texttt{vec}-type – namely, $(a' \sim^* \text{nil} \Rightarrow l \sim 0)$ – assume $a' \sim^* \text{nil}$. From this and the assumption that $a \sim a'$, we have $a \sim^* \text{nil}$. So we can use the corresponding conjunct for a to conclude $l \sim 0$, as required. Similar reasoning applies for the third conjunct.

C.4.2 Proof of R-Prog

Suppose $\text{next}(a) \subset \llbracket \langle\texttt{vec} \phi l\rangle \rrbracket$, with a neutral and $\Gamma \vdash \Gamma : \phi$. We have $a \in SN$ for the same reason as for the \texttt{nat} case above. It suffices now to show the two conjuncts of the clause of $\llbracket \cdot \rrbracket$ for \texttt{vec}-types, for a. For the first, assume $a \sim^* \text{nil}$. Now since a is neutral, we cannot have $a \equiv \text{nil}$. So consider arbitrary $a' \in \text{next}(a)$. From $a \sim^* \text{nil}$ and $a \sim a'$, we obtain $a' \sim^* \text{nil}$ by confluence. We may then apply the corresponding second conjunct for a' to obtain the desired result for this conjunct. The second conjunct follows by similar reasoning.

C.4.3 Proof of R-Join

Suppose that $a_1 \sim_{\Gamma} a_2$, and consider arbitrary $a \in \llbracket [a_1/x] \langle\texttt{vec} \phi l\rangle \rrbracket$. We must show $a \in \llbracket [a_2/x] \langle\texttt{vec} \phi l\rangle \rrbracket$. It suffices to prove the two conjuncts for $\llbracket \cdot \rrbracket$ at the type involving a_2, assuming them for the type involving a_1. For the first conjunct, assume $a \sim^* \text{nil}$. We must show that for an arbitrary $\sigma \in \llbracket \cdot \rrbracket$, we have $\sigma([a_2/x]l) \downarrow 0$. From the second conjunct for the a_1-type, we have $\sigma([a_1/x]l) \downarrow 0$. Instantiate our first assumption about a_1 and a_2, to obtain $\sigma a_1 \downarrow \sigma a_2$. Now we use the fact that joinability is closed under substitution of joinable terms (proof omitted), to obtain the desired result. Note that joinability is not closed under substitution of joinable terms for more specialized reduction strategies, such as call-by-value or call-by-name.

For the second conjunct, assume $a \sim^* (\texttt{cons} a' a'')$. From the corresponding second conjunct for the a_1-type, we obtain the following for some l':

- $a' \in \llbracket [a_1/x] \phi \rrbracket$
- $a'' \in \llbracket \langle\texttt{vec} [a_1/x] \phi l' \rangle \rrbracket$
- $\forall \sigma \in \llbracket \cdot \rrbracket, \sigma([a_1/x]l) \downarrow (S\sigma l')$

We use \textbf{R-Join} on the first formula to derive the similar statement involving a_2. The measure $(\llbracket \cdot \rrbracket, d(\phi), l(a))$ decreases, because the depth of the type decreases (and $\llbracket \cdot \rrbracket$ is unchanged). Now let z be a variable not in $\text{dom}(\Gamma)$ and not free in ϕ, a_1, or l'. Then the second formula is equivalent to $a'' \in \llbracket [a_2/z] \langle\texttt{vec} [z/x] \phi l' \rangle \rrbracket$, and by \textbf{R-Join} (where the measure decreases because the depth of the type is the same, but the quantity given by $l(\cdot)$ has decreased), we have $a'' \in \llbracket [a_2/z] \langle\texttt{vec} [z/x] \phi l' \rangle \rrbracket$, which is equivalent to the required $a'' \in \llbracket \langle\texttt{vec} [a_2/x] \phi l' \rangle \rrbracket$. Instantiating the third formula with an arbitrary $\sigma \in \llbracket \cdot \rrbracket$, we have $\sigma([a_1/x]l) \downarrow (S\sigma l')$. We appeal as above to the closure of joinability under substitution of joinable terms, to obtain $\sigma([a_2/x]l) \downarrow (S\sigma l')$.

C.5 Critical properties for $\Pi x : \phi'.\phi$

C.5.1 Proof of R-Pres

Assume $a \in \llbracket \Pi x : \phi'.\phi \rrbracket_\Gamma$, and consider an arbitrary $a' \in \llbracket \phi' \rrbracket^+_\Gamma$. By definition of $\llbracket - \rrbracket$, we have $(a\ a') \in \llbracket (a'/x)\phi \rrbracket_\Gamma$. We also have

$$\text{(next}(a\ a') \subset \text{next}(a\ a')$$

By R-Pres at type $[a'/x]\phi$ (where we have $d([a'/x]\phi) < d(\Pi x : \phi'.\phi)$, and so can apply the induction hypothesis), we obtain $(\text{next}(a\ a')) \subset \llbracket [a'/x]\phi \rrbracket_\Gamma$. By [1], this implies $(\text{next}(a\ a')) \subset \llbracket [a'/x]\phi \rrbracket_\Gamma$. We conclude this for all $a' \in \llbracket \phi' \rrbracket^+_\Gamma$. Then by the definition of $\llbracket - \rrbracket$, we obtain the desired $\text{next}(a) \subset \llbracket \Pi x : \phi'.\phi \rrbracket_\Gamma$, using also Type Preservation and the fact that $\text{next}(a) \subset SN$ (since $a \in SN$).

C.5.2 Proof of R-Prog

Suppose a is neutral with $\Gamma \vdash a : \Pi x : \phi'.\phi$. By assumption, we have

$$\text{next}(a) \subset \llbracket \Pi x : \phi'.\phi \rrbracket_\Gamma$$

It suffices, by the definition of $\llbracket - \rrbracket$, to show that $a \in SN$ and for all $a' \in \llbracket \phi' \rrbracket^+_\Gamma$, $(a\ a') \in \llbracket [a'/x]\phi \rrbracket_\Gamma$. We have $a \in SN$ from $\text{next}(a) \subset SN$, so we focus on the latter property. Consider arbitrary $a' \in \llbracket \phi' \rrbracket^+_\Gamma$. Since a is neutral, $(a\ a')$ cannot be a β-redex. Since $a' \in \llbracket \phi' \rrbracket_\Gamma$, we have $a' \in SN$ by R-SN at type ϕ' (where $d(\phi') < d(\Pi x : \phi'.\phi)$, so the induction hypothesis may be applied). So we may reason by inner induction on the number $\nu(a')$ to prove that for all $a'' \in \llbracket \phi' \rrbracket^+_\Gamma$, we have $(a\ a'') \in \llbracket [a'/x]\phi \rrbracket_\Gamma$. By R-Prog at type $[a'/x]\phi$ (where $d([a'/x]\phi) < d(\Pi x : \phi'.\phi)$, so the induction hypothesis may be applied), it suffices to prove $\text{next}(a\ a') \subset \llbracket [a'/x]\phi \rrbracket_\Gamma$, since the term in question is neutral and since we have $\Gamma \vdash (a\ a') : [a'/x]\phi$. The possibilities for reduction are summarized by:

$$\text{next}(a\ a') \subset (\text{next}(a\ a') \cup (a\ \text{next}(a')))$$

We have $(\text{next}(a\ a')) \subset \llbracket [a'/x]\phi \rrbracket_\Gamma$ from [2], by the definition of $\llbracket - \rrbracket$. For reducibility of the second set, consider arbitrary $a'' \in \text{next}(a')$. By our inner induction hypothesis, which we may apply because $a'' \in \llbracket \phi' \rrbracket_\Gamma$ by R-Pres at type ϕ' (with smaller depth), we have $(a\ a'') \in \llbracket [a'/x]\phi \rrbracket_\Gamma$. Now we may apply R-Join at type ϕ (with smaller depth), using the obvious fact that $a' \sim a'$ implies the facts $a' \sim a''$ and $\Gamma \vdash \text{join} : a' = a''$ (required by R-Join). This yields $(a\ a'') \in \llbracket [a'/x]\phi \rrbracket_\Gamma$, as required by our inner induction.

C.5.3 Proof of R-Join

Suppose that $a_1 \sim_{\Gamma} a_2$, and consider arbitrary $a \in \llbracket [a_1/x]\Pi y : \phi'.\phi \rrbracket_\Gamma$. We must show $a \in \llbracket [a_2/x]\Pi y : \phi'.\phi \rrbracket_\Gamma$. It suffices to show $(a\ a') \in \llbracket [a'/y][a_2/x]\phi \rrbracket_\Gamma$ for an arbitrary $a' \in \llbracket [a_2/x]\phi \rrbracket^+_\Gamma$. We now wish to use R-Join at type ϕ' (with smaller depth), with the symmetric equality $a_2 \sim_{\Gamma} a_1$. Symmetry of \sim_{Γ} is direct from its definition.

Using R-Join in this way with $a_2 \sim_{\Gamma} a_1$, we obtain $a' \in \llbracket [a_1/x]\phi' \rrbracket_\Gamma$. We must further obtain $a' \in \llbracket [a_1/x]\phi' \rrbracket^+_\Gamma$. So consider arbitrary $\sigma \in \llbracket \Gamma \rrbracket$. From closability of a' at the type involving a_2, we have $\sigma a' \in \llbracket \sigma([a_2/x]\phi') \rrbracket$. We must show $\sigma a' \in \llbracket \sigma([a_1/x]\phi') \rrbracket$. If Γ is empty, this formula is equivalent to $a' \in \llbracket [a_1/x]\phi' \rrbracket^+_\Gamma$, which we already have. So suppose Γ is not empty. Then the formula is equivalent to $\sigma a' \in \llbracket \sigma a_1/x)(\sigma\phi') \rrbracket$, since $x \notin \text{ran}(\sigma)$. Notice that from our assumption that $a_1 \sim_{\Gamma} a_2$, we obtain $\sigma a_1 \sim \sigma a_2$. We may now use R-Join, where the length of the context has decreased, to conclude $\sigma a' \in \llbracket \sigma a_1/x)(\sigma\phi') \rrbracket$ from $\sigma a' \in \llbracket [a_2/x]\phi') \rrbracket$.

Since we have obtained \(a' \in [[a_1/x]\phi']_\Gamma \), we now get \((a,a') \in [[\phi']_\Gamma \) by the assumption above of reducibility of \(a \). Applying Lemma 4 to the fact that \(\Gamma \vdash a' : [a_1/x]\phi' \) (which we have from \(a' \in [[a_1/x]\phi']_\Gamma \)), and using the assumption that \(x \notin dom(\Gamma) \), we obtain \(x \notin FV(a') \). Since \(y \) is locally scoped, we may also assume that \(y \notin FV(a_1) \) and \(y \notin FV(a_2) \). This tells us that \([a'/y][a_1/x]\phi = [a_1/x][a'/y]\phi \) and also \([a'/y][a_2/x]\phi = [a_2/x][a'/y]\phi \). Using the first of these, we may conclude \((a,a') \in [[a_1/x][a'/y]\phi]_\Gamma \) from the similar fact we had just above. Using the second of these commutations of substitutions, and also \(\text{R-Join} \) at type \([a'/y]\phi \) (of smaller depth), we can conclude \((a,a') \in [[a'/y][a_2/x]\phi]_\Gamma \), as required.

C.6 Critical properties for \(\forall x : \phi'. \phi \)

The proofs here are simpler versions (particularly for \(\text{R-Prog} \)) of those for the previous case.

C.6.1 Proof of R-Pres

Assume \(a \in [[\forall x : \phi'. \phi]]_\Gamma \), and consider an arbitrary \(a' \in [[\phi']]_\Gamma \). By \(\text{R-Pres} \) at type \([a'/x]\phi \) (with smaller depth), we obtain \(\text{next}(a) \subseteq [[a'/x]\phi]_\Gamma \). We conclude this for all \(a' \in [[\phi']]_\Gamma \). Then by the definition of \([[\cdot]]_\Gamma \), we get the required \(\text{next}(a) \subseteq [[\forall x : \phi'. \phi]]_\Gamma \), using also Type Preservation and the fact \(\text{next}(a) \subseteq SN \) (from \(a \in SN \)).

C.6.2 Proof of R-Prog

Suppose \(a \) is neutral with \(\Gamma \vdash a : \phi \). By assumption, we have

\[
\text{next}(a) \subseteq [[\forall x : \phi'. \phi]]_\Gamma
\]

It suffices, by the definition of \([[\cdot]]_\Gamma \), to show that \(a \in SN \) and for all \(a' \in [[\phi']]_\Gamma \), \(a \in [[a'/x]\phi]_\Gamma \). We have \(a \in SN \) from \(\text{next}(a) \subseteq SN \), so we focus on the latter property. Consider arbitrary \(a' \in [[\phi']]_\Gamma \). By the definition of \([[\cdot]]_\Gamma \) at \(\forall \)-type and our above assumption, we have \(\text{next}(a) \subseteq [[a'/x]\phi]_\Gamma \). So by \(\text{R-Prog} \) at type \([a'/x]\phi \) (with smaller depth), we have \(a \in [[a'/x]\phi]_\Gamma \), as required.

C.6.3 Proof of R-Join

Suppose that \(a_1 \sim_\Gamma a_2 \), and consider arbitrary \(a \in [[a_1/x]\forall y : \phi'. \phi]]_\Gamma \). We must show \(a \in [[[a_2/x]y : \phi'. \phi]]_\Gamma \). It suffices to show \(a \in [[[a'/y][a_2/x]\phi]]_\Gamma \) for an arbitrary \(a' \in [[[a_2/x]\phi']_\Gamma \). By \(\text{R-Join} \) at type \(\phi' \) (with smaller depth), and using the symmetric version of our assumption as above, we have \(a' \in [[[a'/x]\phi']_\Gamma \). We further obtain \(a' \in [[[a'/y][a_1/x]\phi]]_\Gamma \) as in the case for \(\text{R-Prog} \) for \(\Pi \)-types. So we get \(a \in [[[a'/y][a_1/x]\phi]]_\Gamma \) by the assumption of reducibility of \(a \). By similar reasoning as above, we may permute the substitutions in question. So we may apply \(\text{R-Join} \) at type \([a'/y]\phi \) (of smaller depth) to conclude \(a \in [[[a'/y][a_2/x]\phi]]_\Gamma \), as required.

C.7 Critical properties for \(a_1 = a_2 \)

C.7.1 Proof of R-Pres

Consider arbitrary \(b \) with \(a \sim b \). We have \(b \in SN \) from \(a \in SN \), and \(\Gamma \vdash b : a_1 = a_2 \) by Type Preservation. Now suppose \(b \sim^* \text{ join} \). Then we have \(a \sim^* \text{ join} \) and obtain \(a_1 \sim_\Gamma a_2 \) from \(a \in [[a_1 = a_2]]_\Gamma \).
C.7.2 Proof of R-Prog

We have \(a \in SN \) from next(\(a \)) \(\subseteq \) SN as in other cases above. Suppose that \(a \sim^* \) join. Since \(a \) is neutral, we cannot have \(a \equiv \) join. So we must have \(a \sim b \). Then we get \(b \sim^* \) join by confluence, and we can use the assumption that \(b \in [a_1 = a_2]_\Gamma \) to obtain \(a_1 \sim_\Gamma a_2 \) as required.

C.7.3 Proof of R-Join

Assume \(a'_1 \sim_\Gamma a'_2 \), and assume \(a \sim^* \) join. Then we have \([a'_1/x]a_1 \sim_\Gamma [a'_2/x]a_2\) from \(a \in [[a'_1/x]a_1 = [a'_1/x]a_2]_\Gamma \). Consider arbitrary \(\sigma \in [[\Gamma]] \). Instantiating our two assumptions of joinability under all ground instances with this \(\sigma \), we obtain:

- \(\sigma a'_1 \downarrow \sigma a'_2 \)
- \((\sigma([a'_1/x]a_1)) \downarrow (\sigma([a'_2/x]a_2)) \)

The desired result (namely, \((\sigma([a'_1/x]a_1)) \downarrow (\sigma([a'_2/x]a_2)) \)) now follows from closure of joinability under substitution of joinable terms.

D Proof of Soundness (Theorem 3)

D.1 The Closability Lemma

We have carefully crafted our notions of closable terms and closable substitutions to allow the following two lemmas to be proved. The first expresses the basic desired property of closable substitutions, and the second shows that under the conditions of the Soundness Theorem, the term \(\sigma a \) is closable which Soundness tells us is in the interpretation of \(\sigma \phi \) with context \(\Delta \).

Lemma 7 (Composing Substitutions). Suppose \(\sigma \in [[\Gamma]]_\Delta \) and \(\sigma' \in [[\Delta]] \). Then \(\sigma' \circ \sigma \in [[\Gamma]]_\Delta \).

The proof is by induction on the structure of the derivation of \(\sigma \in [[\Gamma]]_\Delta \). The base case holds trivially, noting that \(\sigma' \circ \emptyset = \emptyset \). For the step case, we have

\[
\begin{align*}
\sigma' \circ \emptyset = \emptyset & \quad \Rightarrow \quad \sigma'' \in [[\Gamma]]_\Delta \\
\sigma'' \cup \{(x,a)\} & \in [[\Gamma',x: \phi]]_\Delta
\end{align*}
\]

Now we obtain \(\sigma'(\sigma''a) \in [[\sigma'(\sigma''a)]] \), by the definition of closability of \(a \). This implies \(\sigma'(\sigma''a) \in [[\sigma'(\sigma''a)]]_\Delta \), since the definitions of \([\cdot]\) and \([\cdot]_\Delta \) coincide when the context is empty. By the induction hypothesis we have \(\sigma' \circ \sigma'' \in [[\Gamma']]_\Delta \). So we may reapply the rule to obtain the desired \((\sigma' \circ \sigma'') \cup \{(x,\sigma'a)\} \in [[\Gamma',x: \phi]]_\Delta \).

Lemma 8 (Closability). Suppose the following main assumption is true: for any \(\Delta \) and \(\sigma \in [[\Gamma]]_\Delta \), we have \((\sigma a) \in [[\sigma \phi]]_\Delta \). In this case, for any such \(\Delta \) and \(\sigma \), we also have \((\sigma a) \in [[\sigma \phi]]_\Delta \).

Assume an arbitrary \(\sigma' \in [[\Delta]] \). We must show \(\sigma'(\sigma a) \in [[\sigma'(\sigma \phi)]] \). By Composing Substitutions (Lemma 7), we have \(\sigma' \circ \sigma \in [[\Gamma']] \). So we may instantiate the main assumption with \(\sigma' \circ \sigma \) to obtain the the required formula.
D.2 The Proof

The proof of the Soundness Theorem is by induction on the structure of the assumed typing derivation. We consider all cases, and implicitly start each by assuming an arbitrary \(\sigma \in [\Gamma]_{\Delta} \). We often use this \(\sigma \) to instantiate universal formulas obtained by application of our induction hypothesis, without explicitly noting that we are instantiating the induction hypothesis. If \(\sigma \) is a substitution, we will write \(\sigma[a'/x] \) for the substitution that extends \(\sigma \) by mapping \(x \) to \(a' \).

Case:

\[
\begin{align*}
\Gamma(x) & \equiv \phi \\
\Gamma \vdash x : \phi
\end{align*}
\]

We prove \(\sigma x \in [\sigma\Gamma(x)]_{\Delta} \) by inner induction on the structure of \(\sigma \in [\Gamma]_{\Delta} \). The base case cannot arise, since we have \(\Gamma(x) \) defined. For the step case, we have:

\[
\begin{align*}
a \in [\sigma'\phi]_{\Delta} & \quad \sigma' \in [\Gamma']_{\Delta} \\
\sigma' \cup \{(y,a)\} & \in [\Gamma', y : \phi]_{\Delta}
\end{align*}
\]

If \(x \equiv y \), then we have \(\sigma x \in [\sigma'\Gamma(x)]_{\Delta} \) from the first premise. We just need to show \(\sigma\Gamma(x) \equiv \sigma'\Gamma(x) \). But this follows from the fact that \(x \notin FV(\phi) \) (by \(\Gamma \) Ok). If \(x \not\equiv y \), then by the inner induction hypothesis we have \(\sigma'x \in [\sigma'\Gamma(x)]_{\Delta} \). We must show that this implies the desired \(\sigma x \in [\sigma\Gamma(x)]_{\Delta} \). We certainly have \(\sigma'x \equiv \sigma x \), and \(\Gamma'(x) \equiv \Gamma(x) \). So it suffices to show that \(\sigma'\Gamma(x) \equiv \sigma\Gamma(x) \). But \(\Gamma(x) \) cannot contain \(x \), so this holds.

Case:

\[
\begin{align*}
a & \downarrow a' \\
\Gamma \vdash \text{join} : a = a'
\end{align*}
\]

If \(a \downarrow a' \), we certainly also have \(\sigma a \downarrow \sigma a' \), since joinability is closed under substitution. This gives us \(\Delta \vdash \text{join} : \sigma a = \sigma a' \). Again by closure of joinability under substitution, we have \(\sigma a \sim_{\Delta} \sigma a' \), so this holds.

Case:

\[
\begin{align*}
a & \downarrow a'' \\
\Gamma \vdash & a : [a'/x] \phi \\
& x \not\in \text{dom}(\Gamma)
\end{align*}
\]

The required conclusion follows by \(\textbf{R-Join} \) from \(\sigma a \in [\sigma a'/x](\sigma \phi) \), which we have from the induction hypothesis for the second premise. To enable this use of \(\textbf{R-Join} \), we need \(\Delta \vdash \sigma a'' : \sigma a' = \sigma a'' \) and \(\sigma a' \sim_{\Delta} \sigma a'' \). The former we obtain from \(\sigma a'' \in [\sigma a' = \sigma a'']_{\Delta} \), which we have by the induction hypothesis for the first premise. The latter we obtain as follows. Consider an arbitrary \(\sigma' \in [\Delta] \). From this and the fact that \(\sigma \in [\Gamma]_{\Delta} \), we have \(\sigma' \circ \sigma \in [\Gamma] \) by Composing Substitutions (Lemma 7).

Since \(\sigma' \circ \sigma \in [\Gamma] \), we can use it to instantiate the induction hypothesis for the first premise. This gives us \(\sigma'(\sigma a'') \in [\sigma'(\sigma a') = \sigma'(\sigma a'')] \), which implies \(\vdash \sigma'(\sigma a'') : \sigma'(\sigma a') = \sigma'(\sigma a'') \). So consider the unique normal form \(n \) of \(\sigma'(\sigma a'') \), which exists by confluence and \(\textbf{R-SN} \). We have \(n \in [\sigma'(\sigma a') = \sigma'(\sigma a'')] \) by repeated application of \(\textbf{R-Pres} \). This implies \(n : \sigma'(\sigma a') = \sigma'(\sigma a'') \). By Progress, this \(n \)
must be a value. We may now apply Canonical Forms (Lemma 6), to conclude that \(n \equiv \text{join} \). Now by the definition of \([\sigma'(\sigma a') = \sigma'(\sigma a'')]\), we have \(\sigma'(\sigma a') \downarrow \sigma'(\sigma a'') \), as required. We assumed an arbitrary \(\sigma' \in [\Sigma] \), so we may conclude that \(\sigma'(\sigma a') \downarrow \sigma'(\sigma a'') \) holds for all such \(\sigma' \). This is sufficient for \(\sigma a' \sim_{\Sigma} \sigma a'' \).

Case:

\[
\frac{\Gamma, x : \phi' \vdash a : \phi \quad x \notin FV(a)}{\Gamma \vdash a : \forall x : \phi', \phi}
\]

From the induction hypothesis, we infer the following, for any \(\sigma' \in [\Gamma, x : \phi']_{\Delta} \), for any \(\Delta' \subset \sigma(\Gamma, x : \phi') \):

\[
\forall \Delta' \in [\sigma(\phi')]_{\Delta}. (\sigma[\Delta'/x])a \in [(\sigma[\phi']/x)]_{\Delta} \quad (3)
\]

Our first need is to prove \(a \in SN \). For this, we instantiate (3) with \(\Delta' \equiv \Delta, x : \phi'; \sigma' \equiv \sigma[x/x] \); and \(a' \equiv x \). Note that it is at precisely this point that we critically need open substitutions in the statement of Soundness. To show that this instantiation is legal, we must, of course, prove that \(\sigma' \in [\Gamma]_{\Delta} \). For this, we need two things. First, we need to know that \(x \in [\sigma(\phi')]_{\Delta, x : \phi'} \). This follows because \(x \in [\sigma(\phi')]_{\Delta, x : \phi'} \) by \(R-Prog \) (since \(\text{next}(a) = \emptyset \)); and further, for any \(\sigma' \in [\Delta, x : \phi'] \), we derive from that same fact the formula \(\sigma' x \in [\sigma(\phi')] \), which we require for closability of \(x \). Now we use the following lemma (proof in Section D.3 below) to finish our proof of the intermediate fact \(\sigma' \in [\Gamma, x : \phi']_{\Delta'} \):

Lemma 9 (Weakening Substitutions). If \(\sigma \in [\Gamma]_{\Delta} \) and \(\Delta, y : \phi' \text{Ok} \), then \(\sigma \in [\Gamma]_{\Delta, y : \phi'} \).

Using this intermediate fact \(\sigma' \in [\Gamma, x : \phi']_{\Delta'} \), we may indeed instantiate (4) above with \(\sigma' \), \(\Delta' \) and \(x \) for \(a' \), as mentioned. This gives us \(\sigma a \in [\sigma(\phi')]_{\Delta} \). By \(R-SN \), we then obtain \(\sigma a \in [\sigma(\phi')]_{\Delta, x : \phi'} \). From this, we obtain \(\sigma a \in SN \) and \(\Delta \vdash \lambda x.a : \Pi x : \sigma \phi'. \sigma \phi \), which we need to show \(\sigma a \in [\Pi x : \sigma \phi'. \sigma \phi]_{\Delta} \).

To complete this case, it suffices to consider arbitrary \(a' \in [\sigma(\phi')]_{\Delta} \), and show \(\sigma a \in [\sigma(\phi']_{\Delta, x : \phi'} \). Instantiating (3) with \(a' \), we obtain \((\sigma[\Delta'/x])a \in [(\sigma[\phi']/x)]_{\Delta} \). This is equivalent to the goal, thanks to the following facts about the substitutions in question. Since \(x \notin FV(a) \), we have \((\sigma[\Delta'/x])a \equiv \sigma a \). Also, we have \(x \notin \text{ran}(\sigma) \) by the following lemma. So we get the desired \(\sigma a \in [\sigma(\phi')/x]_{\Delta} \).

Lemma 10 (Basic Property of Substitutions). \(\sigma \in [\Gamma]_{\Delta} \wedge \Delta \text{Ok} \Rightarrow \sigma(x) \in [\sigma(\Gamma(x))''_{\Delta} \]

The proof is by induction on the structure of the assumed derivation.

Case:

\[
\frac{\Gamma \vdash a : \forall x : \phi', \phi \quad \Gamma \vdash a' : \phi'}{\Gamma \vdash a : [a'/x]\phi'}
\]

This follows immediately from induction hypothesis, and the definition of \([\cdot] \) for \(\forall \)-types (here, the type \(\forall x : \sigma \phi', \sigma \phi \)), using the fact that various substitutions involved commute, as in cases above. We critically use Closability (Lemma 8), to get \(\sigma a' \in [\sigma(\phi')/x]_{\Delta} \) from \(\sigma a' \in [\sigma(\phi')]_{\Delta} \).

Case:

\[
\frac{\Gamma, x : \phi' \vdash a : \phi}{\Gamma \vdash \lambda x.a : \Pi x : \phi', \phi}
\]
We begin just as for the \((\text{spec-abs})\) case. From the induction hypothesis, we infer the following, for any \(\sigma' \in \llbracket \Gamma, x : \phi' \rrbracket_\Delta\), for any \(\Delta' \subset \sigma(\Gamma, x : \phi')\):

\[
\forall a' \in \llbracket \sigma'\phi' \rrbracket_\Delta, (\sigma'[a'/x])a \in \llbracket (\sigma'[a'/x])\phi \rrbracket_{\Delta'}
\]

(4)

By the same reasoning as for the \((\text{spec-abs})\) case, we obtain \(\sigma a \in SN\) and \(\Delta \vdash \lambda x. a : \Pi x : \sigma \phi'.\sigma \phi\).

Now by the definition of \(\llbracket \cdot \rrbracket\), it suffices to prove that for all \(a' \in \llbracket \sigma \phi' \rrbracket_\Delta\), we have \((\lambda x. (\sigma a)) a' \in \llbracket [a'/x](\sigma \phi) \rrbracket_\Delta\). We prove that \(\llbracket \cdot \rrbracket\) implies this, by inner induction on \(\nu(\sigma a) + \nu(a')\), which is defined by \(R-SN\) (for \(\sigma a\) and \(a'\)). By \(R-\text{Prog}\), it suffices to prove \(\text{next}(\lambda x. (\sigma a)) a' \subset \llbracket [a'/x](\sigma \phi) \rrbracket_\Delta\). Since we have \(\text{next}(\sigma a) = \sigma \phi\), this holds because \(\text{next}(\sigma a) \subseteq \llbracket \sigma \phi \rrbracket_\Delta\), for any \(\sigma a \in \llbracket \sigma \phi \rrbracket_\Delta\), \(\Delta \vdash a' : \sigma \phi\). Then we apply the typing rule for \(\lambda\)-abstractions to obtain \(\Delta \vdash \lambda x. x : \Pi x : \sigma \phi'.\sigma \phi\), and we conclude the typing proof with the application rule on this fact and \(\Delta \vdash a' : \sigma \phi\).

Next we consider the possibilities for reduction of the term in question are summarized by:

\[
\text{next}(\lambda x. (\sigma a)) a' \subset (\lambda x. \text{next}(\sigma a)) a' \cup (\lambda x. (\sigma a) \text{next}(a')) \cup \{[a'/x] \sigma a\}
\]

We have \((\lambda x. \text{next}(\sigma a)) a' \subset \llbracket [a'/x](\sigma \phi) \rrbracket_\Delta\) by the inner induction hypothesis, using \(R-\text{Pres}\) to conclude \(\text{next}(\sigma a) \subset \llbracket \sigma \phi' \rrbracket_\Delta\). For the set \((\lambda x. (\sigma a) \text{next}(a'))\), we use the inner induction hypothesis to conclude that for all \(a'' \in \text{next}(a')\), we have \((\lambda x. (\sigma a) a'') \subset \llbracket [a'/x](\sigma \phi) \rrbracket_\Delta\). Applying the induction hypothesis here requires the fact that \(a'' \in \llbracket \sigma \phi' \rrbracket_\Delta\), which follows by \(R-\text{Pres}\). Now we may apply \(R-\text{Join}\) with \(\Delta \vdash a' \sim \Delta a''\) and \(\Delta \vdash \text{join} : a' = a''\) (which follow from \(a' \sim a''\)) to obtain \((\lambda x. (\sigma a) a'') \subset \llbracket [a'/x](\sigma \phi) \rrbracket_\Delta\). This implies \((\lambda x. (\sigma a) \text{next}(a')) \subset \llbracket [a'/x](\sigma \phi) \rrbracket_\Delta\), as required.

Finally, we wish to conclude \([a'/x] \sigma a \in \llbracket [a'/x](\sigma \phi') \rrbracket_\Delta\) by instantiating (4) above with \(\Delta' \equiv \Delta\); \(\sigma' \equiv \sigma\); and \(a' \equiv a'\). We have the required \(\Delta' \equiv \Delta\); \(\sigma' \equiv \sigma\); and \(a' \equiv a'\). We have the required \(\Delta' \vdash a' : \sigma \phi'\). Of course. But we also need the fact that \((\sigma [a'/x])\phi' = \llbracket [a'/x](\sigma \phi') \rrbracket_\Delta\). This holds because \(\forall x : \text{ran}(\sigma)\) (by Lemma 10, as in an earlier case). So we conclude the desired \([a'/x] \sigma a \in \llbracket [a'/x](\sigma \phi') \rrbracket_\Delta\).

Case:

\[
\Gamma \vdash a : \Pi x : \phi', \phi \quad \Gamma \vdash a' : \phi' \\
\Gamma \vdash (a a') : [a'/x] \phi
\]

By the induction hypothesis, we have \(\sigma a \in \llbracket \Pi x : \phi'.\phi \rrbracket_\Delta\) and \(\sigma a' \in \llbracket \sigma \phi' \rrbracket_\Delta\). By Closability (Lemma 8), we then get \(\sigma a' \in \llbracket \sigma \phi' \rrbracket_\Delta\). Then using the definition of \(\llbracket \cdot \rrbracket\) at \(\Pi\)-type, we directly obtain \((\sigma a', \sigma a'') \in \llbracket [\sigma a'/x] \phi \rrbracket_\Gamma\). Since \(\forall x : \text{ran}(\sigma)\) (by Lemma 10), we get from this the desired conclusion, namely \(\sigma (a a') \in \llbracket \sigma ([a'/x] \phi) \rrbracket_\Gamma\).

Case:

\[
\Gamma \vdash 0 : \text{nat}
\]

Since 0 is a normal form, we have \(0 \in SN\) and \(\Delta \vdash 0 : \text{nat}\), which suffices for this case.

Case:

\[
\Gamma \vdash \text{nil} : (\text{vec} \ \phi \ 0)
\]
Since \texttt{nil} is a normal form, we have \texttt{nil} \in SN, and of course, \(\Delta \vdash \texttt{nil} : \langle \texttt{vec } \sigma \phi \ 0 \rangle\). For the second conjunct of the definition of \([\cdot]\) at vec-type, we have \(0 \perp 0\). For the third conjunct, assume \(\texttt{nil} \sim^* (\texttt{cons } a \ a')\) for some \(a\) and \(a'\). This is easily shown to be impossible, since reduction cannot possibly turn \texttt{nil} into a \texttt{cons}-term.

\textbf{Case:}

\[
\begin{array}{c}
\Gamma \vdash a : \texttt{nat} \\
\Gamma \vdash (S\ a) : \texttt{nat}
\end{array}
\]

By the induction hypothesis, we have \(\sigma a \in [\texttt{nat}]_\Delta\), which is equivalent to the conjunction of \(\sigma a \in SN\) and \(\Delta \vdash \sigma a : \texttt{nat}\). This implies \((S\ \sigma a) \in SN\) and \(\Delta \vdash (S\ \sigma a) : \texttt{nat}\), which suffices.

\textbf{Case:}

\[
\begin{array}{c}
\Gamma \vdash a'' : \texttt{nat} \\
\Gamma \vdash a : [0/x] \phi \\
\Gamma \vdash a' : \Pi : \texttt{nat}.\Pi u : [y/x]\phi, ((Sy)/x)\phi \\
\Gamma \vdash (R_{\texttt{nat}}\ a\ a'' : [a''/x] \phi)
\end{array}
\]

By the induction hypothesis, we have

- \(\sigma a'' \in [\texttt{nat}]_\Delta\)
- \(\sigma a \in [\sigma[0/x] \phi]_\Delta\)
- \(\sigma a' \in [\Pi : \texttt{nat}.\Pi u : \sigma([y/x]\phi).\ \sigma((Sy)/x)\phi)]_\Delta\)

We will prove that for any \(b \in [\texttt{nat}]_\Delta\), and assuming the second two of these facts, we have \((R_{\texttt{nat}}\ (\sigma a)\ (\sigma a')\ b) \in [\cases{\sigmaphi}_{\texttt{nat}}]_\Delta\). The proof is by inner induction on the measure \(v(\sigma a) + v(\sigma a') + v(b) + l(b)\). Our measure is defined, since all the terms involved are reducible and hence strongly normalizing by \textbf{R-SN}. By \textbf{R-Prog}, it suffices to prove \(next(R_{\texttt{nat}}\ (\sigma a)\ (\sigma a')\ b) \subset [\cases{\sigmaphi}_{b/x}]_\Delta\), since the term in question is neutral and appropriately typable. The possibilities for reduction are summarized by:

\[
(R_{\texttt{nat}}\ (\sigma a)\ (\sigma a')\ b) \subset (R_{\texttt{nat}}\ next(\sigma a)\ (\sigma a')\ b) \cup \\
(R_{\texttt{nat}}\ (\sigma a)\ next(\sigma a')\ b) \cup \\
(R_{\texttt{nat}}\ (\sigma a)\ (\sigma a')\ nextb) \cup \\
\{ (\sigma a)\ |\ b \equiv 0 \} \cup \\
\{ ((\sigma a')\ b'\ (R_{\texttt{nat}}\ (\sigma a)\ (\sigma a')\ b'))\ |\ b' \equiv (S\ b') \}
\]

The first three cases are for when the reduction is due to reduction in a subterm. The second two are for when the term in question is itself a redex. For the first two cases, we use the inner induction hypothesis and \textbf{R-Pres}. For the third, we do the same, except also apply \textbf{R-Join} with \(b \sim_\Delta b'\) for \(b' \in next(b)\). This ensures that we have \((R_{\texttt{nat}}\ (\sigma a)\ (\sigma a')\ next(b)) \subset [\cases{\sigmaphi}_{\texttt{nat}}]_\Delta\) (the critical point being that we have \(b\) in the type, and not some \(b' \in next(b)\)). The fourth case follows by our assumption that \(\sigma a \in [\cases{\sigmaphi}]_\Delta\) (note that in this case that the type in question is equivalent to the desired \([b/x]\phi\)). For the fifth case, we have \((R_{\texttt{nat}}\ (\sigma a)\ (\sigma a')\ b') \in [\cases{\sigmaphi}_{\texttt{nat}}]_\Gamma\) by the inner induction hypothesis, using the fact that \(b \in SN\) and \(b = (S\ b')\) implies \(b' \in SN\); and this then implies \(b' \in [\texttt{nat}]_\Delta\) by definition of \([\cdot]_\Delta\). Note that we obtain \(\Delta \vdash b' : \texttt{nat}\) from \(\Delta \vdash (S\ b') : \texttt{nat}\), by applying Simplifying Inversion (Lemma \[\cdot\] above). By the definition of \([\cdot]_\Pi\) at \(\Pi\)-type and our hypothesis that \(\sigma a'\) is reducible at the appropriate \(\Pi\)-type, we have that the given term is in the set \([\cases{\sigmaphi}_{b/x}]_\Delta\), which is equal to the desired \([b/x]\phi\)_\Gamma.
Case:

\[
\begin{align*}
\Gamma \vdash a : \phi \\
\Gamma \vdash a' : \{\text{vec } \phi \} l \\
\hline
\Gamma \vdash (\text{cons } a a') : \{\text{vec } \phi \} (S l)
\end{align*}
\]

By the induction hypothesis, we have \(\sigma a \in [[\phi]]_\Delta \) and \(\sigma a' \in [[\{\text{vec } \phi \} \sigma l]]_\Gamma \). By R-SN, these facts imply \(\sigma a \in SN \) and \(\sigma a' \in SN \), respectively, and hence \(\sigma (\text{cons } a a') \in SN \). We also have \(\Delta \vdash \sigma (\text{cons } a a') : \{\text{vec } \phi \} (S l) \). We must show the conjuncts of the definition of \([[\cdot]] \) at vec-type to conclude \((\text{cons } (\sigma a) (\sigma a')) \in [[\{\text{vec } \phi \} (S l)]]_\Delta \). The second conjunct is vacuously true, since we cannot have \((\text{cons } a a') \sim^* \text{nil} \). The third conjunct follows directly from our assumptions.

Case:

\[
\begin{align*}
\Gamma \vdash a'' : \{\text{vec } \phi \} l \\
\Gamma \vdash a : [0/y, \text{nil}/x] \phi \\
\Gamma \vdash a' : \Pi l : \phi. \forall l : \text{nat}. \Pi : \{\text{vec } \phi \} l. \Pi u : [l/y, v/x] \phi. \\
\hline
\Gamma \vdash (R_{\text{vec}} a a' a'') : [l/y, a''/x] \phi
\end{align*}
\]

This case is similar to that for \(R_{\text{nat}} \) above, although it is for this case that we have the various clauses of the definition of \([[\cdot]] \) at vec-type. By the induction hypothesis, we have

- \(\sigma a'' \in [[\sigma \{\text{vec } \phi \} l]]_\Delta \)
- \(\sigma a \in [[\sigma [0/y, \text{nil}/x] \phi]]_\Delta \)
- \(\sigma a' \in [[\sigma \Pi l : \phi. \forall l : \text{nat}. \Pi : \{\text{vec } \phi \} l. \Pi u : [l/y, v/x] \phi. ([S l]y, (\text{cons } z v)/x] \phi]]_\Delta \)

It is sufficient to prove that for any \(l \), for any \(b \in [[\{\text{vec } \phi \} l]]_\Delta \), and assuming the second two of these facts, we have \((R_{\text{vec}} (\sigma a) (\sigma a') b) \in [[l/y, b/x] \sigma \phi]]_\Delta \). The proof is by inner induction on the measure \(v(\sigma a) + v(\sigma a') + v(b) + l(b) \). As above, this measure is defined, by R-SN. By R-Prog, it suffices to prove \(\text{next}(R_{\text{vec}} (\sigma a) (\sigma a') b) \subseteq [[l/y, b/x] \sigma \phi]]_\Delta \), since the term in question is neutral and appropriately typable. The possibilities for reduction are summarized by:

\[
\begin{align*}
(R_{\text{vec}} (\sigma a) (\sigma a') b) \subseteq \\
(R_{\text{vec}} \text{next}(\sigma a) (\sigma a') b) \cup \\
(R_{\text{vec}} (\sigma a) \text{next}(\sigma a') b) \cup \\
\{(\sigma a) | b \equiv \text{nil}\} \cup \\
\{((\sigma a') b' b'' (R_{\text{vec}} (\sigma a) (\sigma a') b'')) | b \equiv \text{cons } b' b''\}
\end{align*}
\]

The first three cases are for when the reduction is due to reduction in a subterm. The second two are for when the term in question is itself a redex. For the first two cases, we use the inner induction hypothesis and R-Pres. For the third, we also apply R-Join as in the \(R_{\text{nat}} \) case above, to ensure that we have \((R_{\text{vec}} (\sigma a) (\sigma a') \text{next}(b)) \subseteq [[b/x] \sigma \phi]]_\Gamma \). The fourth case follows by our assumption that \(\sigma a \in [[0/y, \text{nil}/x] \phi]]_\Gamma \). By the definition of \([[\cdot]] \) at vec-type, we have \(l \sim^* 0 \); so we can apply R-Join and the fact that \(b = \text{nil} \) to obtain \(a \in [[l/y, b/x] \phi]]_\Gamma \), as required.

We now consider the fifth case. First, since \(b = \text{cons } b' b'' \) and \(b \in [[\{\text{vec } \phi \} l]]_\Gamma \), the definition of \([[\cdot]] \) at vec-type gives us the following facts for some \(l' \):

\[
\begin{align*}
\end{align*}
\]
Suppose a \(b \) \(b'' \in \llbracket \langle \text{vec} \, \phi' \mid l' \rangle \rrbracket \)

\(l \rightarrow (S \mid l') \)

We next apply the inner induction hypothesis to obtain \((R_{\text{vec}} (\sigma a) (\sigma a') b'') \in \llbracket [l'/y, b'/x] \sigma \phi \rrbracket \)\(: \) this is legal, since the measure has decreased (in particular, \(L(b'') < L(b) \)). With this obtained, we use the definition of \(\llbracket \cdot \rrbracket \) at \(\Pi \)-type and our hypothesis that \(\sigma a' \) is reducible at the appropriate \(\Pi \)-type. So we obtain the fact that the given term is in the set \(\llbracket (S \mid l') \mid y, (\text{cons} \, b' \, b'') / x \phi \rrbracket \). We can then use \(\text{R-Join} \) with the fourth assumed formula above, and the fact that \(b = (\text{cons} \, b' \, b'') \), to get that the term is in the desired \(\llbracket [l/y, b/x] \phi \rrbracket \).

D.3 Proof of Weakening Substitutions (Lemma 9)

The proof is by induction on the structure of the assumed derivation of \(\sigma \in \llbracket \Gamma \rrbracket \). The base case is trivial. For the step case, we have:

\[
\frac{a \in \llbracket \sigma' \phi \rrbracket^+_{\Delta} \quad \sigma' \in \llbracket \Gamma' \rrbracket_{\Delta}}{\sigma' \cup \{ (x, a) \} \in \llbracket \Gamma' \, x : \phi \rrbracket_{\Delta}}
\]

The induction hypothesis gives us \(\sigma' \in \llbracket \Gamma' \rrbracket_{\Delta, y : \phi'} \). We just need \(a \in \llbracket \sigma' \phi \rrbracket^+_{\Delta, y : \phi'} \), and we can reapply the rule to get the desired result. For this, we use the following lemma:

Lemma 11 (Weakening for Closable Terms). Suppose \(\Delta, y : \phi \) \(\Gamma \). Then \(a \in \llbracket \phi \rrbracket_{\Delta}^+ \) implies \(a \in \llbracket \phi \rrbracket_{\Delta, y : \phi'}^+ \).

Now we apply the following lemma to complete the proof, noting that the variable \(y \) of interest here is not in the free variables of \(a \) or \(\phi \), and so the assumption implies the required universal formula:

Lemma 12 (Weakening-Strengthening for Interpretations). Suppose \(a \in \llbracket \phi \rrbracket_{\Delta}^+ \). Then we have \(a \in \llbracket \phi \rrbracket_{\Delta, y : \phi'}^+ \) iff for all \(a' \in \llbracket \phi \rrbracket_{\Delta}^+ \), we have \(a' / y a \in \llbracket a' / y \phi \rrbracket_{\Delta}^+ \).

The proof makes frequent use of the following lemma, which we prove briefly first:

Lemma 13 (Weakening-Strengthening for Ground Joinability). Suppose \((\Delta, y : \phi') \) \(\Gamma \). Then we have \(a_1 \sim_{\Delta, y : \phi'} a_2 \) iff for all \(a' \in \llbracket \phi' \rrbracket_{\Delta} \), we have \(a' / y a_1 \sim_{\Delta} a' / y a_2 \).

First, suppose \(a_1 \sim_{\Delta, y : \phi'} a_2 \), and consider arbitrary \(\sigma' \in \llbracket \Delta \rrbracket \) and \(a' \in \llbracket \sigma' \phi' \rrbracket \). Then we have \((\sigma' \circ [a' / y]) \in \llbracket \Delta, y : \phi' \rrbracket \) by Composing Substitutions (Lemma [7]). We can then use \(a_1 \sim_{\Delta, y : \phi'} a_2 \) to get \((\sigma'([a' / y]a_1)) \downarrow (\sigma'([a' / y]a_2), as \ required.

Second, suppose that for all \(a' \in \llbracket \phi' \rrbracket_{\Delta} \), we have \([a' / y]a_1 \sim_{\Delta} [a' / y]a_2 \), and show \(a_1 \sim_{\Delta, y : \phi'} a_2 \). Assume arbitrary \(\sigma \in \llbracket \Delta, y : \phi' \rrbracket \). Then for some \(\sigma' \) and \(a' \in \llbracket \sigma' \phi \rrbracket \), we have \(\sigma \equiv \sigma' \mid a' / y \). Instantiating our assumption with this \(a' \) and then \(\sigma' \), we obtain the desired conclusion.

We now turn to the main proof for Weakening-Strengthening, which is by induction on \((| \Gamma |, d(\phi), l(a)) \). In all cases, the typing statement in question follows by either Weakening (Lemma [3]) or Substitution (Lemma [2]), so we omit consideration of typing below. Strong normalization of the substitution instances follows from the definition of closability (and the assumption that \(a \) is a closable term in context \(\Delta, y : \phi' \)).

Case: \(\phi \equiv \text{nat} \).

This case is trivial.

Case: \(\phi \equiv \langle \text{vec} \, \phi \mid l \rangle \).
These cases follow easily by Weakening-Strengthening for Ground Joinability (Lemma[13]) and the induction hypothesis.

Case: $\phi \equiv \Pi x : \psi \psi'$.

First, assume $a \in [\phi]_{\Delta, \psi, \phi'}^+$, and show $[a'/y]a \in [\phi']_{\Delta}^+$ for an arbitrary $a' \in [\phi']_{\Delta}$. It suffices to consider arbitrary $a'' \in [\psi]_{\Delta, \psi, \phi'}^+$, and show $([a'/y]a) a'' \in [\phi']_{\Delta}^+$. Since $y \notin \text{FV}(a'')$, we certainly have $[\hat{a}/y]a'' \in [\psi]_{\Delta, \psi, \phi'}^+$ for all $\hat{a} \in [\phi']_{\Delta}$. So we may apply the induction hypothesis to conclude $a'' \in [[a'/y]\psi]_{\Delta, \psi, \phi'}^+$. Now we may use our assumption of reducibility of a in context $\Delta, y : \phi'$ to conclude $(a, a'') \in [[a'/y]\psi]_{\Delta, \psi, \phi'}^+$. To obtain $(a, a'') \in [[a'/y]\psi]_{\Delta, \psi, \phi'}^+$ from this, assume an arbitrary partition $(\Delta_1, \Delta_2) \equiv (\Delta, y : \phi')$, and arbitrary $\sigma \in [\Delta_2]_{\Delta_1}$. We must show $\sigma(a, a'') \in [[\sigma[a'/y]\psi']_{\Delta_1}$. If Δ_2 is empty, this statement is equivalent to the fact $(a, a'') \in [[a'/y]\psi]_{\Delta, \psi, \phi'}$, which we already have. So suppose Δ_2 ends in $y : \phi'$. Then $y \notin \text{ran}(\sigma)$. Also, $y \notin \text{FV}(a'')$, so our current goal formula is equivalent to $((\sigma a) a'') \in [[a'/y]\psi]_{\Delta, \psi, \phi'}$. Instantiating our assumption of closability of a with $\sigma|_{\text{dom}(\Delta_1)}$, we obtain $\sigma a \in [[\sigma]_{\Delta_1}$. This is then sufficient for the desired conclusion, since we easily obtain $\sigma a'' \in [[\sigma[a'/y]\psi]_{\Delta_1}^+$ from our assumption of closability of a'' in context Δ. Having obtained (a, a'') closable, we may now apply the induction hypothesis again, to obtain $((\sigma[a'/y]a) a'') \in [[a'/y][a''/x]\psi]_{\Delta, \psi, \phi'}$, noting again that $y \notin \text{FV}(a'')$. Closability of a and a'' again imply closability of this final term.

Now assume that for all $a' \in [\phi]_{\Delta}^+$, we have $[a'/y]a \in [\phi']_{\Delta}^+$, and show $a \in [\phi]_{\Delta, \psi, \phi'}^+$. It suffices to consider arbitrary $a'' \in [\psi]_{\Delta, \psi, \phi'}^+$, and show $[a'/y]a'' \in [\phi']_{\Delta}^+$. By the induction hypothesis, we have $[a'/y]a'' \in [\psi]_{\Delta, \psi, \phi'}^+$ for any $a' \in [\phi]_{\Delta}^+$. Consider arbitrary such a'. We have $([a'/y]a) a'' \in [[a'/y][a''/x]\psi]_{\Delta}$, and again imply closability of this term. This is true for any a', so we may apply the induction hypothesis again to conclude $[a'/y]a \in [\phi']_{\Delta}^+$, and again obtain closability as above, for the required conclusion.

Case: $\phi \equiv \forall x : \psi$. ψ'.

This case is very similar to the previous one, so we omit it.

Case: $a_1 = a_2$.

This follows by Weakening-Strengthening for Ground Joinability (Lemma[13]).

E Proof of Corollaries of Theorem[3]

E.1 Proof of Strong Normalization (Corollary[5])

By Soundness for Interpretations, we have $\sigma a \in [\sigma \phi]_{\Delta}$ for all Δ and σ with $\Delta \subset \sigma \Gamma$ and $\sigma \in [\Gamma]_{\Delta}$. We instantiate this by taking Γ for Δ and the identity substitution id on $\text{dom}(\Gamma)$ for σ. We have $id \in [\Gamma]_{\Gamma}$, since for all $x \in \text{dom}(\Gamma)$, we have $x \in [\Gamma(x)]_{\Gamma}$ by R-Prog and the fact that if $\sigma' \in [\Gamma]$, then by that assumption, we get $\sigma' x \in [\sigma' \Gamma(x)]$, which is needed for closability of x. This instantiation yields $a \in [\phi]_{\Gamma}$, which implies $a \in SN$ by R-SN.
E.2 Proof of Equational Soundness (Theorem 3)

By Type Preservation, Progress, and Canonical Forms, we obtain $a \sim^* _\text{join}$. By Inversion, the only possible derivations are (conv) inferences starting with a \text{join}-introduction. This implies $b_1 \downarrow b_2$, because joinability is closed under substitution of joinable terms. An easy corollary is:

F Proofs for section 5 (Large Eliminations)

F.1 Proof of Critical Properties

R-Canon. If $a \in [[\phi]]$, then $a \sim^*_v v$ for some v. Furthermore, if ϕ is a value type (i.e. nat, Π, \forall, =, or vec), then v is the corresponding introduction form.

Proof. Immediate from the definition of $[[_]]$.

R-Pres. If $a \in [[\phi]]$ and $a \sim_v a'$, then $a' \in [[\phi]]$.

Proof. Induction on the depth of ϕ.

The clauses of the form $a \sim^*_v v$ are all proven in the same way: for instance if $a \sim^*_v n$ and $a \sim_v a'$, then $a' \sim^*_v n$ by determinacy of \sim_v. This takes care of all cases except Π and \forall.

For $\Pi y : \phi' \cdot \phi$, we also need to show $\forall a'' \in [[\phi']]$. $(a' a'') \in [[a''/x]\phi]]$. Let $a'' \in [[\phi']]$. By assumption we know $(a'' n) \in [[a''/x]\phi]]$. But $(a'' a'') \sim_v (a' a'')$, so by the IH at the type $[a''/x]\phi$ (which is of lower depth) $(a' a'') \in [[a''/x]\phi]]$ as required.

The case $\forall y : \phi' \cdot \phi$ is similar to the above case: we need to show $(a' \square) \in [[a''/x]\phi]]$ and use that $(a \square) \sim_v (a' \square)$.

R-Prog. If $a \sim_v a'$, and $a' \in [[\phi]]$, then $a \in [[\phi]]$.

Proof. Induction on the depth of ϕ.

The clauses of the form $a \sim^*_v v$ are all proven in the same way: for instance if $a' \sim^*_v n$ and $a \sim_v a'$, then $a' \sim^*_v n$. This takes care of all cases except Π and \forall.

For $\Pi y : \phi' \cdot \phi$, we also need to show $\forall a'' \in [[\phi']]$. $(a' a'') \in [[a''/x]\phi]]$. Let $a'' \in [[\phi']]$. By assumption $(a' a'') \in [[a''/x]\phi]]$. But $(a' a'') \sim_v (a' a'')$, so by IH at the type $[a''/x]\phi$ (which is of lower depth), $(a' a'') \in [[a''/x]\phi]]$ as required.

The case $\forall y : \phi' \cdot \phi$ is similar to the above case: we need to show $(a \square) \in [[a''/x]\phi]]$ and use $(a \square) \sim_v (a' \square)$.

R-Join. If $a_1 \downarrow a_2$, then $a \in [[a_1/x]\phi]]$ implies $a \in [[a_2/x]\phi]]$.

Proof. Induction on the depth of ϕ.

- nat. Trivially true since $[a_1/x]\text{nat} = [a_2/x]\text{nat} = \text{nat}$.

- $(\text{vec } \phi l)$. By assumption $a \in [[(\text{vec } \phi l)]$, so either $a \sim^*_v \text{nil}$ and $[a_1/x]\text{l} \sim^* 0$, or $a \sim^*_v (\text{cons } v v')$ and $[a_1/x]\text{l} \sim^* (S n)$ with $v \in [[a_1/x]\phi]]$ and $v' \in [[(a_1/x)\phi n]]$.

In the first case, note that joinability implies $[a_2/x]\text{l} \sim^* 0$. In the second case, joinability gives $[a_2/x] \sim^* (S n)$, and the IH gives $v \in [[a_2/x]\phi]]$ and $v' \in [[\text{vec } a_2/x]\phi n]]$.
• \(\Pi y : \phi'. \phi \). The first conjunct is the same for both \([a_1/x] \phi\) and \([a_2/x] \phi\). For the second conjunct, let \(a' \in [[a_2/x] \phi'] \). By IH \(a' \in [[a_1/x] \phi'] \), so \((a, a') \in [[a'/y][a_1/x] \phi]]\). Since \(y \) was a bound variable, we can choose it such that \(a' \not\in FV(a_1) \cup \{x\} \), so \([a'/y][a_1/x] \phi = [a_1/x][a'/y] \phi \). By IH applied to \([a'/y] \phi \) (which is of lower depth), \((aa') \in [[a_2/x][a'/y] \phi]]\) as required.

• \(\forall y : \phi'. \phi \). Similar to the previous case.

• \(b_1 = b_2 \). We need to show that \([a_1/x] b_1 \Downarrow [a_1/x] b_2 \) implies \([a_2/x] b_1 \Downarrow [a_2/x] b_2 \), which is true.

• \((i f Z e r o \ b \ \phi_1 (\alpha, \phi_2)) \). Note that \([a_1/x] b \Downarrow^* n \) implies \([a_2/x] b \Downarrow^* n \), and then by the IH.

\(\square \)

F.2 Proof of Theorem 6 (Fundamental Lemma for Large Eliminations version of \([[\alpha]]\))

Case:

\[
\Gamma(x) \equiv \phi \\
\Gamma \vdash x : \phi
\]

Immediate by \(\sigma \in [[\Gamma]] \).

Case:

\[
\Gamma \vdash a : \phi \quad \Gamma \vdash a' : \phi' \quad a \Downarrow a' \\
\Gamma \vdash \text{join} : a = a'
\]

`join` is a value of the right form. We get \(\sigma a \Downarrow \sigma a' \), since joinability is closed under substitution. We get \(\exists v_i, \sigma a_i \Downarrow^* v_i \) by IH and **R-Canon**.

Case:

\[
\Gamma \vdash a''' : a' = a'' \\
\Gamma \vdash a : [a'/x] \phi \quad x \not\in \text{dom}(\Gamma) \\
\Gamma \vdash a : [a''/x] \phi
\]

By the IH from the second premise we have \(\sigma a \in [[\sigma a'/x](\sigma \phi)] \). By the IH from the first premise we have \(\sigma a''' \in [[\sigma(a' = a'') \phi]] \), so \(\sigma a \Downarrow \sigma a'' \). So by **R-Join**, \(\sigma a \in [[\sigma a''/x] \psi] = [[\sigma a''/x](\sigma \phi)] \).

Case:

\[
\Gamma, x : \phi' \vdash a : \phi \quad x \not\in FV(a) \\
\Gamma \vdash (\lambda a) : \forall x : \phi', \phi
\]

\((\lambda a)\) is a value of the right form. We must show \((\lambda a) \sigma \in [[\forall x : \sigma \phi'. \sigma \phi]] \).

Consider some \(a' \in [[\sigma \phi']] \). By **R-Prog**, it suffices to show \(a \in [[a'/x] \sigma \phi]] \), since \(((\lambda a) \Box) \Downarrow^* a \). Let \(\sigma' = \sigma \cup \{x, a'\} \). Then \(\sigma' \in [[\Gamma, x : \phi']] \), so by IH we have \(\sigma'a \in [[\sigma' \phi]] \), that is \(\sigma a \in [[a'/x] \sigma' \phi]] \).

Case:
\[
\Gamma \vdash a : \forall x : \phi' \quad \phi \quad a' : \phi'
\]

\[
\Gamma \vdash a \square : [a'/x] \phi
\]

This follows immediately from induction hypothesis, and the definition of \([\cdot]\) for \(\forall\)-types.

Case:

\[
\Gamma, x : \phi' \vdash a : \phi
\]

\[
\Gamma \vdash \lambda x : \Pi x : \phi' \phi
\]

\(\lambda x.a\) is a value of the right form. We must show \((\lambda x.a) \in [\Pi x : \sigma \phi'. \sigma \phi]\).

Consider some \(a' \in [\sigma \phi']\). We must show \((\lambda x.\sigma a) a' \in [\Pi x : [a'/x] \sigma \phi]\). By **R-Prog** it suffices to show that it steps to a term in \([\Pi x : [a'/x] \sigma \phi]\).

By **R-Canon**, \(a' \sim \nu\) for some \(\nu\). We proceed by the number of steps \(a'\) takes to normalize. In the base case \(a'\) is already a value. Then \((\lambda x.\sigma a) a' \sim [a'/x] \sigma a = \sigma' a\) where \(\sigma' = \sigma \cup \{(x,a')\}\). \(\sigma' \in [\Gamma, x : \phi']\), so by IH \(\sigma' a \in [\sigma' \phi]\).

In the step case, \(a' \sim \nu a''\) for some \(a''\), so \((\lambda x.\sigma a) a'' = [\Pi y : [a''/x] \sigma \phi'']\). By **R-Pres**, \(a'' \in [\sigma \phi']\), so the inner IH applies and \((\lambda x.\sigma a) a'' \in [\Pi y : [a''/x] \sigma \phi']\). But \(a' \sim \nu a''\), so \(a \sim a''\), so \(a \downarrow a''\), so **R-Join** applies and \((\lambda x.\sigma a) a'' \in [\Pi y : [a''/x] \sigma \phi']\) as required.

Case:

\[
\Gamma \vdash a : \Pi x : \phi' \phi \quad \phi \quad a' : \phi'
\]

\[
\Gamma \vdash (a a') : [a'/x] \phi
\]

This follows immediately from induction hypothesis, and the definition of \([\cdot]\) for \(\Pi\)-types.

Case:

\[
\Gamma \vdash 0 : \text{nat}
\]

0 is a value of the right form.

Case:

\[
\Gamma \vdash a : \text{nat}
\]

\[
\Gamma \vdash (S\ a) : \text{nat}
\]

By the induction hypothesis, we have \(\sigma a \in [\text{nat}]\), so by **R-Canon** \(\sigma a \sim^+ n\). Then \((\text{S } \sigma a) \sim^+ (\text{S } n)\), which is a value of the right form.

Case:

\[
\Gamma \vdash a'' : \text{nat}
\]

\[
\Gamma \vdash a : [0/x] \phi
\]

\[
\Gamma \vdash a' : \Pi y : \text{nat}. \Pi u : [y/x] \phi. ([S y]/x) \phi
\]

\[
\Gamma \vdash (R_{\text{nat}} a a' a'') : [a''/x] \phi
\]
By the induction hypothesis, we have

- \(\sigma a'' \in [\text{nat}] \)
- \(\sigma a \in [\sigma[0/x] \phi] \)
- \(\sigma a' \in \Pi : \text{nat}. \Pi u : \sigma([y/x] \phi). \sigma([S y/x] \phi)] \)

We will prove that for any \(b \in [\text{nat}] \), and assuming the second two of these facts, we have \((R_{\text{nat}} (\sigma a) (\sigma a') b) \in [[[b/x] \sigma \phi]]. \) The proof is by inner induction on the measure \(\nu(\sigma a) + \nu(\sigma a') + \nu(b) + l(b). \) Our measure is defined, since all the terms involved are normalizing by \textbf{R-Canon}.

By \textbf{R-Prog}, it suffices to prove that \(R_{\text{nat}} (\sigma a) (\sigma a') b \) steps to a term in \([[[b/x] \sigma \phi]]. \) The terms \((\sigma a), \ (\sigma a'), \) and \(b \) are all in \([\cdot] \), so by \textbf{R-Canon} each of them either steps or is a value. By considering the cases, one of the following must be the case:

\[
\begin{align*}
R_{\text{nat}} (\sigma a) (\sigma a') b & \sim_{\nu} R_{\text{nat}} c (\sigma a') b & \text{where } (\sigma a) \sim_{\nu} c \\
R_{\text{nat}} v (\sigma a') b & \sim_{\nu} R_{\text{nat}} v c' b & \text{where } (\sigma a') \sim_{\nu} c' \\
R_{\text{nat}} v v' b & \sim_{\nu} R_{\text{nat}} v v' c & \text{where } b \sim_{\nu} c \\
R_{\text{nat}} v v' 0 & \sim_{\nu} v & \\
R_{\text{nat}} v v' (S n) & \sim_{\nu} v' n (R_{\text{nat}} v v' n) & \\
\end{align*}
\]

The first three cases are for when the reduction is due to reduction in a subterm. The second two are for when the term in question is itself a redex. For the first two cases, we use the inner induction hypothesis and \textbf{R-Pres}. For the third, we do the same, except also apply \textbf{R-Join} with \(b \downarrow c \). This ensures that we have \((R_{\text{nat}} (\sigma a) (\sigma a') b) \in [[[b/x] \sigma \phi]]. \) (the critical point being that we have \(b \) in the type, and not \(c \).) The fourth case follows by our assumption that \(\sigma a \in [[[0/x] \phi]]. \) (note that in this case that the type in question is equivalent to the desired \([b/x] \phi \).) For the fifth case, we have \((R_{\text{nat}} (\sigma a) (\sigma a') n) \in [[[n/x] \sigma \phi]] \) by the inner induction hypothesis. Since \(n \) is a number we trivially have \(n \in [\text{nat}] \). By the definition of \([\cdot] \) at \(\Pi \)-type and our hypothesis that \(\sigma a' \) is reducible at the appropriate \(\Pi \)-type, we have that the given term is in the set \([[[S n/x] \phi]]. \) which is equal to the desired \([[[b/x] \phi]]. \)

Case:

\[
\Gamma \vdash \text{nil} : \langle \text{vec } \phi \ 0 \rangle
\]

\(\text{nil} \) and \(0 \) are values of the right form.

Case:

\[
\begin{align*}
\Gamma \vdash a : \phi \\
\Gamma \vdash a' : \langle \text{vec } \phi \ l \rangle \\
\Gamma \vdash (\text{cons } a a') : \langle \text{vec } \phi \ (S l) \rangle
\end{align*}
\]

We prove the second disjunct of \(\sigma (\text{cons } a a') \in [[[\sigma \langle \text{vec } \phi \ (S l) \rangle]]. \) By IH and \textbf{R-Canon}, we know \(\sigma a \) and \(\sigma a' \) reduce to some values \(v \) and \(v' \). Then \(\sigma (\text{cons } a a') \sim_{v} (\text{cons } v v') \) as required. Similarly from the IH we know \(\sigma l \sim_{v} n, \) so \(\sigma (S l) \sim_{v} (S n) \) as required.

Case:

\[
\begin{align*}
\Gamma \vdash \text{nil} : \langle \text{vec } \phi \ 0 \rangle
\end{align*}
\]

\(\text{nil} \) and \(0 \) are values of the right form.
This case is similar to that for R_{nat} above. By the induction hypothesis, we have

- $\sigma a'' \in \llbracket \sigma (\text{vec } \phi' l) \rrbracket$
- $\sigma a \in \llbracket \sigma [0/y, \text{nil}/x] \phi \rrbracket$
- $\sigma d' \in \llbracket \sigma \Pi z : \phi \cdot \forall l : \text{nat}. \Pi v : (\text{vec } \phi' l). \Pi u : (l/y,v/x) \phi \cdot ((S l)/y, (\text{cons } z v)/x) \phi \rrbracket$

It is sufficient to prove that for any l, for any $b \in \llbracket (\text{vec } \phi' l) \rrbracket$, and assuming the second two of these facts, we have $(R_{\text{vec}} (\sigma a) (\sigma d') b) \in \llbracket (l/y, b/x) \sigma \phi \rrbracket$. The proof is by inner induction on the measure $\nu (\sigma a) + \nu (\sigma d') + \nu (b) + l(b)$. As above, this measure is defined by R_{Canon}.

By R_{Prog}, it suffices to prove that $R_{\text{vec}} (\sigma a) (\sigma d') b$ steps to a term in $\llbracket (l/y, b/x) \sigma \phi \rrbracket$. The terms (σa), $(\sigma d')$, and b are all in $\llbracket \cdot \rrbracket$, so by R_{Canon} each of them either steps or is a value. By considering the cases, one of the following must be the case:

- $R_{\text{vec}} (\sigma a) (\sigma d') b \sim v R_{\text{vec}} c (\sigma d') b$ where $(\sigma a) \sim v c$
- $R_{\text{vec}} v (\sigma d') b \sim v R_{\text{vec}} v c' b$ where $(\sigma d') \sim v c'$
- $R_{\text{vec}} v v' \sim v v$ where $b \sim v c$
- $R_{\text{vec}} v v' \text{nil} \sim v v$ where $b \sim v c$
- $R_{\text{vec}} v v' (\text{cons } u u') \sim v v' u u' (R_{\text{vec}} v v' u')$ (where $a \in \llbracket (l/y, b/x) \phi \rrbracket$).

The first three cases are for when the reduction is due to reduction in a subterm. The second two are for when the term in question is itself a redex. For the first two cases, we use the inner induction hypothesis and R_{Pres}. For the third, we also apply R_{Join} as in the R_{nat} case above, to ensure that we have $(R_{\text{vec}} (\sigma a) (\sigma d') c) \in \llbracket (l/y, b/x) \sigma \phi \rrbracket$. The fourth case follows by our assumption that $\sigma a \in \llbracket [0/y, \text{nil}/x] \phi \rrbracket$. By the definition of $\llbracket \cdot \rrbracket$ at vec-type, we must have $l \sim^* 0$; so we can apply R_{Join} and the fact that $b = \text{nil}$ to obtain $a \in \llbracket (l/y, b/x) \phi \rrbracket$, as required.

For the fifth case, we know by assumption that $(\text{cons } u u') \in \llbracket (\sigma \text{vec } \phi l) \rrbracket$. By the definition of $\llbracket \cdot \rrbracket$ that means that $u \in \llbracket \phi \rrbracket$, $\sigma l \sim^* (S n)$, and $u' \in \llbracket (\text{vec } \phi n) \rrbracket$.

Then we have $(R_{\text{vec}} (\sigma a) (\sigma d') u') \in \llbracket [n/y, u'/x] \sigma \phi \rrbracket$ by the inner induction hypothesis. By the definition of $\llbracket \cdot \rrbracket$ at Pi-type and our hypothesis that $\sigma d'$ is reducible at the appropriate Pi-type, we have that the given term is in the set $\llbracket [(S n)/y, (\text{cons } u u')/x] \sigma \phi \rrbracket$. By using R_{Join} on $l \Downarrow (S n)$, this implies the desired $\llbracket (l/y, (\text{cons } u u')/x) \phi \rrbracket$.

Case:

\[
\frac{}{\Gamma \vdash a : \phi', \Gamma' \vdash a' : \text{nat} }{\Gamma \vdash a : \text{ifzero} (S a') \phi \phi'} \text{ foldS}
\]

By IH we have $\sigma a' \in \llbracket \text{nat} \rrbracket$, so by R_{Canon}, $\sigma a' \sim^* n$ for some n. Therefore $\sigma (S a') \sim^* (S n)$, so we need to show $\sigma a \in \llbracket \sigma \phi' \rrbracket$, which we get by IH.

Case:
\[\Gamma \vdash a : \text{ifZero}(Sd') \phi \phi' \quad \Gamma \vdash d' : \text{nat} \quad \text{unfoldS} \]

Similar to the previous case.

Case:

\[\Gamma \vdash a : \phi \]

\[\Gamma \vdash a : \text{ifZero} 0 \phi \phi' \]

Similar to unfoldS case.

Case:

\[\Gamma \vdash a : \text{ifZero} 0 \phi \phi' \]

\[\Gamma \vdash a : \phi \]

Similar to foldS case.